
Building Regular Registers with Rational Malicious Servers
and Anonymous Clients

Silvia Bonomi, Antonella Del Pozzo and Roberto Baldoni
Sapienza Università di Roma, Via Ariosto 25, 00185 Roma, Italy
{bonomi, delpozzo, baldoni}@dis.uniroma1.it

Abstract

The paper addresses the problem of emulating a regular register in a synchronous distributed system
where clients invoking read() and write() operations are anonymous while server processes maintaining
the state of the register may be compromised by rational adversaries (i.e., a server might behave as
rational malicious Byzantine process). We first model our problem as a Bayesian game between a client
and a rational malicious server where the equilibrium depends on the decisions of the malicious server
(behave correctly and not be detected by clients vs returning a wrong register value to clients with the
risk of being detected and then excluded by the computation). We prove such equilibrium exists and
finally we design a protocol implementing the regular register that forces the rational malicious server to
behave correctly.
Keywords: Regular Register, Rational Malicious Processes, Anonymity, Bayesian Game.

1 Introduction

To ensure high service availability, storage services are usually realized by replicating data at multiple lo-
cations and maintaining such data consistent. Thus, replicated servers represent today an attractive target
for attackers that may try to compromise replicas correctness for different purposes. Some example are: to
gain access to protected data, to interfere with the service provisioning (e.g. by delaying operations or by
compromising the integrity of the service), to reduce service availability with the final aim to damage the
service provider (reducing its reputation or letting it pay for the violation of service level agreements) etc.
A compromised replica is usually modeled trough an arbitrary failure (i.e. a Byzantine failure) that is made
transparent to clients by employing Byzantine Fault Tolerance (BFT) techniques. Common approaches to
BFT are based on the deployment of a sufficient large number of replicas to tolerate an estimated num-
ber f of compromised servers (i.e. BFT replication). However, this approach has a strong limitation: a
smart adversary may be able to compromise more than f replicas in long executions and may get access
to the entire system when the attack is sufficiently long. To overcome this issue, Sousa et al. designed the
proactive-reactive recovery mechanism [21]. The basic idea is to periodically reconfigure the set of replicas
to rejuvenate servers that may be under attack (proactive mode) and/or when a failure is detected (reactive
mode). This approach is effective in long executions but requires a fine tuning of the replication parameters
(upper bound f on the number of possible compromised replicas in a given period, rejuvenation window,
time required by the state transfer, etc...) and the presence of secure components in the system. In addition, it
is extremely costly during good periods (i.e. periods of normal execution) as a high number of replicas must
be deployed independently from their real need. In other words, the system pays the cost of an attack even

if the attack never takes place. In this paper, we want to investigate the possibility to implement a distributed
shared variable (i.e. a register) without making any assumption on the knowledge of the number of possible
compromised replicas, i.e. without relating the total number of replicas n to the number of possible com-
promised ones f . To overcome the impossibility result of [5, 18], we assume that (i) clients preserve their
privacy and do not disclose their identifiers while interacting with server replicas (i.e. anonymous clients)
and (ii) at least one server is always alive and never compromised by the attacker. We first model our pro-
tocol as a game between two parties, a client and a rational malicious server (i.e. a server controlled by
rational adversaries) where each rational malicious server gets benefit by two conflicting goals: (i) it wants
to have continuous access to the current value of the register and, (ii) it wants to compromise the validity of
the register returning a fake value to a client. However, if the rational malicious server tries to accomplish
goal (ii) it could be detected by a client and it could be excluded from the computation, precluding him to
achieve its first goal. We prove that an equilibrium exists for such game. In addition, we design a distributed
protocol implementing the register and reaching such equilibrium when rational malicious servers privilege
goal (i) with with respect to goal (ii). As a consequence, rational malicious servers return correct values to
clients to avoid to be detected by clients and excluded by the computation and the register implementation
is proved to be correct. The rest of the paper is organized as follows: Section 2 discusses related works,
Section 3 and Section 4 introduce respectively the system model and the problem statement. In Section 5
we model our problem as a Bayesian game and in Section 6 we provide a protocol matching the Bayesian
Nash Equilibrium for our game. Finally, Section 7 presents a discussion and future work.

2 Related Work

Building a distributed storage able to resist arbitrary failures (i.e. Byzantine) is a widely investigated re-
search topic. The Byzantine failure model captures the most general type of failure as no assumption is made
on the behavior of faulty processes. Traditional solutions to build a Byzantine tolerant storage service can
be divided into two categories: replicated state machines [19] and Byzantine quorum systems [5, 16, 17, 18].
Both the approaches are based on the idea that the state of the storage is replicated among processes and
the main difference is in the number of replicas involved simultaneously in the state maintenance protocol.
Replicated state machines approach requires that every non-faulty replica receives every request and pro-
cesses requests in the same order before returning to the client [19] (i.e. it assumes that processes are able to
totally order requests and execute them according to such order). Given the upper bound on the number of
failures f , the replicated state machine approach requires only 2f + 1 replicas in order to provide a correct
register implementation. On the contrary, Byzantine quorum systems need just a sub-set of the replicas (i.e.
quorum) to be involved simultaneously. The basic idea is that each operation is executed by a quorum and
any two quorums must intersect (i.e. members of the quorum intersection act as witnesses for the correct
execution of both the operations). Given the number of failures f , the quorum-based approach requires at
least 3f + 1 replicas in order to provide a correct register implementation in a fully asynchronous system
[18]. Let us note that, in both the approaches, the knowledge of the upper bound on faulty servers f is
required to provide deterministic correctness guarantees. In this paper, we follow an orthogonal approach.
We are going to consider a particular case of byzantine failures and we study the cost, in terms of number
of correct servers, of building a distributed storage (i.e. a register) when clients are anonymous and have no
information about the number of faulty servers (i.e. they do not know the bound f). In particular, the type
of byzantine processes considered here deviate from the protocol by following a strategy that brings them
to optimize their own benefit (i.e., they are rational) and such strategy has the final aim to compromise the
correctness of the storage (i.e., they are malicious).

2

In [15], the author presented Depot, a cloud storage system able to tolerate any number of Byzantine clients
or servers, at the cost of a weak consistency semantics called Fork-Join-Causal consistency (i.e., a weak
form of causal consistency).

In [3], the authors introduced the BAR (Byzantine, Altruistic, Rational) model to represent distributed
systems with heterogeneous entities like peer-to-peer networks. This model allows to distinguish between
Byzantine processes (i.e. processes deviating arbitrarily from the protocol and without any known strategy),
altruistic processes (i.e. processes following the protocol - correct processes) and rational processes (i.e.
processes that decide to follow or not the protocol, according to their individual utility). Under the BAR
model, several problems have been investigated (e.g. reliable broadcast [7], data stream gossip [13], backup
service through state machine replication [3]). Let us note that in the BAR model the utility of a process is
measured through the cost it supports to run the protocol. In particular, each step of the algorithm (especially
sending messages) has a cost and the objective of any rational process is to minimize its global cost. As
a consequence, rational processes deviate from the protocol just by skipping to send messages if they are
not properly encouraged by getting back a reward (i.e., they are selfish). In contrast with the BAR model,
rational servers considered in this paper are malicious and then they get benefit from preventing the correct
protocol execution rather than from saving messages, i.e., they deviate from the protocol with a different
objective.

More recently, classical one-shot problems as leader election [1, 2], renaming and consensus [2] have
been studied under the assumption of rational agents (or rational processes). The authors provide algorithms
implementing such basic building blocks, both for synchronous and asynchronous network, under the so
called solution preference assumption i.e., agents gain if the algorithm succeeds in its execution while they
have zero profit if the algorithm fails. As a consequence, processes will not deviate from the algorithm
if such deviation interferes with its correctness. Conversely, the model of rational malicious processes
considered in this paper removes implicitly this assumption as they are governed by adversaries that gets
benefit when the algorithm fails while in [1, 2] rational processes get benefit from the correct termination of
the protocol (i.e. they are selfish according with the BAR model).

Finally, the model considered here can be seen as a particular case of BAR where rational servers take
malicious actions and the considered application is similar to the one considered in [3]. However, in contrast
to [3], we do not assume any trusted third party to identify users but we rather assume that clients are
anonymous (e.g., they are connected through the Tor anonymous network [22]) and we investigate the
impact of this assumption together with the rational model. To the best of our knowledge, this is the first
paper that analyzes how the anonymity can help in managing rational malicious behaviors.

3 System Model

The distributed system is composed by a set of n servers implementing a distributed shared memory abstrac-
tion and by an arbitrary large but finite set of clients C. Servers are fully identified (i.e. they have associated
a unique identifier s1, s2 . . . sn) while clients are anonymous, i.e. they share the same identifier.

Communication model and timing assumptions. Processes can communicate only by exchanging mes-
sages through reliable communication primitives, i.e. messages are not created, duplicated or dropped. The
system is synchronous in the following sense: all the communication primitives used to exchange messages
guarantee a timely delivery property. In particular, we assume that clients communicate with servers trough
a timely reliable broadcast primitive satisfying the following property:

3

• Reliable Broadcast Timely Delivery: there exists an integer δ, known by clients, such that if a client
broadcast a message m at time t and a server si delivers m, then all the servers sj deliver m by time
t+ δ.

Servers-client and client-client communications are done through “point-to-point” anonymous timely chan-
nels (a particular case of the communication model presented in [9] for the most general case of homonyms).
Considering that clients are identified by the same identifier `, when a process sends a point-to-point mes-
sage m to an identifier `, all the clients will deliver m. More formally:

• Point-to-point Timely Delivery: there exists an integer δ′ ≤ δ, known by processes, such that if si
sends a message m to a client identified by an identifier ` at time t, then all the clients identified by `
receive m by time t+ δ.

We assume that channels are authenticated (or “oral” model) , i.e. when a process identified by j re-
ceives a message m from a process identified by i, then pj knows that m has been generated by a process
having identifier i.

Failure model. Servers are partitioned into two disjoint sub-sets: correct servers and malicious servers (also
called attackers). Correct servers behave according to the protocol executed in the distributed system (and
discussed in Section 6) while malicious servers represent entities compromised by an adversary that may
deviate from the protocol by dropping messages (omission failures), changing the content of a message, cre-
ating spurious messages, exchanging information outside the protocol etc... Malicious servers are rational,
i.e. they deviate from the protocol by following a strategy that aims at increasing their own benefit (i.e., to
perform actions that may prevent the correct execution of the protocol). We assume that rational malicious
servers act independently i.e., they do not form a coalition and each of them acts for its individual gain. We
will discuss in Section 7 issues arising in handling coalitions governed by a unique adversary. Servers may
also fail by crashing and we identify as alive the set of non crashed servers1. However, we assume that there
always exists at least one correct alive server in the distributed system. Clients can fail only by crashing and
any number of client may fail during the computation. Let us note that clients do not know the subset of
rational malicious processes.

4 Regular Registers

A register is a shared variable accessed by a set of processes, i.e. clients, through two operations, namely
read() and write(). Informally, the write() operation updates the value stored in the shared variable while
the read() obtains the value contained in the variable (i.e. the last written value). Every operation issued on
a register is, generally, not instantaneous and it can be characterized by two events occurring at its boundary:
an invocation event and a reply event. These events occur at two time instants (invocation time and reply
time) according to the fictional global time.
An operation op is complete if both the invocation event and the reply event occur (i.e. the process executing
the operation does not crash between the invocation and the reply). Contrary, an operation op is said to be
failed if it is invoked by a process that crashes before the reply event occurs. According to these time
instants, it is possible to state when two operations are concurrent with respect to the real time execution.
For ease of presentation we assume the existence of a fictional global clock and the invocation time and

1Alive servers may be both correct or malicious.

4

response time of every operation are defined with respect to this fictional clock.
Given two operations op and op′, and their invocation event and reply event times (tB(op) and tB(op′)) and
return times (tE(op) and tE(op′)), we say that op precedes op′ (op ≺ op′) iff tE(op) < tB(op′). If op does
not precede op′ and op′ does not precede op, then op and op′ are concurrent (op||op′). Given a write(v)
operation, the value v is said to be written when the operation is complete.
In case of concurrency while accessing the shared variable, the meaning of last written value becomes
ambiguous. Depending on the semantics of the operations, three types of register have been defined by
Lamport [14]: safe, regular and atomic. In this paper, we will consider a regular register which is specified
as follows:

• Termination: If an alive client invokes an operation, it eventually returns from that operation.

• Validity: A read operation returns the last value written before its invocation, or a value written by a
write operation concurrent with it.

Interestingly enough, safe, regular and atomic registers have the same computational power. This means
that it is possible to implement a multi-writer/multi-reader atomic register from single-writer/single-reader
safe registers. There is a huge number of papers in the literature discussing such transformations (e.g.,
[6, 11, 20, 23, 24] to cite a few). In this paper, we assume that the register is single writer in the sense that no
two write() operations may be executed concurrently. However, any client in the system may issue a write()
operation. This is not a limiting assumption as clients may use an access token to serialize their writes2. We
will discuss in Section 7 how this assumption can be relaxed.

5 Modeling the Register protocol as a Game

In a distributed system where clients are completely disjoint from servers, it is possible to abstract any
register protocol as a sequence of requests made by clients (e.g. a request to get the value or a request to
update the value) and responses (or replies) provided by servers, plus some local computation. If all servers
are correct, clients will always collect the expected replies and all replies will always provide the right in-
formation needed by the client to correctly terminate the protocol. On the contrary, a compromised server
can, according to its strategy, omit to send a reply or can provide bad information to prevent the client from
terminating correctly. In this case, in order to guarantee a correct execution, the client tries to detect such
misbehavior, react and punish the server. Thus, a distributed protocol implementing a register in presence
of rational malicious servers can be modeled as a two-party game between a client and each of the servers
maintaining a copy of the register: the client wants to access correctly the register while the server wants to
prevent the correct execution of a read() without being punished.

Players. The two players are respectively the client and the server. Each player can play with a different
role: servers can be divided in to correct servers and malicious servers while clients can be divided in those
asking a risky request (i.e., clients able to detect misbehaviors and punish server) and those asking for a
risk-less request (i.e., clients unable to punish servers).

Strategies. Players’ strategies are represented by all the possible actions that a process may take. Clients
have just one strategy, identified by R, that is request information to servers. Contrarily, servers have
different strategies depending on their failure state:

2Let us recall that we are in a synchronous system and the mutual exclusion problem can be easily solved also in presence of
failures.

5

Risk − less request
1− θ

Risky request
θ

S A NA S A NA

Client

ServerServer

(Dc,−Ds) (−Gc, Gs) (Gc, 0) (Dc,−Ds) (Dc,−Ds) (Gc, 0)

Figure 1: Extensive form of the game. Dotted line represents the unknown nature of requests from the risk
point of view. The outcome pairs refer to the client and server gains respectively.

• malicious servers have three possible strategies: (i) A, i.e. attack the client by sending back wrong
information (i.e. it can reply with a wrong value, with a wrong timestamp or both), (ii) NA, i.e. not
attack the client behaving according to the protocol and (iii) S, i.e. be silent omitting the answer to
client’s requests;

• correct servers have just the NA strategy.

Let us note that the game between a correct client and a correct server is trivial as they have just one
strategy that is follow the protocol. Thus, in the following we are going to skip this case and we will consider
only the game between a client and a rational malicious server.

Utility functions and extensive form of the game. Clients and servers have opposite utility functions. In
particular:

• every client increases its utility when it is able to read a correct value from the register and it wants to
maximize the number of successful read() operations;

• every server increases its utility when it succeeds to prevent the client from reading a correct value,
while it loses when it is detected by the client and it is punished.

In the following, we will denote as Gc the gain obtained by the client when it succeeds in reading, Gs
the gain obtained by the server when it succeeds in preventing the client from reading and as Dc the gain of
the client when detecting the server and as Ds the loss of the server when it is detected. Such parameters
are characteristic of every server and describe its behavior in terms of subjective gains/losses they are able
to tolerate. Without loss of generality, we assume that Gc, Gs, Dc and Ds are all greater than 0, that all
the servers have the same Gs and Ds

3 and that all the clients have the same Gc and Dc. Fig. 1 shows the
extensive form of the game.

The game we are considering is a Bayesian game [10] as servers do not have knowledge about the client
role but they can estimate the probability of receiving a risky request or a risk-less request i.e., they have a
belief about the client role. We denote as θ (with θ ∈ [0, 1]) the server belief of receiving a risky request (i.e.
the client may detect that the server is misbehaving) and with 1− θ the server belief of receiving a risk-less
request (i.e. the client is not be able to detect that the server is misbehaving).

Analysis of the Bayesian Game. In the following, we are going to analyze the existence (if any) of a
Bayesian Nash Equilibrium i.e., a Nash Equilibrium4 computed by considering the players’ belief.

3Let us note that if two servers have different values for Gs and Ds, the analysis shown in the following is simply repeated for
each server.

4Let us recall that a Nash Equilibrium exists when each player selects a strategy and none of the players increases its utility by
changing strategy.

6

Let us note that in our game, clients have just one strategy. Thus, the existence of the equilibrium depends
only on the decisions taken by servers according to their utility parameters Gs, Ds and their belief about the
nature of a request (i.e., its evaluation of θ). Let us now compute the expected gain E() of a server si while
selecting strategies S, NA and A:

E(S) = (−Ds × (1− θ)) + (−Ds × θ) = −Ds (1)

E(NA) = ((1− θ)× 0) + (θ × 0) = 0 (2)

E(A) = ((1− θ)×Gs)− (θ ×Ds) (3)

Lemma 1 The strategy S is a dominated strategy.

Proof A server si would choose to follows S over NA or A if (i) E(S) > E(A) or E(S) > E(NA).
However, considering that both Ds and Gs are grater that 0, from equations (1) − (3) we will have that si
will never choose to play S. 2Lemma 1

Due to Lemma 1, servers have no convenience in playing S, whatever the other player does. In fact, there
would be no increment of their utility by playing S and then we will not consider such strategy anymore.

Let us note that a server si would prefer to play NA (i.e., to behave correctly) with respect to A (i.e.,
to deviate from the protocol) when E(NA) > E(A). Combining equations (3) and (2) we have that a si
would prefer to play NA when

Gs
(Gs +Ds)

< θ. (4)

from which we derive the following Lemmas:

Lemma 2 Let si be a rational malicious server. If Ds < Gs and θ < 1
2 then the best response of si is to

play strategy A (i.e. NA is a dominated strategy).

Proof Equation (4) can be rewritten as
1

1 + α
> θ

where α = Ds
Gs

. Considering that Gs > Ds it follows that α ∈ (0, 1). Note that si would prefer to play
A each time that inequality (4) is satisfied and that θ is upper bounded by 1

2 , it follows that si will prefer to
play A for any θ ∈ [0, 12) and the claim follows. 2Lemma 2

Lemma 3 Let si be a rational malicious server. If Ds > Gs and θ ≥ 1
2 then the best response of si is to

never play strategy A (i.e. NA is a dominant strategy).

Proof Equation (4) can be rewritten as
1

1 + α
> θ

Note that Gs < Ds and then α ∈ (1,∞). Considering that si would prefer to play A each time that
inequality (4) is satisfied and that θ is lower bounded by 1

2 , it follows that si will never prefer to play A for
any θ ∈ [12 , 1] and the claim follows.

2Lemma 3

Note that, in the system model considered here, there is no way for servers to get feedbacks on their
actions and the belief θ cannot be updated dynamically through the Bayes rule stage by stage. Therefore,
we cannot consider the dynamic form of the game.

7

6 A Protocol for a Regular Register with θ ≥ 1
2 and Ds > Gs

In this section, we propose a protocol implementing a regular register in a synchronous distributed system
with anonymous clients and up to n−1 malicious rational servers. The protocol works under the assumption
that the server loss Ds in case of detection is higher than its gain Gs obtained when the client fails during
a read (i.e. Ds > Gs). This assumption models a situation where the attacker is much more interested in
having access to data stored in the register and occasionally interfere with the server rather than causing a
reduction of the availability (e.g., no termination or validity violation).

Our protocol follows the classical quorum-based approach. When a client wants to write, it sends the
new value together with its timestamp to servers and waits for acknowledgments. Similarly, when it wants
to read, it asks for values and corresponding timestamps and then it tries to select a value among the received
ones. Let us note that, due to the absence of knowledge on the upper bound of malicious processes, it could
be impossible for a reader to select a value among those reported by servers and, in addition, the reader may
be unable to distinguish well behaving servers from malicious ones. To overcome this issue we leverage on
the following observation: the last client cw writing a value v is able to recognize such value while reading
after its write (as long as no other updates have been performed). This makes the writer cw the only one
able to understand which server si is reporting a wrong value vi 6= v, detect it as malicious and punish it
by excluding si from the computation. Thus, the basic idea behind the protocol is to exploit the synchrony
of the system and the anonymity of clients to makes the writer indistinguishable from readers and “force”
malicious servers to behave correctly.
Let us note that anonymity itself is not enough to make the writer indistinguishable from other clients. In
fact, if we consider a naive solution where we add anonymity to a register implementation (for the example
the one given by Attiya, Bar-Noy and Dolev [4]), we have that servers may exploit the synchrony of the
channels to estimate when the end of the write operation occur and to infer whether a read request may ar-
rives from the writer or from a different client (e.g., when it is received too close to a write request and before
the expected end of the write). To this aim, we added in the write() operation implementation some dummy
read requests. These messages are actually needed to generate message patterns that makes impossible to
servers to distinguish if messages come from the writer itself or from a different client. As a consequence,
delivering a read request, a server si is not able to distinguish if such request is risky (i.e. it comes from the
writer) or is risk-less (i.e. it comes from a generic client).
In addition, we added a detection procedure that is executed both during read() and write() operations by
any clients. In particular, such procedure checks that every server answered to a request and that the reported
information are “coherent” with its knowledge (e.g., timestamps are not too old or too new). The detection is
done first locally, by exploiting the information that clients collect during the protocol execution, and then,
when a client detects a server sj , it disseminates its detection so that the malicious server is permanently
removed from the computation (collaborative detection).
Finally, the timestamp used to label a new written value is updated by leveraging acknowledgments sent by
servers at the end of the preceding write() operation. In particular, during each write() operation, servers
must acknowledge the write of the value by sending back the corresponding timestamp. This is done on
the anonymous channels that deliver such message to all the clients that will update their local timestamp
accordingly. As a consequence, any rational server is inhibited from deviating from the protocol, unless it
accepts the high risk to be detected as faulty and removed from the system.

Local Variables at client c`. Each client keeps locally the following variables:
− replies: is a set variable (initially empty) where c` temporarily stores values and timestamps received

8

Init:
(01) replies← ∅; my last val← ⊥; my last ts← 0; last ts← 0;
(02) ack ← ∅; correct← {s1, s2 . . . sn}; writing ← false;

———————————————————————————————–
operation read():
(03) if (last ts = 0)
(04) then return ⊥;
(05) else replies← ∅;
(06) broadcast READ();
(07) wait (2δ);
(08) if (∀ si ∈ correct, ∃ < −, ts, val > ∈ replies)
(09) then broadcast READACK();
(10) return val;
(11) else wait (δ);
(12) if (∀ si ∈ correct, ∃ < −, ts, val > ∈ replies)
(13) then broadcast READACK();
(14) return val;
(15) else execute detection(repliesi, R)
(16) broadcast READACK();
(17) if (∀ si ∈ correct, ∃ < −, ts, val > ∈ replies)
(18) then return val;
(19) else abort ;
(20) endif
(21) endif
(22) endif
(23) endif

————————————————————————————————
when REPLY(< j, ts, v, ots, ov >) is delivered:
(24) replies← replies ∪ {< j, ts, v >};
(25) replies← replies ∪ {< j, ots, ov >};

————————————————————————————————
when DETECTED(sj) is delivered:
(26) correct← correct \ {sj};

(a) Client Protocol

Init:
(01) vali ← ∅; tsi ← 0;
(02) old vali ← ⊥; old tsi ← 0; readingi ← 0;

————————————————————————————————
when READ() is delivered:
(03) readingi ← readingi + 1;
(04) send REPLY (< i, tsi, vali, old tsi, old vali >);

————————————————————————————————
when READACK() is delivered:
(05) readingi ← readingi − 1;

(b) Server Protocol

Figure 2: The read() protocol for a synchronous system.

from servers. In particular, replies stores tuples in the form < j, ts, val > where j is the identifier of the
server sending the message, val is the value sent by sj and identified by timestamp ts.
−my last val: is a variable (initially ⊥) where c` stores the last value it wrote. It is updated any time that
a WRITE() operation is invoked.
− my last ts: is a variable (initially set to 0) where c` stores the timestamp associated to its last written
value. It is updated any time that a WRITE() operation is invoked.
− last ts: is a variable (initially set to 0) where c` stores the last accepted timestamp, i.e. the greatest
timestamp acknowledged by correct servers.
− ack: is a set variable (initially empty) where c` temporarily stores acknowledgment , received from

9

servers, for a write() operation. In particular, ack contains tuples in the form < j, ts,− > where j is the
identifier of the server sending the message and ts is the timestamp acknowledged by j. The empty value in
the tuple is left to simplify the code of the detection() procedure.
− correct: is a set variable storing identifiers of servers considered correct.
− writing: is a boolean flag (initially set to false) that is set to true when the client starts the execution of a
write() operation and is set to false at the end of the operation.

Local Variables at server si. Each server si has the following local variables:
− vali: is a set variable where si stores the current value(s)5 of the register.
− tsi: is an integer variable storing the timestamp associated to the last written value.
− old vali: is a set variable where si stores the last value written on the register before the current one (i.e.
the last value before the one stored in vali).
− old tsi: is an integer variable storing the timestamp associated to the value in old vali.
− readingi: it is an integer variable which count the number of READ() messages (and therefore potential
read() operations) delivered by si.

The read() operation (Fig. 2). When a client wants to read, it first checks if the last ts variable is still
equal to 0. If so, then there is no write() operation terminated before the invocation of the read() and the
client returns the default value ⊥ (line 04, Fig. 2(a)). Otherwise, si queries the servers to get the last value
of the register by sending a READ() message (line 06, Fig. 2(a)) and remains waiting for 2δ times, i.e. the
maximum round trip message delay (line 07, Fig. 2(a)).
When a server si delivers a READ() message, the readingi counter is increased by one and then si sends
a REPLY(< i, tsi, vali, old tsi, old vali >) message containing the current and old values and timestamp
stored locally (lines 03 - 04, Fig. 2(b)).
When the reading client delivers a REPLY(< j, ts, val, ots, ov >) message, it stores locally the reply in two
tuples containing respectively the current and the old triples with server id, timestamp and corresponding
value (lines 24 - 25, Fig. 2(a)). When the reader client is unblocked from the wait statement, it checks if
there exists a pair < ts, val > in the replies set that has been reported by any servers it believes correct
(line 08, Fig. 2(a)) and, in this case, it sends a READ ACK() message (line 09, Fig. 2(a)) and it returns the
corresponding value (line 10, Fig. 2(a)). Delivering the READ ACK() message, a server si just decreases
by one its readingi counter (line 05, Fig. 2(b)). On the contrary, a write() operation may be in progress.
To check if it is the case, the client keeps waiting for other δ time units and then checks again if a good
value exists (lines 11 - 12, Fig. 2(a)). If, after this period, the value is not yet found, it means that some
of the servers behaved badly. Therefore, the client executes the detection() procedure to understand who
is misbehaving (cfr. Fig. 4). Let us note that such procedure clean up the set of correct servers when they
are detected to be malicious. Therefore, after the execution of the procedure, the reader checks for the last
time if a good value exists in its replies set and, if so, it returns such value (line 18, Fig. 2(a)); otherwise
the special value abort is returned (line 19, Fig. 2(a)). In any case, a READ ACK() is sent to block the
forwarding of new values at the server side (line 16, Fig. 2(a)).

The write() operation (Fig. 3). When a client wants to write, it first sets its writing flag to true, stores
locally the value and the corresponding timestamp, obtained incrementing by one the one stored in last ts
variable (lines 01 - 02, Fig. 3(a)), sends a WRITE() message to servers, containing the value to be written
and the corresponding timestamp (line 03, Fig. 3(a)), and remains waiting for δ time units.

5Such set may contain more than one value in case of crash of the writer during the execution of a write().

10

operation write(v):
(01) writing ← true; ack ← ∅;
(02) my last ts← last ts+ 1; my last val← v;
(03) broadcast WRITE(< my last val,my last ts >);
(04) wait(δ);
(05) replies← ∅;
(06) broadcast READ();
(07) wait(δ);
(08) broadcast READ();
(09) execute detection(ack,A);
(10) wait(δ);
(11) execute detection(repliesi, R);
(12) broadcast READACK();
(13) broadcast READACK();
(14) writing ← false;
(15) return(ok).

——-
when WRITE ACK(ts, sj) is delivered:
(16) if (ts ≥ my last ts) then ack ← ack ∪ {< j, ts,− >} endif

——-
when ∃ ts such that S = {j|∃ < j, ts′,− >∈ ack} ∧ S ⊇ correct:
(17) if (ts ≥ last ts) then last ts← ts endif
(18) for each < j, ts′,− > ∈ ack such that ts′ = ts do ack ← ack\ < j, ts′,− > endFor.

(a) Client Protocol

when WRITE(< val, ts >) is delivered:
(01) if (ts > tsi)
(02) then old tsi ← tsi;
(03) old vali ← vali;
(04) tsi ← ts;
(05) vali ← {val};
(06) else if (tsi = ts) then vali ← vali ∪ {val}; endif
(07) endIf
(08) send WRITE ACK(ts, i);
(09) if (readingi > 0) then send REPLY (< i, tsi, vali, old tsi, old vali >) endif.

(b) Server Protocol

Figure 3: write() protocol for a synchronous system.

When a server si delivers a WRITE(v, ts) message, it checks if the received timestamp is greater than the
one stored in the tsi variable. If so, si updates its local variables keeping the current value and timestamp as
old and storing the received ones as current (lines 02 - 05, Fig. 3(b)). Contrarily, si checks if the timestamp
is the same stored locally in tsi. If this happens, it just adds the new value to the set vali (line 06, Fig.
3(b)). In any case, si sends back an ACK() message with the received timestamp (lines 08, Fig. 3(b)) and
forward the new value if some read() operation is in progress (lines 09, Fig. 3(b)). Delivering an ACK()
message, the writer client checks if the timestamp is greater equal than its my last ts and, if so, it adds a
tuple < j, ts,− > to its ack set (line 16, Fig. 3(a)).
When the writer is unblocked from the wait statement, it sends a READ() message, waits for δ time units
and sends another READ() message (lines 06 - 08, Fig. 3(a)). This messages has two main objectives: (i)
create a message pattern that makes impossible to malicious servers to distinguish a real reader from the
writer and (ii) collects values to detect misbehaving servers. In this way, a rational malicious server, that
aims at remaining in the system, is inhibited from misbehaving as it could be detected from the writer and
removed from the computation. The writer, in fact, executes the detection() procedure both on the set of
ack set and on the replies set collected during the write() (lines 09 - 11, Fig. 3(a)). Finally, the writer sends
two READ ACK() messages to block the forwarding of replies, resets its writing flag to false and returns

11

procedure detection(replies set, set type):
(01) S = {j|∃ < j,−,− >∈ replies set};
(02) if (correct 6⊆ S)
(03) then for each sj ∈ (correcti \ S) do
(04) trigger detect(sj);
(05) correcti ← correcti \ {sj};
(06) broadcast DETECTED(sj);
(07) endFor
(08) endif
(09) if (set type = R)
(10) then if (writing)
(11) then R = {j|∃ < j,my last val,my last ts >∈ replies set};
(12) if (correct 6⊆ R)
(13) then for each sj ∈ (correcti \R) do
(14) trigger detect(sj);
(15) correcti ← correcti \ {sj};
(16) broadcast DETECTED(sj);
(17) endFor
(18) endIf
(19) else for each < j, ts,− >∈ replies set such that ts < last ts− 1 do
(20) trigger detect(sj);
(21) correct← correct \ {sj};
(22) broadcast DETECTED(sj);
(23) endFor
(24) for each < j, ts, val >∈ replies set such that ts = my last ts do
(25) Di = {v | (∃ < j, ts, val >∈ replies set) ∧ (ts = my last ts)};
(26) if ((my last val 6= ⊥) ∧ (my last ts = last ts) ∧ (last val /∈ Di))
(27) then trigger detect(sj);
(28) correct← correct \ {sj};
(29) broadcast DETECTED(sj);
(30) endif
(31) endFor
(32) for each < j, ts, val >∈ replies set such that ts > last ts+ 1 do
(33) trigger detect(sj);
(34) correcti ← correcti \ {sj};
(35) broadcast DETECTED(sj);
(36) endFor
(37) endif
(38) else for each < j, ts,− >∈ replies set such that ts 6= my last ts do
(39) trigger detect(sj);
(40) correct← correct \ {sj};
(41) broadcast DETECTED(sj);
(42) endFor
(43) endif.

Figure 4: detection() function invoked by an anonymous client for a synchronous system.

from the operation (lines 12 - 15, Fig. 3(a)).
Let us note that, the execution of a write() operation triggers the update of the last ts variable at any client.
This happens when in the ack set there exists a timestamp reported by any correct server (lines 17 - 18, Fig.
3(a)).

The detection() procedure (Fig 4). This procedure is used by clients to detect servers misbehaviors during
the execution of read() and write() operations. It takes as parameter a set (that can be the replies set or
the ack set) and a flag that identifies the type of the set (i.e. A for ack, R for replies). In both cases, the
client checks if it has received at least one message from any server it saw correct and detects as faulty all
the servers omitting a message (lines 01 - 08). If the set to be checked is a set of ACK() messages, the client
(writer) just checks if some server sj acknowledged a timestamp that is different from the one it is using in

12

the current write() and, if so, sj is detected as malicious (lines 38 - 42).
On the contrary, if the set is the replies set (flagged as R), the client checks if it is running the procedure
while it is writing or reading (line 10). If the client is writing, it just updated the state of the register. Thus,
the writer checks that all servers sent back the pair < v, ts > corresponding to the one stored locally in
the variables my last val and my last ts. If someone reported a bad value or timestamp, it is detected as
misbehaving (lines 11 - 18). If the client is reading, it is able to detect servers sending back timestamps that
are too old (lines 19 - 23) or too new to be correct (lines 32 - 36) or servers sending back the right timestamp
but with a wrong value (lines 24 - 31).

6.1 Correctness Proofs

In this section, we prove that the protocol presented in Fig. 2 - 4 terminates when clients do not crash
during the operations execution (Lemma 4, Lemma 5 and Theorem 1), then we prove some properties of the
timestamp mechanism used to label write() operations. In particular, we will prove that the protocol ensures
the increasing monotonic order of timestamps (Lemma 8) and the consistency of the variable storing the last
used timestamp (Lemma 7). In Lemma 9 we prove that the last written value persists locally at each correct
server, while Theorem 2 proves that if servers behave correctly then the protocol emulates a regular register.
Then we prove the accuracy of the detection function (Lemma 11, Lemma 12 and Theorem 3). Finally, we
prove that the proposed protocol allows malicious servers to compute θ ≥ 1

2 (Theorem 4) and we show that
this makes possible to emulate a regular register in the case Ds > Gs (Theorem 5).

To ease of presentation, in the following, we sometimes use the notation ci, cj to denote different clients,
however such identifiers are not known to processes.

Lemma 4 Let c` be an anonymous client invoking a write() operation. If c` does not crash and executes
the protocol in Fig. 3 then it eventually returns from the write() operation.

Proof The proof simply follows by observing that in the write() operation code (e.g. Fig. 3(a)) the return
event happens after three wait() statement. Thus, considering that c` is correct, it will be unblocked, from
the last wait() statement, 3δ time units after the write() invocation and the claim follows. 2Lemma 4

Lemma 5 Let c` be an anonymous client invoking a read() operation. If c` does not crash and executes the
protocol in Fig. 2 then it eventually returns from the read() operation.

Proof The proof simply follows by observing that in the read() operation code a return event is defined in
every branch of the code and it only depends on wait() statements. Thus, considering that c` is correct, it
will be unblocked in a finite time after the read() invocation and the claim follows. 2Lemma 5

Theorem 1 (Termination) Let c` be an anonymous client invoking an operation op. If c` does not crash
and executes the protocol in Fig. 2 - 4 then it eventually returns from op.

Proof The proof directly follows from Lemma 4 and Lemma 5. 2Theorem 1

Lemma 6 Let op be a write() operation and let ts be the timestamp associated by the writer to op. If
a malicious server si deviates from the protocol by omitting the WRITE ACK(ts) message or by sending a
WRITE ACK(ts′) message (with ts′ 6= ts) and the writer does not crash, then si will be detected as malicious
by any client.

13

Proof The detection() function is executed by the writer client on the ack set at line 09, Fig. 3(a). The
ack set is emptied at the beginning of every write() operation and it is filled-in by the writer when it deliver
WRITE ACK(ts′) messages. Such messages are sent by servers when delivering a WRITE(< ts, val >)
message sent by the writer at the beginning of the operation. The proof simply follows by considering that
the writer client knows the real value of the timestamp associated to the write and stored in its my last ts
local variable (line 02, Fig. 3(a)). Thus, when the writer executes the detection() function the writer checks
(i) if it has received a WRITE ACK() message from any servers it sees (line 01-07, Fig. 4) and (ii) if all the
alive servers acknowledge the right timestamp (line 38-42, Fig. 4). Considering that the communications are
timely and the detection happens 2δ time units after the broadcast of the WRITE(< ts, val >) message (i.e.
after the maximum round trip delay), if some servers do not answer they are detected as malicious as they
omitted to answer. In the second case, since the writer know its timestamp and channel are authenticated,
it is able to detect as malicious the server answering with a different timestamp. Finally, considering that
(i) the writer notifies to all the other clients its detections, (ii) such detections are done δ time units before
the end of the write and (iii) clients notifications delay is also bounded by δ, it follows that at the end of the
write any client detected the malicious servers and the claim follows. 2Lemma 6

Lemma 7 At the end of every write() operation any client stores in its last ts variable the same timestamp.

Proof Every client initializes its last ts variable to 0 during the init phase (line 01, Fig. 2(a)). Such
variable is updated at line 17, Fig. 3(a) when the client stores in its ack set a timestamp ts′ that has been
acknowledged by any alive server and that is greater than the previous one (to preserve the monotonically
increasing order of timestamps). Then, we just need to prove that if a client updates its last ts variable then
all the clients will update it as well.

Considering that (i) WRITE ACK(ts′) messages are sent by servers when a WRITE(< val, ts′ >) mes-
sage is delivered, (ii) WRITE(< val, ts′ >) messages are sent to all the servers and (iii) WRITE ACK(ts′)
messages are sent through point-to-point anonymous channels, we have that all clients deliver WRITE ACK(ts′)
messages from the same set of servers. In addition, due to Lemma 6, we have that the set of alive processes
is shared by every client and the claim follows.

2Lemma 7

Lemma 8 Let op and op′ be two write() operations such that op ≺ op′. Let ts and ts′ respectively the
timestamp associated to op and to op′, the ts < ts′.

Proof The proof simply follows by Lemma 7 and considering that the timestamp associated to a write()
operation is computed by incrementing the last ts variable by one. 2Lemma 8

Corollary 1 If there not exists two concurrent write() operations and a clients do not crash during the
execution of a write() then for any pair of write() w1, w2 such that w1 ≺ w2 and there not exists any w3

such that w1 ≺ w3 ≺ w2 then the timestamp ts2 associated to w1 is equal to ts1 + 1.

Proof The proof simply follows by considering that timestamps are computed by incrementing the last ts
variable and it is updated at most once during each write() operation. 2Corollary 1

Lemma 9 At the end of a write(v) operation, every server si behaving correctly stores the value v in its
vali local variable.

14

Proof Every server si updates its valuei variable in line 05 or line 06, Fig. 3(b). In particular, this happens
when the timestamp attached to the WRITE() message and associated to the write() operation is greater
equal than the one stored in tsi. Due to Lemma 8, timestamps follows a monotonically increasing order and
thus every write() operation will have a timestamp that is greater equal than the one previously stored. As a
consequence, when delivering a WRITE(< val, ts′ >) message, any server si will always execute line 05 or
06, Fig. 3(b) storing locally the new value and the claim follows. 2Lemma 9

To the ease of presentation, let us assume that the default value ⊥ is written by a fictional instantaneous
write(⊥) operation preceding every operation op executed by clients and let us define a valid value as
follows:

Definition 1 Let v be the value returned by a read() operation op invoked on the regular register. v is said
to be valid if

(i) it is the value written by the last write() operation terminated before op or
(ii) it is the value written by a write() operation concurrent with op.

Lemma 10 If all the servers behave correctly (i.e. they follow the protocol presented in Fig. 2(b) - 3(b))
then any read() operation returns a valid value.

Proof Let us suppose by contradiction that all servers follow the protocol and that there exists a read()
operation op that returns a value v that is not valid.
Let v old be the value written by the last write() terminated before the invocation of op.

If v is not valid, it means that v is different from v old and from the value v′ written by a concurrent
write(v′), if it exists.

Case 1 - No write() operation is concurrent with op. Due to Lemma 9, at time t when op is invoked,
any server will store locally in their valuei variable the value v old, together with its timestamp. Since the
value stored in the register is updated only when a WRITE() message is delivered (line 05 or 06, Fig. 3(b)),
and this happens only when a write() operation is triggered (line 03, Fig. 3(a)), we have that, if no write()
operation is concurrent with op, v old, together with its timestamp, will be stored and not updated by any
server during the whole execution of op. Considering that any server si behaves correctly, while delivering
a READ() message, si will answer by sending a REPLY(< i, tsi, valuei >) containing the same value and
the same timestamp to the reader (line 04, Fig. 2(b)). Thus, at time t + 2δ the replies set will contains n
tuple < v old, ts > and the condition at line 08, Fig. 2(a) holds terminating the read() operation with v old
and we have a contradiction as it is a valid value.

Case 2 - There exists a write(v′) operation op′ concurrent with op. Without loss of generality, let x be
the timestamp associated to the value v old written by the last terminated write() operation preceding op.
Let us denote by op′ the write(v′) operation concurrent with the read() operation op.
Let us note that, according to the protocol in Fig. 2(a), while executing the read() operation op, the reader
client will inquiry servers to get the value of the register together with its timestamp. Considering that,
by assumption, any alive server si behaves correctly, it follows that delivering a READ() message si will
answer by sending back a REPLY() message containing both the current and the old value and timestamp.
Such values are modified only al line 05 or 06, Fig. 3(b) when a server si deliver a WRITE() message.

Let tB(op′) and tB(op) the time at which respectively op′ and op are invoked and let tE(op′) and tE(op)
be respectively the return time of op′ and op.

Let us consider the following cases:

15

• Case 2.1 - tB(op′) + δ < tB(op) < tB(op′) + 2δ.
At the beginning of the write() (i.e. at time tB(op′)), the writer client sends a WRITE() message (line
03, Fig. 3(a)) that will be delivered by any alive server by time tB(op′) + δ. When a server si delivers
a WRITE() message, it will update its vali variable to v′ and its tsi to the current timestamp6. It follow
that from time tB(op′) + δ any alive server will store locally the value v′ written by op′. Let us note
that, since op′ lasts until time tE(op′) = tB(op′) + 3δ and, by assumption, there not exist concurrent
write() operations, such variables will not be updated anymore before time tB(op′) + 3δ.

When an alive server si delivers a READ() message (between time tB(op′) + δ and tB(op′) + 2δ), it
executes line 04, Fig. 2(b) sending to the reader both the current and the old values and timestamp
through a REPLY() message. Delivering such REPLY() message, the reader will store the values in its
replies local variable and waits until time tB(op) + 2δ before checking the content of such variable.
Considering that, by assumption, all the servers behave correctly, they will send the content of their
vali and tsi variable without changing them. As a consequence, the reader will store locally in its
replies set the same pair < v′, ts > from any alive server. Thus, at time tB(op) + 2δ ≤ tB(op′) + 3δ,
evaluating the condition at line 08, Fig. 2(a) the reader will select and return v′ and we have a
contradiction.

• Case 2.2 - tB(op) < tB(op′) + δ.
In this case, the WRITE() message is concurrent (wrt. the happened before relation) with the READ()
message. As a consequence, we may have that a server si delivering the READ() message before
than the WRITE() message and a server sj delivering the WRITE() message before than the READ()
message. As a consequence, si will answer by sending a reply() message containing the old value
v old and the previous value (no more valid) while sj will answer by sending v old and v′. However,
when the client evaluates the replies set, it will find an occurrence of v old for any alive server and
evaluating the condition at line 12, Fig. 2(a) the reader will select and return v old and we have a
contradiction.

• Case 2.3 - tB(op′) + 2δ < tB(op) < tE(op′).
In this case, the READ() message may be delivered also after the end of op′. If no more write()
operations occur before the end of op, we fall down to case 2.1 and the claim follows.
Contrarily, we fall down the the situation of case 2.2 where the concurrent write is a new write and
the claim follow again.

2Lemma 10

Theorem 2 Let c` be a client invoking a read() operation op. If all the servers behave correctly, the protocol
shown in Fig. 2 - 4 implements a regular register.

Proof The proof directly follows by Theorem 1 and Lemma 10. 2Theorem 2

Lemma 11 Let cj be a client sending a READ() message at time t and let REPLY(< i, ts, v, ots, ov >) be
the message delivered by cj at time t′ > t as reply to the READ(). Let lts be the value stored locally in the
lats ts variable by cj at time t′. If |lts− ts| > 1 then si is malicious.

6Let us note that such variable will be always updated, as in line 05 or 06, Fig. 3(b), due to Lemma 8.

16

Proof Let us suppose by contradiction that si sends to cj a REPLY(< i, ts, v, ots, ov >) such that |lts−ts| >
1 and si is correct.

The last ts local variable is updated to a certain value x by any client cj when (i) cj delivered an
ACK(< j, x,− >) message from any server it believes correct and (ii) x is strictly greater than the previous
value stored in last ts (line 17, Fig. 3(a)).

Let t′ be the time at which cj delivers the REPLY(< i, ts, v, ots, ov >) message and let us denote with
tup the time at which cj updated its last ts local variable to lts. If tack is the time at which si delivered
such WRITE(v, lts) message and it sent back the ACK(< i, lts,− >) message to clients, it follows that
tack < tup.

If at time t′ lts ≤ ts, it follows that tup ≤ t′, otherwise tup > t′. Let us consider the two cases separately.

• Case 1 - tup ≤ t′. In this case t′ > tack. Let us note that the value ts sent by si in the REPLY message
is the value stored locally by si in the variable tsi. Let us call trp the time at which si sends the
REPLY(< i, ts, v, ots, ov >) message to cj and let us consider the following cases:

– Case 1.1 - trp < tack. In this case, ts < lts and in particular, considering that write() operations
are sequential, due to Corollary 1, ts = lts−1. Thus, |lts−ts| = 1 and we have a contradiction.

– Case 1.2 - trp > tack. In this case, ts = lts and again we have a contradiction.

• Case 2 - tup > t′. Let us note that the value ts sent by si in the REPLY message is the value stored lo-
cally by si in the variable tsi. Let us call trp the time at which si sends the REPLY(< i, ts, v, ots, ov >
) message to cj and let us consider the following cases:

– Case 2.1 - trp < tack. In this case, ts = lts and we have a contradiction.

– Case 2.2 - trp > tack. In this case, ts < lts and in particular, considering that write() operations
are sequential, due to Corollary 1, ts = lts−1. Thus, |lts−ts| = 1 and we have a contradiction.

2Lemma 11

Lemma 12 Let cj be a client sending a READ() message at time t and let REPLY(< i, ts, v, ots, ov >) be
the message delivered by cj at time t′ > t as reply to the READ(). Let mlts be the value stored locally in
the my last ts variable and let mv be the value stored locally in the my last value variable by cj at time
t′. If mlts = ts and mv 6= v then si is malicious.

Proof The proof simply follows by considering that a client cj updates its my last ts and my last val
local variables only at the beginning of a write() operation.

Due to Corollary 1, every write() operation has a unique timestamp thus if cj delivers a value v 6= mv
it means that the server altered it and it cannot be correct.

2Lemma 12

Lemma 13 Let cj a client sending a WRITE(< j, ts, val >) message at time t. If there exists a server sj
such that sj does not sent the triple < j, ts, val > by time t+ 3δ then sj is faulty.

17

Proof Considering that (i) the first READ() request is sent at time t+δ (line 06, Fig. 3(a)), (ii) the detection()
procedure on replies set is performed at time t+ 2δ (line 11, Fig. 3(a)) and (iii) there not exists concurrent
write() operations, then any correct server will always provide the expected triple and the claim follows.

2Lemma 13

Lemma 14 Let cj a client sending a WRITE(j, ts, val) message at time t. If there exists a server sj such
that the triple < j, ts,− > does not appear in the ack set at time t+ 2δ, then sj is detected as faulty.

Proof Considering that (i) the detection() procedure on ack set is performed at time t + 2δ (line 09, Fig.
3(a)) and (ii) there not exists concurrent write() operations, then a correct server will provide the expected
triple and the claim follows. 2Lemma 14

Theorem 3 A correct alive server si is never detected as malicious.

Proof A server si deviates from the protocol if:

1. si omits to send ACK() messages during a write() or to send REPLY() messages during a read() (lines
02-07, Fig. 4).

2. si sends bad timestamps (i.e. too old lines 19-23, Fig. 4 or too new lines 32-36, Fig. 4).

3. si sends a pair < value, ts > with the correct timestamp and the wrong value (lines 24-31, Fig. 4).

Thus, a correct server may be erroneously detected as faulty only if one of the previous cases occur.
However, due to Lemmas 11 - 14, we have that if one of the previous situation happens, si is necessarily
malicious and the claim follows.

2Theorem 3

Theorem 4 Let si be a malicious server executing the protocol in Fig. 2 - 4. The belief of si is always
θ ≥ 1

2 .

Proof Let us recall that clients executing read() and write() operations are completely anonymous, i.e. they
cannot be identified by the servers. In addition, they are completely autonomous in the execution of the
operations, i.e. servers have no knowledge about operations invocation frequency and they cannot know or
estimate if the same client will execute an operation in the near future.

Let us now consider the game presented in Section 5 and let us consider when this happen in the protocol.
Let us recall that a request is said to be risky if the server can be detected by the client and removed from
the computation.

Note that, according to the detection() procedure shown in Fig. 4, the writer of the last write() operation
is the only one able to detect a malicious server playing strategy A.

Thus, to assess the value of θ, a malicious server computes the probability that the request is sent by the
last writer client.

Every client starts a game each time that it interacts with servers and in particular this happen:

• when a writer client sends a WRITE() message (line 03, Fig. 3(a))

• when a writer client sends a READ() message (line 06, Fig. 2(a) and lines 06 and 08, Fig. 3(a))

18

Let un now compute the value of θ, i.e. the belief of a malicious server that the current request is risky,
in both cases.

• Case 1 - si delivers a WRITE() message. WRITE() messages are sent only during a write() operation.
Thus, when delivering such a message, si is sure that its answer will be processed by the writer and
thus it evaluates θ = 1.

• Case 2 - si delivers a READ() message. READ() messages are sent both during write() operations
and read() operations. Let us note that a server knows that (i) operations are executed sequentially by
each process, i.e. clients cannot invoke a new operation unless the previous one is terminated and (ii)
write() operations last for 3δ time units.

Therefore, to evaluate the risk of playing strategy A, a server computes the probability that a READ()
message comes from the writer knowing the protocol. Let ∆ be the amount of time between the last
WRITE() message delivered by si and the considered READ() message.

– Case 2.1 - ∆ > 3δ. In this case, si can only know that the previous write operation is terminated.
However, considering that it has no further information about other operations invoked by the
same client, when delivering the READ() message it can only evaluate the probability that it
comes from the same client by flipping a coin and thus it evaluates θ = 1

2 .

– Case 2.2 - ∆ ≤ 3δ. In this case, si may assume that the previous write operation is still run-
ning. However, by looking to the write() protocol, the writer will send 2 READ() messages
before terminating the operation. Considering that (i) channels may deliver a message sent at
some time t in any time interval between time t and t + δ and (ii) readers invokes operations
independently from the writer, it follows that when delivering a READ() message, si is not able
to infer additional information allowing to distinguish the writer from other clients and use it
to calculate θ. In other words, the probability that a READ() message is sent from the writer
does not change knowing the number of READ() messages delivered in the past and it is again
computed by flipping a coin. Therefore, si evaluates θ = 1

2 .

2Theorem 4

Theorem 5 If Ds > Gs the protocol shown in Fig. 2 - 4 implements a regular register with only 1 alive
correct server.

Proof Let us first notice that the existence of the detection function creates the dualism between risky
requests and risk-less request. In addition, the existence of one correct alive server prevents the attacker to
create a collusion able to make the condition at lines 08, 12 and 17 satisfied with not valid values. Thus, the
claim simply follows by Lemma 3, Theorem 2 and Theorem 4 2Theorem 5

7 Discussion and Concluding Remarks

This paper addressed the problem of building a regular register in a distributed system where clients are
anonymous and servers maintaining the register state may be rational malicious processes. We modeled our
problem as a two-parties Bayesian game and we designed a distributed protocol able to reach the Bayesian

19

Nash Equilibrium and to emulate a regular register when the loss in case of detection is greater than the gain
obtained from the deviation (i.e. Ds > Gs). To the best of our knowledge, our protocol is the first register
protocol working in the absence of knowledge on the number of compromised replicas.

The protocol relies on the following assumptions: (i) rational malicious servers act independently and
do not form a coalition, (ii) the system is synchronous, (iii) clients are anonymous and (iv) write operations
are serialized. Let us now discuss how this assumptions impact on our results, how they can be relaxed and
how we plan to address the remaining issues as future works.

When clients are not anonymous, servers are able to understand the nature of the request i.e., they are
able to understand if the client that is sending the request is able to detect its potential misbehavior or not
and to compute whether θ = 0 or θ = 1. A simple solution to overcome this issue, is to increase the degree
of collaboration among clients. In particular, it is possible to introduce a verification phase at the end of
the read() where a client, that is not able to complete the operation, asks to others to verify the information
reported by servers. This extension has the effect to discourage servers from reporting bad values but has
the main drawback of requiring an high collaboration among clients while in the current solution, the only
form of client collaboration is represented by the advertisement of the detection. We are currently studying
how it is possible to weaken the anonymity assumption to move towards a model with homonyms like the
one presented in [9] without increasing the level of client collaboration.

Concerning the serialization of write() operations, this can be easily managed by using a set instead of
an integer to store values. Concurrent writes are stored in such set and the whole set is returned to the client
that will select the value reported by every server.

As future works, we are investigating how to solve the same problem under weaker synchrony assump-
tion or considering a different type of rational attacker like the attacker that aims at breaking the validity
of the register regardless the risk of being detected (i.e. the game with Gs > Ds) or an attacker that con-
trols a coalition of processes. Addressing these points is actually far from be trivial. Considering a fully
asynchronous system, in fact, makes impossible to use our punishment mechanism as clients are not able
to distinguish alive but silent servers from those crashed. Additionally, when the attacker is able to com-
promise and control a coalition of processes, the model provided in this paper is no more adeguate and we
are studying if and how it is possible to define a Bayesian Coalitional Game [12] for our problem and if an
equilibrium can be reached in this case.

References

[1] Abraham, I., Dolev, D., Halpern, J. Y. Distributed Protocols for Leader Election: A Game-Theoretic
Perspective. DISC 2013: 61-75

[2] Afek, Y., Ginzberg, Y., Landau Feibish, S. and Sulamy, M. Distributed computing building blocks for
rational agents. PODC 2014: 406-415.

[3] Aiyer, A. S., Alvisi, L., Clement, A., Dahlin, M., Martin, J. P., and Porth, C. BAR fault tolerance for
cooperative services. ACM SIGOPS Operating Systems Review. ACM, 2005. p. 45-58.

[4] Attiya, H., Bar-Noy, A., and Dolev, D. Sharing memory robustly in message-passing systems. Journal
of the ACM 42, 1, 1995, 124-142.

[5] Bazzi R. A., Synchronous Byzantine Quorum Systems, Distributed Computing 13(1), 45-52, 2000.

20

[6] Chaudhuri S., Kosa M.J. and Welch J., One-write Algorithms for Multivalued Regular and Atomic
Registers. Acta Informatica, 37:161-192, 2000.

[7] Clement, A., Li, H. C., Napper, J., Martin, J., Alvisi, L., Dahlin, M. BAR primer, DSN 2008: 287-296

[8] Clement, A., Napper, J., Li, H., Martin, J. P., Alvisi, L., and Dahlin, M. Theory of BAR games, PODC
2007: 358-359

[9] Delporte-Gallet, C., Fauconnier, H., Tran-The, H. Uniform Consensus with Homonyms and Omission
Failures ICDCN 2013: 161-175

[10] Fudenberg, D., Tirole, J. Game theory, 1991. Cambridge, Massachusetts.

[11] Haldar S. and Vidyasankar K., Constructing 1-writer Multireader Multivalued Atomic Variables from
Regular Variables. JACM, 42(1):186-203, 1995.

[12] Ieong, S., Shoham, Y. Bayesian Coalitional Games. AAAI. 2008: 95-100

[13] Li, H. C., Clement, A., Wong, E. L., Napper, J., Roy, I., Alvisi, L., Dahlin, M. BAR Gossip OSDI 2006:
191-204

[14] Lamport. L., On Interprocess Communication, Part 1: Models, Part 2: Algorirhms, Distributed Com-
puting, 1(2):77-101, 1986.

[15] Mahajan, P., Setty, S., Lee, S., Clement, A., Alvisi, L., Dahlin, M., and Walfish, M. Depot: Cloud
storage with minimal trust, ACM TOCS 29(4), 2011

[16] Malkhi D., Reiter M. K. Byzantine Quorum Systems, Distributed Computing 11(4), 203-213, 1998.

[17] Martin J., Alvisi L., Dahlin M., Small Byzantine Quorum Systems, DSN 2002: 374-388.

[18] Martin J., Alvisi L., Dahlin M.. Minimal Byzantine Storage, DISC 2002.

[19] Schneider, F. B. Implementing fault-tolerant services using the state machine approach: A tutorial,
ACM Computing Surveys 22(4): 299-319, 1990.

[20] Singh A.K., Anderson J.H. and Gouda M., The Elusive Atomic Register. JACM, 41(2):331-334, 1994.

[21] Sousa, P., Bessani, A. N., Correia, M., Neves, N. F., Verissimo, P. Highly available intrusion-tolerant
services with proactive-reactive recovery, IEEE TPDS 21(4): 452-465, 2010 .

[22] The Tor Project https://www.torproject.org.

[23] Vidyasankar K., Converting Lamport’s Regular Register to Atomic Register. IPL, 28(6):287-290, 1988

[24] Vityani P. and Awerbuch B., Atomic Shared Register Access by Asynchronous Hardware. FOCS 1987,
223-243.

21

