
Measuring Notification Loss in Publish/Subscribe Communication Systems

R. Baldoni, R. Beraldi, S. Tucci Piergiovanni and A. Virgillito
Dipartimento di Informatica e Sistemistica

Universit̀a di Roma “La Sapienza”
Via Salaria 113, 00198, Roma, Italy

email:{baldoni,beraldi,tucci,virgi}@dis.uniroma1.it

Abstract

A publish/subscribe communication system (PSS) realizes a
many-to-many anonymous interaction among its participants.
Producers of information (publishers) issue notificationsto the
PSS. These are delivered by the PSS to all subscribers that
declared interest in it. However, this decoupled form of inter-
action introduces delays between i) the production of a noti-
fication and its delivery to subscribers (diffusion delay) and
ii) the declaration of interest by a subscriber and its registra-
tion in the PSS (subscription/unsubscription delay). Suchde-
lays could lead to notification loss scenarios where an eventis
not delivered to an intended subscriber even though it was is-
sued when the subscription was active. This paper studies this
notification loss phenomenon by presenting a simulation study
of a PSS and an analytical model. The latter measures the per-
centage of notifications guaranteed by a PSS implementation
to a subscriber. To our knowledge this is the first paper that
addresses such a QoS issue. The model is based on a formal
framework of a distributed computation. The framework ab-
stracts the PSS through the two delays, defining safety and live-
ness properties that precisely characterize the semanticsof the
PSS.

1. Introduction

Communication systems following the publish/subscribe
(pub/sub) paradigm have experienced a relevant gain in pop-
ularity during the last years. Each participant in a pub/subsys-
tem can take on the role of apublisheror a subscriberof in-
formation. Publishers produce information (in form ofnotifi-
cations), that is consumed by subscribers. The basic charac-
terization of pub/sub derives from the way notifications flow
from senders to receivers: receivers are not directly targeted
from publisher, but they are indirectly addressed through the
content of notifications. That is, subscribers express their in-
terests by issuingsubscriptionsfor specific notifications, in-
dependently from the publishers that produces them, and then
they areasynchronouslynotified for all notifications, submit-
ted by any publisher, that match their subscriptions.

Since pub/sub has been largely recognized as an effective
approach for information diffusion, lots of pub/sub based sys-
tems, both research contributions [3, 2, 4, 9, 8] and commercial

products [7], has been presented and are actually used in sev-
eral application contexts. From the research side, on one hand,
a lot of work has been done in this field from the software en-
gineering community, focusing on scalability, efficient infor-
mation delivery or efficient and expressive information match-
ing. On the other hand, only few contributions exist [6] thatde-
fine, for example, which is the computational model underly-
ing a PSS and, most important, which are the delivery guaran-
tees that a PSS has to ensure to applications. This step is nec-
essary for carrying out, for example, an analytical study ofthe
performance of a PSS which is the base of a rigorous QoS pol-
icy. According to PSS users, the lack of this rigorous approach
is currently one of the main pitfall of a PSS which limits its ap-
plicability, for example, to mission critical systems.

In this paper we propose a computational model based on a
PSS where the latter is abstracted as a box connecting all par-
ticipants to the computation and the operations done by this
box (i.e., subscription/unsubscription storage and publication
diffusion) are modelled by two delays, namely the subscription
delay (denotedTsub) and the diffusion delay (denotedTdiff),
which characterize, respectively (i) the non-atomicity ofthe
subscription/unsubscription storage (ii) the non-instantaneous
diffusion of a notification. These delays depend of course on
the implementation of the PSS (e.g. centralized, network of
brokers, etc.) and model all the delays that could arise in the
processing of subscriptions and notifications from the PSS,due
both to computation and to network.

This model produces a global history of the computation, on
which we give two simple safety basic properties, namely le-
gality (i.e., a history contains only notify events included in a
matching subscription interval) and validity (i.e., a notify event
implies the presence in the system of a prior corresponding
event of publishing). These properties are independent from
the delays. Then we propose a liveness property which states
when a notify event belongs to the history: this is affected by
the interval a subscription is “active” and by the two delays
which act as a filter for the generation of the notify events after
the execution of a publish1. In other words our liveness prop-

1 We would like to remark that usually in distributed computingliveness
means “something good eventually happens” in this dynamic context
where (i) participants can subscribe and unsubscribe dynamically and (ii)
there are PSS operations which take time to take effect, this sentence
should be reworded as follows “under some timing conditions something
good happens”.

erty gives a timing condition implying, given a publish event,
the presence of a corresponding notify event in the global his-
tory.

This liveness condition gives us the opportunity to define a
measure of the notification loss of a PSS. More specifically, we
evaluate the probabilityd that a publicationx issued at timet
will be notified to each subscriber matchingx, provided that
the subscription was active att. Therefore,1 − d represents
the percentage of notification losses2. The system behaves ide-
ally if d is equal to 1 (each notification issued at timet is de-
livered at all matching subscriptions active att). We studyd
as a function of the subscription delay and of the diffusion de-
lay.

The paper presents a simulation study of a distributed PSS
(similar to the Siena [3] system) deployed over large-scale
wide-area networks. The simulation has been carried out by
integrating J-SIM real-time network simulator (developedby
The Ohio State University [5]) and GT-ITM network topology
model (developed by Georgia Tech [10]). Results allow to es-
timate the values ofTdiff , Tsub andd in realistic network set-
tings.

We finally propose an analytical model for a PSS that start-
ing from an estimate ofTdiff andTsub is able to determined
(note thatTdiff andTsub can be estimated on-the-fly by a sys-
tem manager). Even though the granularity of this model is
coarse, we believe that it can be very useful from two perspec-
tives: i) the designer of a PSS can quickly evaluate the overall
performance of the system; ii) users can predict the probabil-
ity of receiving a notification. We show that the model con-
firms the results obtained by the simulation.

The paper is structured as follows: Section 2 introduces the
formal framework, Section 3 presents the simulation study and
the analytical model and Section 4 concludes the paper.

2. A Framework for Publish/Subscribe

We consider a distributed system composed of a set of pro-
cessesΠ = {p1, . . . , pn} that communicate by exchanging in-
formation through a publish/subscribe communication system
(PSS). Processes are decoupled in the sense that they never
communicate directly within each other but only through the
PSS.

2.1. Notifications and Subscriptions

Processes can act both as producers and consumers of in-
formation, taking on the role ofpublishersand subscribers,
respectively. We consider the information produced and con-
sumed in form ofnotifications, made up of a set of attribute-
value pairs. Each attribute has aname, a simple character
string, and atype, one of the common primitive data types de-
fined in programming languages or query languages (e.g. inte-
ger, real, string, etc.).

2 Note that we assume an underlying reliable communication system, so a
notification loss is related to the inability of the PSS system to deliver in-
stantaneously information from a publisher to a subscriber.

On the subscribers’ side, interest in specific information
is expressed throughsubscriptions. A subscription is a pair
σ = (φ, p), wherep ∈ Π is the subscriber which is interested
to all publications declared through thefilter φ. A filter φ is a
query expression composed by a set of constraints. The con-
straints, depending on the attribute type, can comprise equal-
ity, comparison, substring, etc. and can be joined inside filters
through AND/OR expressions.

We say a notificationx matches the filter φ, if each at-
tribute in x satisfies all the constraints inφ. The task of ver-
ifying whenever an informationx matches a filterφ is called
matching (x @ φ). We say thatx matches a subscriptionσ if
it matchesσ.φ (x @ σ.φ).

������������	
��� ���
�� �����

����������
�������

���������
�������

� ��� ! "���σ!
�"���σ! #$% � !

& & &

Figure 1. A publish/subscribe system interac-
tion

2.2. Process-PSS Interaction

The execution of a publish/subscribe system comprises both
process-side operations, started by subscribers and publishers,
and PSS-side operations, started by the PSS. More specifically,
any processpi would be able to register (and cancel) a sub-
scription or to publish a notification in the system, but it isac-
tually the PSS that has the role of notifying a matching occur-
rence to interested subscribers.

We denote asop = {sub(σ), usub(σ), pub(x), ntfy(x)}
respectively the operations of registration of a subscription σ,
cancellation of a subscriptionσ, publication of a notificationx
and issue of the notification ofx (Figure 1).

Then, the operationssub(σ), usub(σ), pub(x) are issued by
a process and executed by the PSS, whilentfy(x) is issued by
the PSS on a processpi and then executed bypi. Thentfy(x)
issue occurs after (i) thepub(x) execution and (ii) a matching
operation executed within the PSS. Note that the PSS issues
ntfy(x) on the set of processes computed after the matching
operation.

2.3. Computational Model

To simplify the presentation, we assume the existence of a
discrete global clock whose rangeT is the set of natural num-
bers. We stress the fact that this is only a fictional, abstract de-
vice to which the processesdo not have access. We will use it
only for convenience of specifications.

pi

ei(sub(σ),s) ei(usub(σ),u)

I(σ)

pj

ej(pub(x),t1)

ei(ntfy(x),t2) ei(sub(σ’),s’) ei(usub(σ’),u’)

I(σ’)

Τ
s ut1 t2

ej(pub(x’),t')

ek(pub(y),t3)
pk

ei(ntfy(y),t4)

TON(σ)

t3 t4

TON(σ’)

Figure 2. Global History respecting Safety

The first modelling step is the representation of the execu-
tion of each process. Through an abstract representation ofthe
processes’ computation we describe which global computa-
tions are allowed in a publish and subscribe system, by speci-
fying properties that characterize them.

We assume either theissue of an operation op =
{pub(x), sub(σ), usub(σ)} at time t at a processpi or
the execution of op = ntfy(x) at pi at time t pro-
duces anevent ei(op, t) at processpi. We denote then
the local history of a processpi as the set of events oc-
curred atpi and ordered by their occurrence timehi =
{ei(op, t1), ei(op, t2), . . . ei(op, tm)} (with t1 < t2 < . . . <

tm). The global computation is then theglobal historyH =
〈h1, h2, . . . , hn〉, i.e. a collection of local histories, one for
each process.

Any two successive eventsei(sub(σ), s) andei(usub(σ), u)
(s < u), define asubscription intervalof pi for the subscrip-
tion σ, denoted byI(σ). Such subscription interval includes all
eventsei(op, t) s.t.s ≤ t ≤ u. Therefore, to univocally iden-
tify each subscription issued in the system by the same pro-
cess, a generic subscriptionσ becomes a triple (φ, p, s) where
σ.s indicates the time in which the subscription is issued. The
time betweens andu actually represents the time in which the
subscriptionσ is active from the subscriber view-point. We de-
note such time interval asTON (σ). A subscription interval is
defined also by thosesub events that have no corresponding
usub. In this case the interval will include all events that oc-
cur after thesub andTON will be consequently infinite. Figure
2 shows an example of global history of three processes, with
two subscription intervalsI(σ), I(σ′) and their corresponding
TON .

2.4. Safety properties

Safety properties pose constraints on which global histories
are not allowable in a PSS. The first property has to state the
basic semantics of the system: a subscriber cannot be notified
for an information it is not interested in. Formally:

∀ ei(ntfy(x), t) ∈ H ⇒ ei(ntfy(x), t) ∈ I(σ) s.t.x @ σ.φ

andσ.p = i

P1: Legality

In Figure 2 a generic computation satisfying Legality is
shown: supposing thatx andy matchσ, then both notify events
of x and y in pi fall in the subscription intervalI(σ) of pi.
While Legality states that a notify event belongs toH only if
it is included in a subscription interval matching that event, we
need a property that ensures the notify events are not invented
by a process. This is taken into account by the Validity prop-
erty which states as follows:

∀ ei(ntfy(x), t) ∈ H ⇒ ∃ ej(pub(x), t′) ∈ H s.t.t′ < t

P2: Validity

The computation in Figure 2 also respects Validity:
then both notify events,ei(ntfy(x), t2) and ei(ntfy(y), t4)
follow the corresponding publications,ei(pub(x), t1) and
ei(pub(x), t3), ast1 ≤ t2 andt3 ≤ t4.

Once safety properties are defined, it is interesting to under-
stand under which conditions a notify event should be gen-
erated, i.e. to define a Liveness property. As just said the
global history in Figure 2 satisfies safety. However supposing
x′ matchesσ′, should we expect that the PSS system gener-
ates a computation with the notify event forx′ in I(σ′)? To
answer this question it is first essential to make some consider-
ations about how a PSS is physically built. This is actually the
aim of the following section.

2.5. PSS Implementation Parameters

The PSS has two main tasks:

• store and manage subscriptions from processes caused by
the issue of subscribe/unsubscribe operations;

• diffuse a notificationx to the interested subscribers after
a publish operation was issued by a process;

Obviously, behind this abstract and informal description of
a PSS, there exists an actual PSS physical implementation (e.g.
centralized, distributed, network of brokers etc.) that performs
the desired functionality. In order to capture the behaviorof
anyPSS implementation we define two parameters that respec-
tively take into account (i) non-instantaneous effects of sub-
scribe/unsubscribe operations and (ii) the non-instantaneous
diffusion of a notificationx to interested subscribers after a

pi

PSS
TusubTsub

ei(sub(σ),s) ei(usub(σ),u)

Τ
s u

TON(σσσσ)

t1 t2t0

stable σ

Figure 3. Subscription/unsuscription delays

publish operation issued by a process. These parameters model
the time required for the internal processing at the PSS and the
network delay elapsed to propagate subscriptions and notifi-
cations, in a distributed implementation. Let us finally assume
that any message sent by a processes of a PSS implementa-
tion uses reliable channels.

Subscription/unsubscription delays.When a process issues a
subscribe/unsubscribe operation, the PSS is not immediately
aware of the occurred event. In other words, at an abstract level,
the registration (resp. cancellation) of a subscription takes a
certain amount of time to be stored into the PSS. This time en-
compasses for example the update of the internal data struc-
tures of the PSS and the network delay due to the propagation
of the operation among all the entities constituting the PSS. To
consider such non-instantaneous operations, we define a maxi-
mum acceptable threshold of time (implementation dependent)
after which a subscribe/unsubscribe operation issurelystored
into the PSS. As an example, in a distributed implementation
of a PSS, this meanseach entityimplementing the PSS after
this threshold of time is aware of the registration/cancellation
operation.

We denote such delay asTsub for subscribe operations and
asTusub for unsubscribe operations. Therefore if a subscribe
operation is issued at times then it takes effect at a timet such
thats < t ≤ s + Tsub

3. The same holds for unsubscribe op-
erations, i.e. an unsubscribe operation, issued at timeu, takes
effect at a timet′ such thatu < t′ ≤ u + Tusub.

To model this effect on the PSS, we consider the PSS char-
acterized by astateS composed by a set of subscriptions. In
particular, we defineS(t) = {σ1, σ2, ...σm} the set of all sub-
scriptions stored into the PSS at timet. We assume the initial
stateS(t0) = ∅. Therefore if a subscribe (resp. unsubscribe)
operation for a subscriptionσ takes effect at timet (resp.t′)
then σ ∈ S(t) (resp.σ 6∈ S(t′)). As a consequence, even
thought and t′ are a-priori unknown, we can state with cer-
tainty thatσ ∈ S(s + Tsub) andσ 6∈ S(u + Tusub). For exam-
ple in Figure 3,σ ∈ S(t1) andσ 6∈ S(t2), but in both[s, t1],
[u, t2] time intervals there is uncertainty wheneverσ ∈ S or
not.

At an abstract level each subscription of the PSS state at
time t ∈ T can therefore bestable(i.e., it surely belongs to
PSS state) or non-stable. A subscriptionσ is stable with cer-
tainty at timet, iff s + Tsub ≤ t ≤ s + TON (σ).

Diffusion delay.As soon as a publication is issued, the PSS
performs adiffusionof the information: it performs a match-

3 In our framework we reasonably assume for each subscriptionsσ we have
TON (σ) > Tsub.

ing to compute the set of interested subscribers and sends the
notification to them. Note that, depending on the PSS imple-
mentation, the diffusion can be performed in several ways, us-
ing for example a routing protocol on a set of distributed bro-
kers. Without entering implementation details, we can say that
this operation takes a certain amount of timeduring which the
PSS computes and issues notify operations to interested sub-
scribers, i.e. diffusion takes a non-zero time. Let us suppose
that a publication of a notificationx is made at a given timet,
and there is a matched subscriptionσ that is stable at timet,
i.e. σ ∈ S(t). Then the PSS starts the diffusion to notifyx to
σ.p = pi. We denote as∆i the time elapsed in order to com-
plete the diffusion ofx to pi. An eventei(ntfy(x), t′) can be
generated only at timet′ ≤ t+∆i. After the completion of the
diffusion, the notificationx disappears from the PSS, i.e. a fur-
ther notify event can no longer be generated.

Note that in the worst case scenario, the set of subscribers
to be notified and the whole set of processes coincides.
In this case the diffusion takes the maximum time among
{∆1,∆2, . . . ∆n}. We define such maximum delay asdiffu-
sion delay, denotedTdiff .

To clarify the meaning of the diffusion delay see Figure 4.
For sake of simplicity and without loss of generality we as-
sume that the communication delay between a process and
the PSS is zero. This implies that (i) a notification published
by a process immediately gets the PSS, and (ii) if PSS is-
sues a notify operation on a processpi, the corresponding
local event atpi is immediately generated. Immediately af-
ter the publication of the notificationx at the timet1, the
PSS, duringTdiff , notifies the interested subscribers. Suppos-
ing that{pj , pk, ph} is the set of interested subscribers then
Tdiff = max{∆j ,∆k,∆h} = ∆h. Let us remark that each
generic interested subscriberpi is notified in specific instant of
time (t + ∆i) but∆i is not a-priori known.

It is important to point out that the set of interested sub-
scribers is clearly computed on the basis of PSS’s state. How-
ever,how and whenthe state is considered, is implementation
dependent. Moreover,the state can change during the diffu-
sion. In the following these aspects will be clarified.

2.6. Liveness Property

The concept of “interested subscriber” has been till now
considered quite intuitively. The desirable PSS behavior is the
following: once a notification is published (i.e.,ej(pub(x), t)
is generated inH), x is notified to each interested subscriber;
but what is an interested subscriber? Ideally it is a processpi

that expresses its interest forx through a subscriptionσ s.t.

pi

PSS

pj

Τ
t1 = t1+ Tdiff

ej(ntfy(x),t2)

ei(pub(x), t1)

pk

ek(ntfy(x),t3)
ph

ej(ntfy(x),t4)

t4=t1 +∆h

Tdiff

t3=t1 +∆kt2=t1 +∆j

Figure 4. Example of Diffusion

x @ σ.φ andσ.s ≤ t ≤ σ.s + TON (σ). However the PSS
system is surely aware of the subscriptionσ by pi only when
the subscription becomes stable, i.e. at timeσ.s + Tsub. Then,
at first check, an interested subscriber seems to be a process
whose subscription is stable (i.e. belonging to the PSS state),
at the moment in which the matching information is published,
i.e.σ.s + Tsub ≤ t ≤ σ.s + TON (σ).

However as (i) the interest of a subscriber is a dynamic di-
mension and (ii) a notify can be issued to a subscriber at any
time during the diffusion interval of the corresponding pub-
lication, it is still difficult to characterize the exact behav-
ior of the system. Let us point out this with an example. Let
pi be a process producing a subscriptionσ andpj be a pro-
cess producing an eventej(pub(x), t) such thatx @ σ.φ

and σ.s + Tsub ≤ t ≤ σ.s + TON (σ). However, if PSSis
able to notifyx at pi only at a timet′ = t + ∆i such that
t′ > σ.s+TON (σ) thenpi will discardx as it is not longer in-
terested tox.

Then, the definition of a liveness property, that states exactly
to which subscribers a publication is notified to, must be neces-
sarily defined considering both the subscription/unsubscription
delays and the diffusion delay. This property can be stated as
follows:

∀(ej(pub(x), t) ∧ (I(σ)
.
= [σ.s + Tsub, σ.s + TON (σ)] ∈ H

s.t.I(σ) ⊃ [t, t + Tdiff]) ⇒ ∃ eσ.p(ntfy(x), t′′) ∈ H

P3: Liveness

This property states that the delivery of a notification can be
guaranteed only for those subscribers that maintain their sub-
scriptions stable for the entire time taken by notification dif-
fusion (diffusion delay). In other words, Liveness property de-
fines the PSS system condition under which a notify event be-
longs to the global history. However, a notify event can alsobe-
long to the history even though this system condition is not ver-
ified. This is due to the uncertainty on the system state and on
the diffusion time of an information through the PSS, as shown
in the example depicted in Figure 5.

From application of the Liveness property the only no-
tify events guaranteed to be in the global history are
ek(ntfy(x), t2) and ek(ntfy(y), t5), as pk has a subscrip-
tion (matched by bothx andy) stable during the whole dif-

fusion of x and y. However the global history contains also
eh(ntfy(x), t3). This depends on the fact that (i) the sub-
scribe operation for subscriptionσ2 has taken effectbeforethe
σ2.s + Tsub, (ii) PSS has made the diffusion relying on a state
containingσ2, and (iii) the diffusion toph has completed be-
fore t1 + Tdiff . Note that such “lucky” conditionsmayoccur
but the probability of its occurrence is not equal to one.

2.7. On the liveness specification in dynamic systems

As pointed out in [1], understanding and comparing differ-
ent publish/subscribe systems is quite a difficult task, dueto in-
formal and different semantics. From this, it stems the require-
ment of precisely defining formal semantics in terms of safety
and liveness properties as in any distributed system.

To our knowledge the first step in this direction was done
in [6], where the author defines safety properties which are
actually similar to the ones defined in Section 2.4. However
defining “no bad thing can happen” is the easy part of the job
in dynamic distributed systems (such as publish/subscribeap-
plications). The tricky part is defining a property of progress
of the whole system (i.e., the liveness property) when pro-
cesses behave independently and dynamically. In the classi-
cal (static) distributed system, liveness constrains a system to
eventuallymake progress on the global computation towards a
certain target. [6] defines liveness along this line.“If a notifi-
cation matching a set of active subscribers is published, then
each subscriber will eventually be notified unless it cancels
its subscription”. In other words if a subscribernever discon-
nectswith a subscription matched by a published notification,
it eventually will be notified for that notification. Then noth-
ing is guaranteed if the subscriber remains connected only for
a certain time (even though this is a very long time!). Of course
the assumption that a subscriber never disconnects is unreal-
istic in a PSS system. Another example of the inadequacy of
the liveness property as defined in classical distributed systems
comes from the crash-prone model. In this setting, the verifi-
cation of the liveness property ensures progress toward theter-
mination of a computation. This usually requires the assump-
tion on a minimum number of correct processes in the system
(i.e., processes that never fail). If we make a parallel witha

Tusub

pj

PSS

pk

Τ

ek(ntfy(x),t2)

ej(pub(x), t1)

Tsub Tusub

ek(sub(σ1),s1) ek(usub(σ1),u2)

ph

eh(ntfy(x),t3)eh(sub(σ2),s2) eh(usub(σ2),u1)

pi
ei(pub(y), t4)

ek(ntfy(y),t5)

t1

Tsub

Tdiff Tdiff

t1+Tdiff t4+Tdiff

Figure 5. Global History with not expected notify events

PSS, this means to make an assumption on the minimum num-
ber of subscribers that never disconnects. It is clear that in a
PSS such an assumption does not make any sense4. A discon-
nected processis not a bad processas “disconnection” is a mat-
ter of life in a PSS and not an undesirable event to cope with.
A liveness specification for this dynamic context should cap-
ture this normal behavior.

Roughly speaking, our liveness definition actually consid-
ers “each notify event” as the target of our computation and
defines timing assumptions under which a notify event is in
the global history of the computation (i.e., this event has to
be notified by the PSS). This presence depends of three de-
lays (Tdiff , Tsub, Tusub) which abstract the dynamic behav-
ior of the computation and the PSS implementation. Thanks
to the latter point our Liveness condition can also be used to
compare different PSS implementations. To explain this point,
consider the following example. Suppose to have two differ-
ent PSSs managing the same set of clients and the same type
of subscriptions and notifications. Moreover suppose that:

1. a process publishes in both systems a notification match-
ing an active subscription made by the same subscriber (a
subscriber connected to both systems),

2. the subscription will remain active for two days after the
publication but will be notified only by the first system.

In this scenario both systems satisfies liveness as defined in
section [6], but are they equally good? It seems that the latter
is a “lazy” system, while the former is more reactive and effec-
tive. In the next section we show how this reactiveness can be
measured to give an idea of the effectiveness of the implemen-
tation.

Let us finally remark that ifTdiff was infinite our definition
of Liveness would not guarantee anything as the classical Live-
ness stated in [6]. However, differently from [6] when the three

4 Defining a liveness that gives guarantees if and only if a process never dis-
connect is the equivalent of not giving any guarantee.

delays are finite (typical practical case) some subscription (sat-
isfying conditions stated in the Liveness property) must beno-
tified.

3. Measuring Notification Loss

Letx be a notification issued at timet andp be a generic pro-
cess that has a subscription at timet matchingx. We denote as
d the probability thatx is notified top (notification probabil-
ity). Therefore,notification lossis the probability thatx is not
notified top (i.e.,1 − d).

In this Section we first provide numerical results forTdiff ,
Tsub andd obtained through the simulation of a PSS in a spe-
cific network setting. Then, we present a simple and general
analytical model for the computation ofd.

3.1. PSS Simulation Study

We carried out our experiments by implementing the proto-
type of a distributed PSS made up of a set of distributed bro-
kers, communicating through point-to-point application-level
connections. The system is based on the content-based rout-
ing algorithm (CBR) for acyclic peer-to-peer topologies intro-
duced in Siena [3]. The key idea is to diffuse subscriptions in
order to build paths for routing events, so that parts of the net-
work with no interested subscribers are excluded from event
diffusion. Each broker has to maintain a routing table, thatrep-
resents a local view of the global subscription distribution.

The CBR algorithm limits subscription propagation exploit-
ing containment relationships among subscriptions. A sub-
scriptionσ1 is contained in anotherσ2 if σ2 matches all the no-
tifications forσ1. A subscriptionσ that is not present in the sys-
tem is propagated by its subscriber throughout the entire net-
work. If the same subscriber issues a subscription contained in
σ, it does not need to route it again.

The CBR algorithm for event diffusion works as follows:
each time an evente is received by a brokerBi either from

0

0,2

0,4

0,6

0,8

1

0 2 4 6 8 10

Time (sec)

G
(t)

(a)

0

0,2

0,4

0,6

0,8

1

0 2 4 6 8 10 12

Time (sec)

F
(t)

(b)

Figure 6. Experimental values of Tdiff and Tsub

with respect to B(t)

its local publishers or from a link, it matchese against all lo-
cal subscriptions and then forwardse only through links which
can lead to potentiale’s subscribers. Forwarding links are de-
termined from the routing table, by matching the event against
the entries contained in it.

Simulation ResultsSimulations were performed by running
the PSS prototype on top the J-Sim [5] real-time network sim-
ulator, providing an accurate representation of the behavior of
the entire network stack. Experiments featured 100 brokers
and 100 network nodes. Network-level topologies are gener-
ated using the Georgia Tech ITM topology generator [10] and
follow the Transit-Stub model. The application-level network
(i.e. the distribution of the distributed brokers over the net-
work nodes and the links between them) is self-generated by
our prototype and follows a random topology. The fact that the
application-level topology is oblivious of the underlyingnet-
work topology reproduces the common real-world situation.
We stress the fact that this technique was never used in previ-
ous PSS simulation studies [3, 6], which did not include a rep-
resentation of the network level.

Figures 6(a) and 6(b) respectively show the plots of the per-
centageB(t) of brokers at timet reached by a new publica-
tion or by a new subscription issued at time 0. The time when
all brokers receive the notification/subscription corresponds to

0

0,2

0,4

0,6

0,8

1

0 200 400 600 800 1000

Subscription interval, TON (sec)

d

Figure 7. Experimental values of d

Tdiff /Tsub, that in this case are roughly 8 seconds and 12 sec-
onds, respectively.

Figure 7 shows the number of notifications actually obtained
for events published during a subscriber’s subscription inter-
val. These results were obtained as follows: we generated a
subscription on a randomly chosen broker, and after a time
TON , a corresponding unsubscription. During the subscription
interval, an event is published in another random broker. The
exact publication time is randomly chosen and follows a uni-
form distribution inside the subscription interval. We repeated
this over 250 different random subscriber-publisher couples
and executed five runs of the experiment each on a different
network topology. The whole process was repeated for differ-
ent values ofTON , obtaining the curve depicted in Figure 7.

3.2. Analytical Model

The analytical model rests on the following assumptions:

1. the processp issues the subscriptionσ for a period
TON ≥ Tsub + Tdiff ;

2. any other subscription can only be issued byp afterTusub

from the lastusub operation

3. the time a publication matchingσ is issued is a uniformly
distributed random variable defined over the subscription
intervalTON ;

4. all publishers have the same probability to generate a no-
tification matchingσ.

The delayTusub does not affectd because we assumed that
a subscriber can issue a new subscription only afterTusub and,
by definition,σ has been cancelled from the PSS’s configura-
tion after this time interval. Removing such hypothesis, how-
ever, would only increase the valued (i.e., the notification
probability we calculate is a lower bound of the actual prob-
ability).

Let tsub be the timep issues thesub operation,tusub the
time whenp issues the corresponding unsubscription andtpub

the time the notificationx is published. Then, the PSS guar-
antees the delivery of any publication occurring at a timetpub

such thattsub + Tsub ≤ tpub ≤ tusub − Tdiff . This means
in fact that the publication was issued when the subscription

TdiffTsub TON

1

g(τ)

f(τ)

probability

time

τ

τ

Figure 8. A sketch of P (t), the probability that a
pub issued in the interval TON is notified to an
interested subscriber.

was stable and there was enough time for information diffu-
sion to be completed beforep issues the unsubscription. More-
over, for the publications such thattsub < tpub < tsub + Tsub

as well as for those withtusub − Tdiff < tpub < tusub there is
also some probability for being notified.

For example, let us consider a distributed implementation of
the PSS as a network of brokers. Then, roughly speaking, it is
possible thatx was published by some process “close” top so
that, after a delayt < Tsub, the portion of the PSS involved in
the diffusion ofx towardsp has already received the updates
for correctly notifyingx, as suggested by our simulations.

To model this aspect, we denote withf(τ) the probability
density function that the PSS notifiesx to p, given thatx was
issued at timetpub = tsub + τ , where0 ≤ τ ≤ Tsub. Clearly,
f(τ) must be a monotonically increasing function withf(0) =
05 andf(Tsub) = 1. In our experiments,f(τ) corresponds to
the function plotted in Figure 6(a).

Also, g(τ), where0 ≤ τ ≤ Tdiff , is the probability den-
sity function that a notification published at a timetpub =
tusub − Tdiff + τ is notified top. In a real implementation,
this function captures the probability that the notification x

reachesp before it unsubscribes forσ. The functiong(t) must
be a monotonically decreasing function withg(0) = 1 and
g(Tdiff) = 0. In our experiments,g(τ) corresponds to the
function plotted in Figure 6(b).

Figure 8 sketches the overall probability density function
P (t) that a notificationx matchingσ, issued at a timet in-
sideTON , is notified by the PSS.

Due to the assumption (iv), 1
TON

dt is the conditional prob-
ability that tpub ∈ [t, t + dt] (tsub ≤ t ≤ tusub), given
that an information was published during the subscrip-
tion interval. Moreover,P (t)

TON
dt is the probability that the an

event is published in the interval[t, t + dt] and it is noti-
fied.

Applying the total probability theorem, we can thus evalu-
ated as following:

5 Actually, the value is slightly higher than 0, because there is the probabil-
ity thatx is issued byp itself.

d =
1

TON

(

∫

Tsub

0

f(t) dt +

∫

TON−Tdiff

Tsub

1 dt +

∫

Tdiff

0

g(t) dt

)

(1)

that can also be rewritten as

d =
TON − Tdiff − Tsub

TON

+
1

TON

(
∫

Tsub

0

f(t) dt +

∫

Tdiff

0

g(t) dt

)

(2)

Note thatd is directly proportional to the area of the curve
depicted in Figure 8. Clearly, ifTdiff = Tsub = 0 then the
PSS behaves as an ideal system withd = 1 (all publications
are immediately notified).

3.3. Analytical Results

In order to provide some numerical results, the functions
f(τ) andg(τ) have to be specified. It is expected that the ac-
tual shape of the curves reflects, respectively, the update mech-
anisms used internally by the PSS and the diffusion mecha-
nism. For the sake of simplicity we will consider the following
definitions:

f(τ) =
(τ

Tsub

)
1

r

(3)

g(τ) =
(Tdiff − τ

Tdiff

)
1

r

(4)

where consideringr > 0. r is a parameter representing the
rapidity of information propagation inside a PSS. Ifr → 0 a
piece of information issued at timet is seen by all brokers at
time t + Tsub (resp.t + Tdiff). If r → ∞, then a piece of in-
formation issued at timet is seen by all brokers at timet (ideal
behavior).

Considering these simple expressions forf(τ) andg(τ) has
the advantage of highly simplifying the analysis, at the same
time not disproving the significance of the numerical results,
since, as it is clear from the expression ofd, the delivery prob-
ability depends only from the area defined by functionP (t),
not by its shape. The above analytical expressions off(τ) and
g(τ) are thus equivalent to the actual functions if they provide
the same area: for a real application of our model it is suffi-
cient to calculate the value ofr that provides the same area.

According to the above assumptions:

∫ Tsub

0

f(τ) dτ =
1

T
1

r

sub

∫ Tsub

0

τ
1

r dτ =
r

r + 1
Tsub

Similarly,

∫ Tsub

0

g(τ) dτ =
r

r + 1
Tdiff

Hence,

d =
TON − Tdiff − Tsub

TON

+
r

r + 1

Tsub + Tdiff

TON

0

0,2

0,4

0,6

0,8

1

0 200 400 600 800 1000

Subscription interval, TON (sec)

d

Simulation results

Analytical results

Figure 9. Comparing simulation and analysis

that can be rewritten as

d = 1 −
1

r + 1

Tdiff + Tsub

TON

Note that, forTON = ∞, or ∆diff + ∆sub = 0, or r = ∞,
d = 1 (Recall that we have assumedTdiff + Tsub ≤ TON).

Figure 9 shows a comparison between the curve obtained
from the experiment and the one calculated analytically by ap-
plying Equation 3. The values ofTsub and Tdiff are 8 and
12 seconds (obtained from Figures 6(b) and 6(a)). The value
of r used is 1.14. This is the value that inserted in the ana-
lytical expression off(τ) andg(τ) in Equations 1 and 2 pro-
vides a function which returns the same value of the integralof
the functions that interpolate the plots shown in Figures 6(b)
and 6(a) respectively. The results of the comparison clearly
show the similarity between the experimental and the analyt-
ical curves, especially for low values ofTON , where the two
curves completely overlap. For growing values ofTON differ-
ences between the two plots are within 5%.

Let us finally remark that a generic PSS system is charac-
terized by the two values ofTsub andTdiff that give a bound
on the time required to propagate subscriptions and notifica-
tions, and by the parameterr, which summarizes the way in-
formation is propagated inside the network. As an example of
application of the model, Figure 10 reports how the notifica-
tion probability varies as a function of time for different values
of Tsub + Tdiff andr = 1.14. The curve can be used to pre-
dict how the probability is affected by the two delays.

4. Conclusions

In this paper we presented a formal framework for the gen-
eral specification of the delivery guarantees offered by a pub-
lish/subscribe system. With respect to other contributions [6],
our framework gives timing conditions under which a notify
event is generated. The timing conditions change accordingto
the PSS implementation.

The framework has been used to devise a simple analytical
model of a PSS (the first to the best of our knowledge). Re-
sults of such a model can be used as rule of thumb for users

0,7

0,8

0,9

1

0 500 1000 1500 2000

Subscription interval, TON (sec)

N
ot

ifi
ca

tio
n

pr
ob

ab
ili

ty

Tdiff+Tsub=5s

Tdiff+Tsub=19s

Tdiff+Tsub=60s

Figure 10. Notification probability as a function
of the subscription interval TON , for r=1.14 and
different values of Tsub + Tdiff

and designers of a PSS to predict the behavior of their ap-
plications with respect to the notification loss due to concur-
rent and independent execution of publishers and subscribers
and to the non-instantaneous delivery of a notification. There-
sults obtained from a deep, time-consuming simulation anal-
ysis, which integrates two complex public domain simulation
tools (J-Sim and GT-ITM) plus a home-brewed PSS prototype,
confirm those obtained through our analytical model.

As far as future work is concerned, we are planning to com-
plicate the model along two directions. Firstly, we want to ana-
lyze the relation betweenr, Tdiff andTsub. Secondly, we want
to study the effect of the persistence of a publication (i.e., a
publication is stored in the system for a given lifetime) within
the PSS both on the formal framework and on the analytical
model. We are particularly interested in capturing the relation
between the persistence and the notification loss.

References

[1] R. Baldoni, M. Contenti, and A. Virgillito. The Evolution of
Publish/Subscribe Systems. In André Schiper and Alexander
A. Shvartsman and Hakim Weatherspoon and Ben Y. Zhao, ed-
itor, Future Trends in Distributed Computing, Research and Po-
sition Papers, volume 2584. Springer, 2003.

[2] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao,
R. Strom, and D. Sturman. An Efficient Multicast Protocol
for Content-based Publish-Subscribe Systems. InProceedings
of International Conference on Distributed Computing Systems,
1999.

[3] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and Evalua-
tion of a Wide-Area Notification Service.ACM Transactions on
Computer Systems, 3(19):332–383, Aug 2001.

[4] G. Cugola, E. D. Nitto, and A. Fuggetta. The JEDI Event-Based
Infrastructure and its Applications to the Development of the
OPSS WFMS. IEEE Transactions on Software Engineering,
27(9):827–850, September 1998.

[5] J-Sim. http://www.j-sim.org, 2003.
[6] G. Muhl. Large-Scale Content-Based Publish/Subscribe Sys-

tems. Phd thesis, Technical University of Darmstadt, 2002.

[7] B. Oki, M. Pfluegel, A. Siegel, and D. Skeen. The Informa-
tion Bus - An Architecture for Extensive Distributed Systems.
In Proceedings of the 1993 ACM Symposium on Operating Sys-
tems Principles, December 1993.

[8] R. Preotiuc-Pietro, J. Pereira, F. Llirbat, F. Fabret, K. Ross, and
D. Shasha. Publish/Subscribe on the Web at Extreme Speed. In
Proc. of ACM SIGMOD Conf. on Management of Data, Cairo,
Egypt, 2000.

[9] B. Segall and D. Arnold. Elvin Has Left the Building: A Pub-
lish /Subscribe Notification Service with Quenching. InProc. of
the 1997 Australian UNIX and Open Systems Users Group Con-
ference, 1997.

[10] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How to model
an internetwork. InIEEE Infocom, volume 2, pages 594–602,
1996.

