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Abstract

Peer-to-peer systems (P2P) have become a popular technique to design large-scale distributed ap-

plications in unmanaged inter-domain settings, such as file sharing or chat systems, thanks to their

capabilities to self-organize and evenly split the load among peers. Recently, enterprises owning a large

IT hardware and software infrastructure started looking at these P2P technologies as a mean both to

reduce costs and to help their technical divisions to manage huge number of devices characterized by

a high level of cooperation and a relatively low churn. Gaining a quick exclusive access to the system

for maintenance or auditing purposes in these enterprise infrastructures is a fundamental operation to

be implemented. Conversely, this kind of operation is usually not an issue in the previously mentioned

inter-domain setting, where peers are inherently independent and cannot be managed.

In the context of classical distributed applications, quorum systems have been considered as a major

building block for implementing many paradigms, from distributed mutual exclusion to data replication

management. In this paper, we explore how to architect decentralized protocols implementing quorum

systems in Distributed Hash Table based cooperative P2P networks. Our results show that quorum

systems taken “as is” from the literature and directly applied to such networks are not scalable due to

the high load imposed onto the underlying network. This paper introduces some design principles for

both quorum systems and protocols using them that boost their scalability and performance. These

design principles consist in a dynamic and decentralized selection of quorums and in the exposition and

exploitation of internals of the DHT. As a third design principle it is also shown how to redesign quorum

systems to enable efficient decentralization. We show that by combining these design principles in a

cooperative environment with relatively low churn it is possible to minimize the imposed load in the

system, in terms of sites contacted to obtain a quorum, and the latency of quorum acquisition
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1 Introduction

Context and Motivations. Internet-scale applications like BitTorrent, KaZaA and Skype have led to a

surge in research for large-scale inter-domain distributed systems. Solutions for such applications must be

fault-tolerant, decentralized and adapt to dynamically changing settings. Peer-to-peer (P2P) networks have

been shown to be the ideal substrate for such applications thanks to their self-organizing nature that is able

to evenly share the network load generated by the application even in the presence of non-cooperative peers

that can abruptly either leave the system or fail. These applications execute mainly simple operations like

storing and locating objects (e.g. files, user contact information etc).

Recently it has been shown that P2P technologies can be successfully adopted also in large-scale IT

enterprise infrastructures to reduce the complexity of their management (e.g., [21], [4], [1]) and thus the cost

of ownership. The enterprise setting is dramatically different from the inter-domain one: even though the

number of peers can be considered of the same order of magnitude1, peers belonging to the substrate of an

enterprise infrastructure work in a managed environment and, thus, they are much more stable that those in

internet-based applications. We can therefore expect these peers to join and leave the application gracefully,

except in the advent of failures. As a consequence, the enterprise setting is more stable than the inter-domain

one, but operations that have to be executed on the P2P substrate by enterprise applications are definitely

more complex than those implemented by Internet-based applications (e.g., prioritize and processing SLA

alerts based on business impact vs. file location in file-sharing application). These complex operations

may require a peer, for example, to take the control of the entire P2P system for auditing, monitoring

or maintenance purposes. These latter functionalities are actually out of the philosophy, for example, of

Internet-based file-sharing applications. As remarked in [21], such deep differences between enterprise and

Internet-scale settings in terms of system model and operations lead to the need of designing P2P technologies

(e.g., algorithms and mechanisms) optimized for a specific environment while keeping generic the very basic

P2P functionalities such as the capability of peers to self-organize into a connected overlay network and

1Peers in a large scale enterprise infrastructure include any kind of devices and applications potentially reaching thus a

number in the order of hundreds of thousands or millions [22].



collectively route data.

In this paper, we focus on an important abstraction for building decentralized protocols, namely quorum

systems. Quorum systems [17] were proposed for regular distributed systems to attain a high degree of

consistency, scalability and fault tolerance. They are still an important building block for the previously

described innovative P2P enterprise applications that need to execute complex operations based on dis-

tributed consistency of replicated data or on distributed mutual exclusion. A quorum system over a set of

sites (system universe) consists of a set of mutually intersecting subsets of sites (quorums). Quorums can

be used for many different applications such as consistent data replication, distributed mutual exclusion, in-

trusion tolerance, distributed storage, trust management, multiplayer games, etc. A large variety of quorum

systems have been proposed in the literature (see [9] for a survey). In traditional distributed systems, when

a quorum is requested on a site, it autonomously chooses a single quorum among those in the system, and

then proceeds trying to obtain permission (the locks) from the corresponding sites. All the requesters must

precisely know the system universe. This makes this strategy hardly adaptable to the P2P (both enterprise

and inter-domain) context, where the large size of the system makes unrealistic the assumption of precise

global knowledge.

Another dimension that differs in the P2P context regards the performance of the quorum system.

Quorum systems have been traditionally compared in terms of availability, load [17] and the number of

messages needed to acquire a quorum (referred to in the following as acquisition cost). While load and

availability depend on combinatorial properties of the quorum structure, acquisition cost is related to the

number of messages required to contact all the sites in a quorum. That is, the message complexity or

acquisition cost depends on how a quorum is obtained. In a traditional distributed system each peer can

access any other peer with a single hop thanks to the assumption of precise global knowledge. However, as

said above, in P2P systems this assumption does not hold anymore. Peers cannot maintain direct connectivity

to all other peers for scalability reasons. As a result the cost of sending a message from one peer to another

is, in general, higher than one hop. This means, that in a P2P system, acquisition cost will be strongly

affected by the overhead induced by the routing performed by the underlying P2P network. Research in



P2P systems has come out with routing infrastructures (referred to as Distributed Hash Tables - DHTs) in

which each peer is responsible for a set of keys defined over a virtual, continuous address space and holds

the reference to a small subset of other peers (stored in the finger table). Message routing in DHTs exploits

each peer’s finger table, and the number of hops required to route a message between any two peers has an

upper bound of O(log(n)) hops in a system with n peers.

Contribution. This paper presents a set of design principles for the conception, implementation and

deployment of quorum systems in DHT-based enterprise infrastructures in a scalable and efficient fashion.

A DHT can greatly help the realization of quorums in a large-scale setting: quorums can be defined over

the key space, considering each key as a site, without any global knowledge on the number and identity of

connected peers. However, simply reproducing the traditional quorum acquisition approach over the DHT

does not lead to an efficient solution: if the quorum acquisition process is completely unaware of the key-

to-peer mapping, routing can incur in a high overhead. For example, different sites belonging to the same

quorum can correspond to keys mapped to the same physical peer in the DHT. Then, messages sent to all

such keys will actually correspond to duplicated messages sent to the same peer.

We propose three design principles for the implementation of efficient quorum systems over P2P archi-

tectures2, namely delegation, integration and flexibility, and discuss their impact on both acquisition cost

and latency. The first design principle, delegation, lies in selecting quorums dynamically in a decentralized

fashion as opposed to selecting the full quorum statically before initiating the acquisition. In other words,

a quorum acquisition starts at a peer and is delegated recursively to subsets of other peers responsible for

selecting and obtaining a grant from a subset of the whole quorum on behalf of the requesting peer. By

forming quorums in this way, it becomes possible to have a significant degree of flexibility in selecting the

most convenient sites in order to reduce routing overhead (and subsequently the acquisition cost). The sec-

ond design principle, integration, consists in exposing internal information of DHT routing, more concretely,

the finger table and the interval of keys for which a peer is responsible. This information enables to know

2It should be noted that, in general, one might not want to request a quorum over the full DHT, but only over a fraction of

it. This is possible in hierarchical DHTs such as Crescendo [6], in which a fraction of the system is still a DHT by itself.



which sites can be reached directly and therefore to determine which are potentially most convenient. The

third principle, flexibility, tells how quorum systems should be designed so they exhibit the necessary adap-

tiveness to exploit the first principle. That is, quorum systems should provide some flexibility to enable their

dynamic acquisition in a balanced and efficient way from any peer, offering at each step enough alternatives

to effectively realize delegation. Hence, by combining these three design principles it becomes possible to

greatly reduce the number of visited peers and exchanged messages during a quorum acquisition.

The paper uses a general canvas in the form of a generic algorithm to reason and compare the different

protocols for obtaining quorums in terms of acquisition cost and latency. The design principles are exercised

in two quorum systems. The first one, named farsighted, is a novel quorum system that extends hierarchical

quorum consensus [12] by offering higher flexibility in choosing quorums with the additional advantage of

enabling smaller quorums. The second quorum system is the hierarchical grid quorum [12] incorporating two

of the three design principles presented. Finally, we provide an extensive simulation study of the deployment

of all the aforementioned quorum systems over a ring-based DHT, namely Chord. Simulations show the

performance gain obtainable by applying the three design principles with respect to the direct application of

quorum systems to P2P networks. The study also points out an interesting tradeoff between the acquisition

cost and latency. Moreover, quorum availability performance shows how the proposed solutions are suitable

for a setting where the the number of faults is small and peers leave gracefully the system. When the

number of failures increases, due to the fact for example that leaves are no longer graceful, we expect quorum

availability delivered by our solutions to degrade severly. This is why our solutions well accommodates the

needs of complex applications for P2P-based enterprise infrastructures.

Paper Organization. The paper is structured as follows: Section 2 presents the background on quorum

systems and DHTs (Chord, in particular). In Section 3 we describe the farsighted quorum system. Section

4 introduces a general algorithm for acquiring a quorum over a DHT P2P system and several instantiations

of it. Section 5 deals with problems related to peer failures. Experimental evaluation of all the proposed

solutions is presented in Section 6. Section 7 presents the related work and Section 8 concludes the paper.



2 Background

In this section we introduce a few quorum systems defined for classical distributed systems and a brief

summary of Chord that will be used as concrete DHT reference infrastructure3.

2.1 Quorum Systems

A quorum system over a set of n sites, N , is defined as a set of subsets of sites, or quorums, with pair-wise

non-empty intersection. More formally, a set system universe S = {S1, S2, ..Sn} is a collection of subsets

Si ⊆ N . A quorum system defined over a set of sites N is a set system S that has the following intersection

property: ∀i, j ∈ {1..n}, Si ∩ Sj 6= ∅. In a quorum system each subset Si is called a quorum.

Quorum systems were originally proposed to cope with communication failures, ensuring that in case of

partitioning of the system at most one partition will run, thereby preventing inconsistencies [8, 23]. Since

then, many quorum systems have been proposed in the literature. In this paper we consider two well-known

quorum systems, namely hierarchical majority and hierarchical grid.

1. Hierarchical majority (HMaj) [12] is a generalization of simple majority, where sites are organized in a

hierarchy. This hierarchy is represented as a complete tree with sites at its leaves. A quorum is obtained

locking recursively a majority of children nodes at each level starting from the root. The quorum size

for HMaj is minimal when the tree degree is 3 [12], in such case the quorum size is O(n0.63).

2. Hierarchical grid (HGrid) [13] is a variant of the grid quorum [3]. A hierarchical grid organizes sites

into a multi-level hierarchy, such that they reside on the leaves of this hierarchy, while other levels

are represented by logical nodes. Each node at level i of the hierarchy (beside leaves) is defined by a

rectangular m × n grid of nodes at level i + 1.

A quorum consists of the union of a full row and a row cover obtained recursively on the hierarchy. A

full row at level i is defined as the set of (i + 1)-level nodes all pertaining to a single row of the grid,

3Even though the experiments have been conducted on the top of Chord, the underlying DHT can actually be any ring-based

structured P2P system.



while a row cover consists in a set of (i + 1)-level nodes where each node pertains to a different row of

the grid. Square-sized grids are optimal in terms of quorum size. The quorum size for a hierarchical

square grid is 2 · √n − 1.

2.2 P2P Distributed Hash Tables and Chord

P2P Distributed Hash Tables (DHTs) are overlay networks deployed on top of existing networks (mainly

TCP/IP infrastructures) to provide scalable self-organization and routing capabilities to applications. The

common idea behind most such schemes is that messages, instead of being routed directly using physical

peers’ addresses ranging over a peer space N , are routed using logical key identifiers, defined over a key

space K. In ring-based DHTs, like Chord [20], the key space is a unidimensional circular space, while in

range-based DHTs like CAN [18] the key space is an n-dimensional space.

For the purposes of this paper, we consider a specific ring-based DHT routing protocol, namely Chord.

The Chord protocol is based on a hash function that maps keys to actual peers. This function assigns each

peer and key a m-bit identifier. These identifiers are ordered on an identifier ring, i.e. the Chord ring,

modulo 2m. Key k is mapped to the first peer (defined as the successor peer of key k) whose identifier is

equal to or follows k in the ring.

The system automatically routes messages to the successor peer of the destination key, and maintains

consistent key mappings in case of peers joining and leaving the system or peer failures. While peers may

leave abruptly the system due to a failure, peers leaving gracefully the system can be requested to execute,

before actually shutting down, a hand-off protocol to transfer data associated with keys mapped to them

to their successor peer. This cooperative behavior is considered common to many existing P2P applications

and is often leveraged to improve system performance [20]. In this paper we assume peers that do not fail

follow this cooperative behavior.

For efficient key lookups, each peer maintains a table, called finger table, with m entries (i.e. the fingers).

The ith finger at peer n contains a pointer (e.g. the IP address and TCP port number) to the successor peer

n′ of the identifier (n + 2i−1) modulo 2m.



3 The Farsighted Quorum System

In this section we propose a hierarchical quorum system, namely the farsighted quorum system (FQ). FQ is

similar to HMaj in the sense that sites are the leaves of a complete tree, but it is more general and flexible

than HMaj in the choice of quorums. This allows to select quorums with smaller size in FQ than in HMaj.

Given a set of sites n, which are the leaves of a complete tree of degree d and odd height, a quorum in

FQ is defined as the set of sites that results from applying (height(tree)− 1)/2 tuples, (f1, f2, · · · , fd), with

0 ≤ fi ≤ d, to the tree. A tuple is applied to a generic odd level (outer level) and to the next level (inner level)

of the tree . If fx 6= 0, fx is the number of children selected in the inner level for child x of the outer level

(being children of a given level numbered from left (1) to right (d)). If fx = 0 no children of x are selected. We

call each tuple a pattern and a set of patterns a tactic. A tactic over a complete tree of degree d with an odd

number of levels is an FQ if for each pair of patterns (f1, f2, · · · , fd), (g1, g2, · · · , gd) ∈ tactic,∃k | fk +gk > d

(intersection property).

Figure 1 shows a system with 16 sites. In this example a possible quorum can be obtained applying

one of the permutations of the (4, 1, 1, 1) pattern, i.e. selecting 4 children in the first level and then 4

children from the first child, and 1 child from each of the other children. As an example, {0, 1, 2, 3, 4, 8, 12},

{0, 1, 2, 3, 5, 9, 12}, {0, 1, 2, 3, 6, 10, 15} are quorums defined by the pattern. In this case, a quorum consists

of 7 sites while 9 sites would be selected with HMaj.

5 6 71 2 3 4 8 9 10 11 12 13 14 150

Figure 1: Hierarchical quorum consensus

FQ is more general than HMaj in the sense that HMaj is an instance of FQ. In particular, FQ looks at

two consecutive levels of the hierarchy at a time. Given two consecutive levels, it decides how many children

of the inner level will be taken for each children of the outer level. The quorum chosen in HMaj for a tree

with a degree 4 is represented in FQ using the tactic containing all the permutations of the pattern (3, 3, 3,

0) (also called pattern set).



Various pattern sets can be used to build quorum based on FQ, but not all pattern sets are compatible,

i.e. some combination of pattern sets can not guarantee the intersection property, thus leading to invalid

tactics. For example the pattern set (4, 1, 1, 1) (all the permutations of this tuple) is compatible with the

pattern set (3, 2, 2, 2) but not with the pattern set (3, 3, 3, 0). That is, the patterns (4, 1, 1, 1) and (0, 3,

3, 3) do not fulfill the intersection property. The tactic with the pattern sets (3, 2, 2, 2) and (3, 3, 2, 0) is

also valid as it fulfills the intersection property.

There are patterns that are just an extension of other patterns, i.e. they have a bigger value in some

components. For instance, (3, 3, 2, 1) is just an extension of (3, 3, 2, 0). These extension patterns require

more children than the one they extend, and therefore, they increase the quorum size. Although, they may

help to increase the flexibility of a tactic. For instance, the pattern set (4,1,1,1) does not intersect with the

pattern set (3, 3, 2, 0). Therefore, they are not an FQ. However, (4, 3, 2, 0), an extension of (3, 3, 2, 0), is

compatible with the pattern set (4, 1, 1, 1).

The flexibility in choosing patterns in FQ allows selecting patterns exhibiting a lower quorum size than

HMaj. The size of the quorum in FQ depends on the tactic. For a tactic composed of a single pattern

set (f1, . . . , fd) the quorum formation is defined over a tree of degree d and height (logdn) + 1. Since FC

considers pairs of levels, this is equivalent to defining a quorum over a tree of degree d2 with half the height

of the original tree. . A quorum consists of the leaves of a subtree of this tree in which at each level
∑

i fi

children are taken, being fi defined by the pattern. Hence, the quorum size is given by the number of leaves

of a tree of degree
∑

i fi and height logd2n, that is: (
∑

i fi)
log

d2n. For arbitrary tactics, the quorum size

depends on the pattern applied at each level. Generalizing the previous formula, the quorum size for a

sequence (p1

1
, p1

2
, . . . , p1

d), . . . , (p
t
1
, pt

2
, . . . , pt

d) of patterns is computed as the product of the sum of each of

them, that is,
∏t

i=1

∑d

j=1
pi

j .



4 Implementation of Quorum Systems on DHTs

In this section we analyze in depth the issues related to the implementation of different quorum systems on

top of a DHT network. Sites constituting a quorum system built upon a DHT network are actually the keys

of the DHT itself. Therefore, differently from a quorum system for classical distributed systems, distinct sites

can be mapped by the DHT to a same peer. We first introduce a general algorithm whose sole purpose is to

represent a common implementation framework for all the types of quorum system we will consider. Then,

we propose some general strategies that can be exploited for the implementation. Finally, we will show how

the generic algorithm can be instantiated to implement the quorum systems introduced in previous sections,

and how this can be done exploiting the cited strategies.

4.1 A General Algorithm

Function name: GetQuorum Function name: Acquire

Input: An interval interval Input: An interval interval

Output: true or false Output: true or false

List ← ChooseStrategy(interval) send GETQUORUM[interval ] to FirstKeyOf(interval)
for each i ∈ List wait for message from FirstKeyOf(interval)

if ¬ Acquire(i) if message = ACK[interval ]
return false return true

return true else

return false

Function name: handler for GETQUORUM messages
Input: An interval interval and a key k from which the message was received

if interval ⊆ MyKeyspace

if ¬ IsLocked(interval)
Lock(interval)
send ACK[interval ] to k

else

send NACK[interval ] to k

else if GetQuorum(interval)
send ACK[interval ] to k

else

send NACK[interval ] to k

Figure 2: A general algorithm for the implementation of quorum systems on DHT-based P2P networks

The algorithm in Figure 2 is a generic canvas for the acquisition of quorums over DHT-based networks.

It embeds several functions, namely GetQuorum, Acquire, and ChooseStrategy, as well as the handler for



messages exchanged between peers. The canvas also embeds other functions whose meaning is intuitive.

Key to this canvas is the ChooseStrategy function which implements the logic related to a specific quorum

system (i.e., grid, hierarchical etc.). In other words, only the ChooseStrategy must be changed in order to

implement a different quorum system.

The peer requesting a quorum (requester) starts the algorithm calling the function GetQuorum and

passing it an interval representing the whole key space, i.e. the entire set of sites. GetQuorum calls the

ChooseStrategy function. ChooseStrategy splits the given interval in various subintervals and returns only

those that will form the quorum. Then, GetQuorum tries to obtain a lock on the keys contained in the

subintervals returned by ChooseStrategy. This is done via multiple calls (one for each subinterval) to the

Acquire function that simply sends a GETQUORUM message to the first key of the subinterval passed as

parameter and waits for the corresponding response.

When the peer responsible for a key k receives a GETQUORUM[interval] message sent to key k, it tries

to obtain a lock on interval ; if interval is a subset of the key space controlled by that peer, denoted as

MyKeyspace, then the peer locks interval, otherwise a distributed recursive call to GetQuorum must be done

in order to lock on interval.

4.2 Implementation strategies

The proposed general algorithm enables a large variety of implementation strategies. As a trivial solution, the

ChooseStrategy function can return subintervals composed by a single key. This corresponds to a centralized

strategy, where the requester directly contacts all the keys forming the quorum. The centralized approach

has an evident drawback: as each single peer is unaware of the mapping between keys and peers, it will send

a different message to each single key even if most of such messages will be routed to the same peer. This

inefficient behavior has a strong negative impact on the acquisition cost.

Through the general algorithm we can achieve a completely decentralized approach in the quorum for-

mation. If the ChooseStrategy implementation returns a set of subintervals, each subinterval will lead to a

recursive call to getQuorum, until the subinterval is a subset of the key space of a peer. In other words we



introduce a mechanism of delegation to delegate the acquisition steps to different peers. The advantage of

this technique is that large intervals are progressively split into smaller subintervals, that are more likely to

be completely contained in a peer’s own interval and that can be acquired with a single message.

The selection of key intervals in ChooseStrategy can be done considering preferred intervals for delegation

as those that will be delegated to peers contained in the finger table of the current peer. We refer to this new

implementation strategy as a integration mechanism. The main goal of this mechanism is to select targets of

the delegation such that, the routing mechanism of the DHT will be forced to make almost only single-hop

routing steps, thus greatly reducing routing overhead. Implementations exploiting this mechanism will be

referred to as integrated protocols, in contrast with protocols that are completely oblivious of the underlying

DHT routing mechanism, namely layered protocols.

In the next subsections we instantiate the generic algorithm for two quorum systems, namely hierarchical

majority and hierarchical grid, starting with centralized implementations and then adding decentralization

as a first improvement and integration as the last step.

4.3 Layered Protocols

4.3.1 Hierarchical Grid

To implement HGrid on top of a ring-based DHT we need to find out a functional way to map the hierarchical

bi-dimensional grid structure on top of the uni-dimensional keyspace. The keyspace is first partitioned into

four intervals that are mapped to the four cells of a 2×2 grid, such that keys from 0 to 2m−2−1 are mapped

to cell (1, 1) (row 1 and column 1) of the grid, keys from 2m−2 to 2 · 2m−2 − 1 are mapped to cell (1, 2), keys

from 2 · 2m−2 to 3 · 2m−2 − 1 are mapped to cell (2, 1), and keys from 3 · 2m−2 to 4 · 2m−2 − 1 = 2m − 1 are

mapped to cell (2, 2); this grid represents the first level of the hierarchy. Grids in lower levels of the hierarchy

are obtained applying the same subdivision to the corresponding subintervals of the keyspace, until we reach

a level where each single key is mapped to a different cell of the grid.

This mapping is shared among all peers in order to guarantee that the intersection property holds for

any quorum chosen starting from any key. Figure 3 gives an example on how a three-level HGrid with 16
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Figure 3: Example of a hierarchical grid quorum built over a 16-key Chord ring.

cells at the lower level can be mapped onto a 16-key Chord ring;

A centralized algorithm that builds HGrid quorums can be instantiated on the generic algorithm of

Section 4.1 by implementing a ChooseStrategy function that acts locally by choosing recursively on the

hierarchy a full row and a row cover, and then returns the corresponding keys. In the following we denote

such an algorithm as centralized HGrid.

The same algorithm can be simply transformed in the corresponding decentralized version. The requesting

peer starts two parallel actions to obtain a full row and a row cover on the root level grid. Each of these

actions returns the key intervals corresponding to the selected cells. Choices at lower levels of the grid

hierarchy are then delegated to those peers that are responsible for the first key of the chosen intervals. In

the following we denote such an algorithm as decentralized HGrid.

Figure 3 shows an example of a hierarchical grid quorum obtained on a 16-cell grid structured as a three

level hierarchy. Grey cells on the left side indicate those cells that have been selected by the algorithm, and

dotted keys on the right side the corresponding locked keys in the Chord ring.

4.3.2 Hierarchical Majority

As mentioned in Section 2.1, the hierarchical majority quorum system (HMaj) consists in a hierarchical

organization of the sites into a tree of degree d, in which sites (keys) are the leaves. Although the optimal

quorum size for HMaj is obtained with a tree of degree 3, we will use d = 4 to simplify the matching between
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Figure 4: A decentralized hierarchical majority quorum built over 16-key Chord ring

key intervals defined by the tree and the key space size, 22·x = 2m.

In HMaj a quorum is formed recursively by selecting a majority of children at the first level and then

selecting recursively a majority in each of the selected children until the leaves are reached. Let us point out

that a child at a certain level of the hierarchy is directly mapped to a subinterval of the key space. Therefore,

when a majority of children are chosen, it is actually being decided which underlying intervals of the key

space are being selected as shown in Figure 4 for a 16-key Chord ring. In this figure black dots represent a

HMaj quorum.

A centralized approach for the implementation of HMaj would consist in selecting one quorum at the

requester peer and obtaining a grant for each key in the selected quorum. The ChooseStrategy function

that implements this approach is straightforward: it simply recursively walks down the hierarchy choosing

each time three children out of four until the leaves level is reached. Each key selected at this final stage is

returned by the function as a different interval. We denote such algorithm as centralized HMaj.

Centralized HMaj can be also implemented by computing quorum keys in a decentralized manner. In

the following we refer to such algorithm as decentralized HMaj. As in centralized HMaj, the requester in

decentralized HMaj selects three children (key subintervals) out of four, but only for a single level of the



hierarchy. Then, a message with each selected interval is sent to the first key of that interval. The peer

responsible for that key will walk down one more step in the hierarchy. The decentralized recursion stops

when a peer receives a message containing an interval which is completely contained in the portion of the key

space the peer is responsible for. Therefore, the implementation of ChooseStrategy for decentralized HMaj

boils down to the selection from the given interval of three randomly chosen subintervals out of four.

For example, let us assume that key 0 is the requester key (Figure 4). The first iteration of the algorithm

occurs in ChooseStrategy at the peer responsible for key 0 and works on interval [0 − 15]. ChooseStrategy

subdivides the interval into four subintervals and chooses three of them: [0 − 3], [4 − 7] and [12 − 15]. The

next iteration occurs in parallel on the peers responsible for the first key of each subinterval.

4.4 Integrated Protocols

4.4.1 Hierarchical Grid

The Integrated version of the hierarchical grid quorum system (integrated HGrid) algorithm is an enhanced

version of HGrid that exploits the knowledge contained at the DHT routing layer (i.e., finger table and the

interval of keys the peer is responsible for). More specifically, ChooseStrategy of HGrid tries to select those

cells in the grids that contain at least a finger. Only fingers pointing to peers that, given their position in

the keyspace, could be able to obtain the desired keys are considered by the algorithm. When no finger is

available to obtain all the required keys in a grid, then the algorithm proceeds with random choices.

4.4.2 Farsighted Quorum System

FQ algorithm employs (i) a tactic over a 4 degree hierarchy (as defined in Section 3) and (ii) the decentralized

recursion used by decentralized HMaj (see Section 4.3).

ChooseStrategy is in charge of dividing an interval into subintervals and therefore, encapsulates the

pattern selection for a given tactic. A pattern in FQ determines how many intervals are selected at the

current (outer) level and for each of these subintervals how many intervals at the next (inner) level are

chosen again. In doing the task of pattern selection, ChooseStrategy faces a big issue: selecting the most



Last key from which the pattern (3,3,2,0) can be applied

1st level

pair

(3,                                         3,                                         2, 0)

2nd level

pair

{

{ 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0-15 16-31 32-47 48-63

(0,                    2,                    3,                     3)

Figure 5: Last key from which the (3,3,2,0) pattern is applicable

favorable pattern among those applicable (i.e., the one that only involves peers holding keys part of the

quorum). The set of applicable patterns depends on the interval managed by the peer responsible for the

requesting key (the first key of the interval to be locked. See function Acquire). A pattern is applicable from

a key owned by a peer, if the following two conditions are verified:

• A quorum can be obtained from that key only involving peers responsible for keys within the interval.

For instance, the pattern (3, 3, 2, 0) selects keys from the first three subintervals. To apply that pattern

in a 256-key space to interval [0..256[, the key must be located in the first subinterval ([0..64[) at the

first level of the hierarchy because the pattern selects keys from the first subinterval, and from there

it is possible to reach the second and third subintervals ([64..128[ and [128..174[) without resorting

to peers managing keys located only in the last subinterval ([174..256[), which do not belong to the

quorum. Moreover, the key can only be located in the first or second subintervals ([0..16[ or [16..32[)

of the subinterval [0..64[ in order to reach 3 subintervals of that interval from that key.

• The key should be located at a position in the key space such that, at the next recursive steps of the

quorum formation, at least the minimal pattern in the tactic (i.e. the one with lower lexicographical

order) can be applied. Considering the previous example with a 256-key space and the pattern (3, 3,

2, 0), if the value of the requester key is 31, from there it is not possible to obtain a quorum recursively

because it is “too late” in that subinterval. That is, the pattern will be applied in the next recursive

step and it is not possible to directly access the first, second and third subintervals of [16..31[ from key

0 1 2 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Figure 6: Numbering scheme for inner and outer levels



31 (see Fig.5), having to resort to peers only holding keys outside the original interval to reach them.

If the patterns (3, 3, 2, 0) and (0, 2, 3, 3) belong to the tactic, the pattern (3, 3, 2, 0) can be applied

if the requester key is smaller than 22 (Fig 5). From there it is possible to apply in the next recursive

steps the minimal pattern, (0, 2, 3, 3).

As a consequence, one of the main tasks of ChooseStrategy is to calculate the last key from which a

pattern is applicable for a given interval. In order to gain this knowledge, it is necessary to know the latest

outer and inner intervals, (o, i), at which that pattern is applicable. For this reason, intervals at a given level

of the tree are numbered from left to right starting from 0. The same procedure is done at the next level

(Figure 6) In the previous example with only patterns (3, 3, 2, 0) and (0, 2, 3, 3) in the tactic, for pattern

(3, 3, 2, 0), (o, i) = (0, 1), which means that the last key to which the pattern (3, 3, 2, 0) can be applied

is in the first interval (0) and in the second subinterval (1) within that interval. The minimal pattern must

also be considered in order to check the applicability of a pattern. The minimal pattern enables the latest

start in the subsequent levels. (0, 2, 3, 3) is the minimal pattern in the previous tactic. So, the latest outer

and inner intervals for the minimal pattern of a tactic, (omin, imin), are also needed. Assuming that the key

space starts with key 0 on the left most leaf and finishes with key 22m − 1 on the right most leaf, when a

quorum is requested in an interval, since the tree in FQ is complete with a 4 degree, it is possible to know

the level of the tree (l) that corresponds to that interval. Using that level it is possible to know the last key

from which a pattern is applicable at level l (where j iterates downwards to 1):

lastkey = o · 22l
+ i · 22l−1

+
1∑

j= l−2+1

2

(omin · (22)
2j

+ imin · (22)
2j−1

)

The first term of the sum represents the number of keys (leaves) before the latest outer interval. The

second one represents the number of keys before the latest inner interval. And the third one represents

the number of keys that can be skipped in the inner interval to apply the minimal pattern in all the next

recursive steps. In a space of 256 keys and the [0..256[ interval, the pattern (0, 2, 3, 3) would be applicable

from key 0 to key 120.

If the starting key (k) of the interval under consideration is not zero, the interval in which the pattern is



applicable is [k, k + lastkey[. It should be noted that in the first level of the tree, there is circularity, in the

sense that any of the subintervals could be numbered 0 as far as the next on the right is numbered 1 and so

on. However, this does not hold for the rest of the levels.

Once the selection of the pattern has been done for the current level, ChooseStrategy splits the given

interval in subintervals recursively till a subinterval does not contain keys owned by more than one finger,

that is, it contains keys of zero or one finger. In the latter case, the interval is delegated to that finger. In the

former case, it will be delegated to the peer pointed by the closest finger before the interval. Those intervals

owned by the current peer will be locked directly (if not locked). In this way intervals become smaller and

smaller, and, therefore, the same happens with the jumps in the finger table, ending up with intervals fully

owned by the receiving peer. We denote such algorithm as farsighted HMaj

5 Handling peer failures

The DHT-based overlay network is capable of handling peer failures, transferring the responsibility of keys

pertaining to a failed peer to one of its neighbors (its successor in the ring, if we consider the specific case

of Chord). This failure-handling mechanism should be “transparent” to applications running on top of the

DHT thus enabling the developers to consider all the keys as always available (at least as long as a single

peer is present in the overlay network). In our quorum-based system we can distinguish peers with three

different roles:

Requesters – peers that try to obtain a quorum doing the first call to the GetQuorum function;

Delegators – peers that only handle delegation steps in the construction of a distributed quorum;

Leaves – peers responsible for the keys that actually form the quorum.

Failures of these three kinds of peers lead to different inconsistencies that must be avoided in order to

guarantee that the quorum intersection property will always hold. A possible solution to this problem is the



employment of one of the many different replication techniques proposed by the literature [11]. However, in

this section we propose a different approach to this problem that is based on the idea of restoring a peer

state after its failure. Given the different roles played by different peers in a quorum request, we will discuss

separately how to deal with their failures in the remainder of this section.

5.1 Failure of a leaf peer

Peers associate a state to each of the keys they are responsible for. In a ideal fail-free scenario, each key can

be either locked (L), if the responsible peer had granted the lock on it for a quorum request, or free (F).

Subsequently to a peer failure, its keys are automatically reassigned by the DHT to its successor, but they

lose completely their state. In this case, a mechanism is needed to correctly restore this state after a failure.

Reassigning to each key the correct state it had before the failure is fundamental to avoid inconsistencies in

the system that can potentially lead to violations of the quorum intersection property. For this reason we

introduce a third possible state, i.e. unknown (U) that is automatically assigned by a peer to all the keys

inherited after the failure of its predecessor. Keys in this state cannot be granted to form quorums, as this

guarantees that the quorum intersection property will always hold, despite failures.

P1 P2 P3

FF L F F F F L F L L F F F F F F L L L F F L F F F

(a)

P1 P3

FF L F F U U U U U U U U U U F F L L L F F L F F F

(b)

Figure 7: Key reassignment after the failure of peer P2, and subsequent state change.

Figure 7 shows a part of the Chord ring where three peers (P1, P2 and P3) are located, along with the

keys assigned to them. Each key is represented with its state. If P2 fails, all the keys pertaining to it are

automatically reassigned by the DHT to P3 which puts them in the unknown state. Note that, after this

failure, the keys now pertaining to P3 can be divided in two distinct subsets: one containing only keys in

the unknown state (i.e. those inherited after P2’s failure), and another containing keys in either locked or

free states.

Each key can then suffer one of the following state transitions due to a peer failure (see Figure 8 for the
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Figure 8: State transition diagram for keys in the DHT.

complete state transition diagram): (1) U → U , (2) L → U or /3) F → U .

Given that every transition produces the same state (i.e., U), the problem is how a peer can choose an

inverse transition to correctly restore the original key state. State transition 1 happens when a peer that

inherited the considered key from a failed neighbor peer, suffers itself a failure before being able to restore

the original key state. Solving this case then actually boils down to solve either case 2 or 3.

A key undergoing through state transition 2 was previously locked and then was part of a quorum.

This quorum could be either still forming or completely formed; in both cases we expect that eventually an

UNLOCK message will be sent to this key from one of the peers involved in the quorum. The arrival of this

message lets the peer currently in charge for that key assume that state transition 2 happened; then it can

safely apply a transition U → L to the key before handling the UNLOCK message. We can then conclude

that every key that underwent state transition 2 will eventually undergo the correct inverse state transition

U → L.

The case involving state transition 3 is the most difficult to solve. It requires a peer containing keys in

the U state to receive a quorum request. If the quorum request is acknowledged, then it can safely apply

a transition U → F to every key in the U state, as it can be sure that no other valid quorum can coexist

at the same time (due to the quorum intersection property), and then every key can be safely moved to the



F state. Note that this actually is valid even for keys that underwent state transition 2, but whose original

state was not yet restored. If the request is not acknowledged it means that non-U keys are not sufficient to

achieve a quorum. If there are too many keys in the U state, this could lead to a deadlock. This situation

can be prevented by letting keys return to the F state after a timeout expires. This is safe, provided the

timeout is sufficiently long, because if the keys belong to a quorum they will receive an UNLOCK message

before the timeout expires.

Even though keys forming the DHT can be considered as always available, the introduction of the U state

actually renders part of the key-space not available for quorum requests. This leads to a behaviour that

somewhat resembles the one in classical quorums, where peer failures actually affect the quorum availability.

5.2 Failure of a requester or a delegator peer

The requester peer and each delegator peer maintain state about the quorum hierarchy associated to the

quorum, i.e. keys to which the quorum formation request was forwarded and, only for delegator peers,

the peer from which the quorum formation request was received. A peer failure thus partially destroys

information about the multicast tree used to request the quorum. If a quorum was granted and there

are failures in the quorum hierarchy, some peers will never receive the UNLOCK message, and therefore a

mechanism is required to detect this situation and perform the UNLOCK autonomously.

In order to recover this lost information we propose the usage of a simple technique based on KEEPALIVE

messages forwarded periodically from the quorum requester down the quorum delegation hierarchy (if any)

towards leaf peers. Each peer involved in the quorum waits for this message to be sure that the quorum

structure at parent levels is still intact. If a message is not received from a peer, it can send toward its

parent a QUORUMALIVE message after a predefined period of time has elapsed, to ask if the quorum is

still valid. If a requester or delegator peer fails, then the peer that inherits its keys will eventually receive

the QUORUMALIVE message from each of the peers at the lower level of the quorum hierarchy. For each

of these messages it will reply with an UNLOCK message forcing all the locked keys to the free state. In

case the failed peer was a delegator, the replacing peer will also receive the KEEPALIVE message from the



upper level, to which it will reply with an UNLOCK, forcing the removal of the quorum.

We would like to point out that the cost paid to maintain the quorum delegation structure through

the periodic sending of KEEPALIVE messages is an addition to the costs paid by the DHT to consistently

maintain its structure after a peer failure. However, we think that this cost can be considered significantly

smaller that the one imposed by any standard state replication strategy. This claim is supported by the

fact that (i) only peers involved in a quorum request must send these messages, (ii) the cost is incurred only

during a quorum request and (iii) the only content of these messages is a simple quorum identifier, while a

replication protocol would replicate the whole state associated to keys regardless of the stat content and the

current activity of the system.

6 Performance Evaluation

To evaluate the impact on performance of the various techniques previously introduced we implemented

different versions of the algorithms for hierarchical majority (HMaj) and hierarchical grid (HGrid) quorum

systems.

We started evaluating performance of simple centralized implementations, then added decentralization

techniques, and, finally, integration techniques and quorum flexibility (this latter only for hierarchical ma-

jority, the farsighted quorum). Note that the integration mechanism can work better with those quorum

systems that permit more flexibility in the selection of the keys to be locked. For this reason we preferred a

decentralized and integrated implementation of the farsighted quorum system introduced in Section 3, to a

simpler, but less performant, decentralized and integrated implementation of the classical hierarchical ma-

jority. Therefore, the algorithms used in this simulation study were centralized HMaj, decentralized HMaj,

farsighted HMaj4, centralized HGrid, decentralized HGrid, and integrated HGrid All the algorithms were

implemented on top of a Chord network simulator. The simulator routes messages among simulated peers

while keeping track of performance indices. We ran tests simulating networks with various key space sizes

4Preliminary tests, not reported here, showed how the 4-1-1-1 pattern is the one that offers the best performance for the

farsighted quorum algorithm. For this reason, for the test presented here, we always sticked with this pattern.



(of the form 22x) up to 2128. During a simulation the network is first populated with p peers using a uniform

distribution5 over the whole key space. Then a quorum request is executed on a key chosen at random.

This request generates messages that are routed across various peers. A monitor component keeps track of

different performance metrics throughout the entire simulation run.

The implementation of quorum systems over DHTs introduces new performance metrics. Quorum systems

applied to classical distributed systems, are usually evaluated on the basis of well-known metrics like load or

availability. The implementation over the logical keyspace provided by DHTs requires to take into account

the work done by the DHT routing mechanism to let peers communicate. The tests permitted us to observe

and evaluate various aspects of the previously cited algorithms:

• Percentage of peers containing locked keys: reflects the real quorum size in terms of peers of the

DHT.

• Quorum acquisition cost: the average number of messages exchanged at the DHT level to obtain

all locks required by a quorum;

• Depth of the generated multicast tree: represents the length of the longest sequence of peers that

must be contacted to obtain a grant on a key for a quorum;

• Role of peers: number of peers playing each role during a quorum acquisition, i.e. peers with locked

keys, delegating peers or DHT routers;

• Distribution of messages among peers: gives a picture about the balance of the distribution of

messages generated by a quorum request across peers of the DHT.

• Availability under failure: shows the average percentage of quorum requests that can be satisfied

assuming that keys associated to one peer are in an unknown state (see Section 5)

In the following we report the results for each of these aspects. Each result is the average of 10000

independent runs. Confidence intervals are not represented as all measures showed a variance below 4%.

5A uniform distribution is used to simulate the correct behavior of the hash function used in Chord to map peers in the key

space.



6.1 Percentage of peers containing locked keys

Here, we evaluate which percentage of peers contains, on average, keys locked by a quorum request. The

tests were conducted varying the total number of peers in the system (log scale).
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Figure 9: Average percentage of peers with locked keys.

Figure 9(a) reports the results for hierarchical majority algorithms. Both the centralized and decentralized

implementations (black and dark grey curves), as expected, show a similar behaviour, as the basic strategy

used to choose keys forming the quorum is exactly the same in both cases. The farsighted implementation

shows instead a lower number of peers with locked keys. This behavior is due to two reasons:

• thanks to its greater flexibility, the farsighted quorum algorithm, using the 4-1-1-1 pattern, is able to

build smaller quorums w.r.t. the simple hierarchical majority; the average difference is about a 15%.

For a system with 1000 peers, it would mean 150 peers less to get a quorum.

• the integration introduced in the implementation tends to choose peers that are responsible for larger

sets of keys.

Figure 9(b) reports the results for hierarchical grid algorithms. In this case all three implementations show

almost the same behaviour, with a slight advantage for the integrated version that is due to the tendency



of integrated algorithms to prefer peers with larger key sets. The tendency to decrease peer occupancy

when more peers are in the system is a natural consequence of the quorum size, being a power of n with

an exponent lower than 1. This means that a linear increase in the number of peers leads to a sublinear

increase in the quorum size, resulting in smaller and smaller ratios between quorum and system sizes. Note

that this metric only takes into account peers that contain at least one locked key, and thus cannot give a

clear idea of the actual burden imposed by each algorithm on the whole Chord network.

6.2 Quorum acquisition cost

In classical distributed systems each peer can directly contact any other one. Therefore, the cost for the

acquisition of a grant on a peer is usually one, in terms of application messages exchanged between peers.

Given a quorum defined on a DHT, the cost for the acquisition of a grant on a key k, in terms of message

overhead, depends both on the position of k and on the position of the quorum requester in the key space

and is one in the best case and O(logN) in the worst case (being N the total number of peers in the system).

This overhead must be taken into account to obtain a realistic view of the effective load generated by a

specific quorum system on the underlying network. The quorum acquisition cost gives a comprehensive view

about the load imposed by the quorum system on the DHT. From a practical point of view this metrics

reports the number of messages generated by an algorithm from the initial quorum request until all key locks

have been acquired, thus it also includes messages generated by the DHT routing level.

Figure 10(a) reports results for hierarchical majority. The advantage given by a simple decentralized

implementation w.r.t. the centralized one is huge. This striking difference is due to the fact that with the

centralized approach a single request is sent for every single key selected by the algorithm, and each of these

requests can generate up to log(N) messages at the DHT routing level (N is the number of peers in the

system). With a decentralized implementation locking requests contain intervals of keys that are recursively

refined. This mechanism saves a large portion of messages by generating a multicast tree that tries to

minimize the number of messages. The same figure also reports results for the farsighted implementation

that shows an improvement w.r.t. the decentralized one that tends to increase with system size. This can be



1.E+00 

1.E+01 

1.E+02 

1.E+03 

1.E+04 

1.E+05 

1.E+06 

1.E+07 

1.E+08 

1.E+09 

10 100 1000 10000 

M
e
s
s
a
g
e
s
 

Total number of peers in the system 

Sent messages - Hierarchical majority 

Centralized Hmaj 

Decentralized Hmaj 

Farsighted Hmaj 

(a)

1.E+00 

1.E+01 

1.E+02 

1.E+03 

1.E+04 

1.E+05 

1.E+06 

10 100 1000 10000 

M
e
s
s
a
g
e
s
 

Total number of peers in the system 

Sent messages - Hierarchical grid 

Centralized Hgrid 

Decentralized Hgrid 

Integrated Hgrid 

(b)

Figure 10: Average quorum acquisition cost.

explained by the fact that, with an increment of the system size, the smaller size of quorums obtained with

the farsighted implementation gains more importance, thus reducing the overall number of locking requests

generated.

Figure 10(b) reports the same results for hierarchical grid algorithms. Even in this case we find the same

behaviour for centralized and decentralized implementations. This confirms that the better performance

shown by decentralized implementations are general and due to the decentralized approach itself. In this

case, the integrated implementation shows a constant advantage w.r.t. decentralized one that is completely

imputable to its integration with the DHT.

6.3 Multicast tree depth

Here we show measures about the depth of the multicast tree that is implicitly generated by the algorithm

as it sends locking request messages to all the target keys. In this case we also considered messages added

by the DHT routing mechanism. The depth is defined as the longest path used by the quorum requester to

lock a single key. Note that this measure is important as it greatly affects the overall latency experienced to

obtain a quorum.
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Figure 11: Average depth of the multicast tree.

Figure 11(a) reports the results for hierarchical majority algorithms. In this case the centralized imple-

mentation behaves better than the two others, showing a smaller depth. This is obvious since the depth

of the multicast tree for a centralized implementation will be O(logN), whilst decentralized versions trade

off depth for a lower load in the network. The depth of the centralized version provides a lower bound

for the depth of the multicast tree to obtain a given quorum. It is worth noting here that the farsighted

version clearly shows better performance than the decentralized one: this result is due to the integration

techniques employed, that, as we will see in one of the next subsections, completely substitute the DHT

routing mechanism. Basically, the integrated version decides how to create the quorum depending on finger

tables and the distribution of keys to try to visit only peers that will become part of the quorum and, thus,

reducing the load induced in the network. The decentralized version blindly chooses quorum intervals and

then delegates routing to the DHT, what results invariably in a higher number of hops that its integrated

counterpart.

The results for hierarchical grid algorithms are similar (Figure 11(b)). The main difference in this case is

with the integrated implementation whose results are just a bit better than those of the decentralized one.

The reason for these poorer results is that integration is able to express its complete potentials only when



coupled with a flexible quorum selection mechanism, and flexibility was included in farsighted HMaj but not

in integrated HGrid.

6.4 Role of peers

In this section we explore which role is played, on average, by peers during a quorum acquisition. More

specifically we counted, among the peers visited to acquire a quorum, how many of them acted only as

routers at the DHT level (DHT routers), how many executed the quorum acquisition algorithm but ended

without locked keys (delegating peers), and finally how many ended with one or more locked keys (peers with

locked keys).

The big picture is given by Figure 12 that reports measurements separately for each algorithm. The

curves are cumulative, and the sum of each single contribution represents the total percentage of peers

involved in the quorum acquisition. There are three points in this picture that are worth noting:

• integrated versions reduce significantly the routing needed to acquire a quorum.

• for all the four implementations that use delegation, the ratio of peers that act as delegators or DHT

routers w.r.t. those containing locked keys increases along with the size of the system;

• the measurements for the farsighted implementation of the hierarchical majority algorithm do not

present even a single DHT router.

The last point is interesting as it points out that the integration mechanism used in this algorithm com-

pletely substitutes the DHT routing mechanism. This is done in order to realize a more clever routing in

combination with the flexibility of farsighted HMaj that actually leverages information about the quorum

that the algorithm is trying to obtain to reduce the overall number of messages sent. It should be highlighted

that since quorum systems will target medium to large-sized systems, integration will be essential to reduce

the number of routing peers and therefore reduce the load induced in the network.

Figures 13(a) and 13(b) show a more detailed comparison between hierarchical majority and hierarchical

grid algorithms (respectively) for a 10k-peer Chord network. In this figure, it can be observed that even for
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Figure 12: Role of peers during the acquisition of a quorum for different Chord network sizes.
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Figure 13: Role of peers during the acquisition of a quorum in a 10k peers Chord network.

the 10k-peer case, in which the number of locked peers gets closer to the number of routing peers, integration

has a substantial effect in reducing the number routing peers (either delegators or DHT routers). That is,

decentralization should be combined with integration to be really effective.

6.5 Distribution evenness of messages among peers

In this subsection we explore how evenly the load for quorum acquisition is distributed among peers. To do

so we plotted the distribution of messages among peers.

Figure 14 shows this distribution. The x axis represents the number of messages received, while the y

axis shows the percentage of peers that received that specific number of messages. This percentage is w.r.t.

the total number of peers that received at least one message. Note also that the distribution is cumulative.

Intuitively an implementation that perfectly balances the load among peers would present a step-like

distribution, that would mean that every peer receives the same number of messages (i.e., if there are M

messages and N peers, the graph would be at 0% till the M/N point in which it would go to 100%). A

first observation is that all graphs show a very steep growth what means that the distribution is reasonably

balanced in general. A second observation lies in that integrated versions distribute messages more evenly
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Figure 14: Distribution of messages among peers during a quorum acquisition.

as denoted by their steeper slope. HGrid versions converge faster to 100% due to their smaller quorum size.

6.6 Quorum availability under failure

Section 5 showed that the DHT-based overlay network is capable of handling peer failures, transferring the

responsibility of keys pertaining to a failed peer to one of its neighbors. However, this transfer takes time

and the new responsible peer for the transferred keys needs additional time to restore the original key state.

During this time, in order to guarantee the quorum intersection property, transferred keys cannot be granted

for quorum requests. As a consequence, during this transitory period of time, some quorums may not be

available. This section evaluates the impact of a peer failure on quorum availability in this specific period

of time.

To asses this impact we evaluated all six algorithms in a scenario with 10000 peers. In each test we chose

one single failed peer at random and changed all its keys’ state to unknown. We then started acquiring

quorums at random and calculated the average quorum availability as the ratio between the number of

successful quorum requests (i.e. requests of quorums that did not include keys in the unknown state) and

the total number of quorum requests.
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Figure 15: Quorum availability after a peer failure.

Figure 15 shows the results for hierarchical majority (a) and hierarchical grid (b) algorithms. Each value

reported in the graphs is the result of 5000 independent quorum requests executed on 5 different instances

of the same scenario with a keyspace containing 230 keys.

As the plots show the impact of a peer failure on global quorum availability is sometimes non negligible,

especially for some of the hierarchical majority algorithms; this is a consequence of the fact that these

algorithms tend to spread the keys chosen from a quorum more uniformly among the whole keyspace thus

increasing the probability that one of these keys will be in the unknown state (note that keys in this state are

usually clustered together in that part of the keyspace that was under the responsibility of the failed peer).

This behaviour is confirmed by the values obtained for the farsighted hierarchical majority algorithm: thanks

to its greater flexibility, and the adoption of the 4-1-1-1 pattern, this algorithm is able to build quorums

that both (i) contain less keys and (ii) choose keys more clustered in the keyspace; these two aspects allow

the farsighted hierarchical majority algorithm to reduce the probability of choosing one (or more) keys in

the unknown state. Results for the hierarchical grid algorithms don’t show the same degree of variability:

all the three algorithm variants showed similar behaviours with respect to availability. Their overall better

performance can be directly related to the fact the these algorithms are able to build quorums containing



less keys.

Note that we expect the impact of a peer failure on quorum availability to further decrease for settings

with more participating peers: the larger is the number of peers, the smaller will be the number of keys

assuming the unknown state as a consequence of a failure. This is a consequence of the ability of the hash

function used by the DHT to uniformly distribute peers in the key space. Conversely, we expect quorum

availability to severely decrease when multiple failures happen simultaneously; for this reason we believe the

mechanisms introduced in Section 5 can hardly be adopted in a non cooperative setting (typical of common

internet-based P2P applications like file sharing) with strong churn where a lot of peers can abruptly leave

the system without handing off their keys to a neighbor peer.

7 Related Work

Quorum systems have been largely investigated in the distributed systems literature. Several surveys and

comparison studies exist revising the various possibilities for building quorums as well as their performance

trade-offs [17, 9]. In the following we concentrate on realizations of quorum systems based on P2P infras-

tructures.

The idea of exploiting an overlay network as the underlying infrastructure for distributed systems is

becoming more and more popular. [24] presents a series of examples of applications that can be realized

in that fashion, including a quorum system. The idea is to build a simple majority quorum by requesting

mutual exclusion access to a majority of the keys in the key space. Authors suggest the usage of a DHT-

based multicast algorithm (such as [2]) for reaching all the required keys efficiently. However, building and

maintaining such a multicast tree introduces further overhead which adds to those of DHT maintenance and

quorum construction.

The integrated approach we propose in this paper exploits a technique for dispatching the quorum requests

to all the involved keys resembling the broadcast algorithm for a generic DHT infrastructure presented in [5].

Here, the finger table is used to forward messages to several peers in parallel and maintaining a log(N) bound



on the latency of broadcasted messages. However, differently from our paper, the aim of this algorithm is

just to reach a certain number of keys, whether in our case the chosen keys have to form a quorum.

Besides [24], the same authors also propose in [14] algorithms and techniques for building a quorum

system over a basic DHT, such as Chord. The idea is similar to that in [24]. Moreover, a random back-off

technique is included in order to maintain constant throughput when concurrency of requests increases and

subsequently there is more possibility of access conflicts. With respect to our paper, the problem of efficiently

gaining access to keys is not taken into account. Moreover, our suite of integrated protocols is based on more

sophisticated quorum systems that can be acquired more efficiently and with smaller quorum sizes.

In [16] a scalable dynamic quorum system supporting joins and departures of nodes is presented. This

paper presents the dynamic counterpart of the Paths [17] quorum system, Dynamic Paths, featuring low

load, high availability and efficient quorum construction. In particular, Dynamic Paths manages dynamic

behavior of nodes through DHT-like techniques borrowed from [15]. In other words, rather that building

the quorum over a separate DHT layer, like we do, Dynamic Paths embeds management of node joins and

departures following an approach based on a geometrical decomposition of a 2-dimensional space similar to

CAN [18].

Another quorum system that exploits a geometrical CAN-like space is the d-space system presented

in [19]. d-space has the objective of improving the efficiency of read operations, assuming they are more

frequent than writes. The quorum size is proved to be optimal for read operations. Communication costs

due to the DHT deployment are not computed.

Other approaches for gaining consistency guarantees in P2P applications have been presented in [6, 7, 10].

The P2P architecture for multiplayer gaming presented in [10], relies on a single (but replicated) coordinator

node for maintaining global shared data, that realizes in practice a monarchy quorum. Though monarchy

quorum provides best latency and acquisition cost, it obviously presents poor availability, as confirmed by

experimental results presented in [10].



8 Conclusions

P2P technology is becoming pervasive in new applicative contexts different from the classical internet-based

file sharing, such as service management in data centers, distributed data storage and retrieval or trust-less

distributed file systems for large enterprises. These new contexts have dramatically different characteristics

and requirements (e.g., long vs. short peer lifetime, managed environments vs. unmanaged ones, cooperative

vs. uncooperative peers) and they have to support much more complex operations (e.g., managing contractual

SLA data vs. file location). As remarked in the introduction such deep differences between enterprise and

Internet-scale settings lead to the need of designing P2P technologies (e.g., algorithms and mechanisms)

optimized for a specific environment while keeping generic the very basic P2P functionalities such as the

capability to of peers to self-organize into an overlay network and collectively route data.

Due to these reasons we studied how to architect quorum systems on top of a DHT-based P2P infrastruc-

ture which is able for example to provide a peer with low latency exclusive access to the entire P2P system

when needed. This capability is vital for enterprise infrastructures (for example to implement auditing,

monitoring and maintenance procedures) while, at the same time, it is not a main issue for inter-domain

settings. Therefore we designed algorithms for building quorums in a P2P system characterized by graceful

leaves and relatively small failure rates typical of a managed enterprise infrastructure.

Specifically, in this paper we focussed on design principles, namely integration, delegation and quorum

flexibility, that should guide the construction of quorum systems and protocols in DHT-based enterprise

infrastructures. These design principles have been exercised in two quorums systems, hierarchical majority

and hierarchical grid. For each quorum system three versions have been implemented and evaluated: cen-

tralized, decentralized and integrated. For hierarchical majority the integrated version also included quorum

flexibility by the use of the farsighted quorum system that provides higher flexibility than traditional hier-

archical majority. The evaluation has proven that traditional centralized versions for acquiring quorums are

not scalable in a P2P context due to the huge number of messages generated. What is more, the perfor-

mance metrics were devised for networks in which the cost of communication between any pair of sites was

the same, what is not true in a P2P network. We have introduced two novel performance metrics: quorum



acquisition cost and latency to better characterize the performance of quorum systems in P2P networks.

The evaluation has also shown that decentralization by itself yielded to a high number of routing peers and

latency. Integration effectively diminished the number of routing peers. Integration, mixed with quorum

flexibility in the farsighted quorum system, was also able to reduce substantially the latency introduced by

decentralization.
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