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Abstract

Distributed shared memory (DSM) is one of the main ab-
straction to implement data-centric information exchanges
among a set of processes. Ensuring causal consistency
means all operations executed at each process will be com-
pliant to a cause effect relation. This paper first provides an
optimality criterion for a protocolP that enforces causal
consistency on a DSM. This criterion addresses the number
of write operations delayed byP (write delay optimality).
Then we present a protocol which is optimal with respect to
write delay optimality and we show how previous protocols
presented in the literature are not optimal with respect to
such a criterion.

1. Introduction

Data-centric communicationis one of the most inter-
esting abstraction for exchanging information among a set
of processes which are decoupled in time, space and flow.
Distributed Shared Memory(DSM) is a classic model that
provides such data-centric exchanges where decoupling in
space, flow and time means that processes can execute wait-
free read and write operations on a common replicated vari-
able. To ensurecausal consistencyin a DSM processes have
to agreeon the relative ordering of operations (read/write)
that have acause effectrelation [1]. There is a cause ef-
fect relation between two operationso1 and o2, denoted
o1 7→co o2 iff one of the following conditions is true: (i)o1

ando2 are issued by the same process ando1 precedeso2

(process order relation), (ii) o1 is a write operationw(x)v
ando2 is a read operation onx which returns the value writ-
ten byo1 (read-from relation) or (iii) there exists an oper-
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ation o such thato1 7→co o ando 7→co o2. So two inde-
pendent writes wrt7→co can be perceived in different order
by two different processes. This makes causal memory a
low latency abstraction with respect to stronger consistency
criteria such as sequential[9] and atomic consistency [10]
(also called linearizability[6]) as it admits more executions
and, hence, more concurrency.

When implemented over an asynchronous distributed
system replicating memory locations at each process, the
causal memory abstraction has been traditionally realized
through wait-free local readings and broadcasting write op-
erations to other processes (e.g.,[1], [14], [2]). In this way
when two operations are related by7→co they are also re-
lated by the “happened-before” relation, denoted→, intro-
duced by Lamport in [8] (the viceversa is not necessarily
true1).

Therefore ensuringcausal delivery of messages2 through
aFidge-Mattern vector clocks([5, 11]) is a sufficient condi-
tion to guarantee causal consistent histories with respect to
7→co. Moreover, protocols implementing a cause-effect ab-
straction usually delay each message carrying a write oper-
ationw arrived too early at a processp. This implies buffer-
ing of w atp. Such write will be executed after that all oper-
ations that causally affectedw will be executed atp. There-
fore such protocols can be compared among each other with
respect to the number of messages associated with writes
whose application at a process is delayed to enforce7→co.
In the context of the implementation of the cause-effect ab-
straction through causal delivery of messages, the number
of such delayed messages will be greater than necessary3.

1This comes from the well-known inability of the “happened-before”
relation to model true cause-effect relations among events of a distributed
computation. These cause-effect relations belong indeed to the semantics
sphere of the underlying application (DSM in this paper) rather than the
message pattern generated by the distributed computation.

2The causal message ordering abstraction states each process has to
deliver messages according to the relation→ of their sendings [3].

3A not necessary delayed message corresponds to the phenomenon of



Based on the above points this paper first states an opti-
mality criterion for such protocols. Roughly speaking a pro-
tocolP that correctly implements causally consistent DSM
is write delay optimal w.r.t.7→co if it delays a message only
if it is necessary. Then the paper presents a protocolOptP
which ensures causal consistent histories while being opti-
mal at the same time with respect to write delay. Interest-
ingly, OptP adopts a vector as main data structure embed-
ding actually the read/write operation semantics of a causal
memory. The paper formally shows that this vector, namely
Writeco, is actually a system of vector clocks characteriz-
ing 7→co. We also show that previous protocols presented
in the literature are not optimal with respect to write delays.
This implies that they buffer a number of messages at each
process that is greater than necessary.

The rest of this paper is structured as follows: Section 2
presents the shared memory model, Section 3 describes the
optimality criterion and shows why protocols appeared in
the literature are not optimal w.r.t. write delays. Section 4
presents the protocolOptP along with its correctness proof.

2 Shared Memory Model

We consider a finite set of sequential processesΠ ≡
{p1, p2, . . . pn} interacting via a shared memoryM com-
posed bym memory locationsx1, x2, ...xm. The memory
can be accessed throughreadandwrite operations. A write
operation executed by a processpi, denotedwi(xh)v, stores
a new valuev in the locationxh. A read operation executed
by a processpi, denotedri(xh)v, returns topi the valuev
stored in the locationxh

4. Each memory location has an
initial value⊥.

A local historyof a processpi, denotedhi, is a set of
read and write operations. Ifpi executes two operationso1

ando2 ando1 is executed first, theno1 precedeso2 in the
process order ofpi. This precedence relation is denoted
by o1 7→poi o2. Operations done by distinct processes are
related by theread-fromrelation. Formally read-from rela-
tion, denoted7→ro, is defined as follows [1]:

• if o1 7→ro o2, then there arex andv such thato1 =
w(x)v ando2 = r(x)v;

• for any operationo2, there is at most oneo1 such that
o1 7→ro o2;

• if o2 = r(x)v for somex and there is noo1 such that
o1 7→ro o2, thenv = ⊥; that is, a read with no write

a “false causality” in an implementation of a distributed shared memory
system. The false causality notion has been originally pointed out in the
context of distributed predicate detection by Tarafdar and Garg in [15].

4Whenever not necessary we omit either the valuev or the value and the
variable or the value, the process identifier and the variable. For examplew
represents a generic write operation whilewi represents a write operation
executed by processpi etc.

must read the initial value.

A global history(from now on simply a history) is a par-
tial orderĤ = (H, 7→co) such that:

• H=〈h1, h2, . . . hn〉, i.e. H is the collection of local
histories (one for each process).

• o1 7→co o2 ( 7→co is thecausal orderrelation ) if:

– ∃pi s.t.o1 7→poi
o2 (process order),

– ∃pi, pj s.t. o1 is issued bypi, o2 is issued bypj

ando1 7→ro o2 (read-from order),

– ∃o3 ∈ H s.t. o1 7→co o3 ando3 7→co o2 (transi-
tive closure).

If o1 and o2 are two operations belonging toH, we
said thato1 ando2 areconcurrentw.r.t. 7→co, denoted by
o1 ||co o2, if and only if¬(o1 7→co o2) and¬(o2 7→co o1).

Let us finally define thecausal past of an operationo
in a historyĤ with respect to7→co, denoted↓ (o, 7→co), as
follows:

↓ (o, 7→co) = {o′ ∈ H|o′ 7→co o}

2.1 Causally Consistent Histories

Let us now introduce a few properties of a history[12].

Definition 1 (Legal Read). GivenĤ = (H, 7→co), a read
event belonging toH, denotedr(x)v, is legal if∃ w(x)v :
w(x)v 7→co r(x)v and@w(x)v′ : w(x)v 7→co w(x)v′ 7→co

r(x)v.

Definition 2 (Causally Consistent History [1]). A history
Ĥ = (H, 7→co) is causally consistent iff all read operations
in Ĥ are legal.

As processes are sequential the definition of causal mem-
ory allows each process to see a specific linear extension
of the partial orderĤ. More specifically, this allows con-
current writes to be viewed in different orders by different
processes.

Example 1.Let us consider a system composed by three
processes. The following historŷH1 is causally consistent:

h1: w1(x1)a; w1(x1)c
h2: r2(x1)a; w2(x2)b
h3: r3(x2)b; w3(x2)d

Note that w1(x1)a 7→co w2(x2)b, w1(x1)a 7→co

w1(x1)c and w2(x2)b 7→co w3(x2)d while
w1(x1)c ||cow2(x2)b, w1(x1)c ||cow3(x2)d.
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3 Distributed Shared Memory

3.1 Distributed System Model

The shared memory model of the previous section is im-
plemented through a finite number of sequential processes
Π ≡ {p1, p2, . . . pn} which communicate using messages
that are sent over reliable channels. Each message sent by a
process is eventually received exactly once and no spurious
message can ever be delivered. There is no bound to the rel-
ative process speeds, however, the time taken by a process
to execute a computational step is finite.

We assume each processpi endows a copy of the shared
variablesxi

1, x
i
2, . . . x

i
h, . . . xi

m. The execution of each op-
eration (read or write) at a process produces a set of events
in one or more processes. A history (defined in section2)
produces a sequence of eventsEi at each processpi ordered
by the relation<i. e <i e′ meanse ande′ have happened at
pi ande has occurred first. We also denote asEi|e the prefix
of Ei until e (not included). The set of all events produced
by all processes is denoted asE =

⋃n
i=1 Ei . Such events

are ordered by Lamport’s “happened before” relation[8],
denoted→, defined as follows: lete ande′ be two events of
E, e → e′ iff (i) e <i e′ (ii) e is the sending of a messagem
ande′ is the receipt ofm and (iii) there existse′′ such that
e → e′′ ande′′ → e′.

Let e and e′ be two events belonging toE, e and e′

areconcurrentw.r.t. →, denoted bye || e′, if and only if
¬(e → e′) and¬(e′ → e). Finally, we denote a distributed
computation aŝE = (E,→) and the causal past of an event
e as follows:

↓ (e,→) = {e′ ∈ E|e′ → e}

.

3.2 A Class of ProtocolsP implementing DSM

In this section we point out the common features of
a large class of protocols implementing distributed shared
memory abstraction. Every protocolP belonging toP
class behaves as follows: each time a processpi, im-
plementingP , executes a write operationwi(xh)v, an
applyk(wi(xh)v) event is produced at each processpk

(∀k ∈ {1 . . . n})5. Each time a processpi executes a
read operationri(x)v, pi eventually produces an event
returni(x, v). Therefore, the operationwi(xh)v at pi is
associated with asendi(wi(xh)v) event which can be seen
as the starting point of the propagation ofwi(xh)v in the
system. When a processpj is notified aboutwi(xh), an

5Note that the communication mechanism used to propagate the oper-
ation from one process to another one (e.g. broadcast, multicast, point-to-
point), does not matter at this abstraction level.

eventreceiptj(wi(xh)v) occurs. At this pointpj properly
schedules the application of the write to its own copy, i.e.
it will produce an eventapplyj(wi(xh)v). Let us note that,
according to the description, we assume that any protocol
belonging toP is live (each operation is eventually executed
properly).

3.3 Enabling Event and Write Delaying

Let P denote a protocol belonging to the classP ande
ande′ be two events inE. e is an enabling event ofe′ if the
occurrence ofe′ has to be postponed to the occurrence ofe
according toP. Thereforee is anenabling eventof e′6.

In our context, we are interested in characterizing the set
of all events which are enabling events of each apply event
e in E according to a protocolP . Therefore, we denote
XP (e) ⊆ E such a set. As a consequence when a process
pk receives the message associated to a write operationw,
it postpones thew’s application, i.e.applyk(w) (the mes-
sage is buffered atpk), till all enabling events ofapplyk(w)
will occur. This is abstracted in our model by a write delay
which is defined as follows:

Definition 3 (Write Delay). Let P be a protocol inP, w
be a write operation inH, ande ∈ XP (applyk(w)). Then
w suffers a write delay atpk iff e 6∈ Ek|receiptk(w).

3.4 A ProtocolP ∈ P Compliant w.r.t. 7→co

Safety. Let P denote a protocol belonging toP. P is safe
w.r.t. 7→co iff write operations are applied at each process
according to the order induced by7→co. Formally:

∀wi, wj ∈ H, ∀k ∈ {1, . . . n}, (wi 7→co wj ⇒

∀k ∈ {1 . . . n}, applyk(wi) <k applyk(wj))

For each apply evente, the safety property actually de-
fines the set of its enabling events, denotedXco−safe(e),
with respect to7→co. Formally:

Definition 4. ∀ e = applyk(w) ∈ E generated by a
protocol P ∈ P, Xco−safe(e) ≡ {applyk(w′) ∈ E s.t.
w′ ∈↓ (w, 7→co)}

As an example, let us consider the history pre-
sented in Example 1 (wherew1(x1)a 7→co w2(x2)b,
w2(x2)b 7→co w3(x2)d and w2(x2)b||cow1(x1)c). In
this historyapply1(w1(x1)a) andapply1(w2(x2)b) are en-
abling events ofapply1(w3(x2)d) at processp1. Then

6We assume that the evente is an event belonging toE, as any general
condition can be easily modelled through a proper event of the computa-
tion.
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the set{apply1(w1(x1)a), apply1(w2(x2)b)} corresponds
toXco−safe(apply1(w3(x2)d)).

It comes out that every safe protocolP satisfies the fol-
lowing property:

∀e ∈ E,Xco−safe(e) ⊆ XP (e).

At an operational level, a safe protocolP ∈ P must delay
the application of a writew at processpk each time an apply
event of a write operation in the causal past ofw has been
not applied atpk yet. Then in eachP ’s run, if P is safe,
it is possible to identify how many write delays have been
occurred at each process to maintain safety. For example,
let us consider a safe protocolP belonging toP and the
history presented in Example 1. In Table1 for each apply
event the correspondingXco−safe is described.

event e Xco−safe(e)
apply1(w1(x1)a) ∅
apply2(w1(x1)a) ∅
apply3(w1(x1)a) ∅
apply1(w1(x1)c) {apply1(w1(x1)a)}
apply2(w1(x1)c) {apply2(w1(x1)a)}
apply3(w1(x1)c) {apply3(w1(x1)a)}
apply1(w2(x2)b) {apply1(w1(x1)a)}
apply2(w2(x2)b) {apply2(w1(x1)a)}
apply3(w2(x2)b) {apply3(w1(x1)a)}
apply1(w3(x2)d) {apply1(w1(x1)a), apply1(w2(x2)b)}
apply2(w3(x2)d) {apply2(w1(x1)a), apply2(w2(x2)b)}
apply3(w3(x2)d) {apply3(w1(x1)a), apply3(w2(x2)b)}

Table 1. Xco−safe of each event generated by
a P ∈ P producing Ĥ1

Figure1 shows two distinct sequences that could occur
at processp3 during two differentP runs and compliant
with the historyĤ1 experienced byp3 in Example 1. In run
(1) p3 does not experience any write delay while in run (2)
apply3(w2(x2)b) suffers a write delay due to late arrival of
the message associated withw1(x1).

3.5 Write Delay Optimality for a Safe Protocol
P ∈ P

Let us consider the case in which∃ e = applyk(w) ::
Xco−safe(e) ⊂ XP (e). Clearly P is safe but it is not
optimal w.r.t the number of write delays that could occur
during a computation.P includes in itsXP (e), an enabling
evente′ such thate′ is not an apply of a write belonging to
w’s casual past with respect to7→co. This leads, for at least
oneP ’s run, to executenot necessarywrite delays. Let us
consider the sequence generated byP atp3 compliant with

(1) receipt3(w1(x1)a) <3 apply3(w1(x1)a) <3

receipt3(w2(x2)b) <3 apply3(w2(x2)b) <3

receipt3(w1(x1)c) <3 apply3(w1(x1)c) <3

return3(x2, b) <3 apply3(w3(x2)d)

(2) receipt3(w2(x2)b) <3

receipt3(w1(x1)a) <3 apply3(w1(x1)a) <3

apply3(w2(x2)b) <3 receipt3(w1(x1)c) <3

apply3(w1(x1)c) <3 return3(x2, b) <3

apply3(w3(x2)d)

Figure 1. Two sequences that could occur at
process p3 compliant with Ĥ1.

the history of Example 1 and shown in Figure2.

receipt(w1(x1)a) <3 apply(w1(x1)a) <3

receipt(w2(x2)b) <3 receipt(w1(x1)c) <3

apply(w1(x1)c) <3 apply(w2(x2)b) <3

return(x2)b <3 apply(w3(x2)d)

Figure 2. A sequence that could occur at pro-
cess p3 compliant with Ĥ1

We suppose XP (apply3(w2(x2)b)) =
{apply3(w1(x1)a), apply3(w1(x1)c)}. Therefore P
is safe, howeverapply3(w1(x1)c) does not belong to
Xco−safe(apply3(w2(x2)b)). By Definition 3, in this run
the number of write delays executed atp3 is one (i.e.,
apply3(w2(x2)b) is delayed tillapply3(w1(x1)c)). Note
that this is a non-necessary delay w.r.t. Safety. In this case
an optimal (and safe) protocol would not execute any write
delay. Formally:

Definition 5. Let P be asafeprotocol belonging toP. P
is optimalon the number of write delays iff:
∀e ∈ E, XP (e) ≡ Xco−safe(e) for each protocol run.

Therefore, protocolP protocol in the above example is
not optimal.

3.6 Related Work

ANBKH Protocol. The protocol proposed by Ahamad et
al. in [1] (hereafterANBKH) is an example of a protocol
belonging toP. In ANBKH propagation of write opera-
tion is done through broadcast primitive. To get causal con-
sistent historiesANBKH orders all apply events at each
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process according to the happened-before relation of their
corresponding send events. In this way all apply events
of operations such thatwi(x)v 7→co wj(x)v′ will be ex-
ecuted in a causal consistent way with respect to→ as
well. This is obtained by causally ordering message de-
liveries through a Fidge-Mattern system of vector clocks
which considers apply events as relevant ones[4]. There-
fore ∀ applyk(w) ∈ E, XANBKH(applyk(w)) can be de-
fined as follows:

XANBKH(applyk(w)) ≡ {applyk(w′) ∈ E s.t.
send(w′) ∈↓ (send(w),→)}.

To clarify this point, let us consider the scenario de-
picted in Figure3 that can be produced byANBKH.
In this scenariow1(x1)a → w2(x2)b, w1(x1)a →
w1(x1)c, w2(x2)b → w3(x2)d. SinceANBKH enforces
casual message deliveries, then the setXANBKH(e) for
each evente is described in Table2.

p1

p2

p3

send1(w1(x1)c)

apply1(w1(x1)a)

send1(w1(x1)a)

apply1(w1(x1)c)

apply2(w1(x1)a)

apply2(w1(x1)c)

return2(x1,a) send2(w2(x2)b)

apply2(w2(x2)b)

apply1(w2(x2)b)

apply3(w1(x1)a)

apply3(w2(x2)b)

apply3(w1(x1)c) return3( x2,b)

return3( x1,c)

receipt2(w1(x1)a) receipt2(w1(x1)c)

receipt1(w2(x2)b)

receipt3(w1(x1)a)

receipt3(w2(x2)b)

receipt3(w1(x1)c)

p1

p2

p3

send1(w1(x1)c)

apply1(w1(x1)a)

send1(w1(x1)a)

apply1(w1(x1)c)

apply2(w1(x1)a)

apply2(w1(x1)c)

return2(x1,a) send2(w2(x2)b)

apply2(w2(x2)b)

apply1(w2(x2)b)

apply3(w1(x1)a)

apply3(w2(x2)b)

apply3(w1(x1)c) return3( x2,b)

return3( x1,c)

receipt2(w1(x1)a) receipt2(w1(x1)c)

receipt1(w2(x2)b)

receipt3(w1(x1)a)

receipt3(w2(x2)b)

receipt3(w1(x1)c)

Figure 3. A run of ANBKH compliant with Ĥ1

event e XANBKH(e)
apply1(w1(x1)a) ∅

apply2(w1(x1)a) ∅

apply3(w1(x1)a) ∅

apply1(w1(x1)c) {apply1(w1(x1)a)}

apply2(w1(x1)c) {apply2(w1(x1)a)}

apply3(w1(x1)c) {apply3(w1(x1)a)}

apply1(w2(x2)b) {apply1(w1(x1)a), apply1(w1(x1)c)}

apply2(w2(x2)b) {apply2(w1(x1)a), apply2(w1(x1)c)}

apply3(w2(x2)b) {apply3(w1(x1)a), apply3(w1(x1)c)}

apply1(w3(x2)d) {apply1(w1(x1)a), apply1(w1(x1)c), apply1(w2(x2)b)}

apply2(w3(x2)d) {apply2(w1(x1)a), apply2(w1(x1)c), apply2(w2(x2)b)}

apply3(w3(x2)d) {apply3(w1(x1)a), apply3(w1(x1)c), apply3(w2(x2)b)}

Table 2. XANBKH of Fig. 3 run’s events

ANBKH has been proved to be safe in [1], how-
ever by Definition 5, it is not optimal as there exists

some evente in a run produced byANBKH (e.g.
apply3(w2(x2)b in the run depicted in Figure3) such that
XANBKH(e) ⊃ Xco−safe(e) .7

Exploiting writing semantics. A few variants of
ANBKH have recently appeared in the literature address-
ing the writing semanticsnotion [2, 7, 14] introduced by
Raynal-Ahamad in[14]. By using this write semantics,
a process can apply a write operationw(x) even though
another writew′(x), such thatw′(x) 7→co w(x), has not
been applied yet at that process. In this case we say that
w overwritew′ (it is like the eventapply(w′) is logically
executed by a process immediately beforeapply(w)).
This overwriting can happen only if does not exist a write
operationw′′(y) (with x 6= y) such thatw′(x) 7→co w′′(y)
and w′′(y) 7→co w(x). Writing semantics is therefore a
heuristic that can help to improveANBKH by reducing,
on the average, the number of write delays according to
the message pattern of the computation. More specifically
protocols[2, 14] apply writing semantics at the receiver
sidei.e., when the process receives an overwritten value, it
discards the relative message. The protocol proposed in[7]
applies writing semantics at the sender side. This is done
using a token system that allows a processpi to apply the
write operationwj(x)v only when the local tokenti = j
with i 6= j and to send its set of updates only whenti = i.
When a processp performs several write operations on the
same variablex and thenti = i, it only sends the update
message corresponding to the last write operation onx it
has executed. This means that the other processes only see
the last write ofx done byp, missing all previousp’s writes
onx.

In both cases protocols exploiting writing semantics (ei-
ther at sender or receiver side) could produce some run
where some write operation is not applied by all processes,
therefore these protocols do not belong by definition toP.8

4 A Protocol (OptP ) for Causally Consistent
Distributed Shared Memory

The protocol presented in this section (hereafterOptP )
relies on a system of vector clocks, denotedWriteco, which
characterizes7→co

9. For the sake of simplicity we assume

7Figure 3 shows an example of false causality as defined in [15]. In
particular, the application ofw2(x2)b is delayed till the application of
w1(x1)c andw1(x1)a in order to respect→. This delay is non necessary
asw2(x2)b andw1(x1)c have no actual cause-effect relation with respect
to 7→co even thoughsend1(w1(x1)c) → send2(w2(x2)b).

8Let us note that the notion of writing semantics is orthogonal wrt the
notion of optimal protocols. Therefore, writing semantics could be applied
also to the protocol presented in the next section.

9The formal notion of system of vector clocks is given in Section 4.3.
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each write operation is broadcast to all processes. The pro-
cedures executed by a process are depicted in Figure4, 5
and5. In the following we detail first the data structures
and then the protocol behavior.

4.1 Data Structures

Each processpi manages10:

Apply[1...n]: an array of integer (initially set to zero).
The componentApply[j] is the number of write operations
issued bypj and applied atpi.

Writeco[1..n]: an array of integer (initially set to
zero). Each write operationwi(xh)a is associ-
ated with a vectorWriteco, denotedwi(xh)a.Writeco.
wi(xh)a.Writeco[j] = k means thek-th write operation
issued by processpj precedeswi(xh)a with respect to7→co.

LastWriteOn[1..m]: an array of vectors. The compo-
nentLastWriteOn[h] indicatesWriteco value of the last
write operation applied toxh at pi. Each component is ini-
tialized to[0, 0, ..., 0].

4.2 Protocol Behavior

When a process wants to performwi(xh)v, it executes
atomically the procedurewrite( xh,v) , depicted in Fig-
ure4.More precisely,pi increments by one theWriteco[i]
component to take the process order relation into account
(line 1) and then it sends a message to all other processes
(line 2). This message piggybacks the variablexh, the value
v and the current value ofWriteco (theWriteco associated
with wi(xh)v). Thenpi updates its local variablexh,(line
3), and it updates the control structures (lines 4,5). In partic-
ular,LastWriteOn[h] is set equal to thewi(xh).Writeco.

When a processpi wants to perform a read operation
onxh, it atomically executes the procedureread( xh) de-
picted in Figure5.

W R I T E( xh,v)
1 Writeco[i] := Writeco[i] + 1; % tracking 7→poi

%
2 send[m(xh, v, Writeco)] to Π− pi; % send event %
3 apply(v, xh); % apply event %
4 Apply[i] := Apply[i] + 1;
5 LastWriteOn[h] := Writeco; % storingwi(xh)v.Writeco %

Figure 4. Write procedure performed by pi

At line 1, pi incorporates in the local copy ofWriteco

the causal relations contained in theWriteco vector as-
sociated with last write operationw, which wrotexh and

10For clarity of exposition, we omit the subscript related to the identifier
of processpi from the data structures.

stored inLastWriteOn[h]. This is done through a com-
ponent wise maximum between the two vectors. Then the
requested value is returned.

Each time a message piggybacking a write operation
wu(xh)v issued bypu arrives at pi, a new thread is
spawned. The code of this thread is depicted in Figure5.

If the condition of line 2 in Figure5 is verified the
thread is executed atomically, otherwisepi’s thread waits
until the condition at line 2 is verified to guarantee the
respect of7→co. This means that the vectorWco in m,
i.e. wu(xh)v.Writeco, does not bring any causal rela-
tionship unknown topi but the information about itself
(i.e. ∀ t 6= u ∈ Writeco : wu(xh)v.Writeco[t] ≤
Apply[t] and for the sender componentu, Apply[u] =
wu(xh)v.Writeco[u] − 1). If there exists t 6= u
such thatwu(xh)v.Wco[t] > Apply[t] or Apply[u] <
wu(xh)v.Writeco[u] − 1, this means thatpu is aware of
a write operationw which precedeswu(xh)v with respect
to 7→co and that has not been yet applied topi. Then the
thread is suspended till the application of such a writing at
pi. Once the condition becomes true lines 3 to 5 are exe-
cuted atomically.
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Figure 6. A run of OptP compliant with Ĥ1.

Figure6 shows a run of the protocol with the evolution of
the local data structures related toWriteco. In particular, a
local data structure is depicted each time its value changes.
For the sake of clarity we do not show the evolution of
LastWriteOn at processp1. Whenp2 receives the mes-
sagem notifying w1(x1)a, it comparesw1(x1)a.Writeco

with its local Apply. Sincew1(x1)a.Writeco is equal to
[1, 0, 0], p2 can immediately apply the corresponding up-
date. Thenp2 executes the operationr2(x1) which returns
the valuea and this establishes a read-from relation be-
tweenw1(x1)a andr2(x1). Whenp2 executes the broad-
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R E A D( xh)
1 ∀k ∈ [1..n], Writeco[k] := max(Writeco[k], LastWriteOn[h].Writeco[k]); % tracking 7→ro %
2 return (xh); % return event %

1 Upon the arrival ofm(xh, v, Wco) frompu % receipt event %
2 wait until ((∀t 6= u ∈ Wco, Wco[t] ≤ Apply[t]) and(Apply[u] = Wco[u]− 1));
3 apply(v, xh); % apply event %
4 Apply[u] := Apply[u] + 1;
5 LastWriteOn[h] := Wco; % storingwu(xh)v.Writeco %

Figure 5. Read procedure performed by pi and pi’s synchronization thread

cast to notify the write operationw2(x2)b, it piggybacks
w2(x2)b.Writeco = [1, 1, 0] on the corresponding mes-
sage. It must be noticed thatw2(x2)b.Writeco does not
take track ofw1(x1)c even though it has been already ap-
plied at the timep2 issuesw2(x2)b. This is due to the
fact that p2 does not read the valuex1 = c and thus
w2(x2)b||cow1(x1)c. When processp3 receives the mes-
sage notifyingw2(x2)b, it cannot apply the corresponding
update as there exists a write operation that is in the causal
past of w2(x2)b and that has not arrived atp3 yet (i.e.,
w1(x1)a). Therefore the predicate triggering the wait state-
ment at line 2 in Figure5 is false. Let us finally remark
thatp3 can applyw2(x2)b even if it has not already applied
w1(x1)c, because these two write operations are concurrent
wrt 7→co.

4.3 Correctness Proof

In this section we first prove thatWriteco is a system
of vector clocks characterizing7→co (as the classical vector
clocks characterizes→). Then we prove thatOptP is safe.
Finally we show that it is alsowrite delay optimal. Finally
we prove thatOptP is live, showing thus that it belongs to
P.

Write Causality Graph. Let us introduce the notion of
write causality graph that will be used in in the correctness
proof of OptP . This graph is based on an equivalent
formulation of 7→co

The 7→co relation between two write operationsw and
w′, w 7→co w′, can be also expressed as a sequence ofk
7→co relationsw 7→co w1 7→co . . . wh 7→co wh+1 7→co

. . . wk−1 7→co w′ (with k ≥ 0), denotedw 7→k
co w′, such

that for any relationwh 7→co wh+1 there not exist a write
operationw′′ such thatwh 7→co w′′ 7→co wh+1.

A write causality graph is a directed acyclic graph whose
vertices are all write operations belonging tôH. There is a
direct edge fromw to w′ if w 7→0

co w′. In this case we
also say thatw is an immediate predecessor ofw′ in the
write causality graph. It trivially follows that each write

operation can have at mostn immediate predecessors, one
for each process.

Figure7 shows the write causality graph associated with
the history Ĥ1 of Example 1. The writew1(x1)c is a
w3(x2)d’s immediate predecessor whilew1(x1)a is an im-
mediate predecessor ofw1(x1)c andw2(x2)b. Let us finally
remark that the notion of causality graph was introduced by
Prakash et al. in[13] in the context of causal deliveries in
message passing systems.

w1 ( x 1 ) a
w1 ( x 1 ) c

w2 ( x 2 ) b
w3 ( x 2 ) dw1 ( x 1 ) a

w1 ( x 1 ) c

w2 ( x 2 ) b
w3 ( x 2 ) d

Figure 7. Causality graph of Ĥ1

Observations. Let us introduce the following simple ob-
servations whose proofs follow directly from the inspection
of the code of Section4.2.

Observation 1. Each component ofWriteco does not de-
crease.

Observation 2. w is the k-th write issued bypi ⇔
w.Writeco[i] = k.

Writeco characterizes 7→co. This means that for any
pair of writes w and w′, it is possible to understand if
w 7→co w′ or w′ 7→co w or w||cow

′ comparingw.Writeco

andw′.Writeco.
Let Writeco = (w.Writeco|w ∈ H) denote the set of

vector clocks values associated to each write by the protocol
of Section4.2. LetV andV ′ be two vectors with the same
number of components. We define the following relations
on these vectors:

• V ≤ V ′ ⇔ ∀k : V [k] ≤ V ′[k] and

• V < V ′ ⇔ (V ≤ V ′ ∧ (∃k : V [k] < V ′[k]).
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We denote asV ||V ′ ⇔ ¬(V < V ′) and ¬(V ′ < V ).
We will now show that the system of vector clocks

(Writeco, <) characterizes7→co. Formally:
∀ w, w′ : w 6= w′, (w 7→co w′ ⇔ w.Writeco <
w′.Writeco) ∧
∀ w,w′ : w 6= w′, (w||cow

′ ⇔ w.Writeco||w′.Writeco).

Lemma 1. ∀wi, wj ∈ H : wi 6= wj , (wi 7→co wj ⇒
wi.Writeco < wj .Writeco)

Proof. Let us consider the notationwi 7→k
co wj introduced

above in this section. The proof is by induction on the value
of k.
Basic step. wi 7→0

co wj ⇒ wi.Writeco < wj .Writeco

We distinguish two cases:
(1) i = j. This means thatwi andwj have been issued by
the same processpi. Each time a process executes a write
operation it performs write procedure in Figure4. Accord-
ing to line 1 of Figure 4, each timepi writes, it increments
Writeco[i]. Due to Observation1, if wi precedeswj in pi

process order thenwi.Writeco[i] < wj .Writeco[i]. There-
fore the claim follows (i.e.,wi.Writeco < wj .Writeco).
(2) i 6= j. There must exist a read operation executed
by pj , denotedrj(xh), such thatwi(xh) 7→ro rj(xh) and
rj(xh) 7→po wj . Reading the value updated bywi, pj has
previously setLastWriteOn[h] := wi(xh).Writeco (line
5 of the synchronization thread Fig.5). Then whenpj

executes line 1 of the read procedure (Figure5) we have
Writeco ≥ wi(xh).Writeco. Since each time a process
pj writes, it incrementsWriteco and from Observation 1,
the next write operation issued bypj , denotedwj , is associ-
ated with aWriteco such thatwj .Writeco > wi.Writeco.
Therefore the claim follows.
Inductive Step. wi 7→k>0

co wj then: (i) ∃ w
′

: wi 7→k−1
co

w
′
. By induction hypothesis we have:wi.Writeco <

w
′
.Writeco, and (ii) w

′ 7→0
co wj . Because ofBasic Step

w
′
.Writeco < wj .Writeco. From (i) and (ii), it follows:

wi.Writeco < wj .Writeco.

Lemma 2. ∀wi, wj ∈ H : wi 6= wj , (wi.Writeco <
wj .Writeco ⇒ wi 7→co wj)

Proof. The proof is made by contradiction. We have two
cases:
1) let us supposewi.Writeco < wj .Writeco andwj 7→co

wi. From Lemma 1, ifwj 7→co wi thenwj .Writeco <
wi.Writeco, therefore we have a contradiction.
2) let us assumewi.Writeco < wj .Writeco andwi||cowj .
The first condition implies(wi.Writeco[i] = h) ≤
(wj .Writeco[i] = k). We have two cases:
2.1)k = h. From Observation 2wj .Writeco[i] = k means
that processpj has read the value updated by thek-th write
operation issued bypi (i.e.,wi), thereforewi 7→co wj . This
contradicts the hypothesis thatwi||cowj .

2.2) k > h. In this case,pj has read the value updated by
thek-th write operation issued bypi (from Observation2)
, denotedw′, and then it has writtenwj . This means that
w′ 7→co wj . Sinceh < k, wi 7→poi

w′ and thenwi 7→co wj

contradicting the initial assumption.

Theorem 1. ∀wi, wj ∈ H : wi 6= wj , (wi 7→co wj ⇔
wi.Writeco < wj .Writeco)

Proof. The claim follows from Lemma1 and Lemma 2.

Corollary 1. ∀wi, wj ∈ H : wi 6= wj , (wi 7→co wj ⇔
wi.Writeco[i] ≤ wj .Writeco[i])

Proof. The claim immediately follows from Theorem1 and
from the code of the protocol of Section 4.2.

Theorem 2. ∀wi, wj ∈ H : wi 6= wj , (wi||cowj ⇔
wi.Writeco||wj .Writeco)

Proof. The claim immediately follows from Theorem1 and
Definition of concurrency w.r.t.7→co.

Corollary 2. ∀wi, wj ∈ H : wi 6= wj , (wi||cowj ⇔
wj .Writeco[i] < wi.Writeco[i] ∧ wi.Writeco[j] <
wj .Writeco[j])

Proof. The claim immediately follows from Theorem2 and
from the code of the protocol of Section 4.2.

Safety.

Theorem 3. OptP is safe i.e.,∀wi, wj ∈ H, ∀t ∈
{1, . . . n}, (wi 7→co wj ⇒ applyt(wi) → applyt(wj))

Proof. The proof uses the same notation (i.e.,wi 7→k
co wj)

and the structure of Lemma 1. The proof is thus by induc-
tion on the value ofk.
Basic Step. wi 7→0

co wj . Let us immediately show that if
bothwi andwj are issued by the same processpt, thenpt

applies them in process order (line 3 of write procedure (fig.
4)). Each other processp can applywj only if:

∀t 6= j ∈ wj .Writeco[t] ≤ Apply[t] ∧ for t =
j Apply[j] = wj .Writeco[j]− 1 (1)

Let us suppose thatwi is the (m) − th write issued by
pi andwj is the (l) − th write issued bypj . Then from
Observation 2wi.Writeco[i] = m andwj .Writeco[j] = l.
Two cases:
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• i = j. From Corollary 1 and Observa-
tion 1 wi.Writeco[i] < wj .Writeco[i], then if
wi.Writeco[i] = m, wj .Writeco[i] = m + h with
h ≥ 1. The condition (1) can be explained as follows:
for t = j, Apply[j] = m + h− 1. Thenp has already
been applied the(m + h− 1)− th write operation is-
sued bypi and all write operations that precede it inpi

process order. Aswi is the(m) − th write operation
issued bypi, before applyingwj , p has appliedwi.

• i 6= j. From Corollary 1 1 wi.Writeco[i] <
wj .Writeco[i], then if wi.Writeco[i] = m,
wj .Writeco[i] = m + h with h ≥ 0. In this case the
condition (1) can be explained as follows: fort = i,
Apply[i] ≥ m + h. Thenp has already applied the
(m+h)− th write operation issued bypi and all write
operations that precede it inpi process order. Aswi

is the (m) − th write operation issued bypi, before
applyingwj , p has appliedwi.

Inductive Step. k > 0. (i) ∃ w
′

: wi 7→k−1
co w

′
. By in-

duction hypothesis we have:applyk(wi) → applyk(w′)
at processpk. (ii) w

′ 7→0
co wj . Because ofBasic Step

applyk(w′) → applyk(wj) at processpk.
From (i) and (ii), it follows:applyk(wi) → applyk(wj)

at processpk.

Write Delay Optimality. Let us first introduce an obser-
vation whose proof derives directly from inspection of the
protocol of Section4.2.

Observation 3. ∀ e ∈ E, XOptP (e) only contains apply
events of some write operation.

Lemma 3. OptP produces runs such that
∀ apply(wi), apply(wj) ∈ E such thatapply(wj) ∈
XOptP (apply(wi)) andwi 6= wj , we havewj 7→co wi.

Proof. Let us proof the lemma by the way of contradiction.
Let us assume there exists an apply event of a write oper-
ationwi whose enabling event is an apply event of a write
operationwj s.t. wj 67→co wi. This implies that ifpk re-
ceiveswi without having appliedwj yet, it will delay wi.
Two cases:

• pk delayswi and wi 7→co wj . By Theorem3 if
wi 7→co wj thenapplyk(wi) → applyk(wj). In this
caseapplyk(wj) 6∈ Ek|receipt(wi). Then by Definition
3, pk does not actually delayswi. Therefore we fall in
a contradiction with respect to the initial assumption
and the claim follows.

• pk delayswi andwi||cowj . In this casepk never ap-
plies wi unlesswj has been already applied. Then
whenpk receives the message notifyingwi (line 1, Fig.
5), it waits to receive the message related towj . This

means that the wait condition (line 2) holds because
Apply[j] < wi.Writeco[j].11 Suppose, without loss
of generality, that whenpk receives the message noti-
fying wi, it should be able to applywj (from Theorem
3 it meanspk has already applied all writes belonging
to wj ’s causal past w.r.t7→co). Then, supposing that
wj is them − th write issued bypj , we have (i) from
line 2 of Fig. 5, Apply[j] = m − 1 and (ii) apply-
ing Corollary2, wi.Writeco[j] < m. Then if pk can
applywj becauseApply[j] = m − 1, it should have
applied wi as well, asApply[j] ≥ wi.Writeco[j].
This impliesapplyk(wi) → applyk(wj). In this case
applyk(wj) 6∈ Ek|receipt(wi). Then by Definition3,
pk does not actually delayswi. This contradicts the
initial assumption and the claim follows.

Theorem4. OptP is write delay optimal.

Proof. By Theorem3 it follows that OptP is safe. The
claim follows from Observation3 (i.e., all events in all
XOptP (e) are apply events), Lemma3 and Definition 5.

Liveness. We show thatOptP belongs toP by showing
thatOptP is live.

Theorem 5. All write operations are eventually applied at
each process (i.e.,OptP belongs toP).

Proof. Let us assume by the way of contradiction there ex-
ists a write operationwj issued bypj that can never be ap-
plied by pi. This can happen if∃k 6= j ∈ {1, . . . n} :
Apply[k] < wj .Writeco[k] or k = j, Apply][k] <
wj .Writeco[k] − 1. This means that exists at least a write
operationw issued bypk such thatw 7→co wj , that has not
been received atpi yet. In this case we say thatw blocks
wj .

Since communication channels are reliable, each process
executes a computational step in a finite time and each op-
eration is broadcast to all the processes,w update message
will be eventually received bypi. Now we have two cases:

1. w can be applied atpi unblockingwj , therefore the
assumption is contradicted and the claim follows;

2. there exists a write operationw′ that blocksw. In this
case we can apply the same argument tow′ and due
to the fact that (i) the number of write operations that
precedewj wrt 7→co is finite and (ii) 7→co is a partial
order, then in a finite number of steps we fall in case 1.

11The second part of the wait condition is not considered as the case
i = j contradicts the hypothesis of concurrency between the two writes.
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