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Efficient Notification Ordering
for Geo-Distributed Pub/Sub Systems
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Abstract—A distributed event notification service (ENS) is at the core of modern messaging infrastructures providing applications
with scalable and robust publish/subscribe communication primitives. Such ENSs can route events toward subscribers using multiple
paths with different lengths and latencies. As a consequence, subscribers can receive events out of order. In this paper, we propose
a novel solution for ordered notifications on top of an existing distributed topic-based ENS. Our solutions guarantees that each pair of
events published in the system will be notified in the same order to all their target subscribers independently from the topics they are
published in. It endows a distributed timestamping mechanism based on a multistage sequencer that produces timestamps whose size
is dynamically adjusted to accommodate changing subscriptions in the system.
An extensive experimental evaluation based on a prototype implementation shows that the timestamping mechanism is able to scale
from several points of view (i.e., number of publisher and subscribers, event rate). Furthermore, it shows how the deployment flexibility
of our solution makes it perform better in terms of timestamp size and timestamp generation latency when the system load exhibits
geographic topic popularity, that is, matching subscriptions and publications are geographically clustered. This makes our solution
particularly well suited to be deployed in geo-distributed infrastructures.

Index Terms—Total order, Publish/Subscribe, Geo-Distributed Systems, Logical timestamps, Event based communications, Geo-
graphic Topic Popularity.
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1 INTRODUCTION

Modern large-scale services are usually built on top of
asynchronous communication primitives able to mask
the unreliability of low-level networks and the dy-
namism of the application participants by decoupling
the interacting parties in space and time. The pub-
lish/subscribe paradigm provides communication ser-
vices where message addressing is implicitly handled by
an Event Notification Service (ENS), a middleware infras-
tructure that matches the content of events produced by
publishers against interests expressed by subscribers in
the form of subscriptions.

Many research efforts in publish/subscribe systems
focused on reliability and performance aspects with few
contributions in the area of event ordering [1]–[5]. Defin-
ing a coherent specification for notification ordering is
a fundamental step for a wide range of applications
like stock tickers, messaging, command-and-control, or
those based on composite event detection [6], where
specific event patterns must be concurrently detected by
distributed and possibly independent application com-
ponents. As an example, in distributed online games [7]
users in close proximity in a virtual world are supposed
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to see events happen in a single consistent order. In
Electronic stock tickers [8], investors are required to see
coherently ordered stock price evolutions to take their
investment decisions.

In this paper we consider the following ordering
problem: how to guarantee that two subscribers sharing
subscriptions with common interests are notified about
events matching those subscriptions in the same order.
While the above ordering problem stems from the simple
rationale that two participants should always see the no-
tification of two events in the same order, its enforcement
in distributed ENSs is far from being trivial. Violations
to the ordering property can easily arise due to the
fact that two events, possibly published by different
publishers, can follow distinct paths through the ENS
before reaching the points where they will be notified
to the final recipients. Furthermore, non-determinism, in
the form of unpredictable network latencies and message
losses, can easily exacerbate the problem, especially in
geo-distributed application scenarios.

Current solutions either require complex offline set-
ups that must be continuously updated when sub-
scribers change their interests [2], or give up some
ordering aspects only guaranteeing per-source ordering
[9], or are based on synchronization among processes in
order to deterministically order conflicting events (i.e.,
[1], [4], [5]). Such synchronization approaches, either
hardware-based [1], or based on total order [4] among
all processes receiving an event (using centralized se-
quencers or distributed consensus primitives like Paxos
[10]) or, finally, characterized by the widespread usage
of explicit acknowledgments [5], end up into scalability
problems with respect to performance when both the
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event rate and the number of entities involved in the
synchronization increase [11] or as soon as WAN links
are involved [12].

This paper focuses on studying event ordering for
geo-distributed publish/subscribe communication mid-
dleware looking for a scalable solution in terms of
number of published events and subscriptions, while
accommodating subscription changes at run-time. More
specifically, the paper introduces a novel timestamping
solution designed to be used with topic-based pub-
lish/subscribe systems. The purpose of our solution is to
generate logical timestamps that can be used, on receiver
side, to enforce the following total notification order (TNO)
property without any explicit synchronization: if two
independent subscribers are notified about the same two
events, then these two events will be notified to them in
the same order1.

The core of our solution is a new logical timestamping
mechanism based on subscribers’ interests. The structure
and size of each timestamp is automatically calculated
at run-time on the basis of current subscription overlap-
ping, in order to keep it to a minimum (as it can vary be-
tween a single integer and a vector of integers whose size
is the number of topics). Timestamps are built through a
multistage sequencer based on a distributed architecture.
A key feature of this architecture lies in its deployment
flexibility: multiple stages of the sequencer can be co-
located on machines deployed in different sites of a geo-
distributed infrastructure (e.g., a service provider with
multiple data centers). This flexibility allows system de-
signers to exploit specific locality characteristics enjoyed
by many large-scale geo-distributed applications, such as
YouTube2, to drastically reduce both timestamp size and
generation latency. Geographic topic locality can indeed
make most of the overlapping among subscriptions local
to a specific geographic area increasing the probability
that a timestamp will be entirely generated within a sin-
gle site of the distributed timestamping architecture, thus
avoiding costly inter-site (i.e., WAN) communication.

From an architectural point of view, the timestamping
mechanism, encapsulated within a software component
that can be deployed on top of existing reliable topic-
based publish/subscribe middleware, transparently de-
livers events notified by the ENS to the application layer
guaranteeing the total notification order. When deployed
on top of a non-reliable ENS, our mechanism is able
to deterministically tag every event whose notification
violates the TNO property; this gives application devel-
opers the possibility to treat out-of-order events in an
appropriate manner.

The performance of our solution have been analyzed
through an extensive experimental evaluation. The re-

1. The TNO property, also known as Pairwise Total Order, is consid-
ered in the literature as one of the strongest form of ordering achievable
in distributed publish/subscribe middleware [5].

2. Brodersen et al. [13] showed that at least 40% of YouTube videos
have 80% of their total views coming from a single country, indicating
strong user interest locality.

sults show how it creates timestamps whose size scales
with respect to the number of subscribed topics. We de-
veloped a prototype implementation of our solution, in
order to study its behavior in a realistic geo-distributed
setting, mimicking a common architecture employed by
cloud-providers and by large companies with several
data centers. The experimental evaluation of the proto-
type takes into account a geographic topic popularity, in
which subscriptions and publications are geographically
strongly clustered [13], and a spray-and-diffuse pattern,
in which interest clustering is mildly present [13], [14].
Results show that an increasing matching between topic
popularity and locality of interest produces a timestamp
generation latency of less than 300 ms in the presence of
intense publication rates (up to 10000 events/sec).

The rest of this paper is organized as follows: Section
2 introduces the system model and states the problem
explaining why its solution includes several difficult
aspects; Section 3 describes our algorithm; Section 4
presents some important engineering aspects; Section
5 reports the results of the evaluation of our solution;
Section 6 explains how the problem of ordering events
has been tackled in the literature and, finally, Section 7
concludes the paper.

2 SYSTEM MODEL AND PROBLEM STATEMENT

We consider a system composed by a number of interact-
ing clients that can act as publishers (data producers) or
subscribers (data consumers). Clients exchange data in
the form of events using a topic-based selection model,
thus we assume that they share a common knowledge
on a fixed set of available topics. Each piece of data
produced by a publisher is published on one of the
available topics and takes the form of an event. Each
subscriber issues a subscription S containing the set of
topics it is interested in. An event e published on a
topic T matches a subscription S if and only if T ∈ S;
when this happens, the corresponding subscriber must
be notified about e. Clients do not interact directly:
their interactions are mediated by an Event Notification
Service (ENS) that exposes the fundamental interface
of a publish/subscribe system, i.e., the publish, sub-
scribe/unsubscribe and notify primitives. Without loss of
generality, here we assume that the ENS is implemented
as a distributed middleware.

In addition, in order to simplify the description of our
solution, we will initially assume that our system works
on top of a reliable communication substrate, that all
communication links deliver messages in FIFO order,
and that all processes are correct. Section 4 details how
some of these assumptions can be removed or relaxed.

The ordering property we want to enforce is defined
as follows:

Property 1: TOTAL NOTIFICATION ORDER (TNO). Let
ei and ej be two distinct events notified to a subscriber
s. If ei is notified to s before ej , no subscriber will be
notified about ei after being notified about ej .
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Note that this definition matches the definition of Weak
Total Order given in [15] in the context of total order
specifications [16]. Differently from those specifications,
we do not consider any form of deterministic agreement
(uniform or not uniform) because here we are only inter-
ested in designing an ordering layer to be transparently
plugged on top of a generic ENS which can provide
different reliability and agreement properties. The TNO
property also matches the pairwise total order property
defined in [5].

p2
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e2

A BX

C D

ENS

e1, e2

e2, e1

p1 s1

s2
Y

single hop multiple hops

Fig. 1. An example showing how notifications can be
performed out of order in a distributed event notification
service.

Guaranteeing TNO in a distributed setting is a com-
plex task. As an example, consider the toy system de-
picted in Figure 1: the six black dots represent processes
constituting the ENS, the white dots on the left (p1 and
p2) are two publishers and those on the right (s1 and
s2) are two subscribers. A common solution for ordering
events published on a specific topic is based on the
usage of sequencers: a single node in the ENS is elected
as a “sequencer” for all the events published in that
topic. In our example X acts as the sequencer node for
topic T1, receiving all the events published in T1 (i.e.,
event e1 published by p1), adding a sequence number to
them, and then routing the events toward the intended
destinations (i.e., s1 and s2 notified by nodes B and D).
Similarly, Y is the node in charge of sequencing events
published in topic T2 (event e2 in the example).

This simple approach, however, is not useful when
subscriptions intersect in multiple topics. For example,
assume that both s1 and s2 are subscribed to T1 and
T2. In this case the sequence numbers attached by X
and Y would be completely uncorrelated and useless to
check for a correct notification order on the subscribers’
side. Centralized solutions, i.e., using a single sequencer
for all the topics, have important scalability drawbacks.
Similarly, distributed consensus algorithms impose strin-
gent latency requirements to provide synchronization in
a timely manner [11], [12]. Therefore, they cannot be
realistically considered in scenarios where large scale or
large loads are expected.

3 THE EVENT ORDERING ALGORITHM

In this Section we first introduce an abstraction to
illustrate how the event ordering problem in pub-
lish/subscribe systems can be theoretically addressed,
and the design principles underlying a possible dis-
tributed implementation. Then, we detail the algorithm
that implements the proposed solution. Due to space
constraints the algorithm pseudocode and the related
correctness proofs are reported in the supplemental ma-
terial.

Oracle
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SN(T1):
SN(T2,T5):
SN(T3,T4):

0
0
0

publish(e1,T2)
notify(e1,1)
publish(e2,T1)
notify(e2,1)
publish(e3,T5)
notify(e3,2)
publish(e4,T4)
notify(e4,1)
publish(e5,T3)
notify(e5,2)
publish(e6,T1)
notify(e6,2)

1
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S2
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T1 T2 T3 T4 T5

Fig. 2. The oracle assigns sequence numbers to events
published in different topics on the basis of intersections
among subscriptions.

3.1 Event Ordering Abstraction

From a theoretical standpoint we need an event ordering
abstraction (oracle in the following) able to produce
sequence numbers. Such oracle would provide, for each
topic, the sequence number representing the timestamp
of the next event published in that topic. Sequence num-
bers would need to be generated such that two events
published on topics that are both subscribed by at least
two subscribers have different comparable timestamps.
To enforce this condition, and thus guarantee TNO, the
oracle must check all subscription intersections and thus
requires complete knowledge of subscriptions. Figure 2
shows an example where the oracle accesses knowledge
of subscriptions from the ENS to identify intersections
among s2 and s3 on topics T2 and T5, and among s1 and
s3 on topics T3 and T4. As a consequence the oracle will
maintain a sequence number for (T2, T5) and one for
(T3, T4). A third sequence number will be maintained
to timestamp events published in T1 only as events for
this topic must not be ordered with respect to events
published in any other topic. Thanks to these sequence
numbers, events e1 and e3, published in T2 and T5
respectively, will be notified by all subscribers (s2 and
s3) in the order defined by their timestamps (1 for e1
and 2 for e3), independently from possible reordering
happening in the ENS during the event diffusion phase.
Event e2 published in topic T1 can be notified from s2
independently from the former events (i.e., without a
precise order), as the only other subscriber in T1, i.e., s1,
will not be notified about e1, nor e3.
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In the following sections we introduce a distributed
implementation of this oracle and show how to use it to
guarantee TNO on the subscriber side. However, before
delving in these design details, it is useful to clearly
outline the design principles underlying our solution.

3.2 Design principles
A system implementing the event ordering abstraction
should match the following design principles:
Full decoupling - It must retain the typical full decou-

pling characteristics of publish/subscribe, i.e., no di-
rect interactions should happen between publishers
and subscribers.

Support for large subscription loads - It must grace-
fully scale in scenarios with large number of sub-
scriptions and multiple possible interest intersec-
tions. This must be achieved by both adopting short
timestamps to reduce the overhead on the ENS
and a clever internal design. The system should be
designed in a distributed fashion with the aim of
sharing the load imposed by timestamp generation
on multiple machines (i.e., no machine should main-
tain full knowledge of the system state) and thus
avoid possible bottlenecks.

Asynchronous one-way message flows - It must avoid
any kind of explicit synchronization among its in-
ternal processes by adopting a one-way message
flow strategy (i.e., no ACKs are required) for the
most common operations, like event timestamping
or subscription management; the lack of explicit
synchronization is a crucial principle needed to
support intense event publication rates [11].

Full independence from the ENS - It must be de-
signed to be transparently pluggable on top of
existing topic-based publish/subscribe middleware
platforms. This principle facilitates the deployments
within existing infrastructures.

Flexible deployment - It must allow the deployment of
its internal components in a flexible manner so to
efficiently support different application scenarios,
from simple centralized setups to distributed de-
ployments with geographic topic popularity, while
maximizing the available resource usage.

3.3 Architectural aspects
Our solution assumes that all participants to the system
(publishers and subscribers) are equipped with an Or-
dering module that implements the algorithm described
in the next Section (see Figure 3). This module mediates
the interactions between application level software com-
ponents, that act as information producers (publisher
applications) or consumers (subscriber applications), and
a standard ENS.

We assume that the ENS implements a standard topic-
based publish/subscribe interface (here represented by
the ENSpublish, ENSsubscribe/ENSunsubscribe and EN-
Snotify operations). The same interface is offered by

Ordering module

ENS

Publisher Subscriber

publish subscribe/unsubscribe

notify

ENSsubscribe/
ENSunsubscribe

ENSnotify

ENSpublish

Multistage sequencer

TMT1 TMT1 TMTn

Fig. 3. Architectural view that shows how the Order-
ing module acts as a mediating software layer between
the applications and an existing event notification ser-
vice. The dashed line represents the whole timestamping
mechanism that also includes a multistage sequencer
used to produce timestamps.

the ordering module to the application level, therefore
neither the applications, nor the ENS must be changed
in order to work with our solution. In the following of
this section we will consider a deployment where our
solution is coupled with a reliable ENS. In particular, we
assume that when the ENS returns from an invocation
to ENSsubscribe, all events published on the subscribed
topic after that point in time will be eventually ENSno-
tified to the subscriber. Section 4 will provide further
details on how the solution behaviour changes when it
is coupled with a non-reliable ENS. Note that, thanks
to the full adherence of the ordering module with the
standard publish/subscribe interface, it could also be
used in conjunction with a mapping layer that efficiently
allows the adoption of a content-based interface on top
of a topic-based publish/subscribe system [17].

The ordering module also needs to access a point-to-
point communication primitive that can be offered by the
operating system or by other solutions like an overlay
network. We also assume that the set of available topics
is fixed and a precedence relationship → holds among
topic identifiers inducing a total order on them: if T → T ′

we say that T has a higher rank in the relationship than
T ′.

Ordering modules communicate with a multistage
sequencer, constituted by a set of processes, one per
topic, called topic managers (TMs). Finally, we assume
there is a method to univocally map a topic T to its
topic manager TMT . This problem can be solved in
several different ways, i.e., through a static mapping
provided as a configuration parameter, using a DNS, or
resorting to a distributed hash table as in rendez-vous
based publish/subscribe systems [18]. In the following,
whenever there is no ambiguity, we will use the terms
publisher and subscriber to refer the parts of our ordering
module located respectively at the publisher and at the
subscriber.
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a timestamp for T2

ENSnotify(<e, tse>,T2)

ENSnotify(<e, tse>,T2)

ENSnotify(<e, tse>,T2)

ENSnotify(<e', tse'>,T3)

ENSpublish(<e',tse'>,T3)ENSpublish(<e,tse>,T2)
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T1 0
T2 0
T3 0
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T1 0
T2 0
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LCTMT3
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LCTMT1
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T1 0
T2 1

LCTMT2

T2 1

LCTMT3
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Fig. 4. Example of a system run with three subscribers, Si, Sj and Sk, and a publisher P .

3.4 Algorithm description

The basic idea behind the algorithm is to assign a logical
timestamp ts to each event. By looking at a timestamp,
a subscriber must be able to decide if the event can be
immediately notified to the application level or there is
another event that precedes it in the TNO order. In this
latter case the current event is locally buffered while the
subscriber waits for the missing event to be notified by
the ENS.

The algorithm to be executed when an event is pub-
lished is split in three phases (Figure 4): (i) multistage
timestamp generation, where a timestamp is generated for
the event; (ii) event diffusion, where the ENS delivers the
event and its timestamp to all the intended subscribers;
and (iii) event notification, where subscribers, by looking
at the timestamp content, decide if the event is the next
in the TNO order to be notified. The algorithm uses
only local information maintained by each process. A
topic manager TMT stores all subscriptions containing
topic T , a sequence number LCT that counts the num-
ber of events published in T and a (possibly empty)
set of sequence numbers LLCT storing identifiers and
sequence numbers of topics T ′, T ′′, · · · with lower ranks
than T . Each subscriber stores its subscription S and a set
sub LC containing the sequence number of the last event
notified on T , for each topic T ∈ S (i.e., it maintains a
local subscription clock).

In the following, before describing the multistage
timestamp generation procedure, we first provide a few
formal definitions we will use later (i.e. sequencing group,
timestamp, and order relation between two timestamps).

Informally, a sequencing group for a topic T contains
the (ordered) set of all the other topics whose events

must be ordered with respect to events published in T
to guarantee TNO.

Definition 1: A sequencing group of a topic T (SGT ) is
a set of topics including T and all T ′ such that there are
at least two subscriptions including both T and T ′.

Therefore, SGT is a one-way sequence of topics, whose
direction is determined by the precedence relationship
→, and whose content may only change with subscrip-
tion updates. A topic manager TMT can calculate SGT
by looking at the list of subscriptions containing T it
holds. Specifically, TMT (i) calculates the union of all
topics in the subscriptions it knows and (ii) removes all
topics that appear in a single subscription (except T ).
The resulting set is SGT .

Given the sequencing group of a topic T we can
now define how a timestamp for events published in T
must be structured. Informally, the timestamp contains
a set of entries, one for each topic contained in the
sequencing group of T . Each entry represent a sequence
number for a specific topic T ′ ∈ SGT .

Definition 2: Let e be an event published in a topic T ,
T1 → T2 → · · · → Tn the topic ordering according to the
precedence relation →, and SGT the sequencing group
of T . A timestamp tse for e is a set of pairs < Ti, sni >
ordered according to →, where Ti ∈ SGT is a topic
identifier and sni is the sequence number for Ti.

Now that we know how a timestamp is internally
structured, we can define when and how two
timestamps can be compared.
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Definition 3: Let tse and tse′ be two timestamps
associated with two different events e and e′. We say
that tse and tse′ are comparable if there exists at least
one topic identifier present both in tse and tse′ (i.e.,
∃ tid, i, j | (< tid, i >∈ tse) ∧ (< tid, j >∈ tse′)).

From the three definitions above, it is easy to see that
given two events e and e′ published respectively in
topics T and T ′, the corresponding timestamps tse and
tse′ are comparable if and only if SGT ∩ SGT ′ 6= ∅. The
fact that their sequencing groups intersect means that a
total order must be defined for events published within
them.

Definition 4: Let tse and tse′ be two timestamps asso-
ciated with two different events e and e′. We say that tse
is smaller than tse′ (i.e., tse < tse′ ) if

1) tse and tse′ are comparable, and
2) ∀ < tid, sn >∈ tse | ∃ < tid, sn

′ >∈ tse′ , sn ≤ sn′,
and

3) ∃ < tid, sn >∈ tse | ∃ < tid, sn
′ >∈ tse′ , sn < sn′

As an example, in Figure 4 we show the timestamps
for two published events e and e′. Considering the
timestamp ts associated with e and the timestamp ts′

associated to e′ we have that they are not comparable.
Multistage timestamp generation: When the pub-

lication of an event e in a topic T occurs, the Ordering
module on the publisher side contacts the topic manager
TMT to obtain a timestamp for e. TMT starts a col-
laborative multistage timestamp generation procedure
that involves the subset of TMs associated with topics
belonging to the sequencing group of T . Specifically, TMT :

1) Creates a timestamp structure with an entry for
each topic T ′ such that T ′ ∈ SGT ;

2) Increases its local sequence number LCT ;
3) Inserts this value in T ’s entry in the timestamp;
4) Inserts in the timestamp the values related to all

the topics T ∈ SGT such that T → T ;
5) Forwards the timestamp to the TM associated to

the first topic in SGT that precedes T according to
the precedence relation →.

Note that, given a specific order T1 → T2 → · · · → Tn
among topics, the multistage timestamp generation flow
proceeds in the opposite direction (i.e., given a topic Ti,
TMTi

will fill in the timestamp and forward it to some
TMTj

such that Tj → Ti). In addition, based on the
definition of sequencing group, the multistage timestamp
generation is a one-way flow of messages, so to avoid
loops among TMs that may prevent a correct timestamp
construction [2] or create instability in large scale high-
throughput systems [19]. The receiving TM also inserts
in the timestamp the sequence number of the topic it
manages, without increasing it. Then it forwards the
timestamp to the next TM in SGT . When the last TM
completes the timestamp, it is returned to the publisher
that will publish the event in the ENS together with the

timestamp. During this process each TMT ′ receiving a
partially filled timestamp, uses its content to update the
local clocks LCT for all topics T ∈ SGT such that T ′ → T .
Note that, in order to increase the scalability of the mul-
tistage sequencer, only event ids travel within requests,
while event payloads are buffered on the publisher side
while it waits for the multistage timestamp generation
procedure to complete.

Figure 4 shows a run of the algorithm in a system
with three subscriptions Si : {T1, T2, T3}, Sj : {T1, T2},
and Sk : {T2} and the precedence relation as T1 →
T2 → T3. The intersection of Si and Sj , and the prece-
dence relation determine the following sequencing groups:
SGT1 = SGT2 = {T1, T2}, SGT3 = {T3}. The publisher
P publishes an event e on topic T2 and asks TMT2

to create the timestamp. TMT2 creates the structure of
the timestamp with entries for topics T2 and T1, puts
its sequence number in the timestamp and forwards
it to TMT1 that, in turn, will complete the timestamp
and return it to P . Finally P publishes both e and
its timestamp on the ENS. Local clocks LCTMT1

and
LCTMT1

are updated accordingly.
In the event notification phase, once an event e and its

timestamp are notified by the ENS, the subscriber checks
if the timestamp attached to the event is coherent with
the event order maintained through the local subscrip-
tion clock sub LC. This check is performed by looking at
the sequence numbers included in the timestamp: if the
values for all the topics are equal to the corresponding
ones stored locally in sub LCi, except for the topic where
the event has been published, that must have a value
greater than the local one by one unit, then no event with
a smaller timestamp exists that must be still received
by the subscriber, and the received event can thus be
notified. Conversely, if a gap in the timestamp sequence
is detected e is locally buffered. Buffered events are
delivered as soon as all the events preceding them in
the TNO order have been delivered. The assumption that
the underlying ENS is reliable guarantees that buffered
events will be eventually notified to the application level.
Figure 5 shows an example where network lags induce a
mis-ordering between two events e1 and e2 at Sk. A gap
in the correct notification sequence is locally detected at
the subscriber that buffers e2 waiting for the notification
of e1 from the ENS. As soon as e1 is notified by the
ENS, both events, in the correct order, are notified at the
application level.

Timestamp properties: At a first glance, timestamps
provided by the multistage sequencer resemble vector
clocks, but they have very different structures. Vector
clocks have a well defined and fixed structure that
depends on the number of processes in the computation.
On the contrary, our timestamp structure is related to
topics rather than processes and its size depends on the
current set of subscriptions. In particular, the size of a
timestamp associated with events published in a topic
T is equal to the dimension of SGT . In the best case
∀T , |SGT | = 1. This is the case, for example, in which
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Fig. 5. Example of reordering for out of order notifications.

subscribers only subscribe a single topic each, thus
avoiding intersections among subscriptions. In the worst
case, instead, the size of SGT equals the number of topics
in the system, and this happens when all subscribers
subscribe all topics. However, typically subscribers are
interested just in a subset of topics. Hence, the times-
tamps size is expected to be much smaller than the
topic cardinality. Typical applications are characterized
by a total number of topics that is much lower than the
number of participating processes. To this respect, our
timestamps provide a more scalable solution to order
events.

In addition, differently from vector clocks, where the
ordering relationship holding among two events can
be detected just comparing (entry by entry) the two
vector clocks associated with the two events, with our
timestamps the ordering relation can be detected looking
firstly at the timestamp structure (i.e., the events have to
be comparable according to Definition 3), and secondly,
by examining the values contained in common entries
of the timestamps. Let us finally remark that in our
timestamping technique, the timestamp associated with
an event does not bring any information about the pro-
ducer of the event, thus preserving the space decoupling
principle of the publish/subscribe paradigm.

Subscription management: Every new subscription
(unsubscription) to (from) topic T induces a modifi-
cation of SGT and, then, of the set of TMs used in
the multistage timestamp generation phase. Therefore,
when a topic T is added to a subscription S, each
topic manager TMT ′ associated with a topic T ′ in S
must be advertised in order to let it recalculate SGT ′

and thus avoid possible TNO violations. Furthermore,
as soon as a subscriber subscribes a new topic, he will

start being notified about events published in that topic.
Due to the lack of synchronization between the time
an event is timestamped and published and the time
it is notified by the ENS to the intended recipients, the
subscriber could both receive events timestamped before
or after its subscription. Such events could possibly
bring different timestamps (because sequencing have
changed with its subscription). Those produced after its
subscription are always comparable with other events
published in different topics the subscriber is notified
about. However, timestamps of events generated before
its subscription could be non-comparable, making it im-
possible for the subscriber to infer the correct notification
order. It is thus necessary for the subscriber to gather
enough information before completing the subscription
to deterministically discern events produced before it
from those produced after.

To this aim, the subscriber first subscribes to T and,
as soon as the invocation returns from the ENS, it starts
buffering incoming events notified for T . Buffering at
this stage is fundamental because only a subset of the
buffered events, those published after the subscription,
shall be notified in the right order at the application
level. The subscriber then creates an empty subscription
timestamp, containing one entry for each topic in the
subscription. The timestamp and the new subscription
including T are forwarded to the TM associated with
the lowest ranked topic among the subscribed ones.
Similarly to event timestamps, each entry of the sub-
scription timestamp is filled in by the corresponding
topic manager, which, however, also increases its local
sequence number. In addition, each TM that receives
a request, updates the list of subscriptions it holds.
When the timestamp is complete, it is sent back to the



R. BALDONI ET AL. 8

subscriber, which uses it to update values contained in
its local clock. Thanks to this subscription timestamp
the subscriber is now able to clearly distinguish events
produced before its subscription from those produced
later, and can thus analyze the content of the buffer
to discard old events and notify received events for T
with timestamps greater than the one associated to its
subscription.

Due to the fact that the subscription procedure in-
creases the value of timestamps for all topics included
in S and possibly changes multiple sequencing groups
beside SGT , subscribers of these topics must be informed
of this increase, otherwise they will start to endlessly
buffer new event notifications as they suppose that the
gap in the sequence number sequence is due to a missing
notification. In order to avoid this undesirable side effect,
the subscriber, after subscribing to the new topic also
publishes a “dummy” event in all topics included in S
attaching to it the subscription timestamp it just received.
This dummy event has no application meaning, and
thus it will never be notified to the application level,
but its accompanying timestamp is used by all notified
subscribers to correctly update their local clocks.

Figure 4 shows an example where subscriber k starts
with subscription Sk = {T2} and updates it at run-
time by subscribing T3. Event e′ published in topic T3
before k’s subscription is timestamped with a single
serial number added by TMT3 as SGT3 = {T3}. When
k starts its subscription, it first subscribes to T3 with
the ENS (ENSsubscribe(T3)) and then sends a request
to TMT3 containing a subscriptions timestamp with an
empty entry for every subscribed topic, including also an
entry for T3 (i.e., {T2, T3} in the example). By receiving
this request, TMT3 updates its local list of subscriptions,
increases LCT3 and fills the corresponding entry in the
timestamp with its value before forwarding it to TMT2,
which, in turn, will repeat the same operation and finally
return the timestamp to k. By receiving the completed
timestamp, k will use its content to update its local clock
(that from now on will also contain an entry for T3) and
will then flush the buffer selecting received events that
must be notified at the application level (not shown in
the example).

Finally, k publishes two dummy events in T2 and
T3 that are notified to the corresponding subscribers
(i, j, k and i, k respectively). The subscribers update their
local clocks with the information contained in the event
timestamp. The figure also reports the example of a third
event e′′ published in topic T3 showing how the topic
timestamp has been dynamically adapted by the system
to take into account new ordering opportunities with
events produced in T2.

A similar approach is used to unsubscribe a topic
T . However, during an unsubscription operation a sub-
scriber can simply start to ignore further events received
for T since the moment unsubscribe(T ) is invoked, thus
avoiding any possible TNO violation. In order to main-
tain the system efficient, the subscriber must also inform

all the relevant TMs about its subscription change. With-
out this step, in fact, sequencing groups would remain
unchanged despite the possible removal of subscription
intersections, and this would cause timestamps to be
possibly larger than what is required by our solution
to guarantee TNO. To this aim the subscriber sends
to the TM associated to each of its subscribed topics
a message containing its updated subscription, and to
TMT an empty subscription (because it is no longer
subscribed to T , TMT does no longer need to maintain
its subscription). Upon receiving such messages TMs
simply updates their local subscription lists, without
updating any local clock.

4 RELIABILITY AND ORDERING ASPECTS

Working with unreliable ENSs - The algorithm intro-
duced in Section 3.4 assumes that the ordering module is
deployed in conjunction with a reliable ENS. While this
is a desirable setup, sometimes adopting a non-reliable
publish/subscribe middleware, i.e. a middleware that
does not guarantee the notification of all events to all the
intended recipients, may be preferable. As an example,
non-reliable publish/subscribe middleware often sport
better performance with lower end-to-end notification
latencies, and are able to scale to larger sizes. This
setup creates a simple but fundamental problem to our
solution: whenever a gap in the sequence of events is
spotted by a subscriber during the notification phase, the
subscriber cannot decide if the missing event has been
lost (because the ENS is unreliable) or its notification is
just late. The strategy our solution adopts with respect
to this issue is optimistic: every event notified in order
by the ENS is notified to the application level, while late
notifications are tagged as out-of-order and immediately
notified to the application level. This leaves to the ap-
plication developer the choice to discard these events or
treat them in an appropriate way.

The main source of out-of-order notifications lies in
the fact that two events, possibly published by different
publishers, can follow distinct paths through the ENS,
before reaching the point where they will be notified to
the final recipients. To reduce the number of out-of-order
notifications we can use again a buffering strategy on the
subscriber side, but with some important differences in
its management with respect to the solution shown in
Section 3.4.

Every time the ENSnotify() primitive returns a new
event e, the algorithm checks through the attached times-
tamp whether some other event may exist with a smaller
timestamp. If there is a possibility that an event with a
smaller timestamp exists but has not been delivered to
the subscriber so far, then the event e is enqueued to a
buffer able to host a maximum of b events and a timer for
e is started (TTLe). The event e is delivered through the
notify() primitive when one of the following conditions
holds: (i) all the events with smaller timestamps have
been notified, (ii) TTLe expires or (iii) the buffer is full,
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a new event must be buffered and e is at the head of the
queue. By carefully tuning the buffer size and the timer
length, system integrators can compensate for possible
network delay fluctuations by paying some further end-
to-end notification latency induced by event buffering.
Reliability - Making the algorithm presented so far work
reliably in an environment where messages can be lost
requires some minor changes. The loss of a message
during the multistage timestamp generation phase, for
instance, could lead a publisher to wait forever before
publishing an event in the ENS. This problem can be
solved with a simple retransmission approach: the pub-
lisher periodically re-initiates the procedure for building
the timestamp until it receives a correct timestamp for
the event. The same solution can be applied for subscrip-
tion/unsubscription timestamp requests as well. Finally,
the internal state of TMs should be preserved despite
possible process failures in order to avoid possible TNO
violations. This can be obtained by adopting standard
replication techniques [20], [21].
Ordering Features - A total ordering imposed on event
notifications is important to provide distinct subscribers
with the same view of the evolution of an application.
However, this kind of ordering does not capture the
natural cause-effect relationship that may relate events.
This kind of relationship may be extremely important
in applications where subscribers are expected to ob-
serve a coherent evolution of events with respect to a
given application-level semantics. Specifically, here we
are interested in analyzing if our solution may be used
to also guarantee the causal ordering of events produced
by publishers [22]. This order is particularly relevant
because it allows to recognize cause-effect relationships
among published events [23].

Our solution is clearly able to guarantee causally
ordered notifications within each single topic. If a pub-
lisher publishes two events in the same topic, in fact, it
will sequentially request two timestamps for the same
topic whose content, by construction, will guarantee the
FIFO-order as defined at the publisher side. If a process
is notified about an event and then publishes a new
event in the same topic, this event’s timestamp will be
greater than the one attached to the notified event.

If events are published in different topics, their times-
tamps are generally not comparable, thus causal order-
ing cannot be enforced. Ensuring this ordering imposes
some slight modifications to the ordering algorithm in-
troduced in Section 3.4. In particular, the definition of
SGT should be revised as follows: the sequencing group
of a topic T (SGT ) is a set of topics including T and
all T ′ such that there is at least a subscription including
both T and T ′. This update changes the behaviour of
the multistage sequencer and produces timestamps that,
given an event e published on topic T , totally order it
with respect to all events published in topics subscribed
by subscribers that will be notified about e. Thanks to
this change, we can guarantee causal order also in the
case there is a subscriber subscribed to T and T ′, and

a second subscriber of T that is notified of an event e
in that topic, and afterwards publishes an event e′ in
topic T ′. The new structure of the timestamps in this
case guarantees that SGT ∩ SGT ′ ⊇ {T , T ′}, and thus
that event e′ published in T ′ will get a timestamp larger
than the one associated to e.

5 PERFORMANCE EVALUATION

In this section we evaluate the performance of the pro-
posed solution. First, we describe the system deploy-
ment, the metrics of interest for the evaluation, and the
load used to stress the system. Then, we analyze how
the characteristics of our timestamps (i.e., their sizes)
vary depending on different application loads. Finally,
we evaluate the overall performance of a prototype
implementing our solution.

Short-distance link 

Long-distance link 

Fig. 6. A geo-distributed system interconnected by long-
distance links. Clients connect to servers by means of two
kinds of link: short- and long-distance.

5.1 System deployment

We consider the scenario depicted in Figure 6: a geo-
distributed infrastructure using an asynchronous mes-
saging layer to convey client updates that have to be ap-
plied in a consistent order. This order is provided by our
ordering solution. Servers are located in dispersed geo-
graphic sites and connected to each other through high-
latency links, while clients connect to servers through
either low- or high-latency links. These links represent
short- or long-distance WAN connections, respectively,
and refer to the geographic distance between a client
and a server or between two servers. We assume that
the geo-distributed application running on top of this in-
frastructure implements an event-based communication
pattern leveraging an underlying reliable topic-based
publish/subscribe middleware. Our ordering solution
is deployed on top of this middleware such that each
server in the ENS hosts the TMs of the topics that are
more popular in terms of publications and subscriptions
in that geographic location. This represents a typical
scenario, in which the topic popularity follows a locality
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principle, as the one shown in [13]. As an example,
consider a geo-distributed system that disseminate news,
results, and statistics about soccer. Servers in Italy, US,
Brazil host the TMs of topics that are more popular in
these countries, such as teams, results, players, records, ... of
the Italian, American, and Brazilian leagues, respectively.
A client in one of those countries issues with higher
probability publications/subscriptions to topics related
to the local league. In the next subsection we will discuss
the publication/subscription model that captures this
scenario.

We implement a prototype of the ordering protocol
and deploy it on 5 physical servers. Each server is a
Dell PowerEdge R210 II, with an Intel Xeon E3 1270v2
3.50 GHz processor and 16GB of memory. We consider
a publish/subscribe system with 1000 topics, with the
precedence relation → defined by the topic identifier.
TMs are equally partitioned onto servers (i.e., each
server hosts 200 TMs). We assume that TMs of topics
with id 1-200 are on server 1, TMs of topics with id 201-
400 are on server 2, and so on. We deploy 1000 clients
into 5 physical machines. We use the netem network em-
ulator to emulate short- and long-distance WAN links.
A short-distance link has average delay of 10 ms and
standard deviation of 2 ms, while a long-distance link
has average delay of 100 ms and standard deviation of
10 ms.

5.2 Settings and metrics

The following metrics have been considered for our
evaluation:
Timestamp size Number of entries in a timestamp.
End-to-end latency Time taken for the construction of

a timestamp. This time includes the timestamp re-
quest by a publisher, the actual timestamp genera-
tion by TMs, and the response issued by some TM .

Throughput The number of timestamps generated by
TMs in a time unit.

Percentage of outgoing bandwidth The fraction of
bandwidth that a physical server that hosts one
or more TMs reserves to forward timestamps
to other servers during their generations. This
fraction is computed as the number of bytes of
timestamps forwarded to other servers divided the
total number of bytes of all timestamps handled in
that server during an experiment.

The tests were performed by varying two basic parame-
ters: event rate (number of timestamp requests per time
unit) and total number of subscribed topics (global sum
of the size of all subscriptions).

The publication and subscription models at each site of
the geo-distributed system were varied as follows:
Publication model We model publications as a proba-

bility distribution over the set of topics. We consider
a power-law distribution with shape 0.901 or 0.349.
The former refers to the 0.5% of topics having a

probability of 80% to be selected for a new publica-
tion. The latter, instead, refers to the 40% of topics
having a probability of 80% to be selected for a new
publication;

Subscription model As for publications, subscriptions
are modeled as a probability distribution over the
set of topics. Again, we consider power-law distribu-
tions with shapes 0.901 and 0.349.

The distribution with shape 0.901 represents a model
in which a few topic per each site have high popularity
within a geographic region, and are subscribed with very
high probability by clients of the same region. Hence, just
a small percentage of the clients of a geographic region
subscribe to topics that are outside their region. In other
words, most of the content generated in a certain region
is mostly consumed in the same region. This captures
the geographic topic popularity pattern described in [13]
in the context of YouTube video popularity. Considering
the prototype deployment, this means that most of the
computation for timestamp generation is local to each
server. This property is confirmed in the performance
study of Section 5.4.

The distribution with shape 0.349 represents a model
in which a few topic per each site have high popularity
within a geographic region. However, differently from
the previous distribution, these topics are subscribed by
clients that can be of any region as topics might diffuse to
other geographical regions along time. This phenomenon
captures the spray-and-diffuse pattern described in [13]
and [14] in the context of YouTube videos and twitter
hastags respectively. In this case, considering the proto-
type deployment, several geo-distributed servers could
be involved in timestamp generation.

5.3 Timestamp size evaluation

We first analyze the scalability of the proposed times-
tamping technique over the number of subscribed topics
by calculating the average size of timestamps. Note that
this size only depends on issued subscriptions and is
completely independent from the specific deployment
scenario. For this reason, and only for the evaluation of
this aspect, we simplified the setting described in section
5.1 by considering a single server hosting all the TMs.
The evaluation is conducted in a system with 10000
clients and 1000 available topics, with the total number
of subscribed topics that varies in the range [10k - 2000k].
Topic ranking was defined to match the topic popularity
as defined by the publication and subscription models.
Note that in this setting, geographic topic popularity
and spray-and-diffuse boil down to popularity topic
distribution with two different shapes.

Figure 7 shows the mean timestamp size by varying
the number of subscribed topics. The leftmost point
of both curves represents the case where each of the
10000 available clients, acting as subscribers, subscribe 10
topics. In both cases the average timestamp size is in the
same order of magnitude of the number of subscribed
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Fig. 7. Mean timestamp size varying the number of sub-
scribed topics. This experiment considers all TMi hosted
in a single site.
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Fig. 8. Standard deviation of the mean timestamp size
varying the number of subscribed topics. This experiment
considers all TMi hosted in a single site.

topics per clients (46 and 17 topics for the curves with
shape 0.349 and 0.901 respectively). These size would
both decrease to 0 by further reducing the amount of
subscribed topics to 1 for subscriber as there would be
no intersections among subscriptions. On the right side
of the picture, as the number of topics subscribed grows
approaching the maximum of 1000 per subscriber, both
curves asymptotically approach their maximum. It is
worth noticing that (i) more skewed popularity distri-
butions (i.e., shape 0.901) produce smaller timestamps
as less popular topics are rarely subscribed by more
than one subscriber, and (ii) in both cases the size of the
timestamps remains fairly small in meaningful scenarios
where the number of topics subscribed per subscriber is
not huge3. Fig 8 reports the standard deviation for the
same experiments.

5.4 Prototype performance evaluation
Figure 9 shows the mean end-to-end latency by varying
the event rate, i.e., the number of timestamp requests per
second. The subscription size for each client is 10 topics
(10k topics subscribed in total). Figure 9 evidences that
our protocol imposes a small delay for timestamp gener-
ation when subscriptions include with very high proba-
bility topics whose TMs reside on the same physical host
(power-law distribution with shape 0.901). In this case
most of the computation for a timestamp generation is
local as discussed in Section 5.2. In addition, according to
the publication model, the timestamp requests are more
likely to come from publishers that are geographically
closer. Hence, low-distance links are used most of the
time. On the contrary, when publication and subscription
models follow the spray-and-diffuse pattern (power-law
distribution with shape 0.349), more physical machines
are involved in the timestamp generation and the mean

3. Typically, scenarios where most subscriber subscribe a vast ma-
jority of the available topics are better served by broadcast primitives
rather than publish/subscribe ones.

end-to-end latency is affected by communication on
long-distance links.
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Fig. 9. Mean end-to-end latency for different publication
and subscription models by varying the event rate.

Similar results are obtained when measuring the
throughput, i.e., the number of timestamps generated in
a second. Our protocol sports its peak performance in
the proposed deployment when fed with 5000 timestamp
requests per second for both probability distributions.
When these requests follow the geographic topic popularity
pattern the system shows its best performance, reaching
a peak of more that 4k timestamps generated per second.

The rationale behind the results showed above is con-
firmed by Figures 11 and 12, which depict the percentage
of outgoing bandwidth for each physical server in the
presence of geographic topic popularity and spray-and-
diffuse patterns, respectively. When submissions show
geographic topic popularity, the TMs involved in the gen-
eration of a timestamp are likely to be hosted by the
same physical server. Similarly, under that pattern, the
vast majority of timestamp requests are issued on low-
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Fig. 10. Mean throughput for different publication and
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distance WAN links. Figure 11 evidences how only TMs
on servers 4 and 5 forward timestamp requests to TMs
on different servers. Indeed, TMs on servers 4 and 5 are
the TMs of topics with lower precedence according to
their identifiers. The percentage of outgoing bandwidth
is negligible for server 3 and null for servers 1 and 2.

On the contrary, when subscriptions and publications
follow the spray-and-diffuse pattern, the percentage of
outgoing bandwidth for each server is considerably
higher (except for server 1).
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Figures 13 and 14 show the mean end-to-end latency
and throughput by varying the total number of sub-
scriptions in the system and fixing the event rate to
5000 timestamp requests per second. As the previous
experiments, even in this case the publication and sub-
scription models affect the performance of the system.
The interesting fact, however, is that the number of sub-
scriptions does not impact the performance of the proto-
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Fig. 12. Percentage of outgoing bandwidth in case
of spray-and-diffuse pattern (power-law distribution with
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col when the subscription model follows the geographic
topic popularity pattern. A larger number of subscriptions
results just in some additional local computations. On
the contrary, when subscriptions follow the spray-and-
diffuse pattern, a larger number of subscriptions impose
computations needed to generate timestamps which can
involve multiple sites.
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Fig. 13. Mean end-to-end latency for different publication
and subscription models by varying the number of sub-
scriptions.

6 RELATED WORK

Although many real world applications require support
for QoS such as ordering, the majority of current pub-
lish/subscribe solutions mainly operates on a best-effort
basis [24]. Among the QoS-enabled event dissemination
services, JEDI [25] is a publish/subscribe middleware
that satisfies a causal order delivery of events. It is
obtained by means of a return value, i.e., a response
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Fig. 14. Mean throughput for different publication and
subscription models by varying the number of subscrip-
tions.

message that a receiver uses to notify an event delivery
to the producer. This mechanism is clearly not scalable in
the presence of a high number of nodes and high event
rate. A total order algorithms for publish/subscribe sys-
tems is presented in [2]. Similar to our work, authors
use a sequencing network to order events across multiple
groups of subscribers. However, their solution is not
able to handle subscription dynamics. A new subscrip-
tion/unsubscription can create loops in the sequencing
network (circular dependency problem), which, thus, must
be rebuilt from scratch. On the contrary, our solution
solves these problems by defining a total order relation
among topics that determines a one-way sequence of
topic managers that establish an order for events.

Two interesting solutions for ordering in content-based
publish/subscribe middleware recently appeared in [5]
and [26]. The paper in [26] presents a partition-tolerant
content-based publish/subscribe algorithm that can tol-
erate concurrent failures of brokers or communication
links up to a value δ. However, this solution only
guarantees a per-source FIFO order. The authors of [5]
introduce a Pairwise Total Order specification that, in
its weak variant, fully matches our TNO property. Both
solutions follow the same path: discard liveness (deliv-
ery reliability) in favor of safety (ordering). However,
the system presented in [5] supports the content-based
event selection model by deeply integrating within the
PADRES publish/subscribe system. Its applicability to
other ENSs is thus limited. Conversely, our solution is
completely decoupled from the underlying messaging
layer and it can be easily adapted to several different
contexts (i.e., ENS or group toolkit). In [5], the correct or-
der of events is reconstructed by brokers, by using adver-
tisements and subscriptions to detect conflicts and buffers
to maintain them during the resolution phase. Conflicts
are resolved through an acknowledgment mechanism.
Note that this solution increases the load on brokers
due to the widespread usage of ACK messages that
enforce a tight synchronization among multiple brokers,

hampering the ability of the system to support strong
loads [11]. To this respect, our solution has been natively
designed by enforcing a one-way message flow design
within the multistage sequencer that, by removing ex-
plicit synchronization among TMs, helps supporting
growing loads and thus scales gracefully even if the
order of events must be reconstructed on subscribers’
side. Recently, Yahoo started adopting HedWig [27] as
a topic-based publish/subscribe solution for event dis-
semination within the PNUTS system. HedWig provides
strong data delivery guarantees but, contrarily to our
solution, it only enforces per-topic ordering within a
single datacenter. Therefore, topics are independent in
HedWig, as there is no way to order notifications related
to different topics.

7 CONCLUSIONS

Totally ordering notifications produced by a pub-
lish/subscribe system deployed on top of a distributed
infrastructure is a complex problem due to the inherent
dynamism of pub/sub interactions, and to the fact that
the order has to be achieved in a fully decoupled way,
without any explicit synchronization among components
of the systems itself.

This paper presented an ordering solution that can
be used to order notifications delivered by a reliable
event notification service to satisfy a total notification
order specification. The main contribution is a timestamp-
ing mechanism that considers topics and overlapping
subscriptions to automatically build appropriately sized
timestamps that are attached to published events. Sub-
scribers can use timestamps to infer the correct sequence
of notifications to be enforced locally. The ordering
mechanism uses a multistage sequencer to build times-
tamps. A precedence relationship among topics is used
to determine the order in which stages are executed, i.e.,
to determine a one-way sequencing path (no loops or
feedbacks that may create instability in the network)
for the timestamp generation. Thanks to its internal
structure the sequencer can be deployed in multiple
flexible ways: several stages can be co-located in the
same server of a distributed system thus making local to
that server the entire generation of several timestamps.

The performance of the proposed solution has been
evaluated through a prototype implementation. In par-
ticular, the results show that our solution is able to
deliver very good performance for geo-distributed ap-
plications characterized by a load following a geographic
topic distribution pattern where user interests are geo-
graphically clustered.
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