
Harnessing the power of DHTs to build dynamic quorums
in large-scale enterprise infrastructures ∗

Roberto Baldoni
Dipartimento di Informatica e

Sistemistica, Sapienza
Universitá di Roma

Via Ariosto 25, Rome, Italy
baldoni@dis.uniroma1.it

Ricardo Jiménez-Peris
Universidad Politécnica de
Madrid (UPM), Campus de

Montegancedo
Boadilla del Monte, Madrid,

Spain
rjimenez@fi.upm.es

Marta Patiño-Martínez
Universidad Politécnica de
Madrid (UPM), Campus de

Montegancedo
Boadilla del Monte, Madrid,

Spain
mpatino@fi.upm.es

Leonardo Querzoni
Dipartimento di Informatica e

Sistemistica, Sapienza
Universitá di Roma

Via Ariosto 25, Rome, Italy
querzoni@dis.uniroma1.it

Antonino Virigllito
Dipartimento di Informatica e

Sistemistica, Sapienza
Universitá di Roma

Via Ariosto 25, Rome, Italy
virgi@dis.uniroma1.it

ABSTRACT
Recently, enterprises owning a large IT hardware and soft-
ware infrastructure have started looking at Peer-to-peer tech-
nologies as a mean both to reduce costs and to help their
technical divisions to manage huge number of devices char-
acterized by a high level of cooperation and a relatively
low churn. Obtaining the complete and exclusive control
of the system for maintenance or auditing purposes in these
enterprise infrastructures is a fundamental operation to be
implemented. In the context of classical distributed appli-
cations, quorum systems have been considered as a major
building block for implementing many paradigms, from dis-
tributed mutual exclusion to data replication management.
In this paper, we explore how to architect decentralized pro-
tocols implementing quorum systems in Distributed Hash
Table based cooperative P2P networks. This paper intro-
duces some design principles for both quorum systems and
protocols using them that boost their scalability and per-
formance. These design principles consist of a dynamic and
decentralized selection of quorums and in the exposure and
exploitation of internals of the DHT. As a third design prin-
ciple it is also shown how to redesign quorum systems to
enable efficient decentralization.

Categories and Subject Descriptors
∗The work presented in this paper is an extended abstract
version of [1] and it was partially supported by the EU Net-
work of Excellence ReSIST (026764), EU Project CoMiFin
(225407) and EU project SM4All (224332).

C.2.4 [Distributed Systems]: Distributed Applications

Keywords
Quorum systems, distributed hash table, overlay networks

1. INTRODUCTION
Modern internet-scale applications have led to a surge in
research for large-scale distributed systems able to tolerate
the rate of failures and the inherent dynamics typical of such
scenarios. Peer-to-peer (P2P) systems are considered to be
an ideal substrate for such applications thanks to their self-
organizing nature and their ability to evenly distribute the
application load while leveraging the resources offered by
each participant.

Recently it has been shown that P2P technologies can be
successfully adopted in large-scale IT enterprise infrastruc-
tures to reduce the complexity of their management (e.g.,
[13], [5], [2]) and thus the cost of ownership. The enterprise
setting is dramatically different from the inter-domain one:
even though the number of peers can be considered of the
same order of magnitude1, peers belonging to the substrate
of an enterprise infrastructure work in a managed environ-
ment and, thus, they are much more stable than those in
internet-based applications. We can therefore expect these
peers to join and leave the application gracefully, except in
the advent of failures.

However, operations that have to be executed on the P2P
substrate by enterprise applications are definitely more com-
plex than those implemented by Internet-based applications
(e.g., prioritize and processing SLA alerts based on business
impact vs. file location in file-sharing application). These
complex operations may require a peer, for example, to take
the control of the entire system for auditing, monitoring or

1Peers in a large scale enterprise infrastructure include any
kind of devices and applications potentially reaching thus a
number in the order of hundreds of thousands or millions
[14].



maintenance purposes [3]. As remarked in [13], such deep
differences between enterprise and Internet-scale settings in
terms of system model and operations lead to the need of de-
signing P2P technologies (e.g., algorithms and mechanisms)
optimized for a specific environment while keeping generic
the very basic P2P functionalities such as the capability of
peers to self-organize into a connected overlay network and
collectively route data.

In this paper, we focus on an important abstraction for
building decentralized protocols, namely quorum systems.
Quorum systems [9] are an important building block for the
previously described innovative enterprise applications that
need to execute complex operations based on distributed
consistency of replicated data or on distributed mutual ex-
clusion.

A quorum system over a set of sites (system universe) con-
sists of a set of mutually intersecting subsets of sites (quo-
rums). A large variety of quorum systems have been pro-
posed in the literature (see [6] for a survey). In traditional
distributed systems, where a site corresponds to a single
host, when a quorum is requested on a site, it indepen-
dently chooses a single quorum among those in the system,
and then proceeds trying to obtain permission (the locks)
from the corresponding sites. Therefore, all the quorum re-
questers must precisely know the membership of the system.
This makes this strategy hardly adaptable to the P2P con-
text, where the large size of the system makes unrealistic
the assumption of global membership knowledge.

This paper presents a set of design principles for the concep-
tion, implementation and deployment of quorum systems in
DHT-based enterprise infrastructures. A DHT can greatly
help the realization of quorums in a large-scale setting: quo-
rums can be defined over the key space, considering each
key as a site, without any global knowledge on the number
and identity of connected peers. However, simply reproduc-
ing the traditional quorum acquisition approach over the
DHT does not lead to an efficient solution: if the quorum
acquisition process is completely unaware of the key-to-peer
mapping, routing can incur in a high overhead.

We propose three design principles for the implementation
of efficient quorum systems over P2P architectures, namely
delegation, integration and flexibility, and discuss their im-
pact on quorum acquisition costs in terms of both applica-
tion level messages and quorum formation latency.

These design principles are exercised in two quorum systems.
The first one, named farsighted, is a novel quorum system
that extends hierarchical quorum consensus [7] by offering
higher flexibility in choosing quorums with the additional
advantage of enabling smaller quorums. The second quorum
system is the hierarchical grid quorum [7] incorporating two
of the three design principles presented.

The paper is structured as follows: following this introduc-
tion, Section 2 will provide the reader with some background
about DHTs and quorum systems; Section 3 introduces our
general framework together with the three mentioned de-
sign principles and its specific implementations for the two
considered quorum systems; Section 4 provides a brief in-

sight about the performance of these implementations and,
finally, Section 5 concludes the paper.

2. BACKGROUND

Quorum systems. A quorum system over a set of n sites,
N , is defined as a set of subsets of sites, or quorums, with
pair-wise non-empty intersection. More formally, a set sys-
tem universe S = {S1, S2, ..Sn} is a collection of subsets
Si ⊆ N . A quorum system defined over a set of sites N is
a set system S that has the following intersection property :
∀i, j ∈ {1..n}, Si ∩ Sj 6= ∅. In a quorum system each subset
Si is called a quorum.

Many quorum systems have been proposed in the litera-
ture, but in this paper we consider two well-known systems,
namely farsighted and hierarchical grid. The Farsighted quo-
rum system [1] is a generalization of hierarchical majority
[7]. In this quorum system sites are organized in a hierarchy
represented as a complete tree with sites at its leaves. A
quorum is obtained locking recursively a majority of chil-
dren sites at each level starting from the root. More than
one level at a time can be considered for site selection, thus
increasing the selection flexibility of this approach.

Hierarchical grid (HGrid) [8] is a variant of the grid quorum
[4] where sites are organized into a multi-level hierarchy, such
that they reside on the leaves of this hierarchy, while other
levels are represented by logical nodes. Each node at level i

of the hierarchy (beside leaves) is defined by a rectangular
m × n grid of nodes at level i + 1. A quorum consists of
the union of a full row and a row cover obtained recursively
on the hierarchy. A full row at level i is defined as the set
of (i + 1)-level nodes all pertaining to a single row of the
grid, while a row cover consists in a set of (i+1)-level nodes
where each node pertains to a different row of the grid. For
the sake of simplicity in this paper we only consider HGrid
quorums with 2 × 2 grids at each level of the hierarchy.

P2P distributed hash tables. P2P Distributed Hash Ta-
bles (DHTs) are overlay networks based on the idea that
messages, instead of being routed directly using physical
peers’ addresses ranging over a peer space N , can be routed
using logical key identifiers, defined over a key space K. In
ring-based DHTs, like Chord [12] or Pastry [11], the key
space is a unidimensional circular space, while in range-based
DHTs like CAN [10] the key space is an n-dimensional space.

DHT protocols are usually based on a hash function that
maps keys from the K to actual nodes in N . This function
assigns each node and key a m-bit identifier. Each key k is
then assigned through a deterministic strategy to one of the
peers in the systems (e.g. the one with the closest identifier,
or the one whose identifier immediately follows the key’s
identifier); each peer is responsible of the interval of keys
assigned to it by this strategy. The system automatically
maintains consistent key mappings in case of nodes joining
and leaving the system and provides primitives to route mes-
sages targeted to key identifiers. Efficient message routing
is obtained by leveraging local data structures, often called
finger tables, that contain information about nodes whose
identifiers are at exponential distance from the local one.



Function name: GetQuorum Function name: Acquire

Input: An interval of keys interval Input: An interval of keys interval
Output: true or false Output: true or false

List ← ChooseStrategy(interval) send GETQUORUM[interval ] to FirstKeyOf(interval)
for each i ∈ List wait for message from FirstKeyOf(interval)

if ¬ Acquire(i) if message = ACK[interval ]
return false return true

return true else

return false

Function name: handler for GETQUORUM messages
Input: An interval of keys interval and a key k that generated the message

if interval ⊆ MyKeyspace
if ¬ IsLocked(interval)

Lock(interval)
send ACK[interval ] to k

else
send NACK[interval ] to k

else if GetQuorum(interval)
send ACK[interval ] to k

else

send NACK[interval ] to k

Figure 1: A general algorithm for the implementation of quorum systems on DHT-based P2P networks

Thanks to these tables message routing can be realized in
a number of application-level hops that is logarithmic with
respect to the system population.

3. QUORUM SYSTEMS FOR DHTS
In this section we analyze the issues related to the imple-
mentation of different quorum systems on top of a DHT.
A DHT provides upper-level applications with a virtual key
space that is completely decoupled from the actual set of
nodes implementing it. Intuitively, this virtual space can
be used to build a quorum system, by considering each key
in the DHT as one of the sites constituting the quorums.
Therefore, differently from classical distributed systems, dis-
tinct sites can be mapped by the DHT to a same peer. We
first introduce a general algorithm whose sole purpose is to
represent a common implementation framework for all the
types of quorum system we will consider. Then, we propose
some general strategies that can be exploited for their imple-
mentation. Finally, we will show how the generic algorithm
can be instantiated to implement the quorum systems briefly
introduced in Section 2, and how this can be done exploit-
ing the cited strategies. To simplify the presentation of the
technical details, from now on we will refer to Chord [12] as
the reference DHT. Nevertheless, all the principles and tech-
niques introduced in this paper could be simply adapted to
other DHT-based P2P systems.

3.1 A General Algorithm
The algorithm in Figure 1 is a generic canvas for the acquisi-
tion of quorums over DHT-based networks2. It embeds sev-
eral functions, namely GetQuorum, Acquire, and ChooseS-
trategy, as well as the handler for messages exchanged be-
tween nodes. The canvas also embeds other functions whose

2Note that the proposed protocol, in general, will not deal
with failures: a failure of a peer could leave a subset of keys
locked, and thus reduce the overall availability of the quorum
system. Various techniques can be adopted to recover from
this state; we strongly suggest the reader to refer to [1] for
further details on this aspect.

meaning is intuitive. A peer willing to gain complete con-
trol of the system would start the acquisition of a quorum
by invoking the GetQuorum function and passing it, as a
parameter, the whole key space.

Key to this canvas is the ChooseStrategy function which im-
plements the logic related to a specific quorum system (i.e.,
hierarchical grid, hierarchical majority, farsighted, etc.). In
other words, only the ChooseStrategy must be changed in
order to implement a different quorum system.

The proposed general algorithm enables a large variety of
implementation strategies. As a trivial solution, the ChooseS-
trategy function can return subintervals composed by a sin-
gle key. This corresponds to a centralized strategy, where
the requester directly contacts all the keys forming the quo-
rum. The centralized approach has an evident drawback:
as each single peer is unaware of the mapping between keys
and peers, it will send a different message to each single key
even if most of such messages will be routed to the same
peer. This inefficient behavior has a strong negative impact
on the number of messages generated to acquire each single
quorum.

Through the general algorithm we can achieve a completely
decentralized approach in the quorum formation. If the
ChooseStrategy implementation returns a set of subintervals,
each subinterval will lead to a recursive call to getQuorum,
until the subinterval is a subset of the key space of a peer. In
other words we introduce a mechanism of delegation to del-
egate different parts of the quorum acquisition to different
peers. The advantage of this technique is that large inter-
vals are progressively split into smaller subintervals, that
are more likely to be completely contained in a peer’s own
interval and that can be acquired with a single message.

The selection of key intervals in ChooseStrategy can be done
considering preferred intervals for delegation as those that
will be delegated to peers contained in the finger table of the



A

C D

B

0

2

1

3

8

10

9

11

12

14

13

15

4

6

5

7

Level 1

Level 2

Level 3

0

4

8

12

1

2

3

5

6

79

10

11

13

14

15

A

B

C

D

Figure 2: Example of a hierarchical grid quorum built over a 16-key Chord ring.

current peer. We refer to this new implementation strategy
as a integration mechanism. The main goal of this mecha-
nism is to select targets of the delegation such that, the rout-
ing mechanism of the DHT will be forced to make almost
only single-hop routing steps, thus greatly reducing routing
overhead. Implementations exploiting this mechanism will
be referred to as integrated protocols, in contrast with pro-
tocols that are completely oblivious of the underlying DHT
routing mechanism, namely layered protocols.

3.2 Hierarchical grid
To implement HGrid on top of a ring-based DHT we need
to find out a functional way to map the hierarchical bi-
dimensional grid structure on top of the uni-dimensional
keyspace. The keyspace is first partitioned into four inter-
vals that are mapped to the four cells of a 2 × 2 grid, such
that keys from 0 to 2m−2−1 are mapped to cell (1, 1) (row 1
and column 1) of the grid, keys from 2m−2 to 2 ·2m−2−1 are
mapped to cell (1, 2), keys from 2 · 2m−2 to 3 · 2m−2 − 1 are
mapped to cell (2, 1), and keys from 3·2m−2 to 4·2m−2−1 =
2m−1 are mapped to cell (2, 2); this grid represents the first
level of the hierarchy. Grids in lower levels of the hierarchy
are obtained applying the same subdivision to the corre-
sponding subintervals of the keyspace, until we reach a level
where each single key is mapped to a different cell of the
grid.

This mapping is shared among all peers in order to guarantee
that the intersection property holds for any quorum chosen
starting from any key. Figure 2 gives an example on how
a three-level HGrid with 16 cells at the lower level can be
mapped onto a 16-key Chord ring;

A centralized algorithm that builds HGrid quorums can be
instantiated on the generic algorithm of Section 3.1 by im-
plementing a ChooseStrategy function that acts locally by
choosing recursively on the hierarchy a full row and a row
cover, and then returns the corresponding keys. In the fol-
lowing we denote such an algorithm as centralized HGrid.

The same algorithm can be simply transformed in the corre-
sponding decentralized version. The requesting peer starts
two parallel actions to obtain a full row and a row cover on

the root level grid. Each of these actions returns the key in-
tervals corresponding to the selected cells. Choices at lower
levels of the grid hierarchy are then delegated to those peers
that are responsible for the first key of the chosen intervals.
In the following we denote such an algorithm as decentralized
HGrid.

The Integrated version of the hierarchical grid quorum sys-
tem (integrated HGrid) algorithm is an enhanced version of
HGrid that exploits the knowledge contained at the DHT
routing layer (i.e., finger table and the interval of keys the
peer is responsible for). More specifically, ChooseStrategy of
HGrid tries to select those cells in the grids that contain at
least one finger. Only fingers pointing to peers that, given
their position in the keyspace, could be able to obtain the
desired keys are considered by the algorithm. When no fin-
ger is available to obtain all the required keys in a grid, then
the algorithm proceeds with random choices.

Figure 2 shows an example of a hierarchical grid quorum ob-
tained on a 16-cell grid structured as a three level hierarchy.
Grey cells on the left side indicate those cells that have been
selected by the algorithm, and dotted keys on the right side
the corresponding locked keys in the Chord ring.

3.3 Hierarchical majority and Farsighted
The hierarchical majority quorum system (HMaj) consists
in a hierarchical organization of the sites into a tree of degree
d, in which sites (keys) are the leaves. Although the optimal
quorum size for HMaj is obtained with a tree of degree 3, we
will use d = 4 to simplify the matching between key intervals
defined by the tree and the key space size, 22·x = 2m.

In HMaj a quorum is formed recursively by selecting a ma-
jority of children at the first level and then selecting recur-
sively a majority in each of the selected children until the
leaves are reached. Let us point out that a child at a certain
level of the hierarchy is directly mapped to a subinterval of
the key space. Therefore, when a majority of children are
chosen, it is actually being decided which underlying inter-
vals of the key space are being selected as shown in Figure 3
for a 16-key Chord ring. In this figure black dots represent
a HMaj quorum.



0

4

8

12

1

2

3

5

6

79

10

11

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

[0-15]

[0-3]

[4-7]

[8-11]

[12-15]

[0-3]

[4-7]

[8-11]

[12-15]

Figure 3: A decentralized hierarchical majority quorum built over 16-key Chord ring

A centralized approach for the implementation of HMaj would
consist in selecting one quorum at the requester peer and
obtaining a lock for each site in the selected quorum. The
ChooseStrategy function that implements this approach is
straightforward: it simply recursively walks down the hier-
archy choosing each time three children out of four until the
leaves level is reached. Each site (key) selected at this final
stage is returned by the function as a different interval. We
denote such algorithm as centralized HMaj.

HMaj quorums can be also implemented by computing quo-
rum sites in a decentralized manner. In the following we
refer to such algorithm as decentralized HMaj. As in cen-
tralized HMaj, the requester in decentralized HMaj selects
three children (key subintervals) out of four, but only for
a single level of the hierarchy. Then, a message with each
selected interval is sent to the first key of that interval. The
peer responsible for that key will walk down one more step
in the hierarchy. The decentralized recursion stops when a
peer receives a message containing an interval which is com-
pletely contained in the portion of the key space the peer is
responsible for. Therefore, the implementation of ChooseS-
trategy for decentralized HMaj boils down to the selection
from the given interval of three randomly chosen subinter-
vals out of four.

For example, let us assume that key 0 is the requester key
(Figure 3). The first iteration of the algorithm occurs in
ChooseStrategy at the peer responsible for key 0 and works
on interval [0 − 15]. ChooseStrategy subdivides the interval
into four subintervals and chooses three of them: [0 − 3],
[4 − 7] and [12 − 15]. The next iteration occurs in parallel
on the peers responsible for the first key of each subinterval.

Farsighted is a novel quorum system [1] that has been de-
signed for efficient decentralized and integrated quorum ac-
quisition in enterprise P2P networks. It can be seen as a
generalization of hierarchical majority. Farsighted is based

on the same logical tree as hierarchical majority, but instead
of considering a single tree level in the recursive quorum for-
mation it looks at more than one level (hence its name) in
order to form a quorum. In its basic form, it looks at two
consecutive levels of the tree. By looking at two consecu-
tive levels, a much richer set of alternatives to form quorums
become possible. Let us consider a quaternary tree to sim-
plify the exposition. Hierarchical majority allows choosing
3 children from the first level and then 3 children out of
these 3. This would be represented by all the permutations
of the pattern (3,3,3,0) (termed pattern sets). Farsighted
allows more flexibility: it allows, for instance, also the pat-
tern sets (3,2,2,2) and (3,3,2,0) or (4,1,1,1) and (4,3,2,0).
Interestingly, some of the allowed pattern sets result in quo-
rum systems with lower load than hierarchical majority (e.g.
(4,1,1,1)).

The mutual intersection condition for a combination of pat-
terns for a tree of degree d to yield a valid quorum sys-
tem is that for each pair of patterns (f1, f2, . . . , fd) and
(g1, g2, . . . , gd), ∃k ∈ [1..d] such that fk + gk > d. The
condition for mutual intersection can be extended to a pat-
tern set (all the permutations of pattern). A pattern set
satisfies the mutual intersection property if, once sorted in
increasing and decreasing lexicographical order, it guaran-
tees the aforementioned condition. For instance, the pattern
set (4,1,1,1) satisfies the intersection condition since (4,1,1,1)
and (1,1,1,4) results in 4+1>d=4 in both the first and last
positions. The condition can also be extended to different
valid pattern sets. Given two valid pattern sets they can
be used in combination if sorted in opposite lexicographi-
cal orders they satisfy the above condition. For instance,
for the pattern sets (4,1,1,1) and (4,3,2,0), sorted in oppo-
site lexicographical orders yield (4,1,1,1) and (0,2,3,4)), and
in the fourth position 1+4=5>d=4, so this means that all
patterns in these pattern sets satisfy the intersection prop-
erty. Thanks to the richer set of pattern sets, it becomes
possible for farsighted to choose which is the pattern more



appropriate in a decentralized and integrated quorum sys-
tem formation protocol. This allows selecting patterns that
lead to interval delegation toward easily reachable fingers,
resulting in reduced load due to DHT routing. More details
about farsighted, and how it can be implemented through
our general algorithm can be found at [1].

4. EVALUATION
Quorum systems have been traditionally compared in terms
of availability, load [9] and the quorum acquisition cost, i.e.
the number of messages needed to lock all sites forming a
quorum.

While load and availability only depend on combinatorial
properties of the quorum structure, acquisition cost is re-
lated to the number of messages required to contact all the
sites forming a quorum. Quorums built upon a P2P routing
mechanism, as the one provided by DHTs, must be evaluated
considering also the cost incurred by the routing mechanism
to bring every message to the intended destination. Mes-
sage routing in DHTs exploits local data structures (finger
tables) at each peer to route messages between any two peers
with an upper bound of O(log(n)) application-level hops in
a system with n peers.

In [1] we report an extensive simulation-based evaluation
of both farsighted and hierarchical grid algorithms imple-
mented on a Chord [12] DHT using the three design prin-
ciples introduced in Section 3: delegation, integration and
flexibility. The study compares the performance of the vari-
ous implementations of the two quorum systems in terms of
(i) percentage of peers containing locked keys after a quorum
acquisition is finished, (ii) quorum acquisition cost in terms
of application-level messages, (iii) depth of the multicast tree
generated during the quorum acquisition, (iv) role of peers
(i.e. percentage of peers with locked keys, delegating peers
or DHT routers), (v) distribution of messages among peers
and (vi) quorum availability after a peer failure. The main
outcomes of this evaluation are:

• a huge number of messages for the quorum acquisi-
tion can be saved just applying the delegation design
principle, resulting in better performance for both the
quorum systems in terms of quorum acquisition costs.
This is a consequence of the fact that algorithms de-
signed with this principle build a multicast tree over
the DHT for locking sets of keys during the quorum ac-
quisition instead of contacting each site with a single
point-to-point message;

• the adoption of the integration design principle let al-
gorithm implementations use the DHT data structures
to take key selection decisions during the quorum for-
mation that greatly help reducing the depth of the
multicast tree. The reduction of this metric has a di-
rect impact on the latency experienced during each
quorum acquisition;

• the flexibility introduced by the farsighted quorum sys-
tem with respect to simpler hierarchical majority quo-
rum systems is clearly reflected in its improved perfor-
mance in all aspects.

5. CONCLUSIONS
P2P technologies are becoming pervasive in new applica-
tion contexts different from the classical internet-based file
sharing, such as service management in data centers, dis-
tributed data storage and retrieval or trust-less distributed
file systems for large enterprises. These new contexts have
dramatically different characteristics and requirements (e.g.,
long vs. short peer lifetime, managed environments vs. un-
managed ones, cooperative vs. uncooperative peers) and
they have to support much more complex operations (e.g.,
managing contractual SLA data vs. file location). As re-
marked in the introduction, such deep differences between
enterprise and Internet-scale settings lead to the need of de-
signing P2P technologies (e.g., algorithms and mechanisms)
optimized for a specific environment while keeping generic
the very basic P2P functionalities — such as the capability
of peers to self-organize into an overlay network and collec-
tively route data.

In this paper we focussed our study on three design prin-
ciples, namely integration, delegation and flexibility, that
should guide the construction of quorum systems and proto-
cols in DHT-based enterprise infrastructures. These design
principles have been exercised in two quorums systems, far-
sighted and hierarchical grid. For each quorum system three
versions have been implemented and evaluated: centralized,
decentralized and integrated.

A simulation-based study shown that traditional central-
ized approaches for acquiring quorums are not scalable in a
P2P context due to the huge number of messages generated.
Decentralization by itself helps improving considerably the
amount of load imposed on the system by a quorum acquisi-
tion. Moreover, integration effectively diminishes the num-
ber of routing peers needed during the quorum formation.
Integration, mixed with quorum flexibility in the farsighted
quorum system, is also able to reduce substantially the quo-
rum acquisition latency introduced by decentralization.

6. REFERENCES
[1] R. Baldoni, R. R. Jiménez-Peris, M. Patiño-Mart́ınez,

L. Querzoni, and A. Virgillito. Dynamic quorums for
dht-based enterprise infrastructures. Journal of
Parallel and Distributed Computing, 68(9):1235–1249,
9 2008.

[2] W. J. Bolosky, J. R. Douceur, D. Ely, and
M. Theimer. Feasibility of a serverless distributed file
system deployed on an existing set of desktop pcs. In
SIGMETRICS ’00: Proceedings of the 2000 ACM
SIGMETRICS international conference on
Measurement and modeling of computer systems,
pages 34–43, New York, NY, USA, 2000. ACM.

[3] M. Burrows. The chubby lock service for
loosely-coupled distributed systems. In OSDI, pages
335–350. USENIX Association, 2006.

[4] S. Y. Cheung, M. H. Ammar, and M. Ahamad. The
grid protocol: A high performance scheme for
maintaining replicated data. In Proceedings of the 6th
International Conference on Data Engineering
(ICDE), pages 438–445. IEEE Computer Society,
1990.

[5] G. De Candia, D. Hastorun, M. Jampani,



G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: amazon’s highly available key-value store. In
SOSP ’07: Proceedings of twenty-first ACM SIGOPS
symposium on Operating systems principles, pages
205–220, New York, NY, USA, 2007. ACM.

[6] R. Jiménez-Peris, M. Patiño-Mart́ınez, G. Alonso, and
B. Kemme. Are quorums an alternative for data
replication ? ACM Transactions on Database Systems,
28(3):257–294, 2003.

[7] A. Kumar. Hierarchical quorum consensus: A new
algorithm for managing replicated data. IEEE
Transactions on Computers, 40(9):996–1004, 1991.

[8] A. Kumar and S. Y. Cheung. A high availability
√

N

hierarchical grid algorithm for replicated data.
Information Processing Letters, 40(6):311–316, 1991.

[9] M. Naor and A. Wool. The load, capacity, and
availability of quorum systems. SIAM Journal of
Computing, 27(2):423–447, 1998.

[10] S. Ratnasamy, M. Handley, R. M. Karp, and
S. Shenker. Application-level multicast using
content-addressable networks. In J. Crowcroft and
M. Hofmann, editors, Networked Group
Communication, volume 2233 of Lecture Notes in
Computer Science, pages 14–29. Springer, 2001.

[11] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location and routing for
large-scale peer-to-peer systems. In Proceedings of
IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), pages 329–350, 12-16
November 2001.

[12] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proceedings
of the ACM Conference on Applications, Technologies,
Architectures, and Protocols for Computer
Communication (SIGCOMM), pages 149–160, 2001.

[13] C. Tang, R. N. Chang, and E. So. A distributed
service management infrastructure for enterprise data
centers based on peer-to-peer technology. In
Proceedings of the IEEE International Conference on
Services Computing (SCC), pages 52–59. IEEE
Computer Society, 2006.

[14] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici. A
scalable application placement controller for enterprise
data centers. In C. L. Williamson, M. E. Zurko, P. F.
Patel-Schneider, and P. J. Shenoy, editors, Proceedings
of the 16th international conference on World Wide
Web (WWW), pages 331–340. ACM, 2007.


