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Abstract

This paper studies the problem of answering aggregation queries, satisfying the interval validity semantics,

in a distributed system prone to continuous arrival and departure of participants. The interval validity

semantics states that the query answer must be calculated considering contributions of at least all processes

that remained in the distributed system for the whole query duration. Satisfying this semantics in systems

experiencing unbounded churn is impossible due to the lack of connectivity and path stability between

processes. This paper presents a novel architecture, namely Virtual Tree, for building and maintaining

a structured overlay network with guaranteed connectivity and path stability in settings characterized by

bounded churn rate. The architecture includes a simple query answering algorithm that provides interval

valid answers. The overlay network generated by the Virtual Tree architecture is a tree-shaped topology with

virtual nodes constituted by clusters of processes and virtual links constituted by multiple communication

links connecting processes located in adjacent virtual nodes. We formally prove a bound on the churn rate

for interval valid queries in a distributed system where communication latencies are bounded by a constant

unknown by processes. Finally, we carry out an extensive experimental evaluation that shows the degree of

robustness of the overlay network generated by the virtual tree architecture under different churn rates.
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1. Introduction

Today’s large scale distributed systems are characterized by strong dynamics caused by the inherent unre-

liability of their constituting elements (e.g. asynchrony, process and link failures, processes joining or leaving

the system). In particular, the continuous arrival and departure of processes from the network (phenomenon

also know as churn) has a strong negative impact on algorithms designed to work on such systems. Regular

registers [6], replication [14], in-network aggregation[10], are just few examples of application contexts where

churn represents a huge challenge. Bawa et al. introduced in their seminal work [9] the problem of defining

precise semantics for in-network aggregation query answering (e.g. sum, max, min etc...) in large-scale dy-

namic systems. As an example, consider a simple query whose purpose is to count the number of processes in

the system. Due to the large scale of the system, the execution of a distributed in-network query answering

algorithm would take some time to complete. During this time the system population would continuously

change due to the effect of churn. What kind of semantics can be assigned to the result? What is the process

set over which the result is evaluated?

One of the semantics introduced in [9], namely Interval Validity (IV), requires the answer to be evaluated

considering at least contributions from all the processes that remained in the system from the moment the

query is issued, until the last answer is collected. This kind of semantics plays a fundamental role in many

applications as it prevents contributions from correct nodes that do not leave the system to be eclipsed by

transient errors and failures.

In the same work, the authors also proved the impossibility of enforcing interval validity in a distributed

system suffering unbounded levels of churn. This result stems from the fact that the overlay network

topology used to disseminate the query and then collect its results must be characterized by two fundamental

properties: (P1) it must be connected and (P2) a path connecting any two processes must remain stable (i.e.

none of the processes constituting the path leaves the system and thus breaks the path while the algorithm

is running).

The impossibility result is a consequence of the fact that guaranteeing the previous properties during

the whole query execution is impossible if churn has no bound. However, real systems rarely experience

completely unpredictable dynamism, but rather show limited and partially predictable fluctuation of churn

rates (as shown by several analysis conducted on real large scale dynamic distributed systems like [27] and

[16]). As a consequence, starting from the system model defined in [9], but realistically bounding the level

of churn, the aim of this work is to show that it is possible to deterministically provide interval valid query

answers by properly arranging nodes in a structured overlay and maintaining this structure along the time.

Existing solutions can only provide best effort validity semantics due to the absence of specific mechanisms

for guaranteeing path stability (P2). The final results can thus vary depending on the churn rate, on how this

churn impacts the network (i.e., hot spots vs uniformly distributed churn) and the specific overlay network
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tree forest random graph
percentage of interval valid queries 0.20 0.95

Table 1: Percentage of interval valid queries in a scenario with 1000 processes and low churn rate for different overlay networks.

topology that is used. To give an intuitive measure of the low number of interval valid queries, let us consider

the results shown in Table 1 where a counting algorithm is ran on top of two representative overlay networks,

namely a structured forest of spanning trees (like the one generated by DHTs [28]) and a random graph,

while both networks are subject to a low rate of churn (at every time unit 5 out of 1000 processes are replaced

in the network)2. None of these solutions, with different degrees of quality, is able to provide guarantees on

the interval validity of the query results.

This paper introduces the Virtual Tree architecture which is able to effectively support interval valid

query answers in large-scale settings characterized by bounded churn. The architecture is composed of (i)

an overlay network topology, named Virtual Tree, that exploits node clustering and a tree-like structure,

(ii) an overlay management protocol able to maintain the virtual tree topology and, finally, (iii) a simple

distributed in-network query answering algorithm. The rationale driving this design is that by substituting

paths constituted by links and processes (that can fail) with virtual paths made of cliques of processes and

their associated clustered links, it is possible to withstand several failures before properties (P1) and (P2)

are violated, and to reactively repair the topology while queries are running. The paper proves that, as

long as the churn experienced by the system is smaller than a given threshold, the Virtual Tree architecture

deterministically provides interval valid query answers in a distributed system where communication latencies

are bounded by a constant unknown from processes (i.e. relaxed asynchronous model). Moreover, an

extensive set of experiments shows that the Virtual Tree architecture is extremely robust to disconnections,

and is thus able to provide interval valid queries (with very high probability) when the churn rate surpasses

the given threshold.

The rest of this paper is organized as follows: after discussing the related work (Section 2) we introduce

the system model and describe the problem of defining a precise semantics for query answering in dynamic

networks (Section 3). Section 4 describes the Virtual Tree architecture and proves that it provides interval

valid query answers under the assumption of bounded churn. In Section 5 we provide an extensive experi-

mental evaluation showing the performances of our solution in several scenarios experiencing different churn.

Finally, Section 6 concludes the paper.

2Further details on the setup used to run these tests are available in section 5.
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2. Related Works

Query Semantics in Dynamic Networks. Running an aggregate query on top of a dynamic network

(e.g. a peer-to-peer network or a sensor network) is a non trivial task. Aggregate queries, in fact, require

that all the values maintained by processes part of the network must be considered while computing the

query result. Several algorithms have been proposed to provide query answers but most of them provide

just best effort semantics [12], [17], [22] i.e., the algorithm does its best to gather all the values maintained

by the processes part of the network despite their continuous arrival and departure. In [9], Bawa et al.

propose three different semantics, namely snapshot validity, interval validity and single-site validity, defining

when the result computed by an aggregate query can be considered valid. The authors also prove that in an

unstructured dynamic network, with unbounded churn, the strongest semantics that can be deterministically

satisfied is single-site validity. In [3] Baldoni et al. define one further semantics, namely dynamic validity,

to take into account the effect of churn due to both join and leave operations. The same work also provides

an aggregate query answering algorithm enforcing dynamic validity semantics.

More recently, Payton et al. [24] consider a slightly different validity properties. In addition, the authors

provide an algorithm able to detect, for each query executed in the system, which is the strongest semantics

that the answer can satisfy. A similar approach was previously proposed in [18], where the authors try to

measure a metric able to state if the current network status is able to provide valid queries.

Virtual Nodes and Tree-based Topologies in Dynamic Systems. Several works [14, 20, 4, 15, 13]

leveraged clusters of nodes in order to improve the robustness of an overlay network.

In [14], the authors introduce the notion of Virtual Mobile Node, while in [15], the authors use virtual nodes

to tolerate byzantine behaviors.

The main difference between Overnesia [20] and the architecture proposed in this paper lies in the fact that

the former does not provide any mechanism to prevent super peers from disappearing but they rather repair

the overlay after this happened. As a consequence, the network can experience temporary disconnections

showing the same problem arising with simple unstructured overlays. The idea of using Virtual Nodes has

been adopted in Amazon’s Dynamo [13] as well. However, Dynamo defines virtual nodes as virtual replicas

in a logical key-space of “physical” nodes, and exploits them to balance load in its architecture.

In [4], the authors introduce a tree-based overlay network topology to support aggregate query executions

satisfying interval validity in a distributed system prone to continuos churn. The main difference between

the algorithm proposed in [4] and the Virtual Tree architecture introduced in this paper lies in the fact that

the former adopts a purely probabilistic approach while the latter is able to provide deterministic guarantees

when churn is bounded.

In [7] Baldoni and Tucci show the impossibility of achieving connectivity when an arbitrary large number

of entities may arrive/depart/fails concurrently at any time and then present an algorithm maintaining a tree
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overlay during quiescent3 periods of the system. The algorithm implements an active leave (i.e. processes

must execute a protocol before departing from the system) and the basic idea is to force the leaving process

to find a leaf replacing it in the spanning tree before leaving. In [8], Bansal and Mittal propose an algorithm

able to preserve a network spanning tree in a dynamic environment still ensuring (i) small node degree

and network diameter and (ii) contained latency in the execution of a leave operation. Similarly to [7], the

authors design an active leave operation. Differently, the solution we propose in this paper does not assume

active leave but rather allows processes to depart at their wish, without taking any particular action, making

then possible to mask failures.

The Virtual Tree graph topology introduced in this paper (see Section 4) can be considered part of the

family of cluster based overlays. Some examples are represented by [21] and [1]. eQuus [21] makes use

of small cliques (full graphs) of nodes to enhance performance and reliability in a DHT. Differently from

our proposal, eQuus solves the problem of maintaining node clusters through merge and split operations;

this solution was not applicable in our case due to fact that the merge operation introduces a change in

existing virtual paths thus violating the required path stability property. PeerCube [1] builds and maintains

an hypercube of virtual nodes constituted by cliques; also in PeerCube virtual nodes can merge and split.

Recently the PeerCube structure was applied to the problem of isolating targeted attacks [2].

3. Background

System model. A dynamic distributed system is characterized by the continuous arrival and departure

of processes (i.e. churn phenomenon). In order to model such dynamic behavior, we assume the infinite

arrival model [23] where, in each run, infinitely many processes constituting the system population V =

{p1, p2, · · · , pi, · · · } may join/leave the system. However, at each time unit t, the distributed system is

effectively composed only of a finite subset of the population, denoted as Vt, including all the processes that

have joined but have not yet left (i.e. Vt ⊆ V = {pi ∈ V| a time t, pi has joined the system and it has not

yet left}). At every time t, each process pihas a partial view on the set of processes currently part of the

network i.e., it knows only a subset of the process identifiers in Vt and stores them in its local view.

Processes can communicate by exchanging messages on top of perfect point-to-point channels (i.e. mes-

sages are not created neither duplicated and if both sender and receiver do not leave the system, each message

is eventually delivered). Every process pi can exchange messages only with its neighbors, i.e. with processes

in its local view.

Considering the set of processes part of the network and their local views, at each time t the system can

be represented as a graph G(t) = (Vt, Et), where Vt is the set of processes part of the network at time t and

3A time period is said to be quiescent if no more arrivals, departures and failures take place.
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Et is the set of edges ei,k connecting the processes in Vt. We assume that edges are bi-directional: if process

pk is in the local view of process pi, then pi is in the local view of process pk. In the following, we will

use the terms node and process interchangeably wherever this does not create ambiguities. The graph G(t)

represents the topology of the overlay network interconnecting processes in Vt.

Note that, due to the effect of churn, the overlay network topology changes continuously as processes

crash, join and voluntary leave the system. In particular, when a new process pi wants to join the system,

it executes a join procedure that, starting from a bootstrap process,provides pi with a local view [19].

When a process pi leaves the system, it does not perform any specific procedure: it just stops receiving

and sending messages. A leave can thus be considered as a crash failure and in the rest of the paper we will

refer to these two kinds of events as leaves. Without loss of generality, we assume that if a process leaves

the system and later wishes to re-enter, it joins the system with a new identity.

Timing Model. As in [9], we assume the relaxed asynchronous model, i.e., there exist upper bounds on (i)

process execution speeds, (ii) message transmission delays and (iii) clock drift rates. Note that, such bounds

are not known by processes. In particular, we will assume that (i) computation time is negligible compared

with message delays and (ii) there exists a known upper bound on the message delay δ i.e., given two correct

processes pi and pk, connected by a communication link, then any message m sent from pi, at a certain time

t, will be delivered up to time t+ δ to pk, unless pk leaves the system. For ease of presentation, we assume

the existence of a global fictional clock.

Churn Model. At time t0, the system is composed by N0 processes. From time t1, processes start to join

and leave the system. We distinguish between in-churn, denoted as λ(t), representing the percentage of pro-

cesses that invoke the join operation at time t and out-churn, denoted as µ(t), representing the percentage of

processes that leave the system at the same time t. Given the in-churn and the out-churn functions, the num-

ber of processes that join and leave at each time unit is represented respectively by the numbers λ(t) ·N0 and

µ(t)·N0. We assume that churn is continuos, i.e. it does not exist a time instant t after which churn ends [25].

Aggregate Query Validity. In the following, we will consider the interval validity (IV) semantics, as

defined in [9]. We assume that each process pi maintains locally a value that can be used to calculate the

result of an aggregation query.

Informally, IV semantics requires that the result of a query q is calculated by considering at least all the

contributions coming from values maintained locally by processes that were already part of the system at the

query issuing time and do not leave during the whole query execution period. Contributions from processes

that leave/join during the query-processing are not necessarily required.

5



More formally, given a query q issued at a certain time t and the sequence V = {Vt, Vt+1, · · · ,Vt+j} of

all the sets of processes part of the system during the query processing period [t, t+ j], the IV property can

be defined as follows:

Definition 1. Let r = q(H) be the result of an aggregation query q executed in the period [t, t + j] and

evaluated on a set of values H. Let V = {Vt, Vt+1, · · · ,Vt+j} be the sequence of all the sets of processes part

of the system during the query processing period [t, t + j]. We will say that q is interval valid if H is such

that ∩i∈[t,t+j]Vi ⊆ H ⊆ ∪i∈[t,t+j]Vi.

4. The Virtual Tree Architecture

In order to run an in-network query answering protocol, we must fist define the overlay network connecting

processes that participate to the system. Several overlay network schemes are suitable, but tree-shaped

topologies offer some clear advantages in the form of (i) low diameter (useful to quickly disseminate the query

and collect its results), (ii) good scalability and (iii) the possibility to easily define protocols with deterministic

termination conditions. However, three-shaped topologies are strongly susceptible to faults and dynamism,

a problem that can severely affect the correct functioning of an in-network query answering protocol. In

order to provide query answers complying with the IV semantics, in fact, two necessary conditions [9] must

be met: (P1) the overlay network must always be connected and (P2) any process that does not leave the

system during the query execution must have a stable path (a path that does not change) that connects it

to the query source.

We solve the first problem proposing a new overlay network topology named Virtual Tree (V T ) graph

that exploits node clustering to improve its resilience to system churn. In order to address the second

problem, we design an overlay management protocol (OMP) that migrates processes at run time from the

lower levels of the V T graph to the upper ones in order to let churn impact only its leaves. Through this

technique, the OMP can guarantee, as long as churn is bounded by a given constant, that the V T graph will

meet conditions (P1) and (P2). On top of these two building blocks we deploy a simple in-network query

processing algorithm that provides interval valid answers.

In the following we provide a more detailed and formal description of the three blocks of the Virtual Tree

Architecture.

4.1. The Virtual Tree Graph

A V T graph is constituted by virtual nodes (V N) and virtual links (V L) arranged in a tree-shaped

topology. A virtual node V Ni = (Vi, Ei) is a subgraph of V T constituted by a set of nodes4 Vi interconnected

4Note that, unless otherwise stated, in the following we refer to processes with the generic term node and to a virtual node
with the acronym V N
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Figure 1: Example of a Virtual Tree graph.

by a set of edges Ei in a full graph (i.e. a clique). A virtual link V Li,j connecting two virtual nodes V Ni and

V Nj is defined by the set of all the edges eh,k connecting any pair of nodes ph and pk such that ph ∈ V Ni

and pk ∈ V Nj . Let us note that nodes belonging to two adjacent V Ns define a fully connected subgraph

of the V T graph. As an example, in Figure 1, V Ni and V Nr represent two adjacent V Ns constituted by

nodes I, L,M and A,B,C respectively; V Lr,i is the V L interconnecting them and it is constituted by links

connecting each node in V Ni with every node in V Nr.

Now we can formally define the structure of a V T graph as follows:

Definition 2 (Virtual Tree graph). Let VN = {V N1, V N2, ..., V Nx} be a set of virtual nodes and VL be

a set of virtual links. A graph G = (V, E) is a Virtual Tree (VT) graph if:

1. V =
⋃

i=1..x Vi;

2. E = (
⋃

i=1..xEi) ∪ VL;

3. each V Ni is associated to an integer defining its level in G;

4. G contains a single virtual node at level 0 ( root V N);

5. ∀ V Ni, V Nj with i 6= j : Vi ∩ Vj = ∅;

6. every virtual node V Nj at level l is connected through a virtual link V Lj,k ∈ VL to one single virtual

node V Nk at level l − 1; in this case, we say that V Nj is child of V Nk and V Nk is father of V Nj;

7. no virtual link exists in VL connecting two virtual nodes at the same level;

Given a V T graph, it is possible to define paths connecting any two virtual nodes:

Definition 3 (Virtual Path on VT graph). Let G = (V,E) be a VT graph. Let VN = {V N1, V N2, ..., V Nx}

be the set of virtual nodes of G and let VL be its set of virtual links. Given two virtual nodes V Ni and V Nj, a

virtual path Pi,j on G between V Ni and V Nj is a sequence of virtual nodes such that for any two consecutive

virtual nodes there exists a virtual link in VL.
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From Definition 3, it follows that given a V T graph G and a virtual path between two virtual nodes V Ni

and V Nj , there exists at least one path between any pair of nodes pi and pj , such that pi belongs to V Ni

and pj belongs to V Nj . At the same time, given a path between two nodes pi and pj , such that pi belongs

to a virtual node V Ni and pj belongs to a virtual node V Nj , there exists a virtual path between V Ni and

V Nj .

4.2. Overlay Management Protocol

The OMP has two fundamental goals: (i) it must position joining processes in the overlay network main-

taining a V T graph and (ii) it must guarantee that only leaf V Ns can possibly disappear due to out-churn.

This latter requirement stems from the observation that if a leaf V N is removed from the V T graph, the

graph is still connected and none of the V Ns still present in the graph will see a change in the paths that

connect them to the root V N ; therefore, both (P1) and (P2) will be preserved. The OMP relies on a view-

maintenance algorithm [11] to keep local views on nodes up-to-date and consistent5 with respect to each V N

population. In the following, we will assume that such view maintenance algorithm will update the local

views periodically.

Join Algorithm. New processes joining the system can, in principle, be accommodated in any V N (a join,

in fact, cannot impact graph connectivity or path stability). However, considering that each V N is a fully

connected graph, it makes sense to maintain its population small in order to reduce the overhead incurred for

the maintenance of local views. Therefore, the OMP allows up to a maximum of Nmax processes in a V N ,

where Nmax is a configuration parameter. A V N that reaches this threshold will delegate the acceptance of

joining processes to one of its children V Ns (or will create a new one if needed).

In particular, when a new process p wants to join the system, it obtains a pointer to a process pap already

part of the system from the bootstrap service [19]. Afterwards, p sends a join request message to pap that

acts as follows:

• if the size of pap’s V N is smaller than Nmax, then it sends back to p an acceptance message containing

all the information concerning the population of the V N it belongs to, its father V N , all the children

V Ns (needed by p to join all the groups containing pap). In addition, pap also sends all the information

related to concurrently running queries to ensure the termination of the query despite continuous

process arrivals and departures (cfr. Section 4.3).

• if the size of pap’s virtual node is equal or larger than Nmax, p can either forward the join request

to a process in a child virtual node (if it already has K children) or create a new child virtual node

5In accordance with the relaxed asynchronous model assumption made in Section 3 here we assume that the view maintenance
algorithm is able to guarantee deterministically consistent local views despite node joins/leaves.
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containing only p. K is a configuration parameter defining the maximum number of children that a

virtual node will create. Note that K affects the total number of edges in the V T graph and thus

impact the cost incurred for maintaining local views.

Due to the dynamism induced by churn, the join procedure could possibly not terminate (e.g. because

pap leaves the V T graph before correctly placing p in a virtual node). To avoid this problem joining nodes

can use a timeout to reissue failed join request to a new bootstrap node.

Maintenance Algorithm. The maintenance algorithm has two goals: (i) maintaining the V T graph

connected and (ii) ensuring virtual path stability. These can be both achieved by ensuring that at any time

all V Ns (with the exception of leaves) are composed by a non-zero population. This should be guaranteed

when nodes leave the system too. To this aim, whenever the size of a certain virtual node V Ni decreases

below a given threshold Nmin the OMP starts migrating nodes from its children V Ns and moves them

in the father virtual node V Ni to reconstitute a “safe” size, thus avoiding its disappearance from the V T

graph. When applied to the whole V T graph, this procedure can create a cascade effect such that nodes are

progressively moved from leaf V Ns to the upper levels. The Nmin threshold is a function of the maximum

allowed churn rate and, intuitively, must be calculated with the aim of giving “enough time” to the OMP

to migrate nodes from the lower levels of the graph toward a non-leaf V N that is currently experiencing a

local churn surge.

More in details, each process p periodically checks the size of the virtual node V Ni it belongs to and, as

soon as it detects that the virtual node size |Vi| is smaller than Nmin, it takes the following steps:

1. each process p selects, according to a deterministic rule, Nmin − |Vi| processes, called helpers, among

all those belonging to children V Ns. Afterwards, p sends a help message to each helper; such a

message contains all the information needed by the helpers to migrate in V Ni (i.e. all the membership

information known at p).

2. delivering a help message, a process pk, member of a virtual node V Nj , updates its local view according

to the information received. From this point on, pk starts to be a member of V Ni and stops to behave

as member of V Nj .

The maintenance procedure continues to attract processes from children V Ns until the virtual node size

|Vi| grows at least to Nmin. Let us recall that the maintenance algorithm relies on a group membership

service responsible of virtual nodes view maintenance and ensuring, in the relaxed asynchronous model,

consistency of views.
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4.3. In-network Query Processing Algorithm

The query processing algorithm is a simple adaptation of a broadcast/convergecast approach with partial

result aggregation, modified to run on the V T graph topology. Without loss of generality, we assume that

all queries are started by the root V N6 that disseminates the query throughout the V T graph. Starting

from the leaf V Ns partial results are aggregated in intermediate V Ns and forwarded to the upper levels

until they reach the root of the V T graph. The absence of disconnections in the V T graph and the stability

of virtual paths (both provided by the OMP), together with the structure of the query protocol guarantee

that the returned result will include contributions from all processes that remained in the system for the

whole query duration and will thus comply with the IV property.

More specifically, the query processing algorithm is started from the node pi belonging to the root V Nr

that issues the query. When a query q is issued by pi the following steps occur:

1. pi takes a snapshot of nodes belonging to V Nr (including itself)

2. pi stores the lists of the current children VN identifiers at level 1.

3. pi sends a message query(q) to all processes part of V Nr and its children.

4. When a node pj , belonging to a V Nx at some level i receives the query(q) message, it:

(a) repeats step 1, 2 and 3 at its own level;

(b) sends query reply(q, valuej) to all the nodes in V Nx;

(c) waits until:

(i) it collects query reply(q, valuek) messages from each node pk belonging in the snapshot of

V Nx and

(ii) it delivers a child query reply (q, ag valV Ny
) messages from at least one process in every

child V Ny at level i+ 1;

(d) evaluates the query on the set of values collected from its snapshot and on the partial aggregated

results coming from the lower level;

(e) sends a child query reply(q, ag valV Nx
) message to all the nodes in the father virtual node at

level i− 1.

For any virtual node V Ni, its snapshot is updated every time that a view change occurs due to a leave and

the corresponding process is removed. Nodes belonging to V Ni snapshot are required to participate in the

query evaluation, while other nodes joining V Ni after the snapshot is taken are only required to participate

in the aggregation process in order to guarantee that partial aggregated results flow toward the root V N . In

this way, even if a virtual node population is completely “refreshed” between the query dissemination time

6Other nodes can delegate nodes in the root V N if needed.
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and the partial aggregate evaluation delivery time, the query aggregate result can still proceeds toward the

V T graph root.

During the query execution nodes can be attracted toward V Ns at the upper levels. When a node moves

to a new V N it keeps listening to messages exchanged in its old V N until all the pending query processing

procedures are completed. In this way, a moving node will always answer to a running query either in its

original V N or in the V N it is moving to avoiding the loss of its contribution.

4.4. Algorithm correctness

In the following, we will first prove that given an overlay network structured as a V T graph it remains

connected as long as the churn rate is below a certain threshold (Lemma 1). Then we will show that in any

connected virtual tree topology there always exists a stable virtual path between any pair of virtual nodes

(Lemma 2) and in every interval of 2δ time there also exists a stable path between processes belonging to

different virtual nodes (Lemma 3). Finally, we will show that these conditions are sufficient to ensure that

the query algorithm introduced in the previous section always return interval valid results (Theorem 1).

Lemma 1. Let G = (V, E) be the overlay network at time t0. Let Tmove be the upper bound on the time

needed by any process to be part of a new view. If (i) G is a virtual tree graph and (ii) at any time t,∑
i∈[t,t+Tmove+1] µ(i) < Nmin/N0, then G is always connected.

Proof. G is connected as long as a path exists between any pair of nodes. Considering that at time t0 G is a

virtual tree (and thus it is connected), connectivity can be broken only due to the effect of churn. The join

procedure has no impact on the connectivity of the overlay network as the algorithm adds new edges to G

while old ones are unaffected. G can be partitioned if and only if all nodes belonging to a non leaf V N leave

the system and no new node replaces them. Let us consider the worst case scenario where the out-churn

affects a single V N while in-churn is 0. Without loss of generality, let V Ni be the first virtual node whose

size reaches the threshold Nmin and let t be the time when this is detected by processes belonging to V Ni.

Let us denote as Vi(t) the set of processes belonging to V Ni at time t and let |Vi(t)| ≥ Nmin+1−
(
µ(t) ·N0

)
7.

According to the rules of the virtual tree maintenance algorithm, at time t, each process in V Ni selects,

through a deterministic function, Nmin−|Vi(t)|+1 helper processes among those belonging to V Ni children,

and asks them to move in V Ni. Considering that Tmove represents the maximum amount of time needed for

a node to move from a child V N to the father, the selected helper processes will complete their movement at

time t+Tmove at the latest. In the meanwhile, for each time t′ between t and t+Tmove, µ(t′)·N0 processes leave

and, in the worst case, they leave from V Ni (i.e. the size of V Ni shrinks to Nmin+1−N0

∑
i∈[t,t+Tmove]

µ(i)).

7Let us remark that, at time t − 1, at least Nmin + 1 processes were part of V Ni and µ(t) ·N0 is the number of processes
that leave at time t.
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To avoid disconnections, we must guarantee that during Tmove, at least one process remains in V Ni despite

the out-churn. In the worst case, all processes leaving at time t+ 1 are all helper processes selected at time

t. However, the maintenance algorithm will continue to select new helper processes, until there exists at

least Nmin processes in V Ni. Considering that, at each time t′ the number of selected helper processes is

Nmin + 1− |Vi(t′)| and that at time t+ 1 the number of selected processes is greater than µ(t) ·N0, we have

that, Nmin + 1−N0

∑
i∈[t,t+Tmove+1] µ(i) > 1 from which the claim follows. �ProofLemma

Lemma 2. Let G = (V, E) be the overlay network at time t0. If (i) G is a virtual tree graph and (ii) at any

time t,
∑

i∈[t,t+Tmove+1] µ(i) < Nmin/N0, then there always exists a stable virtual path connecting any two

virtual nodes.

Proof. The proof trivially follows by considering that (i) the graph is connected (Lemma 1) and (ii) at

time t0, G is a V T graph. As a consequence, no virtual node, except leaves, can disappear from the graph.

Therefore, for any two virtual nodes the virtual path connecting them never changes and thus the claim

follows. �ProofLemma

Lemma 3. Let V Ni, V Nj and V Nk be three virtual nodes such that V Ni is father of V Nj and V Nj is father

of V Nk. Let pi and pk be two nodes in V Ni and V Nk respectively. If, for any time t,
∑

i∈[t,t+Tmove+1] µ(i) <

Nmin/N0, then at least one of the paths connecting pi and pk is stable for at least 2δ time units.

Proof. The proof trivially follows from Lemma 1 and Lemma 2 considering that there exists at least one

process in V Nj that does not leave its virtual node until an helper process completed the movement toward

V Nj . �ProofLemma

Note that, Lemma 3 guarantees that messages can flow from V Ni to V Nk (and vice-versa) despite churn.

Intuitively the migration of the helper nodes toward the root virtual node (induced by the maintenance

algorithm) “moves” the effect of churn only in the leaf V Ns. Observing the structure from a virtual-node

point of view it is possible to see that only leaves disappear, while non-leaf virtual nodes remain stable

preserving virtual paths. As a consequence, the query can safely be diffused in the virtual tree collecting all

of the contributions from nodes that remain in the tree for the entire query duration.

Theorem 1. Let pi be the process issuing a query q at time t and let G = (V, E) be a V T graph at time t.

If G is always connected then q terminates and satisfies the interval validity semantics.

Proof. In the following we first show that every query eventually terminates and its results satisfies interval

validity.

Termination. The query termination is guaranteed by the fact that eventually, each process will be
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unblocked from the wait state. Due to the view maintenance mechanism, in fact, every process that left the

system is eventually removed from the view of any other process and, due to the reliability of communication,

every query reply(q, r(q)) message will be eventually delivered.

Interval Validity. Let us suppose, by contradiction, that G is connected, it is a V T graph, q terminates

but it does not satisfy interval validity semantics. If q does not satisfy IV, it means that there exists at

least one process pj that has been part of the system for the whole period of the query evaluation while its

contribution has not been considered in the query result. Let pi be the process of the root virtual node that

issued q (i.e. pi ∈ V Nr). If the contribution of pj ∈ V Nj has not been considered, two cases could have

happened: (i) pj has never received the query or (ii) the contribution of pj was not received by pi.

Case 1: pj never receives q. If pj does not receive q, it means that the query(q) message has been lost while

traveling from pi to pj . Due to the assumptions, there always exists at least one path connecting pi and

pj . Considering the shortest path between two such nodes, two cases can happen: (i) the shortest path has

length 1 or (ii) the shortest path has length greater than 1.

In the former case pj and pi are directly connected. Due to the reliability of the communication primitives,

we have that any message sent from pi to pj will be eventually delivered. Thus, pj never receives the query if

and only if either pi or pj leave during the query execution. None of these two cases impact IV, thus leading

to a contradiction.

In the latter case, there exists at least one virtual node V Nx on the path between V Nr and V Nj . Let us

consider the generic case of three virtual nodes, namely V N1, V N2 and V N3, belonging to the virtual path

connecting V Nr and V Nj . Let us recall that any message m sent at time t will be eventually delivered; as

a consequence, the query message broadcasted at time t from a node u ∈ V1 will be eventually delivered

to any node belonging to V2, the message will be processed and forwarded to any node in V N3 that will

eventually receive the query. As a consequence, due to the fact that nodes can only move from children V Ns

to the father V N , i.e. pj can only reduce its distanceto pi, at any time the query moves along the virtual

path always closer to its destination pj , and thus this is true on all disjoint paths connecting two arbitrary

nodes belonging to V N1 and V N3, respectively. Considering that the virtual path between V Nr and V Nj

can always be decomposed in sub-paths of length 2, it is possible to iterate the reasoning above and find

again a contradiction.

Case 2: pi never receives the contribution sent by pj. This case trivially follows from the previous reasoning

by substituting pi and pj . �ProofTheorem

5. Experimental Evaluation

In this section we provide a detailed evaluation of the Virtual Tree architecture through simulations.

The usage of a simulator was dictated by the need of testing the proposed approach in both large scale and
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dynamic settings.

The evaluation is focussed on three distinct aspects:

• overlay network connectivity : we tested the robustness of the virtual tree overlay network topology

under different levels of churn. In this set of experiments we have highlighted the main effects of the

algorithm parameters on the connectivity of the overlay network.

• message overhead : this set of experiments assesses the cost of the virtual tree overlay management

protocol in terms of messages needed to maintain the topology.

• comparison with alternative approaches: this set of experiments compares the Virtual Tree architecture

with other solutions with respect to their ability to provide interval valid results in dynamic settings.

Note that we do not present the results obtained for the valid queries because for each query completed

without disconnection in the VT the result was interval valid. The graphs that we can propose for the

interval validity result to be a copy of the ones obtained for the connectivity, thus we decided to avoid to

show them because they do not provide any additional information.

5.1. General Settings

The Virtual Tree architecture has been implemented in a round-based simulator used to simulate con-

current process activities and message network transmission delays. Processes are equipped with a view-

maintenance algorithm. All the experiments start from an initial configuration with N = 13500 processes

arranged in a complete V T graph (i.e. each virtual node, except the leaves, has the same number k = 4 of

children8). Each virtual node is initially populated with Nmax processes with values changing from test to

test. When the simulation runs the V T graph is stressed with churn that lasts for the entire test duration

(1000 rounds). All reported values are the result of 10 independent runs. Standard deviations are not shown

as their values were always smaller than 5%.

Churn is modeled as a continuous periodic triangle-shaped process: during the first half period, processes

enter the system (growing phase), while processes are progressively removed during the second half period

(shrinking phase) . This churn model tries to reproduce the characteristic periodic oscillations observed in

real large-scale dynamic distributed systems [29].

Metrics and Parameters. In the experiments we collected the following metrics:

(i) % correct tests representing the percentage of runs completed with a single connected component in

the V T graph (i.e. no partitioning),

8Other tests have been performed for different values of k without sensible differences in the results.
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Figure 2: Graph connectivity vs. churn level for different configurations of Nmin and Nmax.

(ii) virtual tree height measuring the maximum path length between the root and leaf nodes in the V T

graph,

(iii) virtual node size representing the average size of virtual nodes in the V T graph,

(iv) message overhead measuring the number of messages produced for the correct maintenance of the V T

graph.

All the previous metrics have been evaluated by varying the following parameters:

(i) virtual node size: virtual node size is defined according to the lower threshold Nmin that triggers

the migration of processes from the lower level of the V T graph and the upper threshold Nmax that

imposes the forwarding of a join request to children VNs. Several configuration have been tested and

each configuration is identified by a pair V N(Nmin, Nmax).

(ii) churn level c ∈ [0, 1]: it represents the percentage of processes that join/leave the system at each round.

During the experiments, we also collected measures about the percentage of interval valid queries. How-

ever, the results showed that only queries ran in graph experiencing disconnections lead to results violating

interval validity. For this reason, we will only show pictures related to the connectivity evaluation.

5.2. Connectivity Evaluation

The first test checked graph connectivity at various churn rates for different settings of Nmin and Nmax.

Figure 2 shows how the overlay network connectivity is affected from churn under different virtual node size

configurations.

The virtual tree topology shows a typical bimodal behaviour: connectivity remains stable at 100% until

a certain threshold for c (that depends on V N(Nmin, Nmax)) is met; from that point on, the V T graph

connectivity quickly drops to 0.
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Figure 3: Impact of Nmin and Nmax on graph connectivity.

Note that the threshold is way larger than the limit for deterministic connectivity as defined in Section

4.4; if we consider, for example, the curve V N(4, 9), the amount of churn needed to disconnect the graph is

c = 10−2; conversely, with the same settings the deterministic threshold inferred by the formula proposed in

Lemma 1 is about two orders of magnitude smaller.

In Figure 3 we have tried to separately evaluate the effect on the connectivity of the variation of the two

parameters Nmin and Nmax, for different churn rates. Nmin regulates the robustness of V Ns with respect to

out-churn while Nmax has no direct connection to the graph robustness as it only regulates the acceptance

of new processes in “large” V Ns. However, Nmax could have an indirect impact on the V N resilience to

out-churn surges, as it defines how large a V N can grow. Therefore, we tested this parameter as well.

The three solid curves show the algorithm behaviour by varying Nmin only (Nmax = 25): as expected

they closely resemble the behaviour already reported in Figure 2. Conversely, the three dotted curves show

the behaviour by varying Nmax only (Nmin = 5): all three cases report almost identical performance. We

can thus conclude that the connectivity performance can be controlled only by varying the Nmin parameter;

this result doesn’t come as a surprise as Section 4 already showed how connectivity is dependent only on the

churn level, the time needed by the protocol to attract processes from low level virtual nodes, and the Nmin

parameter. We can thus conclude that the indirect impact of Nmax, if present, is negligible.

Figure 4 shows the ability of the Virtual Tree OMP to move the effect of churn toward the leaf virtual

nodes. The plot reports the average virtual node size at different levels of the V T graph for several Nmin

values with c = 10−2. The plot shows how virtual nodes always maintain a stable size that is slightly larger

than Nmin; the only exception is represented by virtual nodes positioned at the lower levels of the tree that

with high probability are leaves: these nodes cannot attract processes from children nodes, and are thus

condemned to sizes that are way below the Nmin value.

The concept is also remarked by Figure 5 in which we plot the average size of a non leaf virtual node
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Figure 5: Non leaf virtual node size vs virtual leaf size.

versus the average size of a leaf virtual node. As the previous graph, the comparison shows that the managing

procedures are able to constantly maintain the size of all the non-leaf virtual larger than Nmin.

Figure 6 shows how the maximum three height varies with churn. From the different curves it is possible

to catch a general behaviour: as the values of Nmin and Nmax are increased, the maximum height tends to

decrease; this is an obvious consequence of the larger amount of processes that fit in virtual nodes at the

highest level of the tree. The curves for small Nmin values are truncated as experiments with larger churn

levels reported disconnections in the graph. Curves for large Nmin values (i.e. Nmin ∈ {8, 13, 15}) show a

rather unexpected behaviour as the max height first increases as churn grows, then reaches a maximum and

starts to decrease for high churn levels. The initial growing phase is a consequence of growing churn that

tends to increase the average number of children V Ns that are created in the V T graph. After this initial

growth the churn start to be so intense that many nodes are not able to finish their join procedure before

being removed from the graph; as a consequence, the average number of nodes in the V T graph starts to
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shrink and its height shrinks as well.
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Figure 6: Maximum Virtual Tree height vs churn level.

5.3. Overhead Evaluation

The Virtual Tree architecture relies on the presence virtual nodes whose membership is maintained by a

view-maintenance algorithm. The test reported in Figure 3 showed us that Nmin controls the resilience of

V Ns to out-churn. Conversely, Nmax is responsible of limiting the cost incurred in the V N maintenance:

the larger Nmax is and the larger is the overhead imposed by the view-maintenance algorithm. However, at

the same time, the larger the difference between Nmin and Nmax is and the higher the probability of fixing

the erosion introduced by the out-churn on the V N only waiting for new joins will be. This is an important

aspect, as every time a virtual node size falls below the Nmin threshold the OMP spends a large amount of

messages for moving nodes from the children V Ns to the father. In some sense the gap between Nmin and

Nmax represents a buffer which prevents premature attraction procedures to happen.
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Figure 7: Impact of Nmax on overhead generated by the Virtual Tree OMP.

18



Figure 7 reports the message overhead per process versus churn for different Nmax values and Nmin = 10.

The message overhead, expressed as average number of help messages produced per nodes and per round,

increases with churn as a consequence of the large process mobility among virtual nodes needed to keep non

leaf virtual node populations above the Nmin threshold. The growth is larger for configurations with lower

Nmax − Nmin gaps. This behaviour is justified by the fact that the smaller is the delta, the larger is the

probability to have a V N with size smaller that Nmin. The extreme case is represented by the configuration

vn(10, 10) that forwards all process joins toward the leaf virtual nodes and, for every leave, attracts a node

from a children.
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Figure 8: View Update frequency: best of static vs dynamic.

In addition, the view maintenance procedure is usually configured to run periodically and check the

consistency of information stored in each local view. The update frequency is usually fixed and must be

defined as a function of the maximum churn that the system expects to experience. This means that a

careful evaluation of the expected churn rate must be done before starting the system and that the latter

must be configured as to tolerate large churn surges even if churn rates will be mild on average for most of

the system lifetime. In order to improve the efficiency of our solution we thus introduced a dynamic update

frequency whose purpose is to dynamically adapt by locally monitoring at run time churn rates experienced

in each single V N . The dynamic frequency adaptation works as follows: let f be the current update period.

After f rounds, if the local view was not updated, then the new update period will be f = f + 1, otherwise

it will be f = f/2. In order to avoid too large update periods, that can easily lead to the loss a V N in case

of a local churn surge, the value of f is limited by an upper threshold defined as a configuration parameter.

Figure 8 shows the effect of the dynamic update frequency for the local view-maintenance algorithm. For

each level of churn included in the plot, we first evaluated the lower static update frequency needed to avoid
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disconnections9. Then we run the same test with the dynamic frequency mechanism.

The solution based on the dynamic frequency mechanism exhibits worse performance if compared with

the best static setting with the only exception of churn rate c = 10−1. This is due to the fact that the

dynamic frequency grows linearly and decreases exponentially and thus assumes values that are often bit

larger the perfect one (represented by the best static frequency). The trend is inverted in the case of churn

rate c = 10−1 because, for this leave/join rate churn is less uniform on different V N as a consequence of

shorter update periods. In this case the dynamic update frequency mechanism is able, for example, to impose

a larger update period f = 2 in V Ns experiencing mild churn, while using higher frequencies in V Ns where

churn is stronger.
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Figure 9: Percentage of interval valid queries in a scenario with 1000 processes and low churn rate for different overlay networks.

5.4. Interval validity evaluation

Figure 9 reports an evaluation of the ability of different overlay networks to support aggregate query

answering algorithms. This comparison provides the reader with a qualitative analysis that substantiate the

motivation presented in the Introduction. We compared an overlay network generated by Cyclon [30], an

overlay network designed as a forest of spanning trees, a random graph and a virtual tree overlay network.

Cyclon is a gossip-based protocols that maintains local views that closely represents uniform random

samples of the system population. Graphs built by Cyclon show strong connectivity and low diameters even

when perturbed with strong churn. These characteristics are provided by means of a periodic shuffle of local

views that tends to evict dangling links caused by out churn. As a query answering protocol we implemented

a simple flooding-based techniques that naively propagate the query and the corresponding answer through

all the reachable processes. The second implementation is based on a forest of spanning trees10 (multiple

tree) where the query is propagated in a parallel way (all the trees are exploited at the same time for query

9Note that this optimal frequency can be calculated only a posteriori.
10note that each DHT [28],[26] can be represented by a forest of spanning trees
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propagation and answers collection). This setup resembles the Virtual Tree query answering protocol with

the only difference being represented by the lack of a OMP protocol able to repair damages occurring to

trees due to churn. The third implementation is based on a random graph, a topology known for its strong

connectivity and low diameter. Strong connectivity lets random graphs sustain massive node failures with

extremely low probabilities of disconnection. However, without specific algorithms, they are not able to

repair damages caused by churn. In this case we employed the same query answering algorithm considered

in the Cyclon case.

The topologies considered in Figure 9 are composed by 1000 processes. In each run we have injected

churn and we tried to execute 100 queries. All the topologies have been rebuilt from scratch before any single

query execution. Concerning Cyclon, we let the protocol execute 50 view shuffles before executing the query

to let it reach a steady state. For the multiple trees case we built a forest formed by 10 spanning trees. In

all the three cases we configured the graphs such that, on average, nodes always had the same degree.

Figure 9 reports the percentage of queries that ended with an interval valid answer for the three solutions

in a scenario with c = 0.005.

The overlay network generated by Cyclon completes a very few Interval Valid query answering. Such bad

performance is caused by the shuffling techniques employed by Cyclon to refresh local views. This shuffle

mechanism continuously changes the paths between two processes on the overlay networks making the paths

extremely unstable. Therefore, the probability that a querying node gets all the answers from nodes that

remain in the system for the whole query duration is extremely low and close to 0.

The solution based on multiple trees overlay network is able to provide interval valid query answers

with low probability. This performance is caused by the absence of any mechanism able to counteract the

disruption of trees due to churn. Therefore this overlay network disconnects quickly. On the other hand if

a tree, by chance, is not disconnected by churn during the time of the query, then the returned answer is

interval valid.

The random graph-based solution exhibits good performance: it achieves Interval valid querying answers

with high probability. This is due to the robustness of the random graph structure with respect to churn and

to the huge number of redundant paths between any two processes. This provide a good degree of stability

to paths during the time of the query. Only tests performed with larger populations (up to 10.000) show

that also the performance of the Random Graph get worse. This result stem from the fact that the larger is

the population and the larger is the query execution time: with larger query execution time the churn has

more time to disconnect the network corrupting the query result.

Figure 10 compares the cost of executing interval valid queries. To the best of our knowledge WildFire [9]

is the only other protocol able to ensure valid results. More precisely WildFire was introduced by Bawa et

al. as an algorithm able to provide single-site valid results. Note that single site validity semantics is weaker
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Figure 10: Query cost comparison.

than interval validity as it only guarantees that the result of the query contains at least contributions from

all the processes that were connected through a stable path toward the querying node for the query duration.

WildFire consists of two phases: the broadcast phase and the convergecast phase. In the broadcast phase

the query is forwarded inside the network using a broadcast primitive; the broadcast propagation creates

multiple spanning trees that are used during the convergecast phase. Each process, receiving the broadcast,

starts its convergecast phase sending back its contribution toward the root of the spanning trees. In our

tests we reproduced within a V T graph the same settings proposed in [9]: variable number of processes

N = [211, 212, 213, 214], and continuous churn (c = 10−2).

The result shows that a query performed in Virtual Tree uses, on average, 1/4 of the messages of a

WildFire query. This difference stems directly from the approaches adopted by the two different solutions:

WildFire builds the structure needed to disseminate the query and collects its results on-demand, i.e. when

a query is started, while our solution exploits the existing structured overlay (a V T graph) reducing the

query cost but paying the overlay maintenance one. Thus, we can conclude that the strategy adopted

by WildFire clearly pays back in all those situations where queries are executed not so frequently while the

Virtual Tree architecture could be preferable in query-intensive computations as it supports a stronger query

validity semantics with a lower per-query cost.

6. Concluding Remarks

Providing interval valid queries in large scale dynamic networks with unbound churn is provably impossi-

ble due to the lack of connectivity and path stability between processes. This paper presented Virtual Tree ,

an architecture comprising an overlay management protocol able to build and maintain a Virtual Tree graph

that remains connected when churn is below a given threshold. The Virtual Tree architecture also includes a

distributed query protocol that guarantees deterministically interval valid queries when run on the top of a
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Virtual Tree graph. The paper proves that this latter property holds, in a distributed system with bounded

communication latencies, as long as churn remains below a threshold that is function of a configuration pa-

rameter defining the size of virtual nodes. The experimental evaluation confirms and extends the theoretical

results showing that connectivity, and thus interval validity, can be practically obtained even for churn rates

larger that the theoretical one.
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