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Abstract. Total Order (TO) broadcast is a widely used communication
abstraction that has been deeply investigated during the last decade. As
such, the amount of relevant works may leave practitioners wondering
how to select the TO implementation that best fits the requirements
of their applications. Different implementations are indeed available,
each providing distinct safety guarantees and performance. These as-
pects must be considered together in order to build a correct and suffi-
ciently performing application. To this end, this paper analyzes six TO
implementations embedded in three freely-distributed group communi-
cation systems, namely Ensemble, Spread and JavaGroups. Implementa-
tions are first classified according to the enforced specifications, which is
given using a framework for specification tailored to total order commu-
nications. Then, implementations are compared under the performance
viewpoint in a simple yet meaningful deployment scenario. In our opin-
ion, this structured information should assist practitioners (i) in deeply
understanding the ways in which implementations may differ (specifi-
cations, performance) and (ii) in quickly relating a set of total order
algorithms to their specifications, implementations and performance.

1 Introduction

Total Order (TO) is a widely investigated communication abstraction imple-
mented in several distributed systems. Intuitively, a TO primitive ensures that
processes of a message-passing distributed system deliver the same sequence of
messages. This property is extremely useful for implementing several applica-
tions, e.g active software replication [1].

However, there are several subtleties that still deserve clarification, especially
among practitioners that can get confused by the relevant amount of work done
in this area. A first issue is to understand the guarantees of a TO primitive,
as distinct primitives and implementations enforce distinct specifications that
have to be matched against application correctness requirements. To achieve
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this, in this paper we first present six existing TO specifications organized into
a hierarchy, and then we identify how specifications differ in terms of the possi-
ble behavior of faulty processes. Then, we classify into the hierarchy both fixed
sequencer and privilege-based TO protocols given in the context of primary
component group communications [2, 3], by also pointing out real systems im-
plementing these primitives. These are the results of a formal analysis available
in a companion paper [4].

A further issue we deem relevant for practitioners is performance. Several
works present performance analysis of TO primitives, e.g. [5, 6]. Some other
works discuss the correlation between the guarantees and the achievable perfor-
mance of a TO implementation, e.g. [7]. These works mainly focus on intrin-
sic characteristics of the analyzed primitives, and not on the overall system in
which a primitive is typically implemented. Therefore in this paper, in order to
assist practitioners in finding the TO implementation that best matches both
applications’ correctness and performance requirements, we present a simple yet
meaningful performance analysis of the implementations in real systems of the
discussed TO primitives.The results show that the performance of a TO primitive
depends on the combination of three factors, (i) the enforced TO specification,
(ii) the TO protocol used to implement that specification, and (iii) the way the
protocol is implemented.

The remainder of this paper is organized as follows. Section 2 introduces
total order broadcast. In particular, it describes the system model, the proper-
ties defining the TO problem, a hierarchy of TO specifications, and highlights
their differences in terms of the admitted behavior of faulty processes. Then,
Section 3 presents fixed-sequencer and privilege-based TO implementations pro-
vided by group communication systems. Section 4 describes some real systems
implementing TO primitives and compares them from a performance point of
view (Appendix A gives further details about the configuration of these systems).
Finally, Section 5 concludes the paper.

2 Total Order Broadcast

2.1 System model

Asynchronous distributed system. We consider a system composed by a finite set
of processes Π = {p1 . . . pn} communicating by message passing. Each process
behaves according to its specification until it possibly crashes. A process that
never crashes is correct, while a process that eventually crashes is faulty. The
system is asynchronous, i.e. there is no bound known or unknown on message
transfer delays and on processes’ relative speeds. In order to broadcast a message
m, a process invokes the TOcast(m) primitive. Upon receiving a message m, the
underlying layer of a process invokes the TOdeliver(m) primitive, which is an
upcall used to deliver m to the process. We say that a process p ∈ Π tocasts a
message m iff it executes TOcast(m). Analogously, we say that a process p ∈ Π
todelivers a message m iff it executes TOdeliver(m).



Properties and specifications. Each process p ∈ Π can experience the occurrence
of three kinds of events, namely TOcast(m), TOdeliver(m) and crash. An his-
tory hp is the sequence of events occurred at p during its lifetime. A system
run is a set of histories hpi , one for each process pi ∈ Π. Informally speak-
ing, a property P is a predicate defining a set RP of system runs, composed
by all system runs whose process histories satisfy P . A specification, denoted
S(P1 . . . Pm) (with m ≥ 1) is the conjunction of m properties, thus defining a
set RS of system runs, composed by those runs satisfying all properties in S.
Given two specifications S(P1 . . . Pm) and S′(P ′1 . . . P ′`), we say that S is stronger
than S′, denoted S → S′, iff RS ⊂ RS′ . In this case we also say that S′ is weaker
than S. Finally, two specifications S and S′ are said to be equivalent, denoted
S ≡ S′, iff RS ≡ RS′ .

2.2 Total order properties

Total order broadcast is specified by means of four properties, namely Valid-
ity, Integrity, Agreement, and Order. Informally speaking, a Validity property
guarantees that messages sent by correct processes are eventually delivered at
least by correct processes; an Integrity property guarantees that no spurious or
duplicate messages are delivered; an Agreement property ensures that (at least
correct) processes deliver the same set of messages; an Order property constrains
(at least correct) processes delivering the same messages to deliver them in the
same order. Each property can be formally defined in distinct ways, thus gener-
ating distinct specifications. As an example, properties can be defined as uniform
or non-uniform, being non-uniform ones less restrictive, as they allow arbitrary
behavior for faulty processes.1

Order properties can be further distinguished on the basis of the possibility
to have gaps in the sequence of messages delivered by processes, and are thus
classified into strong and weak properties. A weak Order property requires a pair
of processes delivering the same pair of messages to deliver them in the same
order. This restriction does not prevent a process p to skip the delivery of some
messages. Therefore, it allows the occurrence of gaps in the sequence of messages
delivered by p with respect to those delivered by other processes. In contrast, a
strong Order property avoids gaps in the sequence of delivered messages as it
requires that two processes delivering a message m have delivered exactly the
same ordered sequence of messages before delivering m.

Table 1 reports the definition of each property. In particular, we consider both
uniform and non-uniform formulations for Agreement, i.e. Uniform Agreement
(UA) and Non-uniform Agreement (NUA), and the four Order properties arising
from the combination of uniform and non-uniform with strong and weak formu-
lations, i.e. Strong Uniform Total Order (SUTO), Strong Non-uniform Total
Order (SNUTO), Weak Uniform Total Order (WUTO) and Weak Non-uniform

1 It is worth noting that uniform properties are meaningful only in certain environ-
ments. For instance, uniform properties are not enforceable assuming malicious fault
models.



Validity and Integrity properties

NUV , If a correct process tocasts a message m, then it eventually todelivers m

UI , For any message m, every process p todelivers m at most once, and only if m was
previously tocast by some process

Agreement properties

UA , If a process todelivers a message m, then all correct processes eventually todeliver m

NUA , If a correct process todelivers a message m, then all correct processes eventually
todeliver m

Order properties

SUTO , If some process todelivers message m before message m′, then a process todelivers
m′ only after it has todelivered m

SNUTO , If some correct process todelivers message m before message m′, then a correct
process todelivers m′ only after it has todelivered m

WUTO , If processes p and q both deliver messages m and m′, then p delivers m before m′

if and only if q delivers m before m′

WNUTO , If correct processes p and q both todeliver messages m and m′, then p todelivers m
before m′ if and only if q todelivers m before m′

Table 1. Definition of the properties defining TO specifications

Total Order (WNUTO). Finally, we consider Non-uniform Validity (NUV ) and
Uniform Integrity (UI), as the latter can be easily implemented, thus appearing
in almost all TO specifications, while the former is the only Validity property
meaningful in our system model (i.e. Uniform Validity cannot be implemented).
Interested readers can refer to [4] for deeper explanations of differences and
relations among these properties.

2.3 A hierarchy of total order specifications

Assuming NUV and UI, it is possible to combine Agreement and Order proper-
ties to obtain six significant TO specifications. We denote TO(A,O) the TO spec-
ification S(NUV,UI,A, O), where A ∈ {UA, NUA} and O ∈ {SUTO, WUTO,
WNUTO}.2

It is possible to identify several → relations among these TO specifications
[4]. Figure 1 shows that these specifications represent a hierarchy by depicting
the transitive reduction of the → relation among TO specifications.

Let us note that the root of the hierarchy, i.e. TO(UA,SUTO), is the specifi-
cation closest to the intuitive notion of total order broadcast, as it imposes that
the set of messages delivered by each process is a prefix of the ordered set of mes-
sages that is delivered by all correct processes. In contrast, weaker specifications
admit runs in which faulty processes may exhibit a larger set of behaviors, as
discussed in the following section. It is worth noting that weaker specifications
are implemented in several real systems, e.g. Ensemble [8], JavaGroups [9].

2 In [4] we show that TO(NUA, SNUTO) ≡ TO(NUA, WNUTO) and that
TO(UA, SNUTO) ≡ TO(UA, WNUTO).
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Fig. 1. A hierarchy of TO specifications

2.4 On the behavior of faulty processes

Each TO specification constrains all correct processes to deliver exactly the same
ordered set of messages. Differences among the sequences of delivered messages
delivered by faulty and correct processes can be characterized using the following
patterns.

EP1: a faulty process p delivers a prefix of the ordered set of messages
delivered by correct processes;

EP2: a faulty process p delivers some messages not delivered by correct
processes;

EP3: a faulty process p skips the delivery of some messages delivered by
correct processes;

EP4: a faulty process p delivers some messages in an order different from
correct processes.

Each specification allows the occurrence of one or more of the above execution
patterns. Moreover, from the definition of the → relation, it follows that for each
pair of specifications S, S′ : S → S′, S′ allows at least all execution patterns ad-
mitted by S. For example, TO(UA, SUTO) allows EP1 while TO(UA, WUTO)
allows EP1 and EP3. Table 2 shows for each specification the admitted execution
patterns. Let us note that these execution patterns are formally derived from
specifications [4].



TO specification Admitted execution patterns

TO(UA, SUTO) EP1

TO(UA, WUTO) EP1 or EP3

TO(UA, WNUTO) EP1 or EP3 or EP4

TO(NUA, SUTO) EP1 or EP2

TO(NUA, WUTO) EP1 or EP2 or EP3

TO(NUA, WNUTO) EP1 or EP2 or EP3 or EP4

Table 2. Possible differences between the behavior of faulty and correct processes

3 TO implementations in group communication systems

Group communication systems are one of the most successful class of systems
implementing TO primitives. These systems adopt several distinct architectures
[10]. For the sake of clarity, in the remainder of this paper we use a simplified
architecture depicted in Figure 2, in which a Total Order layer implements a
TO specification by relying on another layer, namely VSC, which provides vir-
tually synchronous communications [11].3 According to the virtual synchrony
programming model, processes are organized into groups. Groups are dynamic,
i.e. processes are allowed to join and voluntarily leave a group using appropriate
primitives. Furthermore, faulty processes are excluded by groups after crashing.
A group membership service provides each process of a group with a consis-
tent view vi composed by the identifiers of all non-crashed processes currently
belonging to the group. Upon a membership change, processes agree on a new
view through a view change protocol. At the end of this protocol, group members
are provided with a view vi+1 that (i) is delivered to all the members of vi+1

through a view change event, and (ii) contains the identifier of all the mem-
bers that deliver vi+1. We consider a primary component membership service,
e.g. [13], guaranteeing that all members of the same group observe the same se-
quence of views as long as they stay in the group. In this context, the VSC layer
guarantees (i) that membership changes of a group occur in the same order in
all the members that stay within the group, and (ii) that membership changes
are totally ordered with respect to all messages sent by members. It is worth
noting that the primary component membership service is not implementable in
a non-blocking manner in asynchronous systems [14].4

The VSC layer also provides basic communication services. We consider two
primitives, namely Rcast and URcast, which resembles non-uniform and uniform
3 Let us remark that other approaches incorporating the implementation of Order and

Agreement properties into a single protocol are possible, e.g. [12].
4 In partitionable systems, groups may partition into subgroups (or components), e.g.

due to network failures, and members of distinct subgroups can deliver distinct se-
quences of views. In this setting, specifying a total order primitive can drive to
complex specifications, e.g. [2], whose usefulness has still to be verified [15]. How-
ever, non-blocking implementations of partitionable group membership services are
feasible in asynchronous systems.
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Fig. 2. Reference architecture of a group communication system
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Fig. 3. A run of a system supporting dynamic process joins

reliable broadcast in the context of dynamic groups, respectively. These primi-
tives ensure agreement of message deliveries for processes belonging to a view vi

and installing vi+1, thus enforcing virtual synchrony. URcast also prevent faulty
processes to deliver messages that will not be delivered by correct processes (i.e.,
it prevents the occurrence of EP2, in a way similar to UA). Interested readers
can refer to [4] for a formal definition of these primitives.

3.1 Static vs. dynamic group communications

Following the model proposed by Hadzilacos and Toueg in [16], the properties
introduced in Section 2.2 are based on a system model that does not take process
joins into account. We now show how the TO specifications introduced in Section
2.3 can be used to classify also dynamic TO implementations, as the one given
in the context of group communications. To this aim, we introduce the notion of
static sub-run, i.e. a portion of the overall computation of a system supporting
dynamic groups in which join events may only appear at the beginning of the



sub-run. Consider the computation depicted in Figure 3: it can be decomposed
in three static sub-runs, namely sr1, sr2, sr3. A sub-run can be described with
events and process histories as those introduced in Section 2.1, i.e. TOcast(m),
TOdeliver(m), and crash. As an example the sub-run sr2 depicted in Figure 3
is composed by the histories of processes p1, p2 and p4 containing the message
delivery events of m4 and m5. Moreover, p1 is correct in sr1 and sr2 while it is
faulty in sr3.

In this dynamic context, the TO specification enforced by a TO implemen-
tation I can be defined as follows.

Definition 1. Let I be a TO implementation and let RI be the set of
static sub-runs that I can generate. I enforces a TO specification S iff :
1. RI ⊆ RS , and
2. ∀S′ S′ → S ⇒ RI * RS′ .

Therefore the problem of finding the TO specification enforced by a TO
implementation I boils down to find a TO specification S defining the smallest
superset of RI .

As an example, in the run depicted in Figure 3, sub-runs sr1 and sr2 satisfy
TO(UA, SUTO), while sr3 only satisfies TO(NUA,SUTO) (due to p5 delivering
m9). Therefore, an implementation I that may generate this run enforces at most
TO(NUA, SUTO) (i.e. I does not enforce TO(UA, SUTO)).

3.2 TO protocols

In this section we analyze the implementation of TO primitives offered by group
communication systems. The most widely used protocols implementing the Total
Order layer can be classified in fixed sequencer and privilege-based [7]. Interested
readers can refer to [7] for a description of several other classes of TO implemen-
tations.

Fixed sequencer protocols In fixed sequencer protocols a particular process,
i.e. the sequencer, is responsible for defining message ordering. This process is
elected after each view change, usually on the basis of a deterministic rule ap-
plied to the current view, and defines a total order of messages by assigning to
each message a unique and consecutive sequencer number. The sequence number
assigned to a message is sent to all members, which deliver messages according
to these numbers. These steps can be implemented using the following commu-
nication patterns.

– Broadcast-Broadcast(BB). The sender broadcasts message m to all mem-
bers. Upon receiving m, the sequencer assigns a sequence number seq to m
and then broadcasts seq to all members. As an example, the Ensemble sys-
tem [8] implements this pattern;



– Send-Broadcast(SB). The sender sends message m to the sequencer, which
assigns a sequence number seq and then broadcasts the pair 〈m, seq〉 to all
members. This pattern is implemented, for example, by the Ensemble system
[8];

– Ask-Broadcast(AB). The sender first gets a sequence number from the
sequencer via a simple rendezvous, then it broadcasts the pair 〈m, seq〉 to
all members. JavaGroups [9] is an example of a system implementing this
pattern.

Privilege-based protocols In privilege-based protocols, a single logical to-
ken circulates among processes and grants to its holder the privilege to send
messages. Each message is sent along with a sequence number derived from a
value carried by the token which is increased after each message sent. Receiver
processes deliver messages according to their sequence numbers. As only one to-
ken may circulate, and only the token holder may send messages, messages are
delivered in a total order. Totem [17] and Spread [18] are examples of systems
implementing this protocol.

In several privilege-based protocols, e.g. [17, 18, 9], processes are organized in
a logical ring, and a process passes the token to the next process upon the occur-
rence of the first of the following internal events: (i) no more messages to send,
or (ii) maximum use of some resources achieved (e.g. maximum token-holding
interval, maximum number of messages sent by the process). These kind of pro-
tocols usually can be configured to implement URcast at the Total Order layer,
augmenting Rcast with additional mechanisms thanks to the token passing. An
example of such protocols is the one implemented by Spread [18].

Table 3 shows the TO specification enforced by each ordering protocol ac-
cording to Definition 1 given in Section 3.1. In particular, for each protocol,
we report the enforced TO specification depending on the used communica-
tion primitive, either Rcast or URcast. Note that BB protocols are based on
two broadcasts, which can be performed using different primitives of the VSC
layer. The used communication primitives are reported in Table 3 in the form
first broadcast/second broadcast. These results have been formally derived in
[4], which also includes the pseudo-code of each algorithm.

4 Performance analysis

Typically, the cost in terms of performance of implementing a property increases
with the strenght of the same property. For instance, implementing UA costs
more than implementing NUA, as this requires to delay the delivery of mes-
sages within processes in order to be sure that they will be delivered by all
correct processes. As a consequence, implementations of TO(NUA,WNUTO)
are likely to perform better than implementations of other specifications. In the
remainder of this section we present a simple performance analysis of some TO



Ordering protocol Communication primitive TO specification

Broadcast-broadcast sequencer Rcast/Rcast TO(NUA, WNUTO)
URcast/URcast TO(UA, SUTO)
Rcast/URcast TO(NUA, WUTO)
URcast/Rcast TO(UA, WNUTO)

Send-broadcast sequencer Rcast TO(NUA, WNUTO)
URcast TO(UA, SUTO)

Ask-broadcast sequencer Rcast TO(NUA, WUTO)
URcast TO(UA, SUTO)

Privilege-based Rcast TO(NUA, WUTO)
URcast TO(UA, SUTO)

Table 3. TO specification enforced by each ordering protocol

implementations of real systems. To this end, we first introduce the group toolk-
its chosen for evaluation, namely Ensemble [8], Spread [18] and JavaGroups [9].
Then we report the experimental analysis we carried out on such systems.

4.1 Group communication toolkits

In this section we exploit the framework defined in the previous sections in
order to identify the specifications enforced by TO primitives implemented in
the considered group communication systems.

Spread. Spread is a toolkit designed for large scale networks based on a client-
daemon architecture. It offers several communication abstraction, enabled by se-
lecting the so-called “service type”. Spread implements a partitionable member-
ship service based on the extended virtual synchrony model [19], which extends
virtual synchrony to partitionable environments. To comply with the reference
architecture of Figure 2, it is thus necessary to assume either absence of network
partitioning or the presence of a software filter implementing a primary com-
ponent membership service and virtual synchrony on top of extended virtual
synchrony [19]. In these cases, the privilege-based protocol embedded by Spread
(enabled by selecting the Agreed service type) implements TO(NUA, WUTO).
In contrast, selecting the Safe service type, the protocol implements URcast
on top of Rcast (see Section 3.2) and thus the implemented TO specification is
TO(UA, SUTO).

Ensemble. Ensemble provides fine-grained control over its functionality, which
can be selected simply layering micro-protocols, i.e. well-defined stackable com-
ponents implementing simple and specific functions. In particular, Ensemble can
be configured to implement virtual synchrony and a primary component mem-
bership service. A TO primitive is obtained layering a micro-protocol resembling
the Total Order layer into a virtually synchronous stack. In the following we con-
sider the micro-protocols named Seqbb and Sequencer, which correspond to BB
and SB fixed sequencer protocols using Rcast, respectively (see Section 3.2). As
shown in [4], layering one of these protocols in a virtually synchronous stack
allows us to enforce TO(NUA, WNUTO).



JavaGroups. JavaGroups is a Java group communication system based on the
concept of micro-protocols (as Ensemble). As for Spread, JavaGroups does not
exactly comply with our reference architecture, as it does not provide a primary
component membership service. However, this can be implemented by coding a
simple specific micro-protocol [19]. JavaGroups offers two micro-protocols im-
plementing the Total Order layer, namely TOTAL, which embeds an AB fixed
sequencer protocol using Rcast, and TOTAL TOKEN, which embeds a privilege-
based protocol enabled to implement URcast on top of Rcast. As proven in [4],
these protocols enforce TO(NUA, WUTO) and TO(UA, SUTO), respectively, if
JavaGroups is provided with the primary component membership service micro-
protocol.

Tables 3 and 4 summarize the previous discussion. Let us remark that infor-
mation given by Table 4 hold as long as systems are configured to implement
the virtual synchrony model (and not the extended virtual synchrony model),
which in some cases requires to extend the toolkit with additional software com-
ponents, as discussed above (see Appendix A for further details on systems’
configurations).

Let us finally note that none of the analyzed toolkit implements all six TO
specifications (Ensemble supports other ordering protocols, but they are not able
to enforce all remaining specifications).

Toolkit TO implementation Protocol type TO specification

Spread Safe PB(URcast) TO(UA, SUTO)
Agreed PB(Rcast) TO(NUA, WUTO)

Ensemble Seqbb BB(Rcast/Rcast) TO(NUA, WNUTO)
Sequencer SB(Rcast) TO(NUA, WNUTO)

JavaGroups TOTAL TOKEN PB(URcast) TO(UA, SUTO)
TOTAL AB(Rcast) TO(NUA, WUTO)

Table 4. Main characteristics of the group toolkits with respect to their TO imple-
mentations

4.2 Experimental settings.

Testbed environment. The testbed environment consists of four Intel Pentium
2.5GHz workstations that run Windows 2000 Professional. On each workstation
Spread 3.17.0, JavaGroups 2.0.6 and Ensemble 1.40 have been installed and
configured. The workstations are interconnected by a 100Mbit Switched Ethernet
LAN.



Testbed application. All the experiments involve a static group of four processes,
each running on a distinct workstation.5

We run a distinct experiment for each row of Table 4, in order to evaluate
the performance of each TO implementation. Every experiment consists of ten
failure-free rounds. During each round, every process sends a burst of B messages
using the TO protocol under examination. Each message has a payload composed
by the sender identifier and a local timestamp. The size of the payload is thus
very small, i.e. about 8 bytes. After sending the burst, each process waits to
deliver all of its messages and those sent by other members (i.e. it waits to deliver
T = 4×B messages). Each time a process delivers one of the messages sent by
itself, it evaluates the message latency exploiting the timestamp contained in
the payload. At the end of the experiment, each process evaluates the average
message latency. Per-process average message latencies are further averaged to
obtain a system message latency. Furthermore, we evaluate the overall system
throughput, which is obtained as the sum of the throughput experienced by
each process in the experiment. This is in turn calculated as the average number
of messages delivered per second during each round. Results were obtained by
letting the burst size B vary in {1, 10, . . . 100}, repeating each experiment 10
times and averaging the results.

We decided to test group toolkits under bursty traffic as developers usually
encounter problems in these settings [5].

4.3 Experimental results

Figure 4 and 5 show the overall comparison. In particular, Figure 4 depicts the
average message latency, and Figure 5 presents the overall system throughput
as a function of B.

The results can be evaluated under several aspects. In particular, the dif-
ferent behavior of the tested configurations depends on (i) the TO specification
implemented by the configuration, (ii) the TO protocol used to implement that
specification, and (iii) the way the protocol is implemented, which accounts for
different architectures, optimizations, implementation language, etc.

Let us first analyze implementations enforcing the same specifications. Con-
cerning JavaGroups (TOTAL TOKEN) and Spread (Safe), which enforce TO(UA,
SUTO), this two configurations exploit a similar privilege-based protocol. Spread
(Safe) outperforms JavaGroups (TOTAL TOKEN), as the average message latency
experienced with the latter configuration is about 2 to 3 times the one obtained
with the former, while the overall system throughput suffers from a reduction
of about 30% to 60%. A similar argument applies to JavaGroups (TOTAL) and
Spread (Agreed), both implementing TO(NUA, WUTO). In this case, the per-
formance gain obtained with Spread’s configuration is even more evident. For
example, the latency experienced with JavaGroups is about 4 to 6 times the

5 In the case of Spread, which adopts a daemon-based architecture, we run both a
daemon and a client on each workstation.
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one obtained with Spread. Finally, the two Ensemble configurations, both im-
plementing TO(NUA,WNUTO), perform almost the same.

From the above discussion, it is evident that the performance of a TO prim-
itive enforcing a given TO specification substantially depends on the overall
characteristics of the system implementing it. In fact, in spite of implement-
ing the same protocol (and thus the same TO specification), Spread (Safe) and
JavaGroups (TOTAL TOKEN) gives substantially different performance. This is due
to several factors, e.g. implementation language (C++ vs. Java), architectural
design and optimizations.

A second step is therefore to compare different configurations of the same
system, in order to avoid biases stemming from implementation issues. Concern-
ing Spread’s configurations, Agreed outperforms Safe. Differences are due to
the increased amount of synchronization required by Spread (Safe) to enforce
TO(UA, SUTO). Very interestingly, the performance penalty paid by Spread
(Safe) is small, both in terms of additional message latency (1.2 times the
one of Spread (Agreed)) and in terms of throughput reduction (15% on aver-
age). In contrast, JavaGroups (TOTAL TOKEN) outperforms JavaGroups (TOTAL),
with the latter experiencing twice the average message latency and an aver-
age throughput reduction of 30% with respect to the former. These results are
unexpected, as JavaGroups (TOTAL) implements a TO specification weaker than
the one implemented by JavaGroups (TOTAL TOKEN) (i.e. TO(NUA, WUTO) vs.
TO(UA, SUTO)). We argue that these results are due to JavaGroups (TOTAL)
embedding an AB fixed sequencer protocol, which is not well suited for con-
figurations in which processes frequently generate bursts of messages of small
size. Furthermore, this algorithm suffers from the load to which the sequencer is
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subject during the experiments. In other words, the experimental settings seem
to favor the privilege-based algorithm of JavaGroups (TOTAL TOKEN), which is
thus able to perform better, even though implementing a stronger specification.

A final note is on the two Ensemble configurations. In a setting providing
hardware broadcast, as the one used for the experiments, BB and SB algorithms
perform very similarly. Furthermore, these two configurations exhibit the best
results, having the lowest message latency and the highest throughput. In partic-
ular, the average message latency experienced with Spread is about 2 to 5 times
the one obtained with the two Ensemble configurations. This ratio roughly in-
creases up to 15, if we consider JavaGroups. Concerning throughput, Spread’s
configurations exhibit a reduction of about 50% with respect to Ensemble’s con-
figurations. Considering JavaGroups, the throughput reduction is about 80%.
These results can be explained noting that Ensemble’s configurations implement
the weakest TO specifications, i.e. TO(NUA, WNUTO).

4.4 Discussion

The main contributions regarding performance of TO implementations either
compare protocols using simulations and/or analytical studies, e.g. [20, 6] or
deal with experiments done comparing several algorithms embedded into a sin-
gle framework, e.g. [5]. We deem that this information does not fully enable
immediate comparison of real systems, which is important from a developer’s
point of view. Upon building an application and thus having to match correct-
ness and performance requirements, a comparison of TO protocols in a simulated
environment or in a single real framework is not sufficient, especially in case the



developer wishes to select the best TO implementation choosing from a set of
available ones. This set of experiments is aimed to complement the available
information in order to facilitate this selection. Our plan is to provide a practi-
tioner with a largest set of experiments in the near future, to cope with a larger
set of application scenarios including actual failures.

5 Concluding remarks

This paper provided practitioners with a comprehensive yet quick and easy to
understand reference for dealing with total order communications. Existing TO
specifications have been classified into an hierarchy which actually models their
differences in terms of admitted scenarios. Furthermore, six TO implementa-
tions provided by three freely-available systems have been analyzed, matching
them against the hierarchy and comparing them from a performance point of
view. On the basis of this information complemented with the one provided
by simulations [20, 6, 5], practitioners will be able (i) to understand which TO
specification meets their application’s safety requirements, and (ii) to select the
available TO implementation enforcing that TO specification while yielding the
best performance. Concerning the latter issue, our experiments point out that
the performance of a TO primitive is clearly dependent on the enforced specifi-
cation, other than the employed algorithm and implementation specific details.
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Appendix A: Group toolkit configuration

This appendix gives additional details on how to configure the systems ana-
lyzed in the paper to use their TO primitives (see Table 5). For further details,
interested readers are referred to systems’ reference manuals.

Spread. Developers must simply label messages to enact Spread’s services. In
particular, the Agreed label enables the Spread (Agreed) configuration, whereas
the Safe label triggers the Spread Safe configuration. There is no need for
further configurations. However, developers must provide an implementation of
virtual synchrony and primary component membership service filters to achieve
the TO specifications described in Table 5.

Ensemble. In Ensemble each process has to specify the stack to use upon joining
the group. This can be done either by specifying desired properties (which iden-
tify portions of protocol stacks), or by directly selecting the micro-protocols. In



Toolkit Configuration Additional mechanisms

Spread (Safe) Safe service type VS + PC GMS filters

Spread (Agreed) Agreed service type VS + PC GMS filters

Ensemble (BB) VS + PC GMS + Seqbb -

Ensemble (SB) VS + PC GMS + Sequencer -

JavaGroups (TB) VS + TOTAL TOKEN PC GMS filter

JavaGroups (AB) VS + TOTAL PC GMS filter

Table 5. Configurations and additional mechanisms necessary to achieve TO specifi-
cations supported by each of the examined group toolkits

both cases, it is necessary to set a particular field in the data structure repre-
senting the so-called join options. In the first case, the properties string should
be set. The string

Gmp:Sync:Heal:Frag:Suspect:Flow:Slander:Total:Primary

allows to achieve a TO primitive enforcing TO(NUA,WNUTO) by means of
an ordering protocol in a stack also providing virtual synchrony and a primary
component membership service. This configuration automatically selects Seqbb
as the ordering protocol. To use a different protocol, it is necessary to explicitly
select all the protocols of the stack. In this case, the protocol string should be
set, e.g. to

Top:Heal:Primary:Present:Leave:Inter:Intra:Elect:Merge:Slander:Sync:Suspect:Stable:Vsync:
Frag Abv:Partial appl:Seqbb:Collect:Frag:Pt2ptw:Mflow:Pt2pt:Mnak:Bottom

which corresponds to the previous string of properties. To use other TO pro-
tocols, it is necessary to substitute Seqbb with the protocol to be used, e.g.
Sequencer, in the string above.

JavaGroups. Also in JavaGroups the protocols composing the stack can be spec-
ified through a string. As an example, the string

UDP:PING:FD SOCK:VERIFY SUSPECT:STABLE:NACKACK:UNICAST:FRAG:TOTAL TOKEN:FLUSH:GMS:QUEUE

represents a stack providing a total order through the TOTAL TOKEN protocol.
Instead, the string

UDP:PING:FD SOCK:VERIFY SUSPECT:STABLE:NACKACK:UNICAST:FRAG:FLUSH:GMS:TOTAL:QUEUE

can be used to exploit the TOTAL protocol. However, developers have to imple-
ment a primary component membership service filter, which has to be inserted
into the stack in order to achieve TO primitives compliant with TO(UA, SUTO)
and TO(NUA, WUTO), respectively.


