TERA: Topic-based Event Routing for peer-to-peer Architectures

R. BALDONI' R.BERALDI' V. QUEMA? L. QUERZONI!
! Dipartimento di Informatica e Sistemistica

Universita di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italia

{baldoni,beraldi,querzoni,tucci } @dis.uniromal..it

Abstract

The completely decoupled interaction model offered by
the publish/subscribe communication paradigm perfectly
suits the interoperability needs of todays large-scale, dy-
namic, peer-to-peer applications. The unmanaged envi-
ronments, where these applications are expected to work,
pose a series of problems (potentially wide number of par-
tipants, low-reliability of nodes, absence of a centralized
authority, etc.) that severely limit the scalability of exist-
ing approaches which were originally thought for support-
ing distributed applications built on the top of static and
managed environments. In this paper we propose an archi-
tecture for implementing the topic-based publish/subscribe
paradigm in large scale peer-to-peer systems. The archi-
tecture is based on clustering peers subscribed to the same
topic. The major novelty of this architecture lies in the
mechanism employed to bring events from the publisher to
the cluster (namely outer-cluster routing). The evaluation
shows that this mechanism for outer-cluster routing has a
probability to bring events to the destination cluster very
close to 1 while keeping small the involved number of out-
of-cluster peers. Finally, the overall architecture is shown
to be scalable along several fundamental dimensions like
number of participants, subscriptions, and to exhibit a fair
load distribution (load distribution closely follows the dis-
tribution of subscriptions on nodes).

Publish-Subscribe, Gossip-based algorithms

1 Introduction

Publish/subscribe is a communication paradigm of grow-
ing popularity for information dissemination in large scale
distributed systems. Participants to the communication can
act both as producers (publishers) and consumers (sub-
scribers) of information. Publishers inject information in
the system in the form of events, while subscribers declare

S. TUCCI-PIERGIOVANNI!
2 LSR-IMAG Laboratory, Sardes project
INRIA Rhone-Alpes
655, avenue de 1’Europe, 38334 Saint-Ismier
vivien.quema@inrialpes.fr

their interest in receiving some of the published events, is-
suing subscriptions. Subscriptions express conditions on
the content of events (content-based model) or just on a
category they should belong to (fopic-based model). The
paradigm states that once an event is published, for each
subscription whose conditions are satisfied by the event
(we say that the event matches the subscription), the cor-
responding subscriber must be notified. The basic build-
ing block of systems implementing the publish/subscribe
paradigm is a distributed event dissemination mechanism
able to bring any published event from the publisher to the
set of matched subscribers, while completely decoupling
their interaction[10].

While publish/subscribe for managed systems has been
widely studied and various solutions exist in the literature
[18, 6, 3], publish/subscribe for unmanaged systems, like
peer-to-peer systems, is today an active field of research [8,
2,24].

In peer-to-peer systems, the event dissemination mecha-
nism is usually implemented on top of an overlay network
connecting all user nodes (both publishers and subscribers).
Overlay networks [1, 23] are specifically designed to sup-
port information diffusion characterized by a high-level of
reliability in large scale and unreliable environments.

Event dissemination in such systems can be trivially im-
plemented flooding each event in the overlay and then fil-
tering out events that do not match local subscriptions at
each single node. However, the semantics of the pub-
lish/subscribe paradigm can be leveraged to confine the dis-
semination of each event only in the set of matched sub-
scribers, without affecting the whole network (traffic con-
finement) [20, 2, 24]. This is particularly important when
the event matches very specific interests which have a small
number of subscribers with respect to the total number of
nodes.

Even though traffic confinement brings obvious advan-
tages (as it potentially saves traffic in the network), its im-
plementation poses non-trivial problems. Basically, traffic
confinement should be realized with the following objec-

tives:

1. Interest Clustering. Subscribers should be arranged
trying to cluster those that have common interests. In
this way, once the event reaches one member of the
cluster, its dissemination can be limited to the clus-
ter itself. Ideally, each cluster should contain all sub-
scribers interested in a given event in order to avoid
a loss of reliability (i.e. the capacity of the system to
notify each event to the set of matched subscribers).

2. Inner-Cluster Dissemination. Once the event reaches
one member of the interested cluster, the dissemination
inside the cluster can follow a simple flooding scheme
or more sophisticated routing techniques can be used
to save more traffic [24].

3. Outer-Cluster Routing. An event can be published on
any node, therefore it must be routed from it, to one
node belonging to the target cluster. Note that, traf-
fic confinement is fully satisfied when non-interested
subscribers do not receive the event. Then, the goal
of outer-clustering routing is to reach the target cluster
while involving a number of non-interested subscribers
as small as possible.

To the best of our knowledge, current solutions [20, 2,
24], mainly deal with the first two points, i.e. the prob-
lem of clustering all subscribers with common interests to-
gether and the problem of how to efficiently disseminate
the event inside the cluster. Less attention has been devoted
to the routing from the publisher to the target cluster. In
this paper we propose a novel architecture, namely TERA
(Topic-based Event Routing for p2p Architectures), for the
implementation of topic-based publish/subscribe systems
in large-scale, unmanaged peer-to-peer (p2p) environments
and we specifically evaluate the impact of the TERA outer-
cluster routing in getting traffic confinement.

More specifically, TERA realizes interest clustering by
instantiating a dedicated overlay network for each topic
(topic overlay) and including in it all subscribers sub-
scribed to that topic. Then, in order to realize outer-
cluster routing, each node is equipped with an access point
lookup table (of limited size) containing a set of pairs
< topic, subscriber >, in which the subscriber represents
an access point for the cluster it belongs to. Thanks to
the mechanisms employed by TERA to update these ta-
bles, topics are uniformly represented and, given a specific
topic, each subscriber of that topic has the same probabil-
ity to appear as an access point. These properties hold even
with uneven interest distributions among topics, i.e. some
topics more popular than others. Outer-cluster routing of
an event follows a random walk in order to find an access
point for the target topic. We show how, thanks to a uni-
form distribution of topics and subscribers in lookup tables,

routing of each event from the source node to the target
overlay has a probability of successes close to 1 with ran-
dom walks involving a small number of outer cluster nodes
and a reasonable access point lookup table size. As regards
inner-cluster dissemination, we evaluate the performance of
a simple flooding inside the topic overlay network we use.
However, more sophisticated mechanisms could be embed-
ded in TERA as the ones proposed in [20, 24] to reduce
traffic of the inner-cluster dissemination.

Our evaluation also shows that mechanisms employed
in TERA have a cost of dissemination per-event that scales
with respect to the number of nodes constituting the system,
the number of subscriptions/topics issued, and the event
publication rate. Finally, TERA is shown to fairly distribute
the system load according to the number of subscription
currently issued by each participant.

The paper is organized as follows: Section 2 gives an
overview on TERA'’s infrastructure, while Section 3 details
its internal architecture. Section 4 evaluates, with both an-
alytical and experimental methods, TERA’s characteristics
with respect to the event dissemination mechanism by traf-
fic confinement and the overall system’s scalability. Section
5 offers an overview on related works, and, finally, section
6 concludes the paper.

2 An Overview of TERA

TERA is a topic-based publish/subscribe system de-
signed to offer an event dissemination service for very
large scale peer-to-peer systems. Each published event is
“tagged” with a fopic and is delivered to all the subscribers
that expressed their interest in the corresponding topic by
issuing a subscription for it. The set of available topics is
not fixed, nor predefined: applications using TERA can dy-
namically create or delete them.

2.1 Architecture

Nodes participating to TERA are organized in a two-
layers infrastructure (ref. Figure 1(a)). At the lower layer, a
global overlay network connects all nodes, while at the up-
per layer various fopic overlay networks connect subsets of
all the nodes; each topic overlay contains nodes subscribed
to the same topic. All these overlay networks are separated
and are maintained through an overlay management proto-
col(detailed in the next Section).

Subscription management and event dissemination in
TERA are based on two simple ideas: nodes that want to
subscribe to a topic ¢ are required to join the corresponding
topic overlay that connects at the upper layer all nodes sub-
scribed to ¢ (interest clustering). When an event e, tagged
with topic ¢, is published by a node (not necessarily sub-
scribed to ?) it is first routed at the lower layer to an access

Topic overlay

Node used - -

as access point
- \\

Node

General overlay

(a) System overview

Event routed
in the system

Applications

| | |)

subsiribe unsubjmbe puT\sh notify
|

TERA

Event Management Subscription Management

‘ Access Point Lookup ‘

Overlay Management Protocol
Partition Merging

‘ Size Estimation ‘

Inner-cluster dissemination ‘ Peer Sampling ‘

Network

(b) Node architecture

Figure 1. The TERA publish/subscribe system.

point for topic t, i.e. one of the nodes subscribed to ¢ (outer-
cluster routing); this node then diffuses e at the upper layer
in the topic overlay associated with topic ¢, in order to de-
liver it to all the other subscribers of ¢ (inner-cluster dissem-
ination). In this way the traffic generated for event dissemi-
nation remains confined within the target topic overlay.

Figure 1(b) depicts a high level overview of a node’s in-
ternal architecture. TERA is a software layer that offers to
applications running on the same node an interface to sub-
scribelunsubscribe topics, publish information and be noti-
fied of incoming events.

TERA’s internal components (Event Management, Sub-
scription Management, Access Point Lookup, Partition
Merging, Inner-Cluster Dissemination), detailed in Section
3, working on distinct nodes interact through an existing
network infrastructure, that is usually represented by the In-
ternet, and leverages services provided by an overlay man-
agement protocol (Size estimation, Peer sampling) detailed
in the following Section.

2.2 The Overlay Management Protocol

An overlay network is a logical network built on top of
a physical one (usually the Internet), by connecting a set
of nodes through some links. A distributed algorithm run-
ning on nodes, known as the Overlay Maintenance Protocol
(OMP), takes care of managing these logical links. Each
node usually maintains a limited set of links (called view)
to other nodes in the system. The construction and mainte-
nance of the views must be such that the graph obtained by
interpreting nodes as vertices and links as arcs is connected.
Indeed, this is a necessary condition to enable communica-

tion from each node to all the others.

TERA requires the overlay management protocol to im-
plement (1) a peer sampling service, able to provide uni-
form node samples, and (2) a size estimation service. Nu-
merous protocols exist today that can be employed to main-
tain a peer-to-peer overlay network. However, protocols
best suited to provide uniform samples of nodes are those
based on the view exchange technique [1, 23]. These pro-
tocols periodically update views maintained at each node
by swapping random view entries between randomly cho-
sen nodes. The view exchange technique lets the protocol
build and maintain overlay topologies that closely resemble
random graphs. Consequently, these overlays exhibit high
connectivity and low diameter, which make them resilient
to massive node failures, and adequate topologies for im-
plementing efficient broadcast primitives. Concerning the
size estimation service, many protocols working on view
exchange-based overlay management protocols have been
proposed [13, 15, 16, 17, 19]. Note that TERA also requires
the OMP to expose a primitive that can be used to force a
view exchange with some other node.

3 Implementation details

TERA’s internal structure is made of five main compo-
nents (Figure 2): Event Management, Subscription Man-
agement, Access Point Lookup, Partition Merging and
Inner-Cluster Dissemination. In this section we describe
the details of their implementation with the exception of
the Inner-Cluster Dissemination component. In this pa-
per we will adopt a simple flooding for this component to

evaluate TERA (Section 4). Note that, many existing so-
lutions [9, 11, 4, 24] can be adopted accordingly to the
specific application requirements. Appendix 6 reports a
pseudo-code description of each detailed component.

Subscription Management The Subscription Manage-
ment component handles new subscriptions and unsubscrip-
tions, updating the Subscription Table — a data structure
containing a list of couples < ¢,7 >, where ¢ is a topic the
node is subscribed to, and i is the corresponding topic over-
lay identifier! — and instructing the overlay management
protocol to join/leave topic overlay networks associated to
subscribed/unsubscribed topics.

A new subscription for a topic, causes the Subscription
Management component (i) to add and entry for the topic
to the Subscription Table, and (ii) to ask the overlay man-
agement protocol to join the corresponding topic overlay.
To fulfill the latter point, the overlay management proto-
col needs at least one identifier of a node already part of
the topic overlay. This identifier can be obtained through a
lookup executed on the Access Point Lookup component.
Note that, if no identifier is returned, the node instantiates a
new topic overlay?.

Unsubscriptions are handled by removing an entry in the
Subscription Table and asking the overlay management pro-
tocol to leave the corresponding topic overlay.

The Subscription Management component is also re-
sponsible for periodically advertising the list of currently
subscribed topics to a set of nodes randomly chosen in the
general overlay. For each topic, the advertised list contains
the corresponding topic overlay identifier and an estimation
of the topic popularity. The topic popularity is estimated by
the size estimation service provided by the overlay manage-
ment protocol running in the corresponding topic overlay.

The list is advertised to D nodes whose identifiers are
obtained from the peer sampling service provided by the
overlay management protocol; this guarantees that the list
will be advertised to a set of nodes randomly chosen from
the whole system population. The received advertisements
are used to update data structures in the Access Point
Lookup and Partition Merging components (more details
will be given in their corresponding sections).

Event Management The Event Management component
implements the main logic required for publishing and dif-
fusing events, as well as for notifying subscribers. An
event dissemination starts as soon as an application pub-
lishes some data in a topic. It is done in two steps: the event
is first routed to a node subscribed to the topic (this node

IThe identifier is generated by the node that instantiated the topic over-
lay.

2Different overlays might thus be created for the same topic, which is
handled by the merging mechanism described later in the paper.

acts as an access point for it); then, the access point diffuses
the event in the overlay associated to the topic. The first step
is realized through a lookup executed on the Access Point
Lookup component: if the lookup returns an empty list of
node identifiers, the node discards the event.

When a node subscribed to the topic receives an event
for which it must act as an access point, it uses the broad-
cast primitive provided by the Inner-Cluster Dissemination
service to forward the event to all nodes belonging to the
corresponding topic overlay. When a node subscribed to
the topic receives a broadcasted event, it notifies the appli-
cation.

Access Points Lookup The Access Point Lookup compo-
nent plays a central role in TERA’s architecture as it is used
by both the Event Management and Subscription Manage-
ment components to obtain lists of access points identifiers
for specific topics. Its functioning is based on a local data
structure, called Access Point Table (APT), and a distributed
search algorithm based on random walks.

Each APT is a cache, containing a limited number of en-
tries, each with the form < ¢,n >, where ¢ is a topic and n
the identifier of a node that can act as an access point for ¢.
APTs are continuously updated following a simple strategy:
each time a node receives a subscription advertisement for
topic ¢ from a node n, it substitutes the access point identi-
fier for ¢ if an entry < ¢, n’ > exists in the APT, otherwise
it adds a new entry < ¢,n > with probability 1/P;, where
P, is the popularity of topic ¢ estimated by n and attached
to the subscription advertisement. When an APT exceeds a
predefined size, randomly chosen entries are removed.

As a consequence of this update strategy, APTs have the
following properties:

1. APT entries tend to contain non-stale access points,

2. inactive topics (i.e. topics that are no longer subscribed
by any node) tend to disappear from APTs,

3. each access point is a uniform random sample of the
population of nodes subscribed to that topic,

4. the content of each APT is a uniform random sample
of the set of active topics (i.e. topics subscribed by at
least one node),

5. the size of each APT is limited.

The first property is a consequence of the way new en-
tries are added to APTs; suppose, in fact, that there is only
one topic ¢ in the system subscribed by two nodes, n, and
nyp; Suppose, moreover, that, at certain point of time, n; un-
subscribes t. Starting from that moment, only n, will ad-
vertise ¢, therefore nodes containing an entry < t,n, >
will eventually substitute it with entry < ¢,n, >, as the

notify

EVENT MANAGEMENT

subsmbel unsubscribe

SUBSCRIPTION MANAGEMENT

INNER-CLUSTER
DISSEMINATION

node IDs
node IDs

subscription

PARTITION

a topic overlay

MERGING

9]
50
=
<

<
o
X
o}

topic overlay size

instantiate/join/leave

RIPTION
ABLE

force view

topic overlay id :l :l

—r

.
Y

e
—— 1|

size

estim.

size
estim.

size
estim.

peer sampling ‘ ‘ peer sampling

‘ peer sampling seoe peer sampling

Overlay Management Protocol

Topic | overlay

published events (lower layer)
published events (upper layer)

random walks

view
exchange

|

subscription advertisements
subscription advertisements

join I
overlay y

Figure 2. A detailed view of the architecture of TERA.

uniformity of node samples provided by the peer sampling
service guarantees that n, will eventually advertise ¢ to all
the system population. The second property comes from the
fact that inactive topics are no longer advertised. They are,
thus, eventually replaced by active topics in APTs (assum-
ing that the set of active topics is larger than the maximum
APT size). The third property is a consequence of the fact
that subscription advertisements are sent to nodes returned
by the peer sampling service that provides uniform random
samples, and that each node advertises its subscriptions with
the same period. The fourth property is also a consequence
of this fact, and of the fact that the APT update mecha-
nism uses estimations of topic popularities® to normalize
APT updates. Let us remark that in the proposed update
mechanism, all subscribers periodically advertise their sub-
scriptions, and nodes drop these advertisements in inverse
proportion to the topic popularity. One might think that
this strategy induces the exchange of unnecessary messages.
Nevertheless, trying to reduce the number of sent messages
by having subscribers advertise their subscriptions in in-
verse proportion to the topic popularity would increase the
probability of APTs containing references to stale access
points?.

3 A highly popular topic (i.e. a topic subscribed by many nodes) will be
advertised more often than a less popular one.

4This comes from the fact that advertisements are also used to update
access point for topics that are yet contained in APTs, regardless of their
popularities.

Note that the APT update algorithm described above has
been designed with the goal of maintaining fresh APTs con-
tent. Other strategies can be employed as well. For instance,
the algorithm could use some form of knowledge about the
stability (i.e. uptime) of a node, or its distance from the up-
dated node to choose whether to keep or replace an access
point.

Given the APTs limited size, nodes may only have a lim-
ited knowledge of the set of active topics. To solve this
problem, the Access Point Lookup component searches for
access points in APTs stored at other nodes. This search is
implemented as a random walk in the global overlay. The
rationale behind this search mechanism is that, given the
uniform randomness of APTs’ content and of node identi-
fiers returned by the peer sampling service, it is possible to
set the lifetime of the walks and the APT table size such
that, given a topic, with a certain probability either (i) an
access point for it will be found, or (ii) it will safely be con-
sidered as inactive.

Note that the reliability of event dissemination in TERA
strongly depends on the behaviour Access Point Lookup
component. Section 4 reports a detailed evaluation of this
aspect.

Partition Merging The Partition Merging component im-
plements mechanisms used to maintain topic overlay net-
works. It is motivated by the fact that if two nodes concur-

rently subscribe to a same topic for which no access point
exists, the system may end up with two disconnected topic
overlay networks for the topic. It is thus necessary to de-
fine a mechanism to detect the presence of partitioned topic
overlays and merge them.

Partitioning detection is performed each time a subscrip-
tion advertisement, sent by a node n, is received by a node
n'. n’ checks for each advertised topic it is also subscribed
to, if the local topic overlay identifier corresponds to the
one contained in n’s advertisement. A mismatch between
the two identifiers shows that two distinct partitions exist
for the same topic overlay. In order to merge these two
partitions, the merging mechanism on n’ forces the overlay
management protocol to execute a view exchange for the
partitioned topic overlay with node n. The aim of this view
exchange is to mix nodes belonging to partitioned overlays
in the views of both n and n’. From this time on the topic
overlay is no more partitioned (therefore, an event can be
successfully broadcasted reaching all the subscriber) even
if two different overlay identifiers can still exist in the sys-
tem. Resynchronizing different overlay identifiers is needed
anyway to prevent further useless forced view exchanges.
The Partition Merging component must thus resynchronize
identifiers of nodes belonging to the same overlay’.

Note that the partition merging mechanism is fundamen-
tal to limit the influence of our traffic confinement strategy
on global event dissemination reliability. Section 4 reports
a detailed evaluation of this aspect.

4 Evaluation
4.1 Experimental setup

We implemented a prototype of TERA using Peersim
[12], an open source Java simulation framework for peer-to-
peer protocols. Peersim allowed us to test TERA on large
simulated networks, modeling with sufficient precision the
environment where TERA is supposed to work. The overlay
management protocol employed in our prototype is Cyclon
[23], which provides every node with a view representing a
uniform random sample of the system. Cyclon is a cycle-
based protocol: at each cycle a node executes a view ex-
change phase. Phases among nodes are supposed to have
the same duration, but are not synchronized. A peer sam-
pling service is built upon Cyclon just picking up random
node identifiers from the view. These samples are then used
to feed a size estimation service built through the algorithm
introduced in [16]. We assume cycles as the reference time
unit in the rest of this section. During a cycle, a process
can handle the messages that were sent to it in the previous
cycles.

5This can be simply accomplished by exchanging identifiers during
each view exchange, and by deterministically choosing one of them.

Concerning the workload model, there is currently no
publicly available data traces of real pub/sub applications.
Consequently, we tested our algorithm on various synthetic
scenarios, following the approach used in other studies [21,
5, 7]. In particular we characterized the set of events and
subscription used in our tests as follows.

The set of subscriptions is characterized by the following
four properties: number of topics, number of subscriptions,
topic popularity distribution (i.e. how subscriptions are dis-
tributed on topics), and subscription distribution on nodes.
Subscriptions are distributed on nodes following a uniform
distribution®. Concerning topic popularity, we consider two
distributions:

e Uniform: each subscription can be issued with the
same probability on any topic.

e Power-law (also called Zipf): topic popularity distri-
bution follows a zipf curve, leading to systems where
few topics are highly popular, while a lot of topics are
not popular.

The set of events is characterized by the following four
properties: number of topics, number of events, event dis-
tribution on topics, and event distribution on nodes. In our
tests, we consider uniform distributions for event distribu-
tion on both topics and nodes.

4.2 Outer-cluster routing assessment

In this section we show, through an evaluation of both
the Access Point Lookup and the Partition Merging com-
ponents, how outer-cluster routing realized through TERA
performs.

4.2.1 Topic distribution in APTs

We start by presenting an experiment showing that the
method used in TERA to update APTs content ensures a
uniform distribution of topics in every APT. This is a fun-
damental property for APTs as it allows TERA to use their
content as a uniform random sample of the active topic pop-
ulation and build on it the access point lookup mechanism.
We ran tests over a system with 10* nodes, each advertis-
ing its subscriptions every 5 cycles to 5 neighbors out of
20 (the overlay management protocol view size). APT size
was limited to 10 entries. We issued 5000 subscriptions
distributed in various ways on 1000 distinct topics, and we
measured, for each topic, the number of APTs containing an
entry for it. The expected outcome of these tests is to find
a constant value for such measure, regardless of the initial
topic popularity distribution.

6Subscriptions regionalism is not considered as it would be “destroyed”
by the continuous exchange of views in the general overlay.

Figure 3(a) shows the results for an initial uniform distri-
bution of topic popularity. The X axis represents the topic
population (each topic is mapped to a number). Each black
dot represents the number of times a specific topic appears
in APTs, while the grey dot represents its popularity. The
plot shows that each topic is present, on average, in the same
number of APTs, with a very small error that is randomly
distributed around the mean. This confirms that the topic
distribution in APTs can be considered uniform.

Figures 3(b) and 3(c) show the results for an initial zipf
distribution of topic popularity. The two graphs report the
results for differently skewed popularity distributions (dis-
tribution parameter @ = 0.7 and a = 2.0). As these graphs
show, TERA is always able to balance APT updates, and
delivers an almost uniform distribution. Even in an extreme
case (@ = 2.0), the APT update mechanism is able to bal-
ance the updates coming from the small number of active
topics (in this scenario only 79 topics share the whole 5000
subscriptions), maintaining their presence in APTs around
the same average value with a small standard deviation (al-
ways below 5%). In the next evaluations, we only report re-
sults for zipf popularity distribution with ¢ = 0.7, as results
for other values of a did not exhibit significant differences.

4.2.2 Access Point Lookup

In this section, we evaluate the probability for the access
point lookup mechanism to successfully return a node iden-
tifier for a lookup operation (in the case such node ex-
ists). We denote by K the lifetime of the random walk (the
maximum number of visited nodes), by |APT| the size of
APT tables, and by |T'| the number of topics’. The prob-
ability p to find an access point for a specific topic in an
APT is p = |A‘;‘T‘. Assuming that every APT contains
the maximum allowed number of entries, the probability
that an access point cannot be found within K steps is
Pr{fail} = (1 —p)™. Thus, the probability to find the
access point visiting at most K nodes is Pr{success} =

K
1-(1 —p)K =1- (1 — ‘A‘ITD‘T|> . Therefore, to ensure
with probability P that an access point for a given topic will

be found, it is necessary that sizes K or | APT| be such that:

K:m or |APT|=|T| (1— m)

Note that, given K and P, |APT| linearly depends on
|T|. In order to reduce APT size, it would be necessary to
increase random walks length (i.e. using a large value for

"Thanks to the fact that APTs can be considered as uniform random
samples of the set of active topics, each node can estimate at runtime the
value of |T'| [16].

Distribution of subscriptions on APTs
(uniform)

2
00 ® Distribution on APTs

180 Popularity

160
140

120 Std.Dev=1,11

100 m

80

Number of presences

60

40

20

0

0 200 400 600 800 1000
Topics
(@)
Distribution of subscriptions on APTs
(zipf a=0,7)

200 ® Distribution on APTs
180 Popularity
160
140
120 Std.Dev=2,16

80

Number of presences

60

40

20

0 200 400 600 800 1000
Topics
Distribution of subscriptions on APTs
(zipf a=2,0)
2000 @ Distribution on APTs
Popularity
1750
1500
. Std.Dev=51,49
0050000400005, %0,0000000gs'

§ ®e%0ngen 00000 o
g 1250 . SesesteqOoseses,
H
H
4
&
% 1000
M
g
£
E 750
z

500

250

0
0 20 40 60 80
Topics
©

Figure 3. The plot shows how topics are dis-
tributed among APTs (black dots) when the
topic popularity distribution (grey dots) is (a)
uniform and (b-c) skewed (zipf with parame-
ter a).

K) negatively affecting the time it takes to find an access
point. To mitigate this problem, it is advisable to launch r
multiple concurrent random walks, each having a lifetime
[£]. Indeed, the fact that topics are uniformly distributed
among APTs guarantees that launching multiple concurrent
random walks does not impact the lookup success rate. In
this way, access point lookup responsiveness is improved
at the cost of a slightly larger overhead due to the indepen-
dency of each random walk lifetime.

We ran experiments to check that TERA’s behavior is
close to the one predicted by the analytical study. Tests were
run on a system with 1000 nodes, each having Cyclon views
holding 20 nodes. At the beginning, 5000 subscriptions
were issued uniformly distributed on 1000 distinct topics.
Lookups were started after 1000 cycles. Each lookup was
conducted starting four concurrent random walks (r = 4).

Figure 4(a) shows how the access point lookup success
ratio changes when varying the lifetime of each random
walk (K) for different values of | APT|. For each line, we
plotted both simulation results (solid line) and values cal-
culated using the analytical study (dashed line). The plot
confirms that TERA’s lookup mechanism is able to proba-
bilistically guarantee that an access point for an active topic
will be found with probability P. Note that this plot also
shows that the actual memory size required by APTs is lim-
ited. Indeed, consider the biggest APT size plotted on the
graph: 400 entries. Assuming that each entry in an APT is a
string containing 256 characters, the memory size occupied
by an APT containing 400 entries is about 104kB.

4.2.3 Partition Merging

In this section, we analyze the probability for the partition
merging mechanism to detect a very small overlay partition,
and the time it takes for this to happen. Suppose that there
is a topic represented by an overlay network partitioned in
two clusters containing |G| and 1 nodes, respectively®. Let
us call n this single node. The probability p to detect the
partition in a cycle can be expressed as p = 1 — (pg - Pp),
where p, is the probability that none of the nodes in G ad-
vertise its subscriptions to n, and p, is the probability that
n does not advertise its subscriptions to any of the nodes in
G.

Probability p, can be expressed as

pa = (1 — Pr{a node advertises to n})!¢

Every node in GG advertises its subscription to n only if
n is contained in its view for the general overlay, and if n
is one of the D nodes selected for the advertisement. Let

8Note that the case where a partition is constituted by a single node is
the most difficult to solve as the probability for nodes belonging to distinct
partitions to meet is the lowest possible one.

Random Walk success rate.

Success rate

0 1 2 3 4 5 6 7 8 9 10
Random walk lifetime

——e——APT 50 Sim ===0-=--APT 50 Theo ——O0——APT 100 Sim

===0=-=--APT 100 Theo ——&——APT 400 Sim ===A-=--APT 400 Theo

(@)

Cycles needed to merge a partitioned node

0,61
'

0,54+
HE

04 1% .
Hi —8—|G|=4 Sim

Probability of merge

0,3 5{- -=--0---|G|=4 Theo
1] ——|G|=16 Sim
------- |G|=16 Theo

——|G|=64 Sim

0,2

01 ---0--|G|=64 Theo

0,0

0 50 100 150 200
Cycles

(b)

Figure 4. (a) The plot shows how the success
rate for access point lookups changes when
varying the maximum APT size and the ran-
dom walk lifetime. Solid lines represent re-
sults from the simulator, while dashed lines
plot values from the formula. (b) The plot
shows how the probability to detect a topic
overlay partition increases with time (cycles).
Solid lines represent results from the simula-
tor, while dashed lines plot values from the
formula. The tests were run varying the num-
ber |G| of nodes subscribed to the topic.

Node stress distribution
general overlay - uniform popularity
1603

Node stress distribution
global - uniform popularity

Std.Dev.=4,04E-06

Number of local subscriptions

Percentage of messages handled

Percentage of messages handled

1805 1
Node population

Node population

Node stress distribution Node stress distribution
general overlay - zipf popularity global - zipf popularity
1603 LE03 100

[Std.Dev.=4,136-06

centage of messages handled

U l
Number of local subscriptions

Per

1,05 1
Node population

Node population

()

(b)

Figure 5. The plots show how the load generated by TERA is distributed among nodes when the
distribution of topic popularity is either uniform (a) or zipf (b). For both popularities, the figure
shows in the left graph the load distribution in the general overlay and, in the right graph, the global
load distribution (black points), together with the subscription distribution on nodes (grey points).

us suppose, for the sake of simplicity, that D is equal to the

view size. In this case Pr{a node advertises to n} =
|[View|

(~v—1)» Where NV is the total number of nodes. Conse-
; G|
_ |View|
quently, p, = (1 - N1 .

Probability p;, is equal to the ratio between the number
of views a node n can have that do not contain nodes sub-
scribed to ¢ (i.e. nodes in G), and all the possible views.
Therefore, p, = C(g(;vl__llﬂ/"i:f‘;”‘), where C(n, k) is the
number of k-combinations of a set with n elements. Note
that, correctness of p, formula is guaranteed by the fact that,
thanks to the uniform randomness of the peer sampling ser-
vice provided by the OMP, every view has the same proba-
bility to appear on a node.

It follows that the overall probability is

L ((,_ Vieuw] o —1- |G|, |View])
b= N_1 C(N — 1, [View|)

From the expression of p, we can derive the probability
that a merger will happen in H cycles:

Pr{merger within H cycles} =1 — (1 —p)#

; |G| . H
1— ((1 |Vzew|> . C(N—1—|G|,|Vzew)>

N-1 C(N — 1, |View|)

This formula shows that the merger probability tends to 1
as cycles pass by, regardless of the topic popularity. More-
over, not surprisingly, the amount of cycles needed to ob-
serve a merger is conversely proportional to the popularity
|G| of the topic.

To confirm this result, we tested the partition merging
mechanism in networks made up of 1000 nodes, with a sin-
gle topic. In these tests, G subscriptions for the topic are
initially issued on various nodes, that quickly form a topic
overlay. Then, a new subscription is issued on a node not
yet subscribed, and a failed lookup is simulated, in order to
create a second topic overlay. We observed the time it took
to the partition merging mechanism to detect the partition.
Note that considering one single topic does not impact this
time. Indeed, this assumption has only for consequence that
this topic will be present in every APT. Nevertheless, APTs
are not used in the merging mechanism (received subscrip-
tions are only checked against the node subscriptions and
not against entries in its APT).

Figure 4(b) reports the results for tests conducted vary-
ing |G|. We plot both simulation results (solid line) and
expected values calculated with the formula (dashed line).
The results confirm the analytical study®: as cycles pass by
every topic partition is detected. Moreover, it is harder to
detect partitions for less popular topics (i.e. lower values
for |G), with respect to highly popular topics.

4.3 Scalability assessment

4.3.1 Node stress distribution

A very important aspect that must be taken into account is
node stress distribution, i.e. the fraction of the whole over-
head generated by TERA experienced by each single node.
In particular, the burden imposed on nodes should be fairly

9The differences shown in the figure, between theoretical and simu-
lation values are a consequence of simplifying assumptions done in the
analytical study.

subdivided among all participants to avoid the appearance
of hot spots.

To test node stress under various possible workloads, we
ran tests with both uniform and zipf topic popularity distri-
butions. Tests were run on a system with 10* nodes. We is-
sued 2-10° subscriptions distributed on 1000 distinct topics,
and then diffused one event by cycle during the whole simu-
lation duration. Events were uniformly distributed over top-
ics. In order to evaluate how the load is distributed among
nodes, we measured the fraction of messages handled by
each node during the tests, separating figures for messages
exchanged in the general overlay and for those exchanged
in topic overlays.

Figures 5(a) show the results for a test with uniform topic
popularity, while figures 5(b) show the same results for an
initial zipf distribution with parameter a = 0.7. Pictures on
the left show how load is distributed in the general overlay.
As shown by the graphs, TERA is able to uniformly dis-
tribute load among nodes, avoiding the appearance of hot
spots. This result is obtained regardless of the distribution
of topic popularities. Pictures on the right show the global
load experienced by nodes; in these graphs, nodes on the X
axis are ordered in decreasing local subscriptions count (i.e.
points on the left refer to nodes subscribed to more topics),
in order to show how the global load is affected by the num-
ber of subscriptions maintained at each node. The number
of subscriptions per node is also plotted with grey dots. The
graphs show how load distribution closely follows the dis-
tribution of subscription on nodes, actually implementing
the pragmatic rule “the more you ask, the more you pay”,
then fairly distributing the load among participants.

4.3.2 Message cost per notification

The traffic confinement strategy implemented by TERA in-
duces some overhead. In order to assess the global impact
of this overhead, we evaluated the average cost incurred by
TERA to notify a single event to a subscriber, namely the
total number of generated messages divided by the number
of actual notifications'?. This cost includes both messages
generated to disseminate the event, and messages generated
for TERA’s maintenance. To offer a reference figure, we
also evaluated the cost incurred by a simple event flooding-
based approach !! in the same settings.

Figure 6(a) reports the results when the total number of
subscriptions varies between 102 and 10%. The number of
topics is fixed and equal to 100. The network considered in
this test was constituted by 10* nodes, while the event pub-

1011 our tests this number always corresponded to the expected number
of notifications, i.e. no notifications were missed.

1Each event is broadcast in an overlay network containing all partici-
pants. The overlay is built and maintained through the same overlay man-
agement protocol employed by TERA (Cyclon). Also the mechanism is
the same considered for TERA.

10

lication rate was maintained constant at 1 event per topic
in each cycle. For the evaluation to be meaningful, we re-
quired each topic to be subscribed by at least one subscriber;
therefore, each curve is limited on its left end by the num-
ber of available topics. Moreover, we required each node to
subscribe each topic at most once; therefore, each curve is
limited on its right end by the number of nodes in the sys-
tem times the number of available topics (e.g. the curves
start from 100 subscriptions and end at 10% - 10* = 10°
subscriptions).

The reference cost expressed by the simple event flood-
ing algorithm decreases as the number of subscriptions in-
creases. This behaviour is justified by the fact that the total
cost incurred by the algorithm for each event dissemination
is constant, regardless of the number of subscriptions (as
it only depends on the popularity of each topic). Conse-
quently, increasing the number of subscriptions has a pos-
itive impact on the algorithm efficiency: each event broad-
cast in the overlay network will generate a higher number
of notifications.

TERA’s behaviour is more complicated, as various fac-
tors have an impact on its global cost. This global cost is the
sum of two contributions: a constant amount and a variable
one. The former does not depend on the total number of
subscriptions: it corresponds (i) to the cost induced by the
overlay management protocol’s view exchange mechanism
for the general overlay, and (ii) to the cost induced by the
access point lookup mechanism. The latter is proportional
to the total number of subscriptions per topic issued in the
system, and includes the cost (i) of subscription advertise-
ments, (ii) of the view exchange mechanism for topic over-
lays, and (iii) of the broadcast service used to implement
inner-cluster dissemination.

When the number of subscriptions per topic is close to
one (on the left end of the curve), the constant part of the
total cost is dominant. Therefore, the average notification
cost decreases as for the simple event flooding algorithm.
On the contrary, when the number of subscriptions per topic
increases, the variable part of the cost becomes dominant.
Consequently, the average notification cost quickly reaches
a lower bound that is defined by the out degree used in the
broadcast service (in our experiments we considered an out
degree equal to the view size, i.e. 20). Note that, the em-
ployment of smarter broadcast mechanisms could, in prin-
ciple, further reduce the asymptotic notification cost.

As expected, TERA and the event flooding protocol have
a comparable behavior when the number of subscribers per
topic is close to the total number of nodes. Indeed, in such
case, each node is subscribed to every topic; therefore, it is
interested in every event published in the system, making
differences between the two approaches negligible.

Figure 6(b) reports the same test, ran varying the amount
of topics and maintaining a fixed number of subscriptions

Average notification cost

Average notification cost

1,E+06 1,E406
nodes: 10000 nodes: 10000
topics: 100 subscriptions: 10000
event rate: 1
event rate: 1 1,E405
1,E+05
c c
2 8
] -]
K] § 1Ev04
E 1,E+04 £
o o
€ e
] § 1,E+03
a a
8 3
Y 1,E+03 &
g g
2 @ 1,E+02
9 L)
= =
1,E+02
1,E401
1,E+01 1,E400
1,E+01 1,E+03 1,E+05 1,E+07 1,E+00 1,E+01 1,E+02 1,E+03 1,E+04 1,E405
Subscriptions Topics
—O—Event flooding —@—TERA —O—Event flooding —@—TERA
(@) (b)
Average notification cost Average notification cost
1,E405 1,E409
i1
::;i: 18300 subscriptions: 10000
subscriptions: 10000 1L,E+08 1 | topics: 100
event rate: 1
£ 1,E+04 e 1,E+07
2 g U
-] 2
=
S 3
£ € 1,E+06
] &
2 K
< c
g 1E+03 5 LE+05
: :
2 &
© 2 1,E+04
2 I
F I
s o
1,E+02 Z e
1,E402
1,E+01
1,605 1,E-03 1,E-01 1,E+01 1,E+03 1,E+05 LE+0L
! ! ! ' ' ' 1,E+01 1,E+03 1,E+05 1,E4+07 1,E4+09
Event publication rate
Nodes
—O—Event flooding —e—TERA Event flooding era

(©)

(C)

Figure 6. The plots show the average nhumber of messages needed by TERA to notify an event when
the number of subscriptions (a), of topics (b), the event publication rate (c) and the total number of
nodes in the system (d) varies. For each figure, results from a simple event flooding algorithm are
reported for comparison.

11

(10%). In this case, the algorithm’s behavior is dual with
respect to the previous figure: a higher number of topics in-
creases the load for simple event-flooding (because it causes
each generated event to be matched by a smaller number of
subscribers), while TERA’s performance remain almost un-
changed.

Figure 6(c) reports the same test when the number of
subscriptions and topics is kept constant (100 topics and
10* subscriptions), while the event publication rate per topic
varies between 1075 and 10°. The plots show a clear
tradeoff: when the event publication rate is very low, the
higher overhead caused by TERA is not compensated by
the advantages induced by traffic confinement. Neverthe-
less, these advantages comes into play as soon as the event
publication rate raises. This result confirms TERA’s ability
to better scale in high load settings.

Finally, figure 6(d) reports how TERA scales with re-
spect to the number of nodes in the system. This test has
been run in a scenario where 10* subscriptions are uni-
formly distributed over 100 topics, and events are published
with a rate of 1 event per topic at each cycle. The num-
ber of nodes varies between 100 and 10°. The curves show
that TERA gracefully scales as the number of nodes in-
creases, up to a point after which the overhead due to view
exchanges in the general overlay becomes dominant and is
no longer compensated by event notifications (that only de-
pends from the constant amount of subscriptions).

5 Related Work

Publish/subscribe systems based on peer-to-peer archi-
tectures have been introduced a few years ago with the
development of topic-based systems built on top of Dis-
tributed Hash Tables (DHTs). SCRIBE [8] and Bayeux [26]
are two pub/sub systems built on top of two DHT over-
lays (namely Pastry [22] and Tapestry [25]), which lever-
age their scalability, efficiency and self-organization capa-
bilities. Systems like SCRIBE use the decoupled key/node
mapping provided by the DHT to efficiently designate a
rendez-vous node for each topic. This node is responsible
for collecting each event published for that topic and diffus-
ing it toward subscribed nodes. The main drawbacks of this
approach are the presence of a single node responsible for
the management of each topic (that can quickly become a
hot spot for very popular topics) and the usage of the stan-
dard DHT routing protocol to disseminate each event (thus
involving in the dissemination nodes that are not interested
in the event).

An interesting variant of this technique was proposed
by CAN [20]: members of the system subscribed to the
same topic are clustered in a separate overlay where events
belonging to the corresponding topic are simply flooded.
From this point of view the architecture of [20] implements

12

a mechanism for traffic confinement that is quite similar to
TERA’s one. However, in [20] a single access point ex-
ists for each topic overlay. Contrarily, TERA’s outer-cluster
routing does not impose a single access point for each topic
overlay thus avoiding issues related to traffic hot spots and
single point of failures, but rather makes every node sub-
scribed to a topic a possible access point.

Note that problems linked to the presence of hot spots
and single points of failure in DHT-based systems can be
mitigated introducing replication and load balancing tech-
niques. However, these techniques introduce other prob-
lems (e.g. consistency of topic-related data structures) and,
moreover, force a larger number of nodes to handle all the
load for a specific topic, even if they are not interested in
that topic.

Unstructured peer-to-peer systems were introduced as
a substrate for topic-based event dissemination in [2].
The system proposed in that work maintains, through the
widespread use of probabilistic algorithms, a hierarchy of
groups that directly maps a topic hierarchy. Each group con-
tains nodes subscribed to a specific topic and is maintained
through a probabilistic membership protocol [14]. The lack
in [2] of a general overlay network, not related to any spe-
cific topic, means that every publisher, before publishing an
event, must become part of the group corresponding to the
topic it wants to publish in. This also means that nodes play-
ing the role of simple publishers receive events they are not
subscribed to. Publishers in TERA are not required to join
any topic overlay before publishing events; they are part
of the general overlay, and the outer-cluster routing mecha-
nism leverages it to disseminate events they produce.

Recently, an interesting work by Voulgaris et al. [24],
proposes Sub-2-Sub, a solution to implement a content-
based publish/subscribe system. In Sub-2-Sub subscribers
sharing the same interests are clustered in ring-shaped over-
lay networks through a self-organizing algorithm that con-
tinuously analyzes overlapping intervals of interests. The
work mainly focuses on the evaluation of this novel method
for interest clustering and the related inner-cluster dissemi-
nation. Nevertheless, the outer-cluster routing issue is also
addressed, even if it is not fully evaluated. In particular,
a general overlay connects at lower level all nodes of the
system and the outer-cluster routing is based on a gossip-
based protocol which exploits the proximity of interests to
speed up the outer-cluster dissemination and to involve as
few non-interested nodes as possible. However, the outer-
cluster routing mechanism proposed is deeply related to the
content-based semantics, since it exploits partial overlap-
ping of interests. Its direct application to a topic based sys-
tems, in which partial overlapping does not exist, reduces to
a simple gossip.

6 Conclusions

This paper introduced TERA, a novel scalable archi-
tecture for topic-based event dissemination in unmanaged,
large-scale peer-to-peer environments. Scalability of the
proposed architecture has been assessed along several di-
mensions: number of nodes, subscriptions, topics and event
publication rate. The paper presented, through both analyt-
ical and experimental studies, different aspects of the event
dissemination mechanism paying most of the attention to
the outer-cluster routing assessment. Results showed how
TERA supports event dissemination reliably while confin-
ing traffic and achieving a fair load distribution.

After the encouraging results shown in this work, we are
currently working on several aspects of the TERA’s infras-
tructure to asses their performance. The first fundamental
aspect that must be evaluated is TERA’s behaviour in dy-
namic scenarios where nodes can subscribe/ unsubscribe
topics and join/leave the system at any time. TERA’s in-
ternal components and algorithms have been designed to
be resilient to the dynamic behaviour of nodes, but the ac-
tual impact of such behaviours on system performance must
be carefully evaluated. Preliminary tests confirm our intu-
ition: the widespread adoption of randomized algorithms
and data structures renders TERA resistant and adaptable to
both subscriptions and nodes churn. A second aspect we are
currently focusing on is the development of new algorithms
for building and maintaining more sophisticated topic over-
lay networks. The main target is to improve inner-cluster
dissemination by reducing generated traffic while achiev-
ing a high level of reliability. The improvements provided
by such a solution, coupled with the outer-cluster routing
mechanism introduced in this work, would constitute the
basis for a highly reliable event diffusion infrastructure able
to effectively confine traffic. Finally, we would like to point
out that one of the most interesting properties of TERA
is its ability to uniformly spread load among participants.
However, while this characteristics is desirable in many set-
tings, there can be scenarios where nodes heterogeneity can
be smartly leveraged to ease the burden on less powerful
nodes. In this respect we plan, as a future work, to study
the impact of heterogeneous node capabilities (in terms of
memory, bandwidth, or computation resources) on current
TERA’s algorithms, and possibly modify them accordingly.

References

[1] A. Allavena, A. Demers, and J. E. Hopcroft, Correct-
ness of a Gossip Based Membership Protocol, Pro-
ceedings of the ACM annual symposium on Principles
of Distributed Computing (PODC), 2005, pp. 292—
301.

13

[2] S. Baehni, P. Th. Eugster, and R. Guerraoui, Data-
aware multicast., Proceedings of the International
Conference on Dependable Systems and Networks
(DSN), 2004, pp. 233-242.

[3] G.Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao,
R.E. Strom, and D.C. Sturman, An Efficient Mul-
ticast Protocol for Content-based Publish-Subscribe
Systems, Proceedings of International Conference on

Distributed Computing Systems (ICDCS *99), 1999.

[4] Kenneth P. Birman, Mark Hayden, Oznur Ozkasap,
Zhen Xiao, Mihai Budiu, and Yaron Minsky, Bimodal
multicast, ACM Transactions on Computer Systems

(TOCS) 17 (1999), no. 2, 41-88.

[5] Fengyun Cao and J. Pal Singh, Efficient event rout-
ing in content-based publish-subscribe service net-
works, Proceedings of the 23rd IEEE Conference
on Computer Communications (INFOCOM) (Hong
Kong, China), vol. 2, IEEE, Washington, 7-11 March

2004, pp. 929 — 940.

[6] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf,
Design and evaluation of a wide-area notification
service, ACM Transactions on Computer Systems 3

(2001), no. 19, 332-383.

[7] A. Carzaniga and A.L. Wolf, A benchmark suite for
distributed publish/subscribe systems, Tech. Report
CU-CS-927-02, Software Engineering Research Lab-
oratory, Department of Computer Science, University

of Colorado at Boulder, 2002.

[8] M. Castro, P. Druschel, A. Kermarrec, and A. Row-
ston, Scribe: A large-scale and decentralized
application-level multicast infrastructure, IEEE Jour-
nal on Selected Areas in Communications 20 (October

2002), no. 8.

[9] P. Th. Eugster, R. Guerraoui, S. B. Handurukande,
P. Kouznetsov, and A.-M. Kermarrec, Lightweight
Probabilistic Broadcast, ACM Transanctions on Com-

puter Systems 21 (2003), no. 4, 341-374.

PT. Eugster, P.A. Felber, R. Guerraoui, and A.-
M. Kermarrec, The many faces of publish/subscribe,
ACM Computing Surveys 35 (2003), no. 2, 114-131.

[11] I. Gupta, K. Birman, and R. van Renesse, Fighting fire
with fire: using randomized gossip to combat stochas-
tic scalability limits, Journal of Quality and Reliability

Engineering International (2002).

Mirk Jelasity, Gian Paolo Jesi, Alberto Montresor,
and Spyros Voulgaris, Peersim, http://peersim.
sourceforge.net/.

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

[22]

Mark Jelasity and Alberto Montresor, Epidemic-style
proactive aggregation in large overlay networks, Pro-
ceedings of The 24th International Conference on Dis-
tributed Computing Systems (ICDCS), 2004, pp. 102—
109.

A.-M. Kermarrec, L. Massoulié, and A.J. Ganesh,
Probabilistic Reliable Dissemination in Large-Scale
Systems, TEEE Transactions on Parallel and Dis-
tributed Systems 14 (2003), no. 3.

D. Kostoulas, D. Psaltoulis, I. Gupta, K. Birman, and
A. Demers, Decentralized schemes for size estimation
in large and dynamic groups, Proceedings of the 4th
IEEE International Symposium Network Computing
and Applications (NCA), 2005.

Laurent Massoulié, Erwan Le Merrer, Anne-Marie
Kermarrec, and Ayalvadi Ganesh, Peer counting and
sampling in overlay networks: Random walk meth-
ods, Proceedings of the 25th Annual ACM SIGACT-
SIGOPS Symposium on Principles of Distributed
Computing (PODC), 2006.

E. Le Merrer, A-M. Kermarrec, and L. Massoulie,
Peer to peer size estimation in large and dynamic net-
works: A comparative study, Proceedings of the 15th
IEEE International Symposium on High Performance
Distributed Computing, 2006, pp. 7-17.

B. Oki, M. Pfluegel, A. Siegel, and D. Skeen, The
information bus - an architecture for extensive dis-
tributed systems, Proceedings of the 14th ACM Sym-
posium on Operating Systems Principles (SOSP),
1993, pp. 58-68.

D. Psaltoulis, D. Kostoulas, I. Gupta, K. Birman, and
A. Demers, Practical algorithms for size estimation
in large and dynamic groups, Proceedings of the 23rd
Annual ACM SIGACT-SIGOPS Symposium on Prin-
ciples of Distributed Computing (PODC), 2005.

Sylvia Ratnasamy, Mark Handley, Richard Karp,
and Scott Shenker, Application-level multicast using
content-addressable networks, Lecture Notes in Com-
puter Science 2233 (2001), 14-34.

A. Riabov, Z. Liu, J.L. Wolf, P.S. Yu, and L. Zhang,
Clustering algorithms for content-based publication-
subscription systems, Proceedings of the 22nd Interna-

tional Conference on Distributed Computing Systems
(ICDCS), 2-5 July 2002, pp. 133-42.

A. Rowstron and P. Druschel, Pastry: Scalable, de-
centralized object location and routing for large-scale

14

[25]

[26]

peer-to-peer systems, Proceedings of IFIP/ACM Inter-
national Conference on Distributed Systems Platforms
(Middleware), 12-16 November 2001, pp. 329-350.

S. Voulgaris, D. Gavidia, and M. van Steen, CYCLON:
Inexpensive Membership Management for Unstruc-
tured P2P Overlays, Journal of Network and Systems
Management 13 (2005), no. 2.

Spyros Voulgaris, Etienne Riviere, Anne-Marie Ker-
marrec, and Maarten van Steen, Sub-2-sub: Self-
organizing content-based publish and subscribe for
dynamic and large scale collaborative networks, Re-
search Report RR5772, INRIA, Rennes, France, De-
cember 2005.

B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D.
Joseph, and J. Kubiatowicz, Tapestry: A Resilient
Global-scale Overlay for Service Deployment, IEEE
Journal on Selected Areas in Communications 22
(2003), no. 1, 41-53.

S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. Katz, and
J. Kubiatowicz, Bayeux: An architecture for scalable
and fault-tolerant wide-area data dissemination, Pro-
ceedings of the 11th International Workshop on Net-
work and Operating Systems Support for Digital Au-
dio and Video, 25-26 June 2001, pp. 11-20.

Appendix A: Pseudo-code description

ST: (Subscription Table) a set of tuples with the form
< topicl D, overlayl D > where topicl D is a topic
identifier, and overlayI D is an overlay identifier.

APT : (Access Point Table) a set of tuples with the form
< topicI D,nodelI D > where topiclD is a topic
identifier, and nodel D is a node identifier.

Table 1. Data structures

Algorithm: 1 - Subscription Management

1: On application subscribing topic ¢ do

2 ifAdi :<t,i>c ST then

3 L — lookup(t)

4: if L = () then

5: 1 «— Instantiate()

6: else

7 i« Join(t,n),n € L

8: ST —< t,i>

9: On application unsubscribing topic ¢ do
10: if3¢ : <t i>c ST then
11: ST —< t,i >
12: Leave(t)
13: Every T time units do
14: L — GetSamples(D)
15: for alln € L do
16: forall < t,7 > ST do
17: s « GetSizeEstimation(i)
18: send subscription advertisement

containing < ¢,%,s >ton

Algorithm: 2 - Event Management

On publish or receive event e for topic ¢ do

if3¢ : <t i>c ST then
notify e to applications subscribed to ¢
diffuse e in ¢’s topic overlay

L « lookup access points for ¢

if not L = () then
send event e for topic ¢ to node n,
where n € L

1:
2
3
4:
5: else
6.
7
8

15

Algorithm: 3 - Access Point Lookup
1: On lookup for topic ¢ do

2: if <t,n > APT then

3: A—n

4: else

5: L «— GetSamples(r)

6: for all m € L do

7: A « starts a random walk through

m and collects the result

8: returns A

9: On receive subscription advertisement < ¢, %, s > from n do
10: if <t,x > APT then
11: T <—n
12: else

13: APT «—< t,n > with probability 1/s
14: removes random entries from APT to match

its maximum size

Algorithm: 4 - Partition merging

1: On receive subscription advertisement < t,%, s > from n do
2: if <t,j >€ ST and i # j then
3: j « ForceViewFExzchange(t, j,n)

Instantiate() — overlayl D: instantiate a new topic overlay
and returns the corresponding overlay identifier.

Join(topic,node) — overlayl D: joins the topic overlay as-
sociated to topic using node as the bootstrap node, then returns
the corresponding overlay identifier.

Leave(overlayID): leaves the topic overlay identified by
overlayl D.

GetSamples(num, overlayI D) — list: returns a list of
num node identifiers sampled from the overlay identified by
overlayl D; if this parameter is omitted the samples are drawn
from the general overlay.

GetSizeEstimation(overlayl D) — num: returns an esti-
mated size for the topic overlay identified by overlaylD.

ForceViewExchange(topic, overlayl D, node) —
overlayl D: execute a view exchange process for the overlay
associated to topic, and locally identified by overlayl D, with
node; returns an overlay identifier that is deterministically (e.g.
with a min/max function if identifiers are numerical) chosen
between the local and remote ones.

Table 2. Functions provided by the Overlay
Management Protocol.

