An Optimal Protocol for Causally Consistent
Distributed Shared Memory Systems

Roberto Baldoni, Alessia Milani and Sara Tucci Piergiovanni
Universita’ di Roma “La Sapienza”
Dipartimento di Informatica e Sistemistica
Via Salaria 113, 1-00198 Roma, Italy
baldoni,milani,tucci@dis.uniromal.it

Abstract ation o such thato; ., o ando +—., 02. So two inde-
pendent writes wrt- ., can be perceived in different order
Distributed shared memory (DSM) is one of the main ab- by two different processes. This makes causal memory a
straction to implement data-centric information exchanges low latency abstraction with respect to stronger consistency
among a set of processes. Ensuring causal consistencycriteria such as sequenti@] and atomic consistency [10]
means all operations executed at each process will be com{also called linearizability6]) as it admits more executions
pliant to a cause effect relation. This paper first provides an and, hence, more concurrency.
optimality criterion for a protocolP that enforces causal When implemented over an asynchronous distributed
consistency on a DSM. This criterion addresses the numbersystem replicating memory locations at each process, the
of write operations delayed b¥ (write delay optimality).  causal memory abstraction has been traditionally realized
Then we present a protocol which is optimal with respect to through wait-free local readings and broadcasting write op-
write delay optimality and we show how previous protocols erations to other processes (e[@], [14], [2]). In this way
presented in the literature are not optimal with respect to when two operations are related by,, they are also re-

such a criterion. lated by the “happened-before” relation, denotedintro-
duced by Lamport in [8] (the viceversa is not necessarily
true?).

1. Introduction Therefore ensuringausal delivery of messadeasrough

aFidge-Mattern vector clock§5, 11]) is a sufficient condi-
tion to guarantee causal consistent histories with respect to

Data-centric communicatioiis one of the most inter- M tocols iml i fect ab
esting abstraction for exchanging information among a set'_co: V'Or€OVEr, prolocols implementing a cause-etiect ab-
straction usually delay each message carrying a write oper-

of processes which are decoupled in time, space and flow.” . ) B
Distributed Shared Memor{DSM) is a classic model that ationw arrived too early at a proceps This implies buffer-

provides such data-centric exchanges where decoupling if"9 ofw atp. Such write will be executed after that all oper-

space, flow and time means that processes can execute waiflt'onS that causally affectedwill be executed ap. There-

free read and write operations on a common replicated vari- ore such protocols can be compared among each qther W'th
able. To ensureausal consistendn a DSM processes have respect to the T‘“mber of messages associated with writes
to agreeon the relative ordering of operations (read/write) whose application a'_c a process 1s delayed to enforce.

that have acause effectelation [1]. There is a cause ef- In the context of the implementation of the cause-effect ab-
fect relation between two operations and o, denoted straction through causal dell\_/ery of messages, the number
01 ey 0 iff ONE Of the following conditions is true: (i), of such delayed messages will be greater than necéssary

ando, are issued by the same process angrecedes
2 y P ne 2 1This comes from the well-known inability of the “happened-before”

(proce_ss order relatlo)_) (”) 01 IS_ a write operatlonu(x)v_ relation to model true cause-effect relations among events of a distributed
ando is aread operation anwhich returns the value writ-  computation. These cause-effect relations belong indeed to the semantics
ten byo; (read-from relation or (iii) there exists an oper-  sphere of the underlying application (DSM in this paper) rather than the
message pattern generated by the distributed computation.

*This work is partially supported by the european project EU- 2The causal message ordering abstraction states each process has to
Publi.com funded by the European Community and by the italian projects deliver messages according to the relatierof their sendings [3].
MAIS and IS-MANET funded by the Italian Ministry of Research. 3A not necessary delayed message corresponds to the phenomenon of




Based on the above points this paper first states an opti- must read the initial value.
mality criterion for such protocols. Roughly speaking a pro-
tocol P that correctly implements causally consistent DSM A global history(from now on simply a history) is a par-
is write delay optimal w.r.t—., if it delays a message only tial orderH = (H,—.,) such that:
if it is necessary. Then the paper presents a protogoP
which ensures causal consistent histories while being opti- e H=(hy, hs,...h,), i.e. H is the collection of local
mal at the same time with respect to write delay. Interest- histories (one for each process).
ingly, Opt P adopts a vector as main data structure embed-
ding actually the read/write operation semantics of a causal ® 01 Fco 02 (—co IS thecausal orderrelation ) if:
memory. The paper formally shows that this vector, namely

Writeeo, is actually a system of vector clocks characteriz- — 3pi S.t.og e, 02 (Process order),
ing —.,. We also show that previous protocols presented — Jpi,p; St oy is issued byp;, o, is issued byp;
in the literature are not optimal with respect to write delays. ando; ., 0, (read-from order),

This implies that they buffer a number of messages at each
process that is greater than necessary.

The rest of this paper is structured as follows: Section 2
presents the shared memory model, Section 3 describes the _ )
optimality criterion and shows why protocols appeared in T 01 ando; are two operations belonging #, we
the literature are not optimal w.r.t. write delays. Section 4 Said thato; ando, areconcurrentw.r.t. —.,, denoted by

presents the protocalpt P along with its correctness proof. 01 lleo 02, if and only if (o1 =, 05) and—(os ¢, 01).
Let us finally define thecausal past of an operation

in a history H with respect to—.,, denoted| (o,+—,), as
follows:

— Joz € H S.t. 01 ¢, 03 and03 o 02 (tranSi'
tive closure).

2 Shared Memory Model

We consider a finite set of sequential procesdes= 1 (0,¢0) = {0 € H|0' ¢, 0}
{p1,p2,...pn} interacting via a shared memosyt com-
posed bym memory locationsey, xs, ...z,,. The memory
can be accessed througtad andwrite operations. A write
operation executed by a processdenotedu; (xy)v, stores
a new valuey in the locationz;,. A read operation executed

by a process;, deqotedr;i(:ch)v, returns top; the valueu Definition 1 (Legal Read). GivenH = (H, —,,), a read
;tpr(ald |r|1 the location:;, *. Each memory location has an event belonging tdf, denoted-(x)v, is legal if3 w(z)v :
initial va ue%' . w(T)v e T(T)V andiﬂw(z)v’ Fw(X)v e w(T)V e

A local historyof a procesy;, denotedh;, is a set of r(z)o
read and write operations. pf executes two operationg '
ando, ando is executed first, then; precedes»; inthe  Definition 2 (Causally Consistent History [1]). A history
process order ofp;. This precedence relation is denoted 7 — (H,—.,) is causally consistent iff all read operations
by 01 o, 02. Operations done by distinct processes are i ij are legal.
related by theead-fromrelation. Formally read-from rela-

2.1 Causally Consistent Histories

Let us now introduce a few properties of a histftg].

tion, denoted-,.,, is defined as follows [1]: As processes are sequential the definition of causal mem-
, ory allows each process to see a specific linear extension
e if 01 =, 0y, then there are andv such thabo, = of the partial ordet . More specifically, this allows con-
w(x)v andoy = r(z)v; current writes to be viewed in different orders by different

processes.
Example 1.Let us consider a system composed by three
processes. The following histo#y,; is causally consistent:

o for any operatioro,, there is at most one; such that
01 ro 02,

e if oo = r(x)v for somex and there is n@; such that
01 o 02, thenv = L that is, a read with no write  ,;: wy (x1)a; w (z1)c

a “false causalityin an implementation of a distributed shared memory hat ro(x1)a;wa(w2)b
system. The false causality notion has been originally pointed out in the hs3: 73(22)b; ws(z2)d
context of distributed predicate detection by Tarafdar and Garg in [15].

“Whenever not necessary we omit either the valoethe value and the
variable or the value, the process identifier and the variable. For example .
represents a generic write operation whilgrepresents a write operation W1 (z1)e and  wa(w2)b co ws(z2)d  while
executed by process etc. w1 (21)¢ ||eowa(22)b, wi(21)c ||cows(x2)d.

Note that wi(xz1)a e wa(z2)b, wi(z1)a e



3 Distributed Shared Memory
3.1 Distributed System Model

The shared memory model of the previous section is im-

eventreceipt; (w;(x5)v) occurs. At this poinp; properly
schedules the application of the write to its own copy, i.e.
it will produce an eventpply, (w;(xp)v). Let us note that,
according to the description, we assume that any protocol
belonging taP is live (each operation is eventually executed

plemented through a finite number of sequential processedOPerly).

IT = {p1,p2,...pn} Which communicate using messages

that are sent over reliable channels. Each message sentby&3 Enabling Event and Write Delaying

process is eventually received exactly once and no spurious

message can ever be delivered. There is no bound to the rel- Let P denote a protocol belonging to the clg®sande
ative process speeds, however, the time taken by a procesande’ be two events irE. e is an enabling event of if the

to execute a computational step is finite.
We assume each procegssendows a copy of the shared
variablesz?, 25, ... z},, ... x;,. The execution of each op-

occurrence o’ has to be postponed to the occurrence of
according tdP. Thereforee is anenabling evenof ¢’6.
In our context, we are interested in characterizing the set

eration (read or write) at a process produces a set of event®f all events which are enabling events of each apply event

in one or more processes. A history (defined in secBpn
produces a sequence of evehtsat each procegs ordered
by the relation<;. e <; ¢/ means: ande’ have happened at
p; ande has occurred first. We also denotefas. the prefix
of E; until e (not included). The set of all events produced
by all processes is denoted Bs= |J;'_, E; . Such events
are ordered by Lamport's “happened before” relati8h
denoted—, defined as follows: let ande’ be two events of
E,e — € iff (i) e <; € (ii) eis the sending of a message
ande’ is the receipt ofn and (iii) there existg” such that
e — e’ ande” — €.

Let e and e’ be two events belonging t&, e and ¢’
areconcurrentw.r.t. —, denoted bye || ¢/, if and only if
—(e — ¢’) and—(e’ — e). Finally, we denote a distributed
computation agl = (E, —) and the causal past of an event
e as follows:

| (e,—)=1{e € Ele’ — ¢}

3.2 AClass of ProtocolsP implementing DSM

In this section we point out the common features of
a large class of protocols implementing distributed shared
memory abstraction. Every protocé! belonging toP
class behaves as follows: each time a progessim-
plementing P, executes a write operatiow;(xp)v, an
applyy (w;(zn)v) event is produced at each process
(Vk € {1...n})°. Each time a process; executes a
read operationr;(x)v, p; eventually produces an event
return;(z,v). Therefore, the operatiow;(z;)v at p; is
associated with aend; (w;(zp)v) event which can be seen
as the starting point of the propagationwof(xy)v in the
system. When a procegs is notified aboutw;(z), an

5Note that the communication mechanism used to propagate the oper-

e in E according to a protocaP. Therefore, we denote
Xp(e) C E such a set. As a consequence when a process
pi receives the message associated to a write operation

it postpones thev's application, i.e.applyx(w) (the mes-
sage is buffered at;), till all enabling events ofpply (w)

will occur. This is abstracted in our model by a write delay
which is defined as follows:

Definition 3 (Write Delay). Let P be a protocol inP, w
be a write operation irf, ande € Xp(applyi(w)). Then
w suffers a write delay gty iff € & Eircceipty (w)-

3.4 AProtocol P € P Compliant w.r.t. .,

Safety. Let P denote a protocol belonging 1. P is safe
w.r.t. —, iff write operations are applied at each process
according to the order induced by,,. Formally:

Vw;,w; € HVEk e {l,...n}, (w; —co wj =

Vk € {1...n}, applyy(w;) <k applyr(w;))

For each apply evert, the safety property actually de-
fines the set of its enabling events, denoféd_.,s.(e),
with respect to—,. Formally:

€ FE generated by a
{applyr(w') € E s.t.

Definition 4. V e = applyx(
protocol P € P, X.o—sasele)
w' €] (wa’_’m)}

”

As an example, let us consider the history pre-
sented in Example 1 (wherey(z1)a e wa(x2)d,
wa(r2)b oo wa(x2)d and wa(z2)b||ecowr(z1)e). In
this historyapply, (w1 (z1)a) andapply; (we(x2)b) are en-
abling events ofapply; (ws(x2)d) at processp;. Then

SWe assume that the events an event belonging t&, as any general

ation from one process to another one (e.g. broadcast, multicast, point-to-condition can be easily modelled through a proper event of the computa-

point), does not matter at this abstraction level.

tion.



the set{apply; (w1 (x1)a), apply; (w2 (z2)b)} corresponds (1) receipts(w (x1)a) <3 applys(wi(z1)a) <
10 Xeo—safe (apply: (w3(z2)d)). receipts(wa(z2)b) <3 applys(wa(z2)b) <3

It comes out that every safe protod®lsatisfies the fol- receiptz(wy(x1)c) <z applysz(wi(z1)e) <3
lowing property: returng(ze, b) <z applys(ws(xs)d)

ve € B, Xeo—sapele) S Xple)- @) receipts(wa(z2)b) <3

At an operational level, a safe protodBlc P must delay receiptz(wy(x1)a) <3 applys(wi(zi)a) <3
the application of a writev at procesg;, each time an apply applys(wz(z2)b) <3z receipts(wi(ri)c) <3
event of a write operation in the causal pasuohas been applys(wi(z1)c) <3  returnz(zz,b) <3
not applied afp;, yet. Then in eactP’s run, if P is safe, applys(ws(z2)d)

it is possible to identify how many write delays have been
occurred at each process to maintain safety. For example,
let us consider a safe protocsl belonging to? and the
history presented in Example 1. In Taldldor each apply
event the correspondin.o—sqs. is described.

Figure 1. Two sequences that could occur at
process ps compliant with  Hj.

event e Xeo—safe(€)
applyy (w1 (z1)a) 0 the history of Example 1 and shown in Figite
applyz (w1 (z1)a) 0
applysz(wi (z1)a) 1]
apply: (w1 (z1)c) {apply: (w1 (z1)a)} receipt(wi(z1)a) <3 apply(wi(z1)a) <3
applyz (w1 (z1)c) {applyz (w1 (z1)a)} receipt(wz(r2)b) <3 receipt(wi(ri)c) <3
applys (w1 (1)c) {applys (w1 (z1)a)} apply(wi(z1)e) <3  apply(wa(z2)b) <3
apply: (w3 (x2)b) {apply: (w1(z1)a)} return(z2)b <s apply(ws(z2)d)
applyz (w2 (z2)b) {applyz(wi(z1)a)}
applys (w2 (x2)b) {applys (w1 (z1)a)} Figure 2. A sequence that could occur at pro-
apply1 (ws(z2)d) | {apply1(wi(z1)a), applyr (w2 (z2)b)} ; : o
applys (ws(22)d) | {applys (ws (1)), applya (ws(22)b)} cess ps compliant with - i,
applys(ws(z2)d) | {applys(wi(z1)a), applys(wz(w2)b)}

Table 1. X.,_..s. Of each event generated by We  suppose  Xp(applys(wz(z2)b)) =
a P € P producing ﬁl {applyg(wl(xl)a),applyg(wl(xl)c)}. Therefore P
is safe, howeverapplys(wy(z1)c) does not belong to
Xeo—safe(applys(wa(x2)b)). By Definition 3, in this run
the number of write delays executed @& is one (i.e.,
Figure 1 shows two distinct sequences that could occur applys(wa(x2)b) is delayed tillapplys(wi(x1)c)). Note
at procesgs during two differentP runs and compliant that this is a non-necessary delay w.r.t. Safety. In this case
with the historyH; experienced bys in Example 1. In run an optimal (and safe) protocol would not execute any write
(1) p3 does not experience any write delay while in run (2) delay. Formally:
applys (w2 (x2)b) suffers a write delay due to late arrival of

the message associated with(z1 ). Definition 5. Let P be asafeprotocol belonging taP. P

is optimalon the number of write delays iff:

. . . E X = Xeo—sarele) T h protocol .
3.5 Write Delay Optimality for a Safe Protocol ve e B, Aple) se(e) for each protocol run

PeP Therefore, protocoP protocol in the above example is
not optimal.
Let us consider the case in whiche = applyi(w) :

Xeo—sase(e) C Xp(e). Clearly P is safe but it is not 3.6 Related Work
optimal w.r.t the number of write delays that could occur
during a computationP includes in itst¥p(e), an enabling ~ ANBKH Protocol.  The protocol proposed by Ahamad et
evente’ such that’ is not an apply of a write belonging to  al. in[1] (hereafterAN BK H) is an example of a protocol
w’s casual past with respect te.,. This leads, for at least  belonging toP. In AN BK H propagation of write opera-
one P’s run, to executaot necessarwrite delays. Let us  tion is done through broadcast primitive. To get causal con-
consider the sequence generatedbgt p; compliant with sistent historiesAN BK H orders all apply events at each



process according to the happened-before relation of theisome evente in a run produced byANBKH (e.g.
corresponding send events. In this way all apply eventsapplys(w2(z2)b in the run depicted in Figur8) such that

of operations such that;(z)v —., w;(z)v" will be ex-
ecuted in a causal consistent way with respecttoas
well. This is obtained by causally ordering message de-
liveries through a Fidge-Mattern system of vector clocks
which considers apply events as relevant odés There-
foreV applyi(w) € E, Xanpru(applys(w)) can be de-
fined as follows:

Xanprm(apply,(w)) = {applys(w') € E s.t.
send(w’) €] (send(w),—)}.

To clarify this point, let us consider the scenario de-
picted in Figure3 that can be produced bMNBK H.
In this scenariow;(z1)a — wa(z2)b,wi(z1)a —
wy(x1)c, we(x2)b — ws(x2)d. SinceAN BK H enforces
casual message deliveries, then the gty sk (e) for
each event is described in Tabl2.

receipt(w(x,)b)
rF ¥
apply,(w,(x;)b)

send,(w, (x)8) send, (w0
I .

apply(w;(x,)c)

']
apply(W,(x,)b)

ecelptw,(x)C]-, apply,(,()b) returmy(x,.c)
. PR

"v'eceip'a(W.(Xj)a)
1 a

receiptyw,(x,b)  applywi(,)a)  applys(w(x,)c) returny( x,b)

Figure 3. Arun of AN BK H compliant with H,

evente

XanBku(e)

applyy (wy(z1)a)
applyg(wy(zy)a)
applyz(wi(zy)a)
applyy (wy(z1)c)
applyg(wy (x1)e)
applyg(wy (xzq)c)
applyy (wa(v2)b)
applyg(wa (v2)b)
applyg(wz(z2)b)
applyy (wg(v2)d)
applyg(wg(v2)d)

applyz(wg(vz)d)

0
0
0
{applyy (wi(z1)a)}
{applyz(wy(z1)a)}
{applyg(wy(zy)a)}
{applyy(wi(z1)a), applyy (wy(x1)c)}
{applyz(wy(z1)a), applyz(wy(x1)c)}
{applyz(wqi(=y)a), applyz(wy(zy)c)}
{applyy (wi(z1)a), apply; (wi(x1)c), applyy (wa(x2)b)}
{applyz(wi(z1)a), applyg(wi(zq)c), applyg (wa(x2)b)}

{applyz(wy(x1)a), applyz(wy(z1)e), applys(wa (v2)b)}

Table 2. X4nypx g Of Fig. 3 run’s events

ANBKH has been proved to be safe in [1], how-
ever by Definition5, it is not optimal as there exists

XANBKH(e) D Xco—safe(e) -7

Exploiting writing semantics. A few variants of
AN BK H have recently appeared in the literature address-
ing the writing semanticsnotion [2, 7, 14] introduced by
Raynal-Ahamad in14]. By using this write semantics,

a process can apply a write operatiefiz) even though
another writew’(z), such thatw'(x) +—., w(z), has not
been applied yet at that process. In this case we say that
w overwritew’ (it is like the eventapply(w’) is logically
executed by a process immediately befargply(w)).
This overwriting can happen only if does not exist a write
operationw” (y) (with z # y) such thatw'(z) ¢, w” (y)
andw”(y) —., w(z). Writing semantics is therefore a
heuristic that can help to improw¢N BK H by reducing,

on the average, the number of write delays according to
the message pattern of the computation. More specifically
protocols[2, 14] apply writing semantics at the receiver
sidei.e., when the process receives an overwritten value, it
discards the relative message. The protocol proposgt] in
applies writing semantics at the sender sidéhis is done
using a token system that allows a procgs$o apply the
write operatiomnw; (z)v only when the local token;, = j

with ¢ # j and to send its set of updates only when= i.
When a procesg performs several write operations on the
same variable: and thent; = 4, it only sends the update
message corresponding to the last write operation: @n
has executed. This means that the other processes only see
the last write ofr done byp, missing all previoug’s writes
onz.

In both cases protocols exploiting writing semantics (ei-
ther at sender or receiver side) could produce some run
where some write operation is not applied by all processes,
therefore these protocols do not belong by definitio®t®

4 A Protocol (OptP) for Causally Consistent
Distributed Shared Memory

The protocol presented in this section (hereafigt P)
relies on a system of vector clocks, denok€dite..,, which
characterizes-., °. For the sake of simplicity we assume

“Figure 3 shows an example of false causality as defined in [15]. In
particular, the application ofvs(z2)b is delayed till the application of
w1 (z1)candwi (z1)a in order to respect-. This delay is non necessary
aswz(z2)bandwi (z1)c have no actual cause-effect relation with respect
to o even thoughsend; (w1 (x1)c) — senda(w2(x2)b).

8Let us note that the notion of writing semantics is orthogonal wrt the
notion of optimal protocols. Therefore, writing semantics could be applied
also to the protocol presented in the next section.

9The formal notion of system of vector clocks is given in Section 4.3.



each write operation is broadcast to all processes. The prostored inLastWriteOn[h]. This is done through a com-

cedures executed by a process are depicted in Figyube
and5. In the following we detail first the data structures
and then the protocol behavior.

4.1 Data Structures

Each procesg; manage¥:

Apply[l...n]: an array of integer (initially set to zero).
The componentipply[j] is the number of write operations
issued byp; and applied ap;.

Writeo[l..n]: an array of integer (initially set to
zero). Each write operationw;(z,)a is associ-
ated with a vectoWrite.,, denotedw;(xy)a.Writee,.
w;i(zp)a.Writee,[j] = k means the:-th write operation
issued by procegs; precedesu;(z;,)a with respect to—.,.

LastWriteOn[l..m]: an array of vectors. The compo-
nent LastWriteOn[h] indicatesW rite., value of the last

write operation applied ta;, atp;. Each component is ini-
tialized to[0, 0, ..., 0].

4.2 Protocol Behavior

When a process wants to perform(xy,)v, it executes
atomically the procedurerite( x;,,v) , depicted in Fig-
ure 4.More preciselyp; increments by one thB/ rite.,[i]

component to take the process order relation into account”
(line 1) and then it sends a message to all other processes

(line 2). This message piggybacks the variablethe value
v and the current value d¥ rite., (the Write., associated
with w; (z5,)v). Thenp; updates its local variabley,,(line

3), and it updates the control structures (lines 4,5). In partic-

ular, LastWriteOn[h] is set equal to the; (zp,). Writec,.

When a procespg; wants to perform a read operation
onzy,, it atomically executes the procedusad( z;) de-
picted in Figureb.

WRITE( Zp,V)
Writeeo[i] := Writeeo[i] + 1; % trackingr—p,, %
send[m(zp, v, Writeco)] to IT — p;; % send event %
apply(v, zp); % apply event %
Applyli] := Apply[i] + 1;
LastWriteOn[h] := Writeco;

O WONPE

% storingw; (zp, )v.Writec, %

Figure 4. Write procedure performed by  p;
At line 1, p; incorporates in the local copy 6 rite.,

the causal relations contained in thérite., vector as-

sociated with last write operatiom, which wrotex; and

10For clarity of exposition, we omit the subscript related to the identifier
of procesw; from the data structures.

ponent wise maximum between the two vectors. Then the
requested value is returned.

Each time a message piggybacking a write operation
wy, (zp)v issued byp, arrives atp;, a new thread is
spawned. The code of this thread is depicted in Fidure

If the condition of line 2 in Figureb is verified the
thread is executed atomically, otherwiggs thread waits
until the condition at line 2 is verified to guarantee the
respect of—.,. This means that the vectd¥’., in m,
i.e. wy(xp)v.Write.,, does not bring any causal rela-
tionship unknown top; but the information about itself
(le. Vit # u € Writeeo, @ wy(zp)v.Writeg[t] <
Apply[t] and for the sender component Apply[u]
wy(xp)v.Writego[u] — 1).  If there existst # wu
such thatw, (zn)v.Weolt] > Apply[t] or Apply[u] <
wy(Th)v.Writeq[u] — 1, this means thap,, is aware of
a write operationv which precedesv, (z;)v with respect
to —., and that has not been yet appliedpto Then the
thread is suspended till the application of such a writing at
p;. Once the condition becomes true lines 3 to 5 are exe-
cuted atomically.

send, (w;(x,)a) apply;(wy(x)a) Send;(wi(x,)c)  apply,(wy(x,)c) apply, (w(x,)d)
P1

apply;(Wy(x,)b)

apply;(w(x,)a)

Py
1
o
o

[0,0,0]
“gEPP WD) Yreturna(ieb) | applys(ws(d)
» applys(wi(u)a)  applwix)e)  sends(ws))
.
T0.00
[0,0,0]
W,D v [ ] Wl

Figure 6. A run of OptP compliant with H;.

Figure6 shows a run of the protocol with the evolution of
the local data structures relateditorite.,. In particular, a
local data structure is depicted each time its value changes.
For the sake of clarity we do not show the evolution of
LastWriteOn at proces®;. Whenp, receives the mes-
sagem notifying wi (x1)a, it comparesw; (x1)a.Writeg,
with its local Apply. Sincew;(z1)a.Write., is equal to
[1,0,0], po can immediately apply the corresponding up-
date. Therp, executes the operation(z;) which returns
the valuea and this establishes a read-from relation be-
tweenw, (z1)a andry(z1). Whenp, executes the broad-



REAN zp)
1 VEk € [1..n], Writeco[k] := max(Writeco k], LastWriteOn[h]. Writeco[k]); % tracking—,., %

2 return (zp); % return event %
1 Upon the arrival ofm(zy,, v, We,) fromp,, % receipt event %
2 wait until ((Vt # u € Weo, Weolt] < Apply(t]) and (Apply[u] = Weolu] — 1));

3 apply(v, zp); % apply event %
4 Apply[u] := Apply[u] + 1;

5 LastWriteOn[h] := Weo; % storingw,, (zp)v.Writec, %

Figure 5. Read procedure performed by  p; and p;’s synchronization thread

cast to notify the write operations(z2)b, it piggybacks operation can have at mostimmediate predecessors, one
wy(z2)b.Write., = [1,1,0] on the corresponding mes- for each process.

sage. It must be noticed thaty(x2)b.Write., does not Figure7 shows the write causality graph associated with
take track ofw; (x1)c even though it has been already ap- the history H; of Example 1. The writew;(z1)c is a
plied at the timep, issueswsy(z2)b. This is due to the  ws(x2)d's immediate predecessor whilg (x4 )a is an im-
fact that p, does not read the valug; = ¢ and thus mediate predecessorof (z;)c andws(z2)b. Let us finally
wa(x2)b||.ow1(z1)c. When process receives the mes-  remark that the notion of causality graph was introduced by
sage notifyingws (x2)b, it cannot apply the corresponding Prakash et al. ifil3] in the context of causal deliveries in
update as there exists a write operation that is in the causamessage passing systems.
past ofws(x2)b and that has not arrived ag yet (i.e.,

w1 (z1)a). Therefore the predicate triggering the wait state- w,(x,)c

. ) w,(X,)a W, (X,)d
w1 (z1)c, because these two write operations are concurrent i) 3(%)

ment at line 2 in Figureé is false. Let us finally remark /'
thatps can applyws(z2)b even if it has not already applied
Wrt — . \

~.
w,(x,)b ~

4.3 Correctness Proof

In this section we first prove tha¥’ rite., is a system Figure 7. Causality graph of ~ H;

of vector clocks characterizing ., (as the classical vector

clocks characterizes:). Then we prove thabpt P is safe ) ) ) )
Finally we show that it is alsavrite delay optimal Finally Observations. Let us introduce the following simple ob-

we prove thaOpt P is live, showing thus that it belongs to servations whose proofs follow directly from the inspection
P. of the code of Sectiod.2.

Observation 1. Each component di rite., does not de-
Write Causality Graph. Let us introduce the notion of crease.
write causality graph that will be used in in the correctness
proof of OptP. This graph is based on an equivalent
formulation of—.,,

Observation 2. w is the k-th write issued by, <
w.Writeeo|t] = k.

The —co relation between two write Operatioms and Write.o characterizes —co- This means that for any
w', w —e w', can be also expressed as a sequende of Pair of writessw and w’, it is possible to understand if

e TRIAHONSW 0o W1 Freo - Wh o Whil —eo W eo W Or W ¢ w OF w||cow’ comparingw.Writee,

o Wg_1 e w' (With k > 0), denotedw —F%, w’, such  andw’.Writec,.

that for any relationv;, —., w41 there not exist a write Let Writec, = (w.Writec,|w € H) denote the set of
operationw” such thatw, — ., w” —co Wht1. vector clocks values associated to each write by the protocol

of Section4.2. LetV andV’ be two vectors with the same

A write Causa“ty graph is a directed acy(/:\"c graph whose number of Components. We define the fOIIOWing relations
vertices are all write operations belongingfo Thereisa  On these vectors:
i /g 0 / i
direct edge fromw to w’ if w ¢, w’. In this case we o V<V &Yk : VK] < V'[k] and

also say thatw is an immediate predecessor of in the
write causality graph. It trivially follows that each write o V<V & (VLSV' AGBK: VK]l <V'[kK]).



We denote a¥ ||V’ < —(V < V') and =(V' < V).
We will now show that the system of vector clocks
(Writeq,, <) Characterizes-.,. Formally:
Vo w,w w £ wi(w e W oS wWrite, <
w' Writee,) A
Vw,w':w#w, (w]|epw < wWritee||w Writee,).

Lemma 1. Vw;,w; € H @ w; # wj, (w; o wj =
w; Writeeo < wj.Writec,)

Proof. Let us consider the notatian; —¥ w, introduced
above in this section. The proof is by induction on the value
of .

Basic stepw; —2, w; = w;. Writee, < w;j.Writee,

We distinguish two cases:

(1) ¢ = j. This means thaw; andw; have been issued by
the same procegs. Each time a process executes a write
operation it performs write procedure in FiguteAccord-
ing to line 1 of Figure 4, each timg writes, it increments
Writeco[i]. Due to Observatiod, if w; precedesy; in p;
process order them; . Write.,[i] < w;.Writec,|i]. There-
fore the claim follows (i.e4v; . Writeq, < w;. Writec,).

(2) i # j. There must exist a read operation executed
by p;, denotedr;(x},), such thatw,(xp,) ., r;(zp) and
ri(zn) —po w;. Reading the value updated hy, p; has
previously setCastWriteOnlh] := w;(xp). Write., (line

5 of the synchronization thread Figs). Then whenp;
executes line 1 of the read procedure (Figbjeve have
Writeeo > wi(xzp).Writee,. Since each time a process
p; writes, it incrementd¥rite., and from Observation 1,
the next write operation issued py, denotedv;, is associ-
ated with alV rite., such thatw; Writeq, > w;. Writec,.
Therefore the claim follows.

Inductive Step w; —5> w; then: ()3 w’ k-1

w'. By induction hypothesis we havew,;. Write., <

w Writee,, and (i) v’ —Y9 w;. Because oBasic Step

w Write, < wj.Write,. From (i) and (ii), it follows:
w;. Writee, < w;.Writee,. O

LWy

Lemma 2. Vw;,w; € H : w; # wj, (w;.Writee, <
w; Writeco = Wi o Wj)

Proof. The proof is made by contradiction. We have two
cases:

1) let us suppose; Write., < w;.Writec, andw; .,
w;. From Lemma 1, ifw; —¢ w; thenw; Write., <
w; Write.,, therefore we have a contradiction.

2) let us assume; Write., < w;.Writec, andw;||cow;.
The first condition implies(w;.Writee,|t] h) <
(wj.Writee,|i] = k). We have two cases:

2.1)k = h. From Observation 2;.Write.,[i] = k means
that procesg; has read the value updated by #heh write
operation issued by; (i.e.,w;), thereforew; — ., w;. This
contradicts the hypothesis thaf||..w; .

2.2)k > h. In this casep; has read the value updated by
the k-th write operation issued by; (from ObservatiorR)

, denotedw’, and then it has writtem;. This means that
W oo wy. SiNCeh < k, w; +po, w’ and thenw; —, w;
contradicting the initial assumption. O

Theorem 1. Yw;,w; € H : w; # wj, (w; —co wj <
w; Writee, < wj.Writee,)

Proof. The claim follows from Lemmd. and Lemma 2.
O

Corollary 1. Vw;,w; € H : w; # wy, (w; —eo wj <
w; Writeeo[t] < w;j.Writecolt])

Proof. The claim immediately follows from Theoretnand
from the code of the protocol of Section 4.2. O

Theorem 2. Vw;,w; € H :
w; Writeco||w; Writeco)

wy 7é wja(wiHcowj -~

Proof. The claim immediately follows from Theoreinand
Definition of concurrency w.r.t—,. O

Corollary 2. Vw;,w;
w; Writeeo[i] < w; Writee,|i]
w; Writeco[7])

€ H : (o 7é wj,(wi||cowj =
A wiWriteelj] <

Proof. The claim immediately follows from Theorefhand
from the code of the protocol of Section 4.2.
O

Safety.

Theorem 3. OptP is safe i.e.,Vw;,w; € H,Vt €
{1,...n}, (wi o wj = apply(wi) — applye(w;))

Proof. The proof uses the same notation (ize;,—¥, w;)
and the structure of Lemma 1. The proof is thus by induc-
tion on the value of.
Basic Step w; —2, w;. Let us immediately show that if
bothw; andw; are issued by the same processthenp,
applies them in process order (line 3 of write procedure (fig.
4)). Each other procegscan applyw; only if:

Vit #£ j € wj. Writego[t] < Apply[t] A fort =
J Applylj] = w; Writeeo[j] —1 (1)

Let us suppose thab; is the (m) — th write issued by
p; andw; is the () — th write issued byp;. Then from
Observation 2v; . Write,[i] = m andw; Writec,|j] = L.

Two cases:



e = . From Corollary 1 and Observa-
tion 1 w; Writeeoli] < wj.Writeg[d], then if
w; Writeeo|i] = m, wj.Writeg[i] = m + h with
h > 1. The condition (1) can be explained as follows:
for t = j, Apply[j] = m + h — 1. Thenp has already
been applied thém + h — 1) — th write operation is-
sued byp; and all write operations that precede ifin
process order. As; is the (m) — th write operation
issued byp;, before applyingu;, p has appliedw;.

#4 4. From Corollary 1 1 w;.Writes|i] <
w; . Writee[i], then if w; Writeg,|[i] m,
w; . Writeeo[i] = m + h with h > 0. In this case the
condition (1) can be explained as follows: foe i,
Applyli] > m + h. Thenp has already applied the
(m+ h) —th write operation issued by; and all write
operations that precede it ) process order. A,

is the (m) — th write operation issued by;, before
applyingw;, p has appliedu;.

LK)

Inductive Step k£ > 0. (i) 3w’ : w; —k 1 w'. By in-

duction hypothesis we havewpplyx(w;) — applyi(w’)
at processy,. (i) w’ —Y% w,;. Because oBasic Step
applyk(w') — applyk(w;) at procespy,.

From (i) and (ii), it follows: applyy (w;) — applyx(w;)
at procespy,. O

Write Delay Optimality.  Let us first introduce an obser-
vation whose proof derives directly from inspection of the
protocol of Sectiort.2.

Observation 3. V e € E, Xo,p(e) only contains apply
events of some write operation.

Lemma 3. OptP produces runs such that
v apply(w;), apply(w;) € E such thatapply(w;) €
Xoptp (apply(w;)) andw; # w;, we havew; —, w;.

Proof. Let us proof the lemma by the way of contradiction.

Let us assume there exists an apply event of a write oper-
ationw,; whose enabling event is an apply event of a write

operationw; s.t. w; % w;. This implies that ifp;, re-
ceivesw; without having appliedv; yet, it will delay w;.
Two cases:

e p;, delaysw; and w; —., w;. By Theorem3 if
w; oo w; thenapplyy (w;) —  applyg(w;). In this
caseapplyy(w;) & Ekl|receipt(w;)- Then by Definition
3, px. does not actually delays;. Therefore we fall in
a contradiction with respect to the initial assumption
and the claim follows.

e pi, delaysw; andw;||.,w;. In this casep, never ap-
plies w; unlessw; has been already applied. Then
whenpy, receives the message notifying (line 1, Fig.
5), it waits to receive the message relatedvto This

means that the wait condition (line 2) holds because
Apply[j] < w; Writee,[7].1t Suppose, without loss
of generality, that whep,, receives the message noti-
fying w;, it should be able to apphy; (from Theorem

3 it meang, has already applied all writes belonging
to w;’s causal past w.rt-.,). Then, supposing that
w; is them — th write issued byp;, we have (i) from
line 2 of Fig. 5, Apply[j] = m — 1 and (ii) apply-
ing Corollary2, w;. Write.,[j] < m. Then ifp; can
apply w; becausedpply[j] = m — 1, it should have
appliedw; as well, asApply[j] > w;.-Writee,|j]-
This impliesapply; (w;) — applyi(w;). In this case
applyr(w;) & Eklreceipt(w,)- Then by Definition3,
pr. does not actually delays;. This contradicts the
initial assumption and the claim follows.

O
Theorem4. OptP is write delay optimal.

Proof. By Theorem3 it follows that OptP is safe. The

claim follows from Observatior8 (i.e., all events in all

Xopp(e) are apply events), Lemma and Definition 5.
O

Liveness. We show thatOpt P belongs toP by showing
thatOptP is live.

Theorem 5. All write operations are eventually applied at
each process (i.eQpt P belongs toP).

Proof. Let us assume by the way of contradiction there ex-
ists a write operatiomw; issued byp; that can never be ap-
plied by p;. This can happen iBk # j € {1,...n} :
Applylk] < w; Writec|k] or k J, Applyllk] <

w; . Writec,[k] — 1. This means that exists at least a write
operationw issued byp, such thatw —., w;, that has not
been received gi; yet. In this case we say that blocks
’(Uj.

Since communication channels are reliable, each process
executes a computational step in a finite time and each op-
eration is broadcast to all the processesjpdate message
will be eventually received by;. Now we have two cases:

1. w can be applied ap;, unblockingw;, therefore the
assumption is contradicted and the claim follows;

2. there exists a write operatian’ that blocksw. In this
case we can apply the same argumeniwtand due
to the fact that (i) the number of write operations that
precedew; wrt —., is finite and (ii)—., is a partial
order, then in a finite number of steps we fall in case 1.

O

11The second part of the wait condition is not considered as the case
1 = j contradicts the hypothesis of concurrency between the two writes.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

&

(10]

(11]

(12]

(13]

(14]

(15]

M. Ahamad, G. Neiger, J. Burns, P. Kohli, and P. Hutto.
Causal memory: Definitions, implementation and program-
ming. Distributed Computing9(1):37-49, 1995.

R. Baldoni, C. Spaziani, S. Tucci-Piergiovanni, and D. Tu-
lone. Implementation of causal memories using the writing
semantic. Irbth International Conference On Principles Of
Dlstributed Systempages 43-52, 2002.

K. P. Birman and T. A. Joseph. Reliable communication in
the presence of failuresACM Transactions on Computer
Systemg5(1):47-76, 1987.

K. P. Birman, A. Schiper, and P. Stephenson. Lightweigt
causal and atomic group multicasACM Transactions on
Computer System8(3):272-314, 1991.

C.J. Fidge. Logical time in distributed computing systems.
IEEE Computer24(8):28—-33, 1991.

M. Herlihy and J. Wing. Linearizability: A Correctness
Condition for Concurrent Objects.CACM Transactions
on Programming Languages and Systerh®(3):463—-492,
1990.

E.Jimenez, A. Ferandez, and V. Cholvi. A parametrized al-
gorithm that implements sequential, causal, and cache mem-
ory consistency. Iin Brief Announcements of the 15th In-
ternational Symposium on Distributed Computi2g01.

L. Lamport. Time, Clocks and the Ordering of Event
in a Distributed System. Communications of the ACM
21(7):558-565, 1978.

L. Lamport. How to Make a Multiprocessor Computer that
Correctly Executes Multiprocess ProgranlEEE Transac-
tions on Computer28(9):690-691, 1979.

L. Lamport. On Interprocess Communication. Part I: Basic
Formalism.Distributed Computingl(2):77-85, 1986.

F. Mattern. Virtual Time and Global States of Distributed
Systems. IrProc. of the International Workshop on Parallel
and Distributed Algorithmspages 215-226, 1988.

J. Misra. Axioms for Memory Access in Asynchronous
Hardware Systems.ACM Transactions on Programming
Languages and Systen®1):142-153, 1986.

M. R. R. Prakash and M. Singhal. An Adaptive Causal
Ordering Algorithm Suited to Mobile Computing Environ-
ments. Journal of Parallel and Distributed Computing
41(2):190-204, 1997.

M. Raynal and M. Singhal. Exploiting Write Semantics in
Implementing Partially Replicated Causal ObjectsPtoc.

of 6th Euromicro Conference on Parallel and Distributed
Systemgpages 175-164, 1998.

A. Tarafdar and V. Garg. Addressing False Causality while
Detecting Predicates in Distributed Programs.Phoc. 8th
International Conference on Distributed Computing Sys-
tems pages 94-101, 1998.

10



