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ABSTRACT
Today we are witnessing a dramatic shift toward a data-
driven economy, where the ability to efficiently and timely
analyze huge amounts of data marks the difference between
industrial success stories and catastrophic failures. In this
scenario Storm, an open source distributed realtime com-
putation system, represents a disruptive technology that is
quickly gaining the favor of big players like Twitter and
Groupon. A Storm application is modeled as a topology, i.e.
a graph where nodes are operators and edges represent data
flows among such operators. A key aspect in tuning Storm
performance lies in the strategy used to deploy a topology,
i.e. how Storm schedules the execution of each topology
component on the available computing infrastructure. In
this paper we propose two advanced generic schedulers for
Storm that provide improved performance for a wide range
of application topologies. The first scheduler works offline
by analyzing the topology structure and adapting the de-
ployment to it; the second scheduler enhance the previous
approach by continuously monitoring system performance
and rescheduling the deployment at run-time to improve
overall performance. Experimental results show that these
algorithms can produce schedules that achieve significantly
better performances compared to those produced by Storm’s
default scheduler.

Categories and Subject Descriptors
D.4.7 [Organization and Design]: Distributed systems
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distributed event processing, CEP, scheduling, Storm

1. INTRODUCTION
In the last few years we are witnessing a huge growth in

information production. IBM claims that “every day, we
create 2.5 quintillion bytes of data - so much that 90% of
the data in the world today has been created in the last two
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years alone” [15]. Domo, a business intelligence company,
has recently reported some figures [4] that give a perspective
on the sheer amount of data that is injected on the internet
every minute, and its heterogeneity as well: 3125 photos
are added on Flickr, 34722 likes are expressed on Facebook,
more than 100000 tweets are done on Twitter, etc. This
apparently unrelenting growth is a consequence of several
factors including the pervasiveness of social networks, the
smartphone market success, the shift toward an “Internet of
things”and the consequent widespread deployment of sensor
networks. This phenomenon, know with the popular name
of Big Data, is expected to bring a strong growth in economy
with a direct impact on available job positions; Gartner says
that the business behind Big Data will globally create 4.4
million IT jobs by 2015 [1].

Big Data applications are typically characterized by the
three V s: large volumes (up to petabytes) at a high veloc-
ity (intense data streams that must be analyzed in quasi
real-time) with extreme variety (mix of structured and un-
structured data). Classic data mining and analysis solutions
quickly showed their limits when faced with such loads. Big
Data applications, therefore, imposed a paradigm shift in
the area of data management that brought us several novel
approaches to the problem represented mostly by NoSQL
databases, batch data analysis tools based on Map-Reduce,
and complex event processing engines. This latter approach
focussed on representing data as a real-time flow of events
proved to be particularly advantageous for all those appli-
cations where data is continuously produced and must be
analyzed on the fly. Complex event processing engines are
used to apply complex detection and aggregation rules on
intense data streams and output, as a result, new events. A
crucial performance index in this case is represented by the
average time needed for an event to be fully analyzed, as
this represents a good figure of how much the application is
quick to react to incoming events.

Storm [2] is a complex event processing engine that, thanks
to its distributed architecture, is able to perform analytics on
high throughput data streams. Thanks to these character-
istics, Storm is rapidly conquering reputation among large
companies like Twitter, Groupon or The Weather Chan-
nel. A Storm cluster can run topologies (Storm’s jargon for
an application) made up of several processing components.
Components of a topology can be either spouts, that act
as event producers, or bolts that implement the processing
logic. Events emitted by a spout constitute a stream that
can be transformed by passing through one or multiple bolts
where its events are processed. Therefore, a topology repre-



sents a graph of stream transformations. When a topology
is submitted to Storm it schedules its execution in the clus-
ter, i.e., it assigns the execution of each spout and each bolt
to one of the nodes forming the cluster. Similarly to batch
data analysis tools like Hadoop, Storm performance are not
generally limited by computing power or available memory
as new nodes can be always added to a cluster.

In order to leverage the available resources Storm is equip-
ped with a default scheduler that evenly distributes the exe-
cution of topology components on the available nodes using
a round-robin strategy. This simple approach is effective in
avoiding the appearance of computing bottlenecks due to
resource overusage caused by skews in the load distribution.
However, it does not take into account the cost of moving
events through network links to let them traverse the correct
sequence of bolts defined in the topology. This latter aspect
heavily impacts the average event processing latency, i.e.,
how much time is needed for an event injected by a spout to
traverse the topology and be thus fully processed, a funda-
mental metric used to evaluate the responsiveness of event
processing applications to incoming stimuli.

In this paper we target the design and implementation of
two general purpose Storm schedulers that, like the default
one, could be leveraged by applications to improve their per-
formance. Differently from the default Storm scheduler, the
ones introduced in this paper aim at reducing the average
event processing latency by adapting the schedule to specific
application characteristics1.

The rationale behind both schedulers is the following: (i)
identify potential hot edges of the topology, i.e., edges tra-
versed by a large number of events, and (ii) map an hot edge
to a fast inter-process channel and not to a slow network
link, for example by scheduling the execution of the bolts
connected by the hot edge on a same cluster node. This
rationale must take into account that processing resources
have limited capabilities that must not be exceeded to avoid
an undesired explosion of the processing time experienced
at each topology component. Such pragmatic strategy has
the advantage of being practically workable and to provide
better performances.

The two general purpose schedulers introduced in this pa-
per differ on the way they identify hot edges in the topol-
ogy. The first scheduler, named offline, simply analyzes the
topology graph and identifies possible sets of bolts to be
scheduled on a same node by looking at how they are con-
nected. This approach is simple and has no overhead on the
application with respect to the default Storm scheduler (but
for negligible increased processing times when the schedule
is calculated), but it is oblivious with respect to the appli-
cation workload: it could decide to schedule two bolts on a
same node even if the number of events that will traverse the
edge connecting them will be very small. The second sched-
uler, named online, takes this approach one step further
by monitoring the effectiveness of the schedule at runtime
and re-adapting it for a performance improvement when it
sees fit. Monitoring is performed at runtime on the sched-
uled topology by measuring the amount of traffic among its
components. Whenever there is the possibility for a new
schedule to reduce the inter-node network traffic, the sched-
uled is calculated and transparently applied on the cluster

1The source code of the two schedulers can be found
at http://www.dis.uniroma1.it/~midlab/software/
storm-adaptive-schedulers.zip

preserving the application correctness (i.e. no events are
discarded during this operation). The online scheduler thus
provides adaptation to the workload at the cost of a more
complex architecture. We have tested the performance of
our general purpose schedulers by implementing them on
Storm and by comparing the schedules they produce with
those produced by the default Storm scheduler. The tests
have been conducted both on a synthetic workload and on
a real workload publicly released for the DEBS 2013 Grand
Challenge. The results show how the proposed schedulers
consistently delivers better performance with respect to the
default one promoting them as a viable alternative to more
expensive ad-hoc schedulers. In particular tests performed
on the real workload show a 20% to 30% performance im-
provement on event processing latency for the online sched-
uler with respect to the default one proving the effectiveness
of the proposed topology scheduling approach.

The rest of this paper is organized as follows: Section 2
introduces the reader to Storm and its default scheduler;
Section 3 describes the offline and online schedulers; Sec-
tion 4 reports the experiments done on the two schedulers.
Finally, Section 5 discusses the related work and Section 6
concludes the paper.

2. STORM
Storm is an open source distributed realtime computa-

tion system [2]. It provides an abstraction for implementing
event-based elaborations over a cluster of physical nodes.
The elaborations consist in queries that are continuously
evaluated on the events that are supplied as input. A compu-
tation in Storm is represented by a topology, that is a graph
where nodes are operators that encapsulate processing logic
and edges model data flows among operators. In the Storm’s
jargon, such a node is called a component. The unit of in-
formation that is exchanged among components is referred
to as a tuple, that is a named list of values. There are two
types of components: (i) spouts, that model event sources
and usually wrap the actual generators of input events so as
to provide a common mechanism to feed data into a topol-
ogy, and (ii) bolts, that encapsulate the specific processing
logic such as filtering, transforming and correlating tuples.

The communication patterns among components are rep-
resented by streams, unbounded sequences of tuples that are
emitted by spouts or bolts and consumed by bolts. Each
bolt can subscribe to many distinct streams in order to re-
ceive and consume their tuples. Both bolts and spouts can
emit tuples on different streams as needed. Spouts cannot
subscribe to any stream, since they are meant to produce tu-
ples only. Users can implement the queries to be computed
by leveraging the topology abstraction. They put into the
spouts the logic to wrap external event sources, then compile
the computation in a network of interconnected bolts tak-
ing care of properly handling the output of the computation.
Such a computation is then submitted to Storm which is in
charge of deploying and running it on a cluster of machines.

An important feature of Storm consists in its capability
to scale out a topology to meet the requirements on the load
to sustain and on fault tolerance. There can be several in-
stances of a component, called tasks. The number of tasks
for a certain component is fixed by the user when it config-
ures the topology. If two components communicate through
one or more streams, also their tasks do. The way such a
communication takes place is driven by the grouping chosen
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by the user. Let A be a bolt that emits tuples on a stream
that is consumed by another bolt B. When a task of A emits
a new tuple, the destination task of B is determined on the
basis of a specific grouping strategy. Storm provides several
kinds of groupings

• shuffle grouping : the target task is chosen randomly,
ensuring that each task of the destination bolt receives
an equal number of tuples

• fields grouping : the target task is decided on the basis
of the content of the tuple to emit; for example, if the
target bolt is a stateful operator that analyzes events
regarding customers, the grouping can be based on a
customer-id field of the emitted tuple so that all the
events about a specific customer are always sent to the
same task, which is consequently enabled to properly
handle the state of such customer

• all grouping : each tuple is sent to all the tasks of the
target bolt; this grouping can be useful for implement-
ing fault tolerance mechanisms

• global grouping : all the tuples are sent to a designated
task of the target bolt

• direct grouping : the source task is in charge of decid-
ing the target task; this grouping is different from fields
grouping because in the latter such decision is trans-
parently made by Storm on the basis of a specific set
of fields of the tuple, while in the former such decision
is completely up to the developer

2.1 Worker Nodes and Workers
From an architectural point of view, a Storm cluster con-

sists of a set of physical machines called worker nodes whose
structure is depicted in Figure 1. Once deployed, a topol-
ogy consists of a set of threads running inside a set of Java
processes that are distributed over the worker nodes.

A Java process running the threads of a topology is called
a worker (not to be confused with a worker node: a worker
is a Java process, a worker node is a machine of the Storm
cluster). Each worker running on a worker node is launched
and monitored by a supervisor executing on such worker
node. Monitoring is needed to handle a worker failure.

Each worker node is configured with a limited number of
slots, that is the maximum number of workers in execution
on that worker node. A thread of a topology is called execu-
tor. All the executors executed by a worker belong to the
same topology. All the executors of a topology are run by
a specific number of workers, fixed by the developer of the
topology itself. An executor carries out the logic of a set of
tasks of the same component, tasks of distinct components
live inside distinct executors. Also the number of executors
for each component is decided when the topology is devel-
oped, with the constraint that the number of executors has
to be lower than or equal to the number of tasks, otherwise
there would be executors without tasks to execute. Figure 1
details what a worker node hosts.

Requiring two distinct levels, one for tasks and one for ex-
ecutors, is dictated by a requirement on dynamic rebalanc-
ing that consists in giving the possibility at runtime to scale
out a topology on a larger number of processes (workers)
and threads (executors). Changing at runtime the number
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Figure 1: A Storm cluster with the Nimbus pro-
cess controlling several Worker nodes. Each worker
node hosts a supervisor and a number of workers
(one per slot), each running a set of executors. The
dashed red line shows components of the proposed
solution: the offline scheduler only adds the plugin
to the Nimbus process, while the online scheduler
also adds the performance log and monitoring pro-
cesses.

of tasks for a given component would complicate the re-
configuration of the communication patterns among tasks,
in particular in the case of fields grouping where each task
should repartition its input stream, and possibly its state,
accordingly to the new configuration. Introducing the level
of executors allows to keep the number of tasks fixed. The
limitation of this design choice consists in the topology de-
veloper to overestimate the number of tasks in order to ac-
count for possible future rebalances. In this paper we don’t
focus on this kind of rebalances, and to keep things simple
we always consider topologies where the number of tasks for
any component is equal to the number of executors, that is
each executor includes exactly one task.

2.2 Nimbus
Nimbus is a single Java process that is in charge of ac-

cepting a new topology, deploying it over worker nodes and
monitoring its execution over time in order to properly han-
dle any failure. Thus, Nimbus plays the role of master with
respect to supervisors of workers by receiving from them the
notifications of workers failures. Nimbus can run on any of
the worker nodes, or on a distinct machine.

The coordination between nimbus and the supervisors is
carried out through a ZooKeeper cluster [17]. The states of
nimbus and supervisors are stored into ZooKeeper, thus, in
case of failure, they can be restarted without any data loss.

The software component of nimbus in charge of deciding
how to deploy a topology is called scheduler. On the basis of
the topology configuration, the scheduler has to perform the
deployment in two consecutive phases: (1) assign executors
to workers, (2) assign workers to slots.

2.3 Default and Custom Scheduler
The Storm default scheduler is called EvenScheduler. It

enforces a simple round-robin strategy with the aim of pro-
ducing an even allocation. In the first phase it iterates
through the topology executors, grouped by component, and
allocates them to the configured number of workers in a
round-robin fashion. In the second phase the workers are
evenly assigned to worker nodes, according to the slot avail-
ability of each worker node. This scheduling policy produces



workers that are almost assigned an equal number of execu-
tors, and distributes such workers over the worker nodes at
disposal so that each one node almost runs an equal number
of workers.

Storm allows implementations of custom schedulers in or-
der to accommodate for users’ specific needs. In the gen-
eral case, as shown in Figure 1, the custom scheduler takes
as input the structure of the topology (provided by nim-
bus), represented as a weighted graph G(V, T ), w, and set of
user-defined additional parameters (α, β, ...). The custom
scheduler computes a deployment plan which defines both
the assignment of executors to workers and the allocation
of workers to slots. Storm API provides the IScheduler in-
terface to plug-in a custom scheduler, which has a single
method schedule that requires two parameters. The first is
an object containing the definitions of all the topologies cur-
rently running, including topology-specific parameters pro-
vided by who submitted the topology, which enables to pro-
vide the previously mentioned user-defined parameters. The
second parameter is an object representing the physical clus-
ter, with all the required information about worker nodes,
slots and current allocations.
A Storm installation can have a single scheduler, which is
executed periodically or when a new topology is submitted.
Currently, Storm doesn’t provide any mean to manage the
movement of stateful components, it’s up to the developer to
implement application-specific mechanism to save any state
to storage and properly reload them once a rescheduling
is completed. Next section introduces the Storm custom
scheduler we designed and implemented.

3. ADAPTIVE SCHEDULING
The key idea of the scheduling algorithms we propose is to

take into account the communication patterns among execu-
tors trying to place in the same slot executors that communi-
cate each other with high frequency. In topologies where the
computation latency is dominated by tuples transfer time,
limiting the number of tuples that have to be sent and re-
ceived through the network can contribute to improve the
performances. Indeed, while sending a tuple to an executor
located in the same slot simply consists in passing a pointer,
delivering a tuple to an executor running inside another slot
or deployed in a different worker node involves much larger
overheads.

We developed two distinct algorithms based on such idea.
One looks at how components are interconnected within the
topology to determine what are the executors that should
be assigned to the same slot. The other relies on the mon-
itoring at runtime of the traffic of exchanged tuples among
executors. The former is less demanding in terms of required
infrastructure and in general produces lower quality sched-
ules, while the latter needs to monitor at runtime the cluster
in order to provide more precise and effective solutions, so it
entails more overhead at runtime for gathering performance
data and carrying out re-schedulings.

In this work we consider a topology structured as a di-
rected acyclic graph [8] where an upper bound can be set
on the length of the path that any input tuple follows from
the emitting spout to the bolt that concludes its process-
ing. This means that we don’t take into account topologies
containing cycles, for example back propagation streams in
online machine learning algorithms [10].

A Storm cluster includes a set N = {ni} of worker nodes

(i = 1...N), each one configured with Si available slots (i =
1...N). In a Storm cluster, a set T = {ti} of topologies are
deployed (i = 1...T ), each one configured to run on at most
Wi workers (i = 1...T ). A topology ti consists of a set Ci of
interconnected components (i = 1...T ). Each component cj
(j = 1...Ci) is configured with a certain level of parallelism
by specifying two parameters: (i) the number of executors,
and (ii) the number of tasks. A component is replicated
on many tasks that are executed by a certain number of
executors. A topology ti consists of Ei executors ei,j (i =
1...T , j = 1...Ei).

The actual number of workers required for a topology ti
is min(Wi, Ei). The total number of workers required to

run all the topologies is
∑T

i=1 min(Wi, Ei). A schedule is

possible if enough slots are available, that is
∑N

i=1 Si ≥∑T
i=1 min(Wi, Ei).
Both the algorithms can be tuned using a parameter α

that controls the balancing of the number of executors as-
signed per slot. In particular, α affects the maximum num-
ber M of executors that can be placed in a single slot. The
minimum value of M for a topology ti is dEi/Wie, which
means that each slot roughly contains the same number of
executors. The maximum number of M corresponds to the
assignment where all the slots contain one executor, except
for one slot that contains all the other executors, so its value
is Ei − Wi + 1. Allowed values for α are in [0, 1] range
and set the value of M within its minimum and maximum:
M(α) = dEi/Wie+ α(Ei −Wi + 1− dEi/Wie).

3.1 Topology-based Scheduling
The offline scheduler examines the structure of the topol-

ogy in order to determine the most convenient slots where
to place executors. Such a scheduling is executed before
the topology is started, so neither the load nor the traf-
fic are taken into account, and consequently no constraint
about memory or CPU is considered. Not even the stream
groupings configured for inter-component communications
are inspected because the way they impact on inter-node
and inter-slot traffic can be only observed at runtime. Not
taking into account all these points obviously limits the ef-
fectiveness of the offline scheduler, but on the other hand
this enables a very simple implementation that still provides
good performance, as will be shown in Section 4. A partial
order among the components of a topology can be derived
on the basis of streams configuration. If a component ci
emits tuples on a stream that is consumed by another com-
ponent cj , then we have ci < cj . If ci < cj and cj < ck hold,
then ci < ck holds by transitivity. Such order is partial be-
cause there can be pairs of components ci and cj such that
neither ci > cj or ci < cj hold. Since we deal with acyclic
topologies, we can always determine a linearization φ of the
components according to such partial order. If ci < cj holds,
then ci appears in φ before cj . If neither ci < cj nor ci > cj
hold, then they can appear in φ in any order. The first
element of φ is a spout of the topology. The heuristic em-
ployed by the offline scheduler entails iterating φ and, for
each component ci, placing its executors in the slots that
already contain executors of the components that directly
emit tuples towards ci. Finally, the slots are assigned to
worker nodes in a round-robin fashion.

A possible problem of this approach concerns the possi-
bility that not all the required workers get used because, at
each step of the algorithm, the slots that are empty get ig-



nored since they don’t contain any executor. The solution
employed by the offline scheduler consists in forcing to use
empty slots at a certain point during the iteration of the
components in φ. When starting to consider empty slots
is controlled by a tuning parameter β, whose value lies in
[0, 1] range: during the assignment of executors for the i-
th component, the scheduler is forced to use empty slots if
i > bβ · Cic. For example, if traffic is likely to be more
intense among upstream components, then β should be set
large enough such that empty slots get used when upstream
components are already assigned.

3.2 Traffic-based Scheduling
The online scheduler produces assignments that reduce

inter-node and inter-slot traffic on the basis of the commu-
nication patterns among executors observed at runtime. The
goal of the online scheduler is to allocate executors to nodes
so as to satisfy the constraints on (i) the number of workers
each topology has to run on (min(Wi, Ei)), (ii) the number
of slots available on each worker node (Si) and (iii) the com-
putational power available on each node (see Section 3.2.1),
and to minimize the inter-node traffic (see Section 3.2.1).
Such scheduling has to be performed at runtime so as to
adapt the allocation to the evolution of the load in the clus-
ter. Figure 1 shows the integration of our online scheduler
within the Storm architecture. Notice that the performance
log depicted in the picture is just a stable buffer space where
data produced by monitoring components running at each
slot can be placed before it gets consumed by the custom
scheduler on Nimbus. The custom scheduler can be periodi-
cally run to retrieve this data emptying the log and checking
if a new more efficient schedule can be deployed.

3.2.1 Measurements
When scheduling the executors, taking into account the

computational power of the nodes is needed to avoid any
overload and in turn requires some measurements. We use
the CPU utilization to measure both the load a node is sub-
jected to (due to worker processes) and the load generated
by an executor. Using the same metric allows us to make
predictions on the load generated by a set of executors on a
particular node. We also want to deal with clusters compris-
ing heterogeneous nodes (different computational power), so
we need to take into account the speed of the CPU of a
node in order to make proper predictions. For example, if
an executor is taking 10% CPU utilization on a 1GHz CPU,
then migrating such executor on a node with 2GHz CPU
would generate about 5% CPU utilization. For this reason,
we measure the load in Hz. In the previous example, the
executor generates a load of 100MHz (10% of 1GHz).

We use Li to denote the load the node ni is subjected
to due to the executors. We use Li,j to denote the load
generated by executor ei,j . We use CPUi to denote the
speed of the CPU of node ni (number of cores multiplied by
single core speed).

CPU measurements have been implemented by leveraging
standard Java API for retrieving at runtime the CPU time
for a specific thread (getThreadCpuTime(threadID) method
of ThreadMXBean class). With these measures we can mon-
itor the status of the cluster and detect any imbalance due
to node CPU overloads. We can state that if a node ni ex-
hibits a CPU utilization trend such that Li ≥ Bi for more
than Xi seconds, then we trigger a rescheduling. We refer

to Bi as the capacity (measured in Hz) and to Xi as the
time window (measured in seconds) of node ni. One of the
goals of a scheduling is the satisfaction of some constraints
on nodes load.

We don’t consider the load due to IO bound operations
such as reads/writes to disk or network communications
with external systems like DBMSs. Event-based systems
usually work with data in memory in order to avoid any
possible bottleneck so as to allow events to flow along the op-
erators network as fast as possible. This doesn’t mean that
IO operations are forbidden, but they get better dealt with
by employing techniques like executing them on a batch of
events instead of on a single event and caching data in main
memory to speed them up.

In order to minimize the inter-node traffic, the volumes
of tuples exchanged among executors have to be measured.
We use Ri,j,k to denote the rate of the tuples sent by ex-
ecutor ei,j to executor ei,k, expressed in tuples per second
(i = 1...T ;j, k = 1...Ei;j 6= k). Summing up the traffic
of events exchanged among executors deployed on distinct
nodes, we can measure the total inter-node traffic. Once ev-
ery P seconds, we can compute a new scheduling, compare
the inter-node traffic such scheduling would generate with
the current one and, in case a reduction of more than R%
in found, trigger a rescheduling.

3.2.2 Formulation
Given the set of nodes N = {ni} (i = 1...N), the set of

workers W = {wi,j} (i = 1...T , j = 1...min(Ei,Wi)) and
the set of executors E = {ei,j} (i = 1...N ,j = 1...Ei), the
goal of load balancing is to assign each executor to a slot
of a node. The scheduling is aimed at computing (i) an
allocation A1 : E → W, which maps executors to workers,
and (ii) an allocation A2 :W → N , which maps workers to
nodes.

The allocation has to satisfy the constraints on nodes ca-
pacity

∀k = 1...N
∑

A2(A1(ei,j))=nk
i=1...T ;j=1...Ei

Li,j ≤ Bk (1)

as well as the constraints on the maximum number of work-
ers each topology can run on

∀i = 1...T

|{w ∈ W : A1(ei,j) = w, j = 1...Ei}| = min(Ei,Wi) (2)

The objective of the allocation is to minimize the inter-node
traffic

min
∑

j,k:A2(A1(ei,j))6=A2(A1(ei,k))
i=1...T ;j,k=1...Ei

Ri,j,k (3)

3.2.3 Algorithm
The problem formulated in Section 3.2.2 is known to be

NP-complete [9, 18]. The requirement of carrying the rebal-
ance out at runtime implies the usage of a quick mechanism
to find a new allocation, which in turn means that some
heuristic has to be employed. The following algorithm is
based on a simple greedy heuristic that place executors to
node so as to minimize inter-node traffic and avoid load im-
balances among all the nodes. It consists of two consecutive
phases.

In the first phase, the executors of each topology are par-
titioned among the number of workers the topology has been



Data:
T = {ti} (i = 1...T ): set of topologies
E = {ei,j} (i = 1...T ; j = 1...Ei): set of executors
N = {ni} (i = 1...N): set of nodes
W = {wi,j} (i = 1...T ; j = 1...min(Ei,Wi)): set of workers
Li,j (i = 1...T ; j = 1...Ei): load generated by executor ei,j
Ri,j,k (i = 1...T ; j, k = 1...Ei): tuple rate between executors ei,j and ei,k

begin
// First Phase
foreach topology ti ∈ T do

// Inter-Executor Traffic for topology ti
IETi ← {〈ei,j ; ei,k;Ri,j,k〉} sorted descending by Ri,j,k

foreach 〈ei,j ; ei,k;Ri,j,k〉 ∈ IETi do
// get least loaded worker
w∗ ← argminwi,x∈W

∑
A1(ei,y)=wi,x

Li,y

if !assigned(ei,j) and !assigned(ei,k) then
// assign both executors to w∗

A1(ei,j)← w∗

A1(ei,k)← w∗

else
// check the best assignment of ei,j and ei,k to the workers that already
// include either executor and to w∗ (at most 9 distinct assignments to consider)
Π← {w ∈ W : A1(ei,j) = w ∨A1(ei,k) = w} ∪ {w∗}
best w j ← null
best w k ← null
best ist←MAX INT

foreach 〈w j,w k〉 ∈ Π2 do
A1(ei,j)← w j
A1(ei,k)← w k
ist←

∑
x,y:A1(ei,x)6=A1(ei,y)

Ri,x,y

if ist < best ist then
best ist← ist
best w j ← w j
best w k ← w k

end

end
A1(ei,j)← best w j
A1(ei,k)← best w k

end

end
end

// Second Phase
IST ← {〈wi,x;wi,y ; γi,x,j〉 : wi,x, wi,y ∈ W, γi,x,j =

∑
A1(ei,j)=wi,x∧A1(ei,k)=wi,y

Ri,j,k} sorted descending by γi,x,j

foreach 〈wi,x;wi,y ; γi,x,j〉 do
n∗ ← argminn∈N

∑
A2(A1(ei,y))=n Li,y

if !assigned(wi,x) and !assigned(wi,y) then
A2(wi,x)← n∗

A2(wi,y)← n∗

else
// check the best assignment of wi,x and wi,y to the nodes that already
// include either worker and to n∗ (at most 9 distinct assignments to consider)
Ξ← {n ∈ N : A2(wi,x) = n ∨A2(wi,y) = n} ∪ {n∗}
best n x← null
best n y ← null
best int←MAX INT

foreach 〈n x, n y〉 ∈ Ξ2 do
A2(wi,x)← n x
A2(wi,y)← n y
int←

∑
j,k:A2(A1(ei,j)) 6=A2(A1(ei,k))

Ri,j,k

if int < best int then
best int← int
best n x← n x
best n y ← n y

end

end
A2(wi,x)← best n x
A2(wi,y)← best n y

end

end
end

Algorithm 1: Online Scheduler



configured to run on. The placement is aimed to both min-
imize the traffic among executors of distinct workers and
balance the total CPU demand of each worker.

In the second phase, the workers produced in the first
phase have to be allocated to available slots in the cluster.
Such allocation still has to take into account both inter-node
traffic, in order to minimize it, and node load, so as to satisfy
load capacity constraints.

Algorithm 1 presents the pseudo-code for the online sched-
uler. This is an high level algorithm that doesn’t include the
implementation of many corner cases but shows instead the
core of the heuristic.

In the first phase, for each topology, the pairs of commu-
nicating executors are iterated in descending order by rate
of exchanged tuples. For each of these pairs, if both the ex-
ecutors have not been assigned yet, then they get assigned
to the worker that is the least loaded at that moment. Oth-
erwise, the set Π is built by putting the least loaded worker
together with the workers where either executor of the pair
is assigned. Π can contain three elements at most: the least
loaded and the two where the executors in the pair are cur-
rently assigned. All the possible assignments of these execu-
tors to these workers are checked to find the best one, that
is the assignment that produces the lowest inter-worker traf-
fic. At most, there can be 9 distinct possible assignments to
check.

Similarly, in the second phase the pairs of communicating
workers are iterated in descending order by rate of exchanged
tuples. For each pair, if both have not been allocated to any
node yet, then the least loaded node is chosen to host them.
If any or both have already been assigned to some other
nodes, the set Ξ is built using these nodes and the least
loaded one. All the possible allocations of the two workers
to the nodes in Ξ are examined to find the one that generates
the minimum inter-node traffic. Again, there are at most 9
distinct allocations to consider.

4. EVALUATION
Our experimental evaluation aims at giving evidence that

the scheduling algorithms we propose are successful at im-
proving performances on a wide range of topologies. We
first test their performance on a general topology that cap-
tures the characteristics of a broad class of topologies and
show how the algorithms’ tuning parameters impact on the
efficiency of the computation, comparing the results with
those obtained by using the default scheduler. Then, in or-
der to evaluate our solution in a more realistic setting, we
apply our scheduling algorithms to the DEBS 2013 Grand
Challenge dataset by implementing a subset of its queries.
Performance were evaluated on two fundamental metrics:
the average latency experienced by events to traverse the
entire topology and the average inter-node traffic incurred
by the topology at runtime.

All the evaluations were performed on a Storm cluster
with 8 worker nodes, each with 5 slots, and one further
node hosting the Nimbus and Zookeeper services. Each node
runs Ubuntu 12.04 and is equipped with 2x2.8 GHz CPUs,
3 GB of RAM and 15 GB of disk storage. The networking
infrastructure is based on a 10 Gbit LAN. These nodes are
kept synchronized with a precision of microseconds, which
is sufficiently accurate for measuring latencies in the order
of milliseconds. Such synchronization has been obtained by

leveraging the standard NTP protocol to sync all the nodes
with a specific node in the cluster.

4.1 Reference Topology
In this section we analyze how the tuning parameters ac-

tually affect the behavior of scheduling algorithms and con-
sequently the performances of a topology. In order to avoid
focusing on a specific topology, we developed a reference
topology aimed at capturing the salient characteristics of
many common topologies.

Workload characteristics.
According to the kind of topologies we deal with in this

work (see Section 3), we consider acyclic topologies where an
upper bound can be set on the number of hops a tuple has go
through since it is emitted by a spout up to the point where
its elaboration ends on some bolt. This property allows us to
assign each component ci in the topology a number stage(ci)
that represents the length of the longest path a tuple must
travel from any spout to ci. By grouping components in a
same stage, we obtain a horizontal stratification of the topol-
ogy in stages, such that components within the same stage
don’t communicate each other, and components at stage i
receive tuples from upstream components at stages lower
than i and send tuples to downstream components at stages
greater than i. This kind of stratification has been investi-
gated in [19]. Recent works on streaming MapReduce [21,
20, 11] also focus on the possibility to model any compu-
tation as a sequence of alternated map and reduce stages,
supporting the idea that a large class of computations can be
structured as a sequence of consecutive stages where events
always flow from previous to subsequent stages.

These considerations led us to propose the working hy-
pothesis that a chain topology can be employed as a mean-
ingful sample of a wide class of possible topologies. Chain
topologies are characterized by two parameters: (i) the num-
ber of stages, that is the horizontal dimension and (ii) the
replication factor for each stage, that is the vertical di-
mension corresponding to the number of executors for each
topology component. We developed a reference topology ac-
cording to such working hypothesis. Taking inspiration from
the MapReduce model [14], in the chain we alternate bolts
that receive tuples using shuffle grouping (similar to map-
pers) to bolts that are fed through fields grouping (similar to
reducers). In this way we can also take into account how the
grouping strategy impacts on the generated traffic patterns.

Figure 2 shows the general structure of the reference topol-
ogy. It contains a single spout followed by an alternation of
simple bolts, that receive tuples by shuffle grouping, and
stateful bolts, that instead take tuples by fields grouping.
Stateful bolts have been named so because their input stream
is partitioned among the executors by the value embedded
in the tuples, and this would enable each executor to keep
some sort of state. In the last stage there is an ack bolt in
charge of completing the execution of tuples.

Each spout executor emits tuples containing an incremen-
tal numeric value at a fixed rate. Using incremental numeric
values allows to evenly spread tuples among target executors
for bolts that receive input through fields grouping. Each
spout executor chooses its fixed rate using two parameters:
the average input rate R in tuples per second and its vari-
ance V , expressed as the largest difference in percentage of
the actual tuple rate from R.



Figure 2: Reference topology.

Figure 3: Tuple processing latency over time, for default, offline and online schedulers.

The i-th spout executor sets its tuple rate as Ri = R(1−
V (1− 2 i

C0−1
)) where C0 is the number of executors for the

first component, that is the spout itself, and i = 0, ..., C0−1.
Therefore, each spout executor emits tuples at a distinct
fixed rate and the average of these rates is exactly R. In this
way, the total input rate for the topology can be controlled
(its value is C0 · R) and a certain degree of irregularity can
be introduced on traffic intensity (tuned by V parameter)
in order to simulate realistic scenarios where event sources
are likely to produce new data at distinct rates.

In order to include other factors for breaking the regularity
of generated traffic patterns, bolts in the reference topology
have been implemented so as to forward the received value
with probability 1/2 and to emit a different constant value
(fixed for each executor) the rest of the times. The traf-
fic between executors whose communication is setup using
fields grouping is affected by this mechanism since it makes
the tuple rates much higher for some executor pairs. This
choice models realistic situations where certain pairs of ex-
ecutors in consecutive stages communicate more intensively
than others.

Evaluation.
The first experiments were focussed at evaluating the run-

time behavior of the proposed schedulers with respect to the
default one. Figure 3 reports how event latency evolves over
time for an experiment. Each points reported in the figure
represents the average of latencies for a 10 events window.
The reference topology settings used in this test include 7
stages, and variable replication factors: 4 for the spout, 3
for the bolts receiving tuples through shuffle grouping and
2 for the bolts receiving tuples through fields grouping.

At the beginning all schedules experiences a short tran-
sient state where the system seems overloaded and this heav-
ily impacts measured latencies. This transient period lasts
approximately 15-20 seconds and is characterized by large
latencies. In the subsequent 20 seconds time frame (up to

second 40) it is possible to observe some characteristic be-
havior. The performance for all three schedules are reason-
ably stable, with both the default and online schedulers shar-
ing similar figures, and the offline scheduler showing better
results. This result proves how the topology-based optimiza-
tions performed by the offline scheduler quickly pay-off with
respect to the default scheduler approach. The online sched-
uler performance in this timeframe are instead coherent with
the fact that this scheduler initializes the application using a
schedule obtained applying exactly the same approach used
by the default scheduler (hence the similar performance).
However, during this period the active scheduler collects
performance measures that are used later (at second 40)
to trigger a re-schedule. The shaded interval in the figure
shows a “silence” period used by the active scheduler to in-
stantiate a new schedule. The new schedule starts working
at second 50 and quickly converges to performance that are
consistently better with respect to both the default and the
offline scheduler. This proves that the online scheduler is
able to correctly identify cases where a different schedule can
improve performance, and that this new schedule, built on
the basis of performance indices collected at runtime, can, in
fact, provide performance that surpass a workload-oblivious
schedule (like the one provided by the offline scheduler).

We then evaluated how the proposed schedulers behave
as the number of stages increases for different replication
factors. As the number of stages increases, the latency obvi-
ously becomes larger as each tuple has to go through more
processing stages. With a small replication factor traffic
patterns among executors are quite simple. In general, with
a replication factor F , there are F 2 distinct streams among
the executors of communicating bolts because each executor
of a stage possibly communicate to all the executors at the
next stage. The offline scheduler does its best to place each
of the F executors of a bolt ci where at least one of F execu-
tors of the component ci−1 has been already placed, which
means that, in general, the latency of up to F streams out



Figure 4: Average latency as the number of stages
varies, with a replication factor of 2 for each stage.

Figure 5: Average inter-node traffic as the number
of stages varies, with a replication factor of 2 for
each stage.

of F 2 is improved. Therefore, about 1/F of the tuples flow-
ing among consecutive components get sent within the same
node with a consequent latency improvement. As the repli-
cation factor increases, the portion of tuples that can be sent
locally gets lower and the effectiveness of the offline sched-
uler becomes less evident. The precise trend also depends on
whether the streams that are optimized are intense or not;
however, the offline scheduler is is oblivious with respect to
this aspect as it calculate the schedule before the topology
is executed. On the other hand, the online scheduler adapts
to the actual evolution of the traffic and is able to identify
the heaviest streams and consequently place executors so as
to make such streams local.

These evaluations have been carried out setting the pa-
rameters α = 0 and β = 0.5, considering an average data
rate R = 100 tuple/s with variance V = 20%.

Figures 4 and 5 report average latency and inter-node traf-
fic for a replication factor 2, i.e. each component is config-
ured to run on 2 executors. Latencies for offline and online
schedulers are close and always smaller with respect to the
default scheduler. The low complexity of communication
patterns allows for only a little number of improvement ac-
tions, which are leveraged by both the schedulers with the
consequent effect that performances prove to be very similar.
The results about the inter-node traffic reflect this trend and

Figure 6: Average latency as the number of stages
varies, with a replication factor of 4 for each stage,
for default, offline and online schedulers.

Figure 7: Average inter-node traffic as the number
of stages varies, with a replication factor of 4 for
each stage, for default, offline and online schedulers.

also highlight that the online scheduler produces schedules
with smaller inter-node traffic. Note that smaller inter-node
traffic cannot always be directly related to a lower latency
because it also depends on whether and to what extent the
most intense paths in the topology are affected.

Figures 6 and 7 the same results for a replication factor
set to 4. While the online scheduler keeps providing sensibly
lower latencies with respect to the default one, the effective-
ness of offline scheduler begins to lessen due to the fact that
it can improve only 4 out of 16 streams for each stage. Such
a divergence between the performances of offline and online
schedulers is also highlighted by the results on the inter-node
traffic; indeed the online scheduler provides assignments that
generate lower inter-node traffic.

We finally evaluated the impact of the α parameter on the
schedules produced by our two algorithms. Figures 8 and 9
report results for a setting based on a 5 stages topology with
replication factor 5, R = 1000 tuple/s and V = 20%.

In such setting a topology consists of 30 executors, and
we varied α from 0 to 0.2, which corresponds to varying the
maximum number of executors per slots from 4 to 8. The
results show that the offline scheduler slightly keeps improv-
ing its performances as α grows, for what concerns both the
latency and the inter-node traffic. The online scheduler pro-



Figure 8: Average latency as α varies for default,
offline and online schedulers.

Figure 9: Average inter-node traffic as α varies for
default, offline and online schedulers.

vides its best performances when α is 0.05, that is when the
upper bound on the number of executors is 5. Larger values
for α provide larger latencies despite the inter-node traffic
keeps decreasing. This happens because there is a dedicated
thread for each worker in charge of dequeuing tuples and
sending them to the others workers, and placing too many
executors in a single slot makes this thread a bottleneck for
the whole worker.

4.2 Grand Challenge Topology
We carried out some evaluations on the scenario described

in the Grand Challenge of DEBS 2013, considering in par-
ticular a reduced version of the first query. In such scenario,
sensors embedded in soccer players’ shoes emit position and
speed data at 200Hz frequency. The goal of the first query
is to perform a running analysis by continuously updating
statistics about each player. The instantaneous speed is
computed for each player every time a new event is pro-
duced by the sensors, a speed category is determined on the
basis of computed value, then the global player statistics are
updated accordingly. Such statistics include average speed,
walked distance, average time for each speed category.

The topology includes three components: (i) a spout for
the sensors (sensor component in the figure, replication fac-
tor 8, with a total of 32 sensors to be simulated), (ii) a bolt
that computes the instantaneous speed and receives tuples
by shuffle grouping (speed component in the figure, replica-

tion factor 4), (iii) a bolt that maintains players’ statistics
and updates them as new tuples are received by fields group-
ing from the speed bolt (analysis component in the figure,
replication factor 2).

Figure 10 shows how latency (top) and inter-node traffic
(bottom) evolve over time. It can be noticed that most of
the time the offline scheduler allows for lower latencies and
lighter traffic than the default one, while the online sched-
uler in turn provides better performances than the offline
one as soon as an initial transient period needed to collect
performance indices is elapsed. The performance improve-
ment provided by the online scheduler with respect to the
default one can be quantified in this setting as oscillating
between 20% and 30%. These results confirms that the op-
timizations performed by the online scheduler are effective
also in real workloads where they provide noticeable perfor-
mance improvements.

5. RELATED WORK
There exist alternative distributed event and stream pro-

cessing engines besides Storm. Similarly to Storm, these en-
gines allow to model the computation as continuous queries
that run uninterruptedly over input event streams. The
queries in turn are represented as graphs of interconnected
operators that encapsulate the logic of the queries.

System S [6] is a stream processing framework developed
by IBM. A query in System S is modeled as an Event Pro-
cessing Network (EPN) consisting of a set of Event Process-
ing Agents (EPAs) that communicate each other to carry
out the required computation. The similarity to Storm is
very strong, indeed EPNs can be seen as the equivalent of
Storm topologies and EPAs as the analogous of bolts. S4 [23]
is a different stream processing engine, developed by Yahoo,
where queries are designed as graphs of Processing Elements
(PEs) which exchange events according to queries’ specifi-
cation. Again, the affinity with Storm is evident as the PEs
definitely correspond to the bolts.

Another primary paradigm of elaboration in the scope of
Big Data is the batch oriented MapReduce [14] devised by
Google, together with its main open source implementation
Hadoop [27] developed by Apache. The employment of a
batch approach hardly adapts to the responsiveness require-
ments of today’s applications that have to deal with continu-
ous streams of input events, but there are scenarios [7] where
it still results convenient adopting such an approach where
the limitations of the batch paradigm are largely offset by
the strong characteristics of scalability and fault tolerance
of a MapReduce based framework.

An attempt to address the restrictions of a batch approach
is MapReduce online [13], that is introduced as an evolution
of the original Hadoop towards a design that fits better to
the requirements of stream based applications.

Other works [21, 20, 11] try to bridge the gap between
continuous queries and MapReduce paradigm by propos-
ing a stream based version of the MapReduce approach [3]
where events uninterruptedly flow among the map and re-
duce stages of a certain computation without incurring in
the delays typical of batch oriented solutions.

The problem of efficiently schedule operators in CEP en-
gines has been tackled in several works. Cammert et al. [12]
investigated how to partition a graph of operators into sub-
graphs and how to assign each subgraph to a proper num-
ber of threads in order to overcome common complications
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Figure 10: Latency (top) and traffic (bottom) over time for default, offline and online schedulers for the first
query of DEBS 2013 Grand Challenge.

concerning threads overhead and operators stall. Moakar
et al. [22] explored the question of scheduling for continu-
ous queries that exhibit different classes of characteristics
and requirements, and proposed a strategy to take into ac-
count such heterogeneity while optimizing response latency.
Sharaf et al. [25] focus on the importance of scheduling in en-
vironments where the streams to consume are quite hetero-
geneous and present high skews; they worked on a rate-based
scheduling strategy which accounts for the specific features
of the streams to produce effective operators schedules.

Hormati et al. [16] and Suleman et al [26] propose works
conceived for multi core systems rather than clusters of ma-
chines. Differently from our solutions, the former aims at
maximizing the throughput by combining a preliminary static
compilation with adaptive dynamic changes of the configu-
ration that get triggered by variations in resource availabil-
ity. The latter focuses on chain topologies with the goal
of minimizing execution time and number of used cores by
tuning the parallelism of bottleneck stages in the pipeline.
On the other hand, Pietzuch et al. [24] are concerned with
operator placement within pools of wide-area overlay nodes.
They proposed a stream-based overlay network in charge of
reducing the latency and leveraging possible reuse of oper-
ators. The solution proposed in this paper, differently from
[24], does not consider the efficient use of the network as
a first class goal, nor does consider operator reuse possible.
SODA [28] is an optimized scheduler specific for System S [6]
which takes into account several distinct metrics in order
to produce allocations that optimize an application-specific
measure (“importance”) and maximize nodes and links us-
age. One of the assumptions that drives their scheduling
strategy is that the offered load would far exceed system
capacity much of the time, an assumption that cannot be
made for Storm applications. Xing et al. [30] presented a
methodology to produce balanced operator mapping plans
for Borealis [5]. They only consider node load and actually

ignore the impact of network traffic. In a later work, Xing et
at. [29] described an operator placement plan that is resilient
to changes in load, but makes the relevant assumption that
operators cannot be moved at runtime.

6. CONCLUSIONS
Storm is an emerging technology in the field of Big Data

and its employment in real scenarios keeps increasing as well
as the open source community that supports and develops
it. The wide range of use cases Storm is expected to support
and their relevant complexity make the evolution of Storm
quite challenging and push for general purpose new features
able to fit to most use cases. The work presented in this
paper goes along this line. We designed and implemented
two generic schedulers for Storm that adapt their behavior
according to the topology and the runt-time communication
pattern of the application. For Storm users that do not want
to create from scratch ad-hoc schedulers for their applica-
tions, such adaptive schedulers represent good alternatives
to the usage of the default scheduler provided by Storm.
Experiments show the effectiveness of the approach as the
latency of processing an event is below 20-30% with respect
to the default Storm scheduler in both tested topologies.
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