
Diffusing events through JMS on the Sun SPOT platform: a
practical experience report∗

Roberto Baldoni, Roberto Beraldi, Michele Dominici, Leonardo Querzoni
Dipartimento di Informatica e Sistemistica, Sapienza Universitá di Roma

[baldoni,beraldi,querzoni]@dis.uniroma1.it

ABSTRACT
In the last few years there has been a growing interest in
small, low-power hardware platforms that integrate sens-
ing, processing and wireless communication capabilities that
can be adopted to quickly deploy powerful wireless sensor
networks. Applications for WSNs often apply the event-
based interaction paradigm for communication among par-
ticipants. In this paper we report our experiences with the
testing of JORAM, a well known JMS implementation, on
top of the Sun SPOT wireless sensor platform.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

1. INTRODUCTION
Wireless sensor networks (WSNs) are today starting to

become widely adopted for a number of different settings
and applications: from industry settings for controlling ma-
chine behaviour to security, from environmental control to
vehicular applications. This success is mainly due to the
availability of numerous platforms that embed in a small
package sensing/acting capabilities, powerful microproces-
sors and complete radio stacks, all at reasonable prices. The
behaviour of nodes constituting a WSN clearly depends on
the specific application; however is it common to consider
applications where the nodes must periodically sense the sur-
rounding environment using their on-board transducers and
report sensed values, or alarms caused by abrupt changes in
these values, to a central host that will act accordingly. This
event-based interaction between the nodes and the central
host is typical of publish/subscribe applications. In this pa-
per we report our practical experiences developed while test-
ing JORAM, an open source Java Messaging System (JMS)
implementation, on the Sun’s sensor platform (SPOT). This
work was mainly motivated by activities running within the

∗This work was partially supported by the SM4All European
Project (FP7-224332).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS’09, July 6-9, Nashville, TN, USA.
Copyright 2009 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Smart Homes 4 All (SM4All) [1] project. Goal of the project
is the design and implementation of an innovative middle-
ware platform for inter-working of smart embedded services
in domotic environments. As the middleware should be
broadly deployable, keeping the overall costs of the solution
down is an objective of the project. From this point of view,
both the JMS standard and the Sun SPOT WSN platform
are in principle good candidates for an integration inside the
future SM4All architecture. Scope of this work was thus to
explore the possibilities of the integration between these two
technologies and their current limits.

2. BACKGROUND
Wireless sensor networks are systems constituted by a set

of independent devices whose main purpose is to sense data
from the surrounding environment and send it to a central
host deputed to its elaboration and storage. Each device has
some computing capabilities, can send and receive messages
using a wireless network adapter but has a limited amount of
available energy to perform these operations. The transfer of
data from sensors to the central host is usually performed pe-
riodically or based on the occurrence on some specific events
(e.g. sensed temperature surpassing a predefined threshold).
This latter model of data transmission within the WSN per-
fectly fits the publish/subscribe communication paradigm.
Currently, however, WSNs does not employ standard pub-
lish/subscribe middleware platforms, like JMS or DDS, but
rather prefer to resort to ad-hoc solutions [2, 3], mainly for
reasons related to energy consumption.

The Sun SPOT project - Sun SPOTs (Small Programma-
ble Object Technology)[7] are battery-powered sensors de-
veloped at Sun Microsystems Laboratories. In its basic form
each SPOT includes a CPU, onboard memory and a wireless
network adapter. Sun SPOTs run an ad-hoc small-footprint
Java virtual machine, called Squawk, that can host multiple
applications concurrently, requires no underlying operating
system and offers a fully capable Java ME (JME) environ-
ment [5] that supports CLDC 1.1 and MIDP 1.0. Stackable
boards can be used to expand the abilities of a SPOT and
include application-specific sensors and actuators such as
accelerometers, light detectors, temperature sensors, LEDs,
push buttons and general I/O pins. A special SPOT unit,
called base station, can be used to bridge connections be-
tween computers in a LAN (or the Internet) and a network
of SPOTs. In order to build energy efficient applications
Sun SPOTs have power conservation firmware that enables
three modes of operation: (i) Run mode with all subsys-

tems running, (ii) Idle mode with CPU and radio switched
off and (iii) Deep-sleep mode with all subsystems shut down
except for the standby voltage regulator, power-control and
the RAM memory. The capacity of the built-in battery is
720 milliampere-hours, so in Run mode the battery can sup-
port about 7 hours of operation. This can be extended by
having the processor sleep and turning off the radio when it
is not in use. In deep sleep mode the battery is expected to
last for more than 900 days.

JMS and the JORAM platform - The Java Message Service
(JMS) [6] is a standard for the implementation of message-
oriented middleware on the Java platform. The JMS API
is built upon a topic-based event structure. Publishers and
subscribers are anonymous and can dynamically publish and
subscribe to various topics. Different levels of reliability and
QoS requirements can be defined for each topic. JORAM
(Java Open Reliable Asynchronous Messaging) [4] is a 100%
Java open source implementation of the JMS 1.1 specifica-
tion. The JORAM platform is constituted by two distinct
softwares: the JORAM server that manages the JMS ab-
stractions and the JORAM client that is bound to the ap-
plication wanting to leverage JMS based communications.
JORAM clients communicate with server instances usually
relying on TCP/IP. One of the most interesting character-
istics of JORAM is the availability of a lightweight client
named kJORAM targeted at JME compliant devices. Ap-
plications running on JME compliant devices can thus use
kJORAM to cooperate with other JMS applications1. In
this case, interactions between kJORAM clients and JO-
RAM servers take place using SOAP/XML over a HTTP
connection. Compatibility with the JORAM server is guar-
anteed by the adoption of a server-side SOAP proxy service
whose main purpose is to translate XML messages produced
by the kJORAM client in a format that can be directly
treated by the JORAM server and by the standard J2SE
JORAM client.

3. EVALUATION
The testing platform adopted for evaluating the porting

of kJORAM on the Sun SPOT platform was constituted by
a single Sun SPOT equipped with ligt and temperature sen-
sors, that was running an application whose only purpose
was to publish events. A SPOT base station was used to re-
ceive events published by the sensor and forward them to the
JORAM server running on a PC. The publication of a JMS
message from the publisher SPOT followed these steps: (1)
the remote SPOT asks the base station for a HTTP connec-
tion to the application server hosted on the PC; (2) the base
station forwards the HTTP connection request to the appli-
cation server and acts as a gateway between the two entities;
(3) as soon as the connection with the server is established,
the SPOT sends a SOAP request for publishing a JMS mes-
sage; (4) the SOAP proxy server running in the application
server forwards the request to the JORAM server that is in
charge of maintaining the topic where the message has been
published; (5) if the JORAM server correctly receives the
publish request, it immediately sends back an acknowledge-
ment toward the SPOT. The simplicity of this testbed was
a key point to correctly profile, during the testing phase,

1Note that currently only a subset of the JMS API is avail-
able to developers through the kJORAM lightweight client.

the behaviour of the kJORAM client and more generally,
the behaviour of the SPOTs. During the tests we concen-
trated our attention on the evaluation of two fundamental
metrics: Memory consumption used by the JMS client, and
Battery drain, i.e. the amount of energy used to communi-
cate through the JMS client. The aforementioned metrics
have been evaluated in a suite of different tests aimed at
investigating how different aspects of the JMS client impact
on memory consumption and, more interestingly, on battery
drain. The following tests were conducted:
Test 1 - the SPOT publishes 100 JMS messages containing
dummy content with a frequency of one message every 6
seconds (on average); no data is read from the on-board
transducers;
Test 2 - the SPOT executes exactly the same code used in
test 1 but does not send any message; no data is read from
the on-board transducers;
Test 3 - the SPOT publishes 100 JMS messages containing
the current temperature value with a frequency of one mes-
sage every 6 seconds (on average). The temperature value
is obtained by one of the on-board transducers;
Test 4 - the SPOT checks every 10 minutes (for a total of
8 hours) the light amount in the surrounding environment;
if the variation with respect to the previously read value
exceeds a predefined threshold the application publishes a
JMS message containing the new value; light intensity is
obtained by one of the on-board transducers; the SPOT is
put in deep-sleep mode after every read cycle and awaken
10 minutes later;
Test 5 - the SPOT executes exactly the same code used in
test 4 but does not send any message;

The test results showed a stable and predictable behaviour
of the system characterized by a large battery consumption.
The main contribution to this consumption is due to periodic
radio transmissions used to deliver JMS events to the base
station. As a consequence, our conclusions are that in this
current form these two combined technologies are not easily
adoptable in the considered domotic environment due to the
excessively short lifespan of the sensors battery. However, a
more careful design of the communication middleware could
in principle reduce the number of transmission and conse-
quently improve the energy consumption figures by better
leveraging the duty-cycling characteristics of the sensor plat-
form.

4. REFERENCES
[1] The Smart Homes 4 All (SM4All) project. STREP

project founded by the EC.
http://www.sm4all-project.eu/.

[2] P. Levis and D. E. Culler. Maté: a tiny virtual machine
for sensor networks. In ASPLOS, pages 85–95, 2002.

[3] T. Liu and M. Martonosi. Impala: a middleware system
for managing autonomic, parallel sensor systems. In
PPOPP, pages 107–118. ACM, 2003.

[4] ObjectWeb. Java Open Reliable Asynchronous
Messaging (JORAM). http://joram.objectweb.org/.

[5] Sun Microsystems Inc. Java Micro Edition.
http://java.sun.com/javame/index.jsp.

[6] Sun Microsystems Inc. The Java Message Service
(JMS). http://java.sun.com/products/jms/.

[7] Sun Microsystems Laboratories. Project Sun SPOT.
http://www.sunspotworld.com/.

