
R. BALDONI ET AL. 1

Efficient Notification Ordering
for Geo-Distributed Pub/Sub Systems

Supplemental material

Roberto Baldoni, Silvia Bonomi, Marco Platania, and Leonardo Querzoni

F

1 ALGORITHM PSEUDO-CODE

This section illustrates the pseudocode of the algorithm.
Before proceeding with the description, we introduce
the local data structures maintained by publishers,
subscribers, and topic managers.

Local data structures at each publisher pi: each pub-
lisher maintains locally the following data structures:
• ide: is a unique identifier associated to each event

produced by pi.
• outgoingEventsi: a set variable, initially empty,

storing the events indexed by event id that are
published by the upper application layer, and that
are waiting for being published in the ENS.

Local data structures at each subscriber si: each sub-
scriber maintains locally the following data structures:
• subsi: a set variable storing topics subscribed by pi;
• sub LCi: a set of < Ti, sni > pairs, where Ti is a

topic identifier and sni is an integer value; sub LCi

contains a pair for each topic Ti ∈ subsi. Initially, for
each topic Ti ∈ subsi the corresponding sequence
number is ⊥.

• to deliveri: a set variable storing < e, ts, T > triple
where e is an event (not in right order) notified
by the ENS, ts is the timestamp attached to the
event and T is the topic where the event has been
published.

Local data structures at each topic manager TMTi :
Each topic manager maintains locally the following data
structures:
• LCTi

: is an integer value representing the sequence
number associated to topic Ti, initially 0.

• R. Baldoni, S. Bonomi, and L. Querzoni are with the Department of
Computer, Control, and Management Engineering, Sapienza University
of Rome, Rome, Italy.
M. Platania is with the Department of Computer Science, Johns Hopkins
University, Baltimore MD, USA
E-mail: {baldoni|bonomi|querzoni}@dis.uniroma1.it; platania@cs.jhu.edu

A preliminary and short version of this paper has appeared in the proceedings
of the 26th International Parallel & Distributed Processing Symposium.

• LLCTi
: is a set of < Tj , snj > pairs where Tj is a

topic identifier and snj is a sequence number. Such
set contains an entry for each topic Tj ∈ SGTi

such
that Ti → Tj .

• externalSubsTi : a set of < id, sub > pairs where sub
is a subscription (i.e., a set of topics {Tj , Tk . . . Th})
and id is the subscriber identifier. Such a set contains
all the subscriptions that include Ti.

• SGTi
: is a set containing identifiers of topics belong-

ing to the sequencing group of Ti.

As an example, let us consider a system
where Si = {T1, T2, T3} and Sj = {T1, T2} are
respectively the two subscriptions of subscribers
si and sj . The three variables externalSubs
maintained by each topic manager are respectively:
externalSubsT1 = {< i, Si >,< j, Sj >},
externalSubsT2 = {< i, Si >,< j, Sj >}, and
externalSubsT3 = {< i, Si >}.

The PUBLISH() Operation. The algorithm for a
PUBLISH() operation is shown in Figure 2. To simplify the
pseudo-code of the algorithm, we defined the following
basic functions:

• generateUniqueEventID(e): generates a locally
unique identifier for a specific event e.

• next(ts, T): given a timestamp ts and a topic identi-
fier T , the function returns the identifier of the topic
T ′ preceding T in the timestamp ts according to
the precedence relation →. If such topic does not
exist, then the function returns null. If a null value
is passed as topic identifier, the function returns the
last topic identifier contained in the timestamp.

• getTMAddress(T): returns the network address of
the topic manager TMT responsible for topic T .

• update(ts,< T, LCT >): updates the event times-
tamp ts changing the pair < T,− > with the pair
< T,LCT >.

• updateLLC(LLC,< T, sn′ >): modifies the set LLC
by updating the pair corresponding to topic T with
a pair < T, sn′′ >, where sn′′ is the maximum
between sn (the sequence number already stored
locally in LLC for topic T) and sn′ (i.e., the sequence

R. BALDONI ET AL. 2

number contained in the partially filled timestamp).
In addition, we have defined a more complex func-

tion, namely updateSequencingGroup(T, externalSubsT),
that generates the sequencing group SGT by considering
the set of subscriptions containing T (i.e., subscriptions
stored in externalSubsT). The pseudo-code of the func-
tion is shown in Figure 1.

function updateSequencingGroup(Ti, externalSubs):

(01) for each < −, s >∈ externalSubs do SGTi
← SGTi

∪ s; endfor
(02) for each Tj 6= Ti ∈ SGTi

do
(03) let S = {s ∈ externalSubs|Tj ∈ s};
(04) if (|S| ≤ 1) then SGTi

← SGTi
/{Tj} endif

(05) endfor
(06) return SGT .

Fig. 1. The updateSequencingGroup() function (for a topic
manager TMTi).

operation PUBLISH(e, T):

(01) ide ← generateUniqueEventID (e);
(02) outgoingEvents← outgoingEvents ∪ {(e, ide, T)};
(03) dest← getTMAddress(T);
(04) send CREATE PUB TS (ide, i, T) to dest;

————————————————————————————————–
(05) when EVENT TS (ts, eid) is delivered:
(06) let < e, ide, T >∈ outgoingEvents
(07) such that (eid = ide);
(08) ENSpublish(< e, ts >, T);
(09) outgoingEvents← outgoingEvents/{< e, ide, T >}.

(a) Publisher Protocol (for a publisher process pi)

(01) when CREATE PUB TS (eid, j, T) is delivered:
(02) for each Tj ∈ SGTi

do ev ts← ev ts ∪ {< Tj ,⊥ >}; endfor
(03) for each < Tj , sn >∈ LLCTi

do
(04) ev ts← update(ev ts,< Tj , sn >);
(05) endFor;
(06) LCTi

← LCTi
+ 1;

(07) ev ts← update(ev ts,< Ti, LCTi
>);

(08) t′ ← next(ts, Ti);
(09) if (t′ = null)
(10) then send EVENT TS (ev ts, eid) to pj ;
(11) else dest← getTMAddress(t′);
(12) send FILL IN PUB TS (ev ts, eid, j) to dest;
(13) endif

————————————————————————————————–
(14) when FILL IN PUB TS (ts, eid, j) is delivered:
(15) for each < Tj , snj >∈ ts such that Ti → Tj do
(16) LLCTi

← updateLLC(LLCTi
, < Tj , snj >);

(17) endFor
(18) ts← update(ts,< Ti, LCTi

>);
(19) t′ ← next(ts, Ti);
(20) if (t′ = null)
(21) then send EVENT TS (ts, eid) to pj ;
(22) else dest← getTMAddress(t′);
(23) send FILL IN PUB TS (ts, eid, j) to dest;
(24) endif.

(b) TM Protocol (for a topic manager TMTi
belonging to the multistage

sequencer of T)

Fig. 2. The publish() protocol.

When an event e is published in a topic T , the pub-
lisher pi executes the algorithm shown in Figure 2(a).
In particular, it associates with e a unique identifier
generated locally (line 01), it puts the event, together
with the topic and the corresponding identifier in a
buffer (line 02) and sends a CREATE PUB TS (ide, i, T)
message to the topic manager TMT , associated with T
(lines 03-04).

Receiving the CREATE PUB TS (ide, i, T) message,
the topic manager TMT executes the algorithm shown
in Figure 2(b). In particular, it first creates an empty
timestamp tse containing an entry < Tj ,⊥ > for each
topic Tj belonging to the sequencing group of T (line
02), it updates the sequence numbers of topics Tk
following T in the topic ranking with the values locally
stored in LLCT (line 04), it increments its local sequence
number and updates the corresponding entry in tse
(lines 06 - 07). Finally, TMT sends a FILL IN PUB TS
message containing the timestamp to the preceding topic
manager until tse has been completed and it is finally
returned to the publisher. The publisher (Figure 2(a))
pulls the event from the buffer, attaches the timestamp
and publishes both on the ENS (lines 06 - 09). Note
that, when a topic manager receives a FILL IN PUB TS
message, it just attaches its local sequence number (line
18) and update its local LLC variable to keep track of
the sequence numbers associated to topics with lower
rank (lines 15 - 17).

The NOTIFY() Operation. When an event e is notified by
the ENS, a subscriber si executes the algorithm shown in
Figure 3. To simplify the pseudo-code of the algorithm,
we defined the following basic functions:

• isNext(ts, LC): The function takes as parameter a
timestamp ts and a local subscription clock LC
and returns a boolean value. In particular, let k
be the size of the timestamp, the function returns
true if and only if there exist k − 1 < Ti, sni >
pairs in ts equal to those stored in LC and the last
< Tj , snj > pair in ts is such that < Tj , sn

′ >∈ LC
and snj = sn′ + 1.

• updateSubLC(sub LC,< T, sn′ >): modifies the set
sub LC by updating the pair corresponding to topic
T with the pair < T, sn′′ > where sn′′ is the max-
imum between sn (the sequence number already
stored locally in sub LC for topic T) and sn′ (i.e.,
the sequence number contained in the timestamp).

A subscriber si first checks if the event e is a
subscriptionUpdate event for some topic T (line 01). If so,
the subscriber checks if all previous events published on
its subscribed topics have been notified by comparing
the subscription timestamp with the local subscription
one. This is done by checking entry by entry that all
the sequence numbers (except the one associated to T)
stored in the local subscription timestamp are equal to
the one contained in the event timestamp -1. In this
case, si uses the event timestamp to update its local
subscription clock sub LCi (lines 02 - 05), otherwise it
buffers the event and processes it later.

If the event is a generic application event, si checks if
the topic T of the notified event is actually subscribed
and then checks if it has been notified by the ENS in
the right order (line 10). If such condition is satisfied,
the event e is notified to the application (line 11) and
the local subscription clock sub LCi is updated with

R. BALDONI ET AL. 3

upon ENSnotify(< e, ts >, T):

(01) if (e = subscriptionUpdate)
(02) then if (∀ < Tj , v >∈ sub LCi | Tj 6= T, ∃ < Tj , v + 1 >∈ ts)
(03) then for each < Tj , snj >∈ ts such that (Tj ∈ subsi) do
(04) updateSubLC(sub LCi, < Tj , snj >);
(05) endFor
(06) else to deliveri ← to deliveri ∪ {< e, ts, T >};
(07) endif
(08) endif
(09) if ((T ∈ subsi) ∧ (e 6= subscriptionUpdate))
(10) then if (isNext(ts, sub LCi) = true)
(11) then trigger notify (e, T);
(12) for each (< Tj , v >∈ sub LCi)
(13) if(∃ < Tj , v

′ >∈ ts)
(14) then updateSubLC(sub LCi, < Tj , v >);
(15) endif
(16) endfor
(17) else to deliveri ← to deliveri ∪ {< e, ts, T >};
(18) endif
(19) endif

————————————————————————————————–
(20) when ∃ < e, ts, T >∈ to deliveri|isNext(ts, sub LCi) = true
(21) to deliveri ← to deliveri \ {< e, ts, T >};
(22) trigger notify (e, T)
(23) for each (< Tj , v >∈ sub LCi)
(24) if (∃ < Tj ,− >∈ ts)
(25) then updateSubLC(sub LCi, < Tj , v >);
(26) endFor

Fig. 3. The notify() protocol (for subscriber si).

the sequence numbers contained in the event timestamp
(lines 12 - 16).

On the contrary, if the event e is not in the right order,
the subscriber si buffers e (line 17) and continuously
checks, by comparing its timestamp with the local
subscription clock, when it is in the right order (lines
20 - 26).

The SUBSCRIBE() and UNSUBSCRIBE() Operations. The
algorithm for a SUBSCRIBE() operation is shown in Figure
4. To simplify the pseudo-code of the algorithm, in ad-
dition to the functions used in the PUBLISH() algorithm,
we defined the createSubTimestamp(sub) function, that
creates an empty subscription timestamp, i.e., a set of
< T, sn > pairs, where T is a topic identifier and sn
is the sequence number for T , initially set to ⊥. The
subscription timestamp contains a pair for each topic T
of a subscription S.

When a subscriber si wants to subscribe a new topic
T , it executes the algorithm shown in Figure 4(a). In
particular, it first invokes the ENSsubsribe(T) operation
to make the subscription active on the ENS (line 01)
and blocks until such operation completes. When the
subscription is active on the ENS, si adds the topic T
to the list of subscribed topics and creates an empty
subscription timestamp through the createSubTimes-
tamp function (including also topic T). Then, it sends
a FILL IN SUB TS (ts, (subsi ∪ {T}), id) message to fill
the timestamp and to forward the new subscription to
the topic manager TMTk

responsible for the last topic in
the subscription, according to the precedence relation →
(lines 03-07).

Upon the delivery of a FILL IN SUB TS message,
each topic manager TMT ′ executes the algorithm

operation SUBSCRIBE(T):

(01) ENSsubscribe(T);
————————————————————————————————–

(02) upon ENSsubscribeReturn(T):
(03) subsi ← subsi ∪ {T};
(04) for each Tj ∈ subsi do ts← ts ∪ {Tj ,⊥} endFor
(05) t′ ← next(ts, null);
(06) dest← getTMAddress(t′);
(07) send FILL IN SUB TS (ts, (subsi ∪ {T}), id) to dest;

————————————————————————————————–
(08) when COMPLETED SUB VC (ts, s) is delivered:
(09) sub LCi ← ts;
(10) e← subscriptionUpdate;
(11) for each Tj ∈ subsi do ENSpublish(< e, ts >, Tj) endFor;
(12) trigger subscribeReturn(T);

(a) Subscriber Protocol

(01) when FILL IN SUB TS (ts, sub, j) is delivered:
(02) externalSubsi ← update (externalSubsi, < j, sub >);
(03) SGTi

← updateSequencingGroup(Ti, externalSubsTi
);

(04) for each < Tj , snj >∈ ts such that ((Ti → Tj) ∧ (Tj ∈ SGTi
)) do

(05) LLCi ← LLCi ∪ {< Tj , snj >};
(06) endFor
(07) LCTi

← LCTi
+ 1

(08) ts← update (ts,< Ti, LCTi
>);

(09) t′ ← next (ts, Ti);
(10) if (t′ = null)
(11) then send COMPLETED SUB VC (ts, s) to j;
(12) else dest← getTMAddress(t′);
(13) send FILL IN SUB TS (ts, s, j) to dest;
(14) endif

(b) TM Protocol

Fig. 4. The subscribe() protocol.

shown in Figure 4(b). In particular, TMT ′ updates its
externalSubsk variable with the new subscription (line
02), recomputes the sequencing group SGT ′ (line 03) and
updates the sequence numbers of topics with lower rank
(lines 04 - 06), increments its local sequence number (line
07), updates its entry in the subscription timestamp (line
08), and finally forwards the FILL IN SUB TS message to
the preceding topic manager until it is completed and
returned to the subscriber.

When the subscriber si receives the completed
subscription timestamp, it updates its local subscription
clock (line 09) and publishes a subscriptionUpdate event
on each topic Tj belonging to its subscription to keep
other subscribers aligned with the subscription local
clock (lines 10 - 11). Finally, it returns from the operation
to notify the application that the subscription is now
active (line 12).

The algorithm for the UNSUBSCRIBE() operation is
shown in Figure 5. A subscriber that wants to un-
subscribe from a topic T , removes it from the set of
subscribed topics (line 01) and, then, informs all topic
managers of these topics with the updated subscrip-
tion through an UPDATE SUB message (lines 02-05), in-
cluding the topic manager of T that will receive an
empty subscription (lines 06-07). When receiving an UP-
DATE SUB message (Figure 5(b)), topic managers update
the externalSubs set accordingly with the received sub-
scription, recompute the sequencing group, and remove

R. BALDONI ET AL. 4

operation UNSUBSCRIBE(T, subID):

(01) subsi ← subsi/{T};
(02) for each Tj ∈ subsi do
(03) dest← getTMAddress(Tj);
(04) send UPDATE SUB (subID, subsi) to dest;
(05) endfor
(06) dest← getTMAddress(T);
(07) send UPDATE SUB (subID, ∅) to dest;
(08) ENSunsubscribe(T);

(a) Subscriber Protocol

when UPDATE SUB (id, s) is delivered:
(01) if (s 6= ∅)
(02) then externalSubsi ← update(externalSubsi, < id, s >);
(03) else externalSubsi ← externalSubsi/{< id,− >};
(04) endif;
(05) SGTi

← updateSequencingGroup(Ti, externalSubsTi
).

(06) for each < Tj ,− >∈ LLCTi
such that (Tj /∈ SGTi

) do
(07) LLCTi

← LLCTi
\ {< Tj ,− >};

(08) endFor.

(b) TM Protocol

Fig. 5. The unsubscribe() protocol.

topics that are no more in the sequencing group from
the LLCT set.

2 CORRECTNESS PROOF

In this section we will show that the TNO property
holds for any pair of events.

Definition 1: Given a generic subscriber si, let us de-
note τn(i, e) the time instant in which si is notified of e
by the system.

Lemma 1: Let e1 and e2 be two events both published
in a topic T . If a subscriber si notifies e1 before e2 and
the sequencing group SGT does not change during the
two publish operations, then any other subscriber that
notifies both e1 and e2 will notify e1 before e2.

Proof Let us suppose by contradiction that there exist
two subscribers, namely si and sj , and that si notifies e1
and then e2 (i.e., τn(i, e1) < τn(i, e2)), while sj notifies e2
and then e1 (i.e., τn(j, e2) < τn(j, e1)).

Given a generic subscriber sx notifying both e1 and
e2, it follows that at time τn(x, e1), T1 ∈ Sx and at time
τn(x, e2), T2 ∈ Sx. Moreover, sub LCx ≤ tse1 at time
τn(x, e1) and sub LCx() ≤ tse2 at time τn(x, e2).

Given the two timestamps tse1 and tse2 associated
respectively with e1 and e2, let us first consider how
they have been created and then let us show that it is
not possible to have inversions in the notification order.

Let pk and ph be respectively the publishers of events
e1 and e2. When a publisher publishes an event, it exe-
cutes line 04 of Figure 2(a) and it sends a CREATE PUB TS
message. Let us assume, without loss of generality, that
TMT delivers first the CREATE PUB TS message sent by
pk and then the CREATE PUB TS message sent by ph.

Let v be the value of LCT at TMT when it delivers the
CREATE PUB TS message sent by pk. When TMT deliv-
ers such a message, it creates an empty event timestamp
tse1 , adds to tse1 the pairs < Tj , snj > stored locally in
LLCT and containing sequence numbers associated with
all the topics Tj preceding T in SGT according with the
topic rank, increments its local clock (i.e., LCT = v + 1),
and includes the pair < T, v + 1 > in tse1 (lines 03 - 04,
Figure 2(b)). Two cases can happen:

1) tse1 contains only the entry for T and for topics in
LLCT (line 05): tse1 = {< T, v+1 >,< Tj , x > · · · <
Tj , y >} (with < Tj , x > · · · < Tj , y >∈ LLCT)
and TMT returns the completed timestamp to the
publisher for the publication in the ENS.

2) tse1 contains more entries (lines 06 - 09): in this
case, there exists a topic T ′ following T in the topic
order and TMT sends a FILL IN PUB TS message
to TMT ′ . Receiving such a message, TMT ′ just
updates the pair < T ′,⊥ > contained in tse1 with
the current value of LCT ′ and checks if there exists
a topic T ′′ following T ′ in the timestamp. If so,
it forwards the FILL IN PUB TS message to TMT ′′ ,
otherwise, it returns tse1 to the publisher (lines 11
- 16).

When TMT delivers the CREATE PUB TS message sent
by ph, it follows the same steps: it creates a template tse2
for the timestamp, increments its local sequence number
(i.e., LCT = v + 2), includes the pair < T, v + 2 > in
tse2 , and sends the timestamp to the publisher or to the
following topic manager.

Let us note that TMT updates sequence numbers
of topics stored in LLCT by following a monotonic
increasing order, i.e., it always takes the maximum
between the one already stored locally and the one in
the received timestamp (cfr. lines 15-17, Figure 2(b)).

Considering that the sequencing groups are not chang-
ing, the timestamp will always include the same entries,
i.e., tse1 and tse2 contain a set of pairs differing only
for the sequence numbers associated with each topic. In
particular, considering that (i) a topic manager can only
increment its local sequence number when a publication
occurs, and (ii) topic managers are connected through
FIFO channels, it follows that for each topic Ti the
sequence number v′ associated with Ti in tse2 cannot be
smaller than the one associated with Ti in tse. Therefore,
tse1 < tse2 .

Considering that (i) as soon as an event e is notified to
the application layer, the local subscription clock of the
subscriber is updated according to the event timestamp
(line 14, Figure 3), and that (ii) tse1 < tse2 , we have that
sj evaluating the notification condition at line 09 will
store the event e2 in the to deliverj buffer. This leads to
a contradiction as e2 will never be notified before e1.

�Lemma 1

Lemma 2: Let e1 and e2 be two events published re-
spectively in topics T1 and T2, with T1 6= T2. Let us

R. BALDONI ET AL. 5

assume that the sequencing groups SGT1
and SGT2

do
not change during the two publish operations. If a sub-
scriber si notifies e1 before e2 then any other subscriber
that notifies both e1 and e2 will notify e1 before e2.

Proof For ease of presentation and without loss of gener-
ality, let us assume that T1 and T2 are the only two topics
subscribed by both si and sj

1 (i.e., {T1, T2} ⊆ Si, Sj).
Let us suppose by contradiction that there exist two

subscribers, namely si and sj , that notify both e1 (pub-
lished in topic T1) and e2 (published in topic T2) but si
notifies e1 and then e2 (i.e., τn(i, e1) < τn(i, e2)), while sj
notifies e2 and then e1 (i.e., τn(j, e2) < τn(j, e1)).

Given a generic subscriber sx, if it notifies both e1 and
e2, it follows that, at time τn(x, e1), T1 ∈ Sx and at time
τn(x, e2), T2 ∈ Sx. Moreover, sub LCx ≤ tse1 at time
τn(x, e1) and sub LCx ≤ tse2 at time τn(x, e2).

Given the timestamps tse1 and tse2 associated respec-
tively with e1 and e2, let us first consider how they have
been created and then let us show that it is not possible
to have inversions in the notification order.

Without loss of generality, let us assume that T1 has
higher precedence than T2 in the topic order.

Considering how sequencing groups (and conse-
quently timestamps) are defined by the updateSequenc-
ingGroup function shown in Figure 1, each event pub-
lished in T1 will have attached a timestamp containing
the pairs < T1, x1 >,< T2, x2 > and each event pub-
lished in T2 will have attached a timestamp containing
the pairs < T1, y1 >,< T2, y2 >.

When e2 is published by the application layer, the
publisher sends a CREATE PUB TS request for the event
timestamp to TMT2

(line 04, Figure 2(a)). Receiving such
a request, TMT2

executes line 02 of Figure 2(b) and
creates an empty event timestamp containing entries
for T1 and T2 (i.e., tse2 ⊇< T1,⊥ >,< T2,⊥ >),
increments its local clock, let’s say to a value v (line
06), updates its component of the timestamp with its
local clock (i.e., tse2 ⊇< T1,⊥ >,< T2, v >), and sends a
FILL IN PUB TS message containing tse2 to the following
topic manager selected in the event timestamp according
to the precedence relation → (i.e., to TMT1

). Delivering
such message, TMT1 will execute lines 15 - 17, Figure
2(b) by storing locally the pair < T2, v > in its LLC1

variable.
The same procedure is executed when e1 is published.

Note that, since T1 → T2, it follows that the pair
< T2, v > contained in tse2 will be attached to tse1 .

In the worst case scenario, due to concurrency in
the timestamp creation procedure, TMT1 can either de-
liver first the CREATE PUB TS message sent from the
publisher of e2 and then the FILL IN PUB TS message
sent by TMT2

or vice-versa, it can first manage the

1. The proof can be easily extended to multiple intersections, by
iterating the reasoning for any pair of topics that appears in more
than one subscription.

FILL IN PUB TS message and then the CREATE PUB TS
one:

1) TMT1 delivers the CREATE PUB TS message for
event e1 and then the FILL IN PUB TS message
for tse2 . Delivering the CREATE PUB TS for event
e1, TMT1

creates an empty event timestamp for
e1 (i.e., tse1 ⊇< T1,⊥ >,< T2,⊥ >), updates the
entry related to T2 with the pair < T2, v

′ > stored
locally in LLC1 (with v′ ≤ v), updates its local
clock to v1 + 1, updates its timestamp component
with its local clock (i.e., tse1 ⊇< T1, v1 + 1 >
,< T2, v

′ >), and sends a FILL IN PUB TS request
containing tse1 to the following topic manager in
the topic order (if any) or directly to the publisher.
Delivering the FILL IN PUB TS message for tse2 ,
TMT1

executes line 11 of Figure 2(b), and updates
its timestamp component with its local clock (i.e.,
tse2 ⊇< T1, v1 + 1 >,< T2, v >). Then, it sends
a FILL IN PUB TS request containing tse2 to the
following topic manager in the topic order (if any)
or directly to the publisher.

2) TMT1
delivers the FILL IN PUB TS message for

tse2 and then the CREATE PUB TS message for
event e1. Delivering the FILL IN PUB TS message
for tse2 , TMT1

executes line 18 of Figure 2(b), up-
dates its timestamp component with its local clock
(i.e., tse2 ⊇< T1, v1 >,< T2, v >), and updates its
LLC1 variable by storing the pair < T2, v >. Then,
it sends a FILL IN PUB TS request containing tse2
to the following topic manager in the topic order.
On the contrary, delivering the CREATE PUB TS
for event e1, TMT1 creates the template for the
event timestamp (i.e., tse1 ⊇< T1,⊥ >), updates
the entry related to T2 with the pair < T2, v >
stored locally in LLC1, updates its local clock to
v1 + 1, updates its timestamp component with its
local clock (i.e., tse1 ⊇< T1, v1 + 1 >), and sends
a FILL IN PUB TS request containing tse1 to the
following topic manager in the topic order (if any)
or directly to the publisher.

Let us now consider the behavior of si and sj when
the notification is triggered by the ENS.

• Subscriber si. At time τn(i, e1), si notifies e1 and
then updates its local clock by executing lines 04
- 11 of the notification procedure. In particular,
si updates sub LCi with the pair < T1, v1 > (or
< T1, v1 +1 >). At time τn(i, e2), si is notified by the
ENS about e2. Since it has updated only the sub LCi

entry corresponding to e1, and considering that the
value v has been assigned to T2 for e2, it means that
sub LCi ≤ tse2 and also e2 can be notified.

• Subscriber sj . At time τn(j, e2), sj receives e2 that
contains the entry < T1, v1 + 1 > associated to
e1. However, since e1 has not yet been received,
the sub LCi data structure is not updated and the
isNext() function returns false. As a consequence, sj
will buffer e2 for a future notification when e1 will

R. BALDONI ET AL. 6

be notified, and we have a contradiction.
�Lemma 2

Lemma 3: Let si be a subscriber that invokes a
subscribe(T) operation at time t. If the ENS is reli-
able, then si eventually generates the subscribeReturn(T)
event.

Proof The subscribeReturn(T) event is triggered by a sub-
scriber si in line 12, Figure 4(a) when it delivers a COM-
PLETED SUB VC message. Such message is generated by
the topic manger TMTk

responsible of the highest ranked
topic in the subscription of si (line 11, Figure 4(b)) when
delivering a FILL IN SUB TS message. Such message is
originally generated by the subscriber itself and then
forwarded by topic managers responsible of topics in
the subscription (line 13, Figure 4(b)). Considering that
(i) the FILL IN SUB TS message is generated by the
subscriber after the subscription is active on the ENS, (ii)
the ENS guarantees that eventually such event happens,
and (iii) messages are not lost in the forwarding chain,
we have that the claim simply follows.

�Lemma 3

Lemma 4: Let si be a subscriber that invokes a
subscribe(T) operation at time t and let t+∆ be the time
at which the subscribe operation terminates. If the ENS
is reliable, then si will notify all the events published in
T at time t′ > t.

Proof Let us suppose by contradiction that there exists
an event e published in the new subscribed topic T
after the subscription operation ends and that si never
notifies such event. When the subscription terminates,
the subscriber si updates its local subscription clock
with the pairs contained in the subscription timestamp
(line 09, Figure 4(a)). Let sub LCi = {< Ti, vi >,<
T, v > · · · < Tk, vk >} be such local subscription clock
at time t + ∆. Let us consider now the first event e
published after time t + ∆. When e is published, the
publisher executes the algorithm in Figure 2 requesting
topic managers in its sequencing group to fill in its
timestamp. In particular, TMT creates the timestamp and
fills in its entry by incrementing its sequence number and
adding the pair < T, v+1 >. When such event is notified
to si, it checks if the event can be notified immediately
as it is the next with respect to the local subscription
timestamp. Two cases can happen:

1) isNext(ts, sub LCi) = true. In this case, the event is
immediately notified and we have a contradiction.

2) isNext(ts, sub LCi) = false. In this case, the event
is stored in the to deliveri buffer while the sub-
scriber waits until this events will be the next to be
notified. Let un note that the ENS is reliable. Thus,
published events will be eventually notified and
the local subscription clock will be increased until

the condition becomes true and the claim follows.
�Lemma 4

Lemma 5: Let SGT1
,SGT2

, · · · .SGTn
be the sequencing

groups of topics T1, T2, . . . Tn at time t. Let si be a
subscriber that invokes subscribe(T) at time t and let
SG′T1 , SG′T2 , . . .SG′Tn be the sequencing groups after
the subscription operation ends at time t+ ∆ (i.e., when
si triggers subcribeReturn(T)). For each Ti, SGTi

⊆ SG′Ti
.

Proof For each topic Ti, its sequencing group SGTi

is calculated by considering the union of all the sub-
scriptions containing Ti, stored locally at TMTi

in the
externalSubsi variable, and will include all the topics Tj
such that there exist at least two subscriptions including
both Ti and Tj (lines 02- 05, Figure 1).

At time t, when a subscriber si invokes a subscribe(T)
operation, it executes the protocol in Figure 4(a) and will
advertise that its subscription is changed by sending a
FILL IN SUB TS message that will flow through all the
TMs responsible for topics in the subscription, from the
last to the first in the topic order.

When a topic manager TMj delivers such
FILL IN SUB TS message at a certain time t′ ∈ [t, t+ ∆],
it will update its externalSubsj set with the new
subscription (line 02, Figure 4(b)) and will use this set
to compute the new sequencing group SG′Tj

when
creating timestamps.

For each of these topics Tj , updating the
externalSubsj variable with a subscription including T
may cause a change of SGTj

and the following cases
can happen:

1) T ∈ SGTj
at time t. If T ∈ SGTj , it means that T ∈

externalSubsj at time t. Thus, the new subscription
of si has no effect on it, SGTj

= SG′Tj
and the claim

follows.
2) T /∈ SGTj

at time t. Two further cases can happen:
a) T /∈ externalSubsj at time t. At time t, T

was not included in externalSubsj , meaning
that there were no subscriptions containing
together both T and Tj . As a consequence,
the new subscription will be the only one
including both topics. As a consequence, T
will be not considered in the computation of
the new sequencing group for Tj (lines 02- 05,
Figure 1), SGTj

= SG′Tj
and the claim follows.

b) T ∈ externalSubsj at time t. In this case,
since T /∈ SGTj at time t, it means that there
exists at most another subscription including
both T and Tj . As a consequence, the addi-
tion of the new subscription containing T to
externalSubsj creates a pair of subscription
sharing at least two same topics. The protocol
will include T in the new sequencing group
(lines 02- 05, Figure 1). Note that the insertion
of a topic in externalSubs can not remove
any other topic already part of the sequencing

R. BALDONI ET AL. 7

group. As a consequence, in this case we will
have that SGTj ⊂ SG′Tj and the claim follows.

�Lemma 5

Lemma 6: Let si be a subscriber that invokes a
subscribe(T) operation at time t and let SG′T be the
sequencing group of T after the subscription. If si
notifies an event e published on the topic T , then the
timestamp for e has been built according to SG′T .

Proof Subscriber si triggers the ENSsubscribe() only
after it has inserted the topic T in its subscription
(lines 07-08, Figure 4(a)) and has updated its local clock
sub LCi. In particular, this happens when si delivers
a COMPLETED SUB VC (ts, s) message (line 05, Figure
4(a)). The received subscription timestamp ts contains an
entry for each T in the subscription of si. In particular,
each entry is filled in with the current local clock LCi

incremented by one (line 03, Figure 4(b)) when TMTi

delivers a FILL IN SUB TS and updates its current se-
quencing group.

Let us show in the following that for any event e
published on the topic T and notified to si, its timestamp
will be generated following the new SG′T .

If e has been notified by si, then each entry of its local
clock sub LCi is smaller or equal than the corresponding
entry in the timestamp tse of e, and it is strictly smaller
for at least one entry. Considering that filling in tse each
TM copies (or increments and copies) the entry in the
timestamp, it follows that every TM has first filled in
the subscription timestamp and then tse. Considering
that (i) the subscription takes effect at each TM just
after FILL IN SUB TS message is delivered, and (ii) this
message induces a change on the sequencing group, it
follows that tse is created and filled in according to SG′T
and the claim follows.

�Lemma 6

Theorem 1: Let ek and eh be two events. If a subscriber
si notifies first ek and then eh, any other subscriber that
notifies both ek and eh will notify ek before than eh.

Proof The proof trivially follows from Lemmas 1 - 6
and considering that when a subscriber si invokes an
unsubscribe(T) operation, TNO violations cannot hap-
pens because T is immediately removed from the sub-
scription (line 01, Figure 5(a)) and the notification con-
dition becomes false (line 01, Figure 3).

�Theorem 1

	Algorithm Pseudo-code
	Correctness proof

