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Abstract

Ensuring causal consistency in a Distributed Shared Memory (DSM) means all operations

executed at each process will be compliant to a causality order relation. This paper first in-

troduces an optimality criterion for a protocol P , based on a complete replication of memory

locations at each process and propagation of write updates, that enforces causal consistency.

This criterion measures the capability of a protocol to update the local copy as soon as possi-

ble while respecting causal consistency. Then we present an optimal protocol built on top of

a reliable broadcast communication primitive and we show how previous protocols based on

complete replication presented in the literature are not optimal. Interestingly, we prove that

the optimal protocol embeds a system of vector clocks which captures the read/write seman-

tics of a causal memory. From an operational point of view, an optimal protocol exploiting

reliable broadcast strongly reduces its message buffer overhead. Simulation studies show

that the optimal protocol roughly buffers a number of messages of one order of magnitude

lower than non-optimal ones based on the same communication primitive.

1 Introduction

Distributed Shared Memory (DSM) is one of the most interesting abstraction providing data-centric com-

munication among a set of application processes which are decoupled in time, space and flow. Consistency

conditions define the rules of read/write accesses in the shared memory model. For instance, sequential

consistency [19] requires that application processes agree on a common order for all read/write opera-

tions; atomic consistency [20] (also called linearizability [14]) requires that this order also respects the

real-time. Finally, PRAM requires each application process agrees on the order of write operations issued

by a process [21]. This allows two write operations invoked by two different application processes to be

perceived in different order by a third one. A stronger consistency criterion than PRAM and weaker than
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sequential is causal consistency introduced by Ahamad et al. in [1]. Causal consistency allows two or

more non-causally related write operations to appear in different order to different application processes.

Two operations o1 and o2 are causally related by the causality order relation, denoted o1 7→co o2, if and

only if one of the following conditions is true: (i) o1 and o2 are issued by the same application process

and o1 precedes o2 (program order relation), (ii) o1 is a write operation w(x)v and o2 is a read operation

on x which returns the value written by o1 (read-from order relation) or (iii) there exists an operation o

such that o1 7→co o and o 7→co o2. The interest of causality relation lies in the fact that it allows wait-free

read/write operations [1].

The distributed shared memory abstraction has been traditionally realized through a distributed

memory consistency system(MCS) on top of a message passing system providing a communication prim-

itive with a certain quality of service in terms of ordering and reliability [3]. The implementation of

MCS enforces a given consistency criterion. To improve performance, an MCS enforcing causal consis-

tency has been usually implemented by protocols based on a complete replication of memory locations

at each MCS process and propagation of the memory location updates [17]. In these protocols, namely

Complete Replication and Propagation (CRP) based protocols, a read operations immediately returns

(to the application process that invoked it) the value stored in the local copy. A write operation returns

after (i) the updating of the local copy and (ii) an update message carrying the new value is sent to all

MCS processes, exploiting communication primitives provided by the message passing system. Due to

the concurrent execution of processes and to the fact that the underlying network can reorder messages,

a CRP protocol is in charge to properly order incoming update messages at each process. This reorder

is implemented through the suspension/reactivation of process threads which are in charge of executing

the local update. If an update message m arrives at a process p and its immediate application violates

causal consistency, the update thread is suspended by the CRP protocol, i.e. its application is delayed.

This implies buffering of m at p. The thread is reactivated by the CRP protocol when the update can

be applied without the risk of violation of causal consistency. Informally, a CRP protocol is optimal if

each update is applied at a MCS process as soon as the causal consistency criterion allows it. In other

words, no update thread is kept suspended for a period of time more than necessary.

In this paper, firstly, we formally define such optimality criterion for CRP protocols. This criterion

actually defines a predicate, namely the activation predicate, on the distributed computation generated

by the CRP protocol that becomes trues as soon as an update thread can be reactivated and thus the local

update can be executed in a causally consistent way at a process. Secondly, an optimal CRP protocol is

presented. Theoretically, an optimal CRP protocol actually exploits all the concurrency admitted by the

causal consistency criterion. Third we show that when CRP protocols rely on top of a reliable broadcast

communication primitive, an optimal protocol exhibits a strong reduction on the message buffer overhead

at the MCS level with respect to a non-optimal one.

More precisely, after introducing the consistency memory model in Section 2, the paper presents,

in Section 3, the definition of optimal CRP protocol. This passes through a precise definition of the

implementation setting along with the relation between operations executed at application level and the

corresponding distributed computation produced by the CRP protocol at MCS level. In the same section
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we show that the most representative CRP protocol introduced by Ahamad et al in [1] (hereafter denoted

as ANBKH) is non-optimal.

In Section 4, the paper presents an optimal CRP protocol OptP that relies on a reliable broadcast

primitive. Interestingly, OptP adopts a vector as main data structure embedding actually the read/write

operation semantics of a causal memory. The paper formally shows that this vector, namely Writeco, is

actually a system of vector clocks characterizing 7→co. This proof and the transitivity property of 7→co

give us powerful optimization tools, borrowed from efficient representation of Fidge-Mattern vector clocks

[11, 22], to derive an efficient implementation of OptP , namely OptPef (Section 5). More specifically

OptPef embeds the Singhal-Kshemkalyani ([27]) and the direct dependency tracking ([15, 24]) techniques.

Both techniques aim to reduce the number of entries of a system of vector clocks to be piggybacked onto

protocol messages by following two orthogonal criterion.

In Section 5, we finally compare OptP and ANBKH, both protocol based on a reliable broadcast

primitive, in terms of message buffer overhead at MCS level. Simulation results clearly show that opti-

mality has a strong impact on message buffer overhead. More specifically, OptP outperforms ANBKH

by allowing one order of magnitude buffer space saving.

2 Shared Memory Model

This model is based on the one proposed by Ahamad et al. in [1]. We consider a finite set of sequential

application processes {ap1, ap2, . . . apn} interacting via a shared memory M composed by m memory

locations x1, x2, ...xm. The memory can be accessed through read and write operations. A write operation

invoked by an application process api, denoted wi(xh)v, stores a new value v in the location xh. A read

operation invoked by an application process api, denoted ri(xh)v, returns to api the value v stored in the

location xh
1. Each memory location has an initial value ⊥.

A local history of an application process api, denoted hi, is a sequence of read and write operations.

If an operation o1 precedes an operation o2 in hi, we say that o1 precedes o2 in program order. This

precedence relation is denoted by o1 7→poi o2. The history H=〈h1, h2, . . . hn〉, i.e. H is the collection of

local histories (one for each application process). Operations done by distinct application processes are

related by the read-from order relation. A read-from order relation, 7→ro, on H is any relation with the

following properties [1]2:

• if o1 7→ro o2, then there are x and v such that o1 = w(x)v and o2 = r(x)v;

• for any operation o2, there is at most one o1 such that o1 7→ro o2;

• if o2 = r(x)v for some x and there is no o1 such that o1 7→ro o2, then v = ⊥; that is, a read with

no write must read the initial value.
1Whenever not necessary we omit either the value v or the value and the variable or the value, the process

identifier and the variable. For example w represents a generic write operation while wi represents a write

operation invoked by the application process api, etc.
2It must be noted that the read-from order relation just introduced is the writes-into defined in [1]
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A causality order 7→co, [1], is a partial order that is the transitive closure of the union of the history’s

program order and the read-from order. Formally, o1 7→co o2 if and only if one of the following cases

holds:

• ∃ api s.t. o1 7→poi
o2 (program order),

• ∃ api, apj s.t. o1 is invoked by api, o2 is invoked by apj and o1 7→ro o2 (read-from order),

• ∃ o3 ∈ H s.t. o1 7→co o3 and o3 7→co o2 (transitive closure).

If o1 and o2 are two operations belonging to H, we said that o1 and o2 are concurrent w.r.t. 7→co,

denoted o1 ||co o2, if and only if ¬(o1 7→co o2) and ¬(o2 7→co o1). Let us finally define the causal past of

an operation o in a history H with respect to 7→co, denoted ↓ (o, 7→co), as follows:

↓ (o, 7→co) = {o′ ∈ H|o′ 7→co o}

Properties of a history

Definition 1 (Serialization). Given a history H, S is a serialization of H if S is a linear sequence

containing exactly the operations of H such that each read operation from a location returns the value

written by the most recent precedent write to that location.

A serialization S respects a given order if, for any operation o1 and o2 in S, o1 precedes o2 in the

order implies that o1 precedes o2 in S.

Let Hi+w be the history containing all operation in hi and all write operations in H

Definition 2 (Causally Consistent History [1]). An history H is causal consistent if for each

application process api there is a serialization Si of Hi+w that respects 7→co.

A memory is causal if it admits only causally consistent histories.

Example 1. Let us consider a system composed by three application processes. The following his-

tory H1 is causal:

h1: w1(x1)a; w1(x1)c

h2: r2(x1)a; w2(x2)b

h3: r3(x2)b; w3(x2)d

Note that w1(x1)a 7→co w2(x2)b, w1(x1)a 7→co w1(x1)c and w2(x2)b 7→co w3(x2)d while w1(x1)c ||cow2(x2)b,

w1(x1)c ||cow3(x2)d.

3 Distributed Memory Consistency System

The shared memory abstraction is implemented by a memory consistency system(MCS) on top of a

message passing system [3]. We assume a system consisting of a collection of nodes. On each node i
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there is an application process api and a MCS process pi [3]. An application process api invokes an

operation to its local MCS process pi which is in charge of the actual execution of the operation. The

execution of an operation at a MCS process pi generates events. Hereafter, for brevity, sometimes we

drop the acronym MCS and we refer to a MCS process as simply a process. The distributed system is

asynchronous. Message transfer delay is unpredictable but finite and there is no bound to the relative

process speeds, however, the time taken by a MCS process to execute a computational step is finite.

3.1 Distributed Computation at MCS

The partial order induced on the history H corresponds to a sequence of events Ei produced at each

MCS process pi by a protocol P implementing the MCS level and ordered by the relation <i. e <i e′

means both e and e′ occurred at pi and e has occurred first. We also denote as Ei|e the prefix of Ei until

e (not included). The set of all events produced by all MCS processes is denoted as E =
⋃n

i=1 Ei.

The events of E are also ordered by Lamport’s “happened before” relation [18], denoted →, defined

as follows: let e and e′ be two events of E, e → e′ iff (i) e <i e′ or (ii) e is the sending of a message m

and e′ is the receipt of m or (iii) there exists e′′ such that e → e′′ and e′′ → e′.

Let e and e′ be two events belonging to E, e and e′ are concurrent w.r.t. →, denoted by e || e′, if and

only if ¬(e → e′) and ¬(e′ → e). The partial order induced by → on E is the distributed computation

Ê = {E,→}. The set of messages sent in a distributed computation Ê is denoted as M bE .

3.2 Complete Replication and Propagation based Protocols

We assume each MCS process pi endows a copy of the shared variables xi
1, x

i
2, . . . x

i
h, . . . xi

m. We assume

pi exchanges messages through a reliable broadcast primitive [13]. To send a broadcast message a MCS

process invokes the RELcast(m) primitive while the underlying layer of a MCS process invokes the

RELrcv(m) primitive which is an upcall used to receive m to the MCS process.

Runs of the complete replication and propagation based (CRP) protocols generate the following list

of events at a process pi:

• Message send event. The execution of RELcast(m) primitive at a process pi generates the event

sendi(m).

• Message receipt event. receipti(m) corresponds to the receipt of a message m by pi through the

execution of the RELrcv(m) primitive.

• Apply event. The event applyi(wj(xh)v) corresponds to the application of the value written by the

write operation wj(xh)v to the local copy, i.e., v is stored into xi
h at pi.

• Return event. returni(xh, v) corresponds to the return of the value stored in pi’s local copy xi
h.

Therefore, apply events and return events are internal events while the others involve communication.

From the point of view of the mapping between operations and events, a CRP protocol communicating

via reliable broadcast is characterized by the following pattern:
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• Each time a MCS process pi executes a read operation ri(x)v, pi eventually produces an event

returni(x, v).

• Each time a MCS process pi executes a write operation wi(xh)v, an update corresponding to

wi(xh)v, denoted as mwi(xh)v, is dispatched to all other MCS processes through a RELcast(mwi(xh)v),

i.e. sendi(mwi(xh)v) is produced.

• Each time a MCS process pi receives from the underlying network an update sent during the exe-

cution of a write operation wj(xh)v, pi produces an event receipti(mwj(xh)v) and a new thread is

spawned to handle the local application of the update (i.e., the occurrence of the event applyi(wj(xh)v).

In this thread, pi, firstly, tests a local activation” predicate 3, denoted A(mwj(xh)v, e) (initially set

to false), to check if the update mwj(xh)v is ready to be locally applied at pi or not, just after

the occurrence of the event e. If A(mwj(xh)v, receipti(mwj(xh)v) is true, then the applyi(wj(xh)v)

event can be scheduled by the local operating system underlying pi. Note that when an activation

predicate flips to true it will last true forever (stable property). If A(mwj(xh)v, receipti(mwj(xh)v)

is false then the local update of xh at pi is delayed (actually the thread is suspended). A suspended

thread handling mwj(xh)v is activated just after the occurrence of the first event e such that the

predicate A(mwj(xh)v, e) flips to true and then the apply event is ready to be scheduled.

This behavior can be abstracted through a wait statement, i.e., wait until (A(mwj(xh)v, e)). If

a thread is suspended at pi, it will spinning on the local activation predicate A(mwj(xh)v, e) till

it will become true. We assume that the scheduler of the operating system is fair, i.e. it never

consequently schedules the same type of event an infinite number of times.

Two CRP protocols using a reliable broadcast differ each other on the definition of the local activation

predicate used to control threads handling the receipt of messages at a process. Thus, in the following

we denote as P = {P, P ′, ...} all CRP protocols following the above pattern in which each one may have

its own predicate AP .

Clearly, an activation predicate of a protocol is required to activate threads in order to maintain

causal consistency or safety. However, as will see, an activation predicate may be stronger than necessary

to ensure causal consistency. It can actually suspend a thread for a time longer than necessary. In this

case we say that the protocol is not optimal. In the following the notions of safety and optimality are

formally stated.

3.2.1 Capturing causality order in the distributed computation

The causality order relations among operations invoked at application level have to be preserved at MCS

level to assure safety. Actually, a causality order relation has to be mapped into a relation among events

of a distributed computation. This mapping depends on the MCS protocol. In our case, each protocol

has a local reads/writes and only during a write an update message is sent. From these features follows

that the relations among operations reduce on relations among update messages.

3We assume that each process runs the same code, i.e. the activation predicate local at each process is the

same for everyone.
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For this reason, we define a relation denoted as co→ on the update messages sent during a distributed

computation of a protocol P ∈ P. The objective of co→ is capturing the causality order relations among

write operations invoked by application processes into relations among update messages sent by MCS

processes. Formally, the definition of co→ is the following:

Definition 3. mw(x)a
co→ mw(y)b iff one of the following conditions holds:

1. sendk(mw(x)a) <k sendk(mw(y)b)

2. sendk(mw(x)a), sendj(mw(y)b) : j 6= k, returnk(x, a) <k sendk(mw(y)b)

3. ∃mw(z)c : mw(x)a
co→ mw(z)c

co→ mw(y)b

Relation between co→ and →. The relation co→ is actually a refinement of →, i.e. given a run of

a CRP protocol, co→ relates a set of messages contained in the set of messages related by the happened

before. For instance, if two messages mw(x)a,mw(y)b are mw(x)a
co→ mw(y)b then they are also related by

the happened before, i.e. sendk(mw(x)a) → sendj(mw(y)b). The viceversa is not true. If sendk(mw(x)a) →
sendj(mw(y)b) and k 6= j but no return events occurs in the run, then sendk(mw(x)a)

co

6→ sendj(mw(y)b).

Relation between co→ and 7→co The aim of co→ is exactly capturing the causality order relations

between write operations in relations between update messages sent during the underlying distributed

computation. Formally,the following property holds:

Property 1. mw(x)a
co→ mw(y)b ⇔ w(x)a 7→co w(y)b

Proof. mw(x)a
co→ mw(y)b ⇒ w(x)a 7→co w(y)b.

mw(x)a
co→ mw(y)b means that one of the following condition holds:

1. sendk(mw(x)a) <k sendk(mw(y)b)

2. sendj(mw(x)a) : j 6= k, returnk(x, a) <k sendk(mw(y)b)

3. ∃mw(z)c : mw(x)a
co→ mw(z)c

co→ mw(y)b

From each protocol P ∈ P: (i) for each MCS process pk that sends an update message mw(x), the

application process apk executes w(x) (and viceversa) and (ii) for each MCS process ph that returns a

value a from the local copy xh, the application process aph executes a read r(x)a (and viceversa).

First condition. The application process apk has executed both w(x)a and w(y)b s.t. w(x)a 7→pok
w(y)b.

Second condition. In this case an application process apk has executed r(x)a and w(y)b, then w(x)a

7→ro r(x)a and r(x)a 7→pok
w(y)b, i.e. w(x)a 7→co w(y)b.

Third condition. This is the transitive closure of co→. Then w(x)a 7→co w(y)b.

w(x)a 7→co w(y)b ⇒ mw(x)a
co→ mw(y)b

When program order holds for writes invoked by an application process apk, the first condition of co→
holds for the corresponding update messages sent by the MCS process pk. When read-from order holds,

a MCS process pk has returned the value a, i.e. pk has already received and applied the update message
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mw(x)a previously sent by another MCS process. From the second condition of co→ all messages sent by

pk after returnk(x, a) are related by co→ (then even mw(y)b). When the transitive closure holds, the third

condition of co→ holds, as well. Then the claim follows.

3.2.2 Safety

Let P ∈ P. P is safe w.r.t. 7→co if and only if the order on local update applications at each MCS process

is compliant with the order induced by co→. Formally:

Definition 4 (Safety). Let Ê = {E,→}, a distributed computation generated by P ∈ P. P is safe iff:

∀ mw, mw′ ∈ M bE : (mw
co→ mw′ ⇒ ∀i ∈ {1 . . . n}, applyi(w) <i applyi(w′))

Any protocol P maintains safety through its activation predicate. An activation predicate of a safe

protocol has to stop the immediate application of any update message mw arrived out-of-order w.r.t.
co→. Then it may allow the application of the delayed update only after all mw’s preceding updates are

applied. It means that a protocol P is safe if its activation predicate AP (mw, e) is true at a process pi, if

each update message m′
w such that mw′

co→ mw has been already applied at pi. However, any predicate

of a safe protocol may provide that even something other event has to occur before the mw’s application.

In this case the protocol is not optimal as the application is delayed even when it is not necessary, i.e.

AP (mw, e) is false at least until there exists a message a process pi, m′
w such that mw′

co→ mw and mw′

has not yet been applied at pi.

3.2.3 Optimality

Informally, a protocol P is optimal if its activation predicate AP (mw, e) is false at a process pi, at most

until there exists an update message m′
w such that mw′

co→ mw and mw′ has not yet been applied at pi.

Note that the optimality does not imply safety. An optimal protocol may apply updates in arrival order

regardless the order imposed by co→, however if it delays the application of an update mw it does that for

a “good reason”, as the message is out of order with respect to co→.

An optimal protocol is formally defined as follows:

Definition 5 (Optimal Protocol). P is optimal iff for any receipt of an update message mw at pi

belonging to any Ê = {E,→}, generated by a protocol P ∈ P,

∀e ∈ E : receipti(mw) <i e, ¬AP (mw, e) ⇒ ¬AOpt(mw, e)

where

AOpt(mw, e) ≡ @ mw′ ∈ M bE : ( mw′
co→ mw and ∧ applyi(w′) 6∈ Ei|e )

Then, from Property 1, each process running an optimal protocol, delays the application of an

update message mw until there exists at least another update message carrying a write not yet applied

that causally precedes w.
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Relation between AOpt(mw, e) and Safety. From the definition of AOpt(mw, e) follows that

each protocol P equipped with the activation predicate AOpt(mw, e) is safe. In particular the activation

predicate returns true at a process pi, only after all updates preceding mw have been also applied. Then

we can also say that for each safe (even not optimal) protocol P , AP ⇒ AOpt.

For this reason an optimal and safe protocol P has a local activation predicate at each process

AP ≡ AOpt.

3.2.4 Optimality for Propagation Based Protocols using Partial Replication

In a partial replicated environment a variable is replicated only to a subset of processes. These processes

are the owners of the variable. Only a owner of a variable can read and write on it. Then, there are

only two main differences between a propagation based protocol using partial replication and a one using

complete replication: (i) upon a write on a variable x issued by an x’s owner, an update message is

multicast to all other x’s owners; (ii) let m the number of memory locations, the control information

piggybacked onto an update message is a matrix of size n x m.

Then, even a propagation based protocol using partial replication has to be equipped with an acti-

vation predicate to delay updates arrived, at an owner, in an order not compliant with co→.

For this reason, the optimality definition applies even in this case, by stating the condition to avoid

a not necessary blocking of an applicable update.

3.3 ANBKH Protocol

In a seminal paper Ahamad et al. [1] introduced the notion of causal memory abstraction. In that paper,

the authors also proposed a CRP protocol (hereafter ANBKH) implementing such an abstraction on

top of a message passing system emulating a reliable broadcast primitive. ANBKH is actually an

instance of the general protocol described in Section 3.2, i.e. ANBKH ∈ P. ANBKH schedules the

local application of updates at a process according to the order established by the happened-before relation

of their corresponding send events. This is obtained by causally ordering message deliveries through a

Fidge-Mattern system of vector clocks which considers apply events as relevant events [8].

In ANBHK the activation predicate AANBHK(mw(y)b, e) for each received message mw(y)b at each

process pi is the following:

@ mw(x)a : ( sendj(mw(x)a) → sendk(mw(y)b, ) ∧ applyi(w(x)a) 6∈ Ei|e )

Such a predicate prevents ANBKH to be optimal (but not to be safe). AANBHK(mw, e) may be

false even in the case each apply event related to a write causally preceding w has occurred. To clarify

this point, let us consider a possible ANBKH run (see Figure 1), compliant with history of Example 1.

Let us consider the computation at p3 process. When p3 receives the update message mw2(x2)b,

AANBHK(mw2(x2)b, receipt3(mw2(x2)b)) is set to false. By Definition 5, even an optimal protocol has the

predicate set to false at p3.

Let us now point out what happens upon the receipt of mw1(x1)a and the consecutive application of

that update apply3(w1(x1)a). AANBHK(mw2(x2)b, apply3(w1(x1)a)) remains set to false. This is because
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p1

p2

p3

send1(mw1(x1)c)

apply1(w1(x1)a)

send1(mw1(x1)a)

apply1(w1(x1)c)

apply2(w1(x1)a) apply2(w1(x1)c)return2(x1,a) apply2(w2(x2)b)

apply1(w2(x2)b)

apply3(w1(x1)a) apply3(w2(x2)b)

apply3(w1(x1)c) return3( x2,b)

send3(mw3( x2)d)

receipt2(mw1(x1)a) receipt2(mw1(x1)c)

receipt1(mw2(x2)b)

receipt3(mw1(x1)a)

receipt3(mw2(x2)b) receipt3(mw1(x1)c)

send2(mw2(x2)b)

apply3 (w3( x2)d)

apply1 (w3( x2)d)

apply2 (w3( x2)d)

receipt1 (mw3( x2)d)

receipt2 (mw3( x2)d)

event

AOptP(mw2(x2)b, e)

AANBKH(mw2(x2)b, e)

true

true

false

false

p1

p2

p3

send1(mw1(x1)c)

apply1(w1(x1)a)

send1(mw1(x1)a)

apply1(w1(x1)c)

apply2(w1(x1)a) apply2(w1(x1)c)return2(x1,a) apply2(w2(x2)b)

apply1(w2(x2)b)

apply3(w1(x1)a) apply3(w2(x2)b)

apply3(w1(x1)c) return3( x2,b)

send3(mw3( x2)d)

receipt2(mw1(x1)a) receipt2(mw1(x1)c)

receipt1(mw2(x2)b)

receipt3(mw1(x1)a)

receipt3(mw2(x2)b) receipt3(mw1(x1)c)

send2(mw2(x2)b)

apply3 (w3( x2)d)

apply1 (w3( x2)d)

apply2 (w3( x2)d)

receipt1 (mw3( x2)d)

receipt2 (mw3( x2)d)

event

AOptP(mw2(x2)b, e)

AANBKH(mw2(x2)b, e)

true

true

false

false

Figure 1: A run of ANBKH compliant with the history of Example 1

there is another message, mw1(x1)c, that belongs to causal past of send2(mw2(x2)b)) not yet applied.

However at this point, each optimal predicate AOpt(mw2(x2)b, apply(w1(x1)a)) will flip to true.

Formally, the non-optimality of ANBHK can be expressed as follows: there exists a distributed

computation Ê = {E,→} s.t.

∃ m ∈ M bE , ∃ e ∈ Ei : (AANBHK(m, e) = false ∧AOpt(m, e) = true)

ANBKH is not optimal because of the well-known inability of the “happened before” relation to map

in a one-to-one way, cause-effect relations at the application level into relations at the implementation

level. This phenomenon is called “false causality” 4.

3.4 Related Work

Several other protocols implementing causal consistency have appeared in the literature [2, 6, 16, 25].

The protocols in [6, 25] are propagation-based protocols assuming partial replication. These protocols

address the writing semantics notion introduced by Raynal-Ahamad in [25]. By using writing semantics,

a process can apply a write operation w(x) even though another write w′(x), such that w′(x) 7→co w(x),

has not been applied yet at that process. In this case we say that w overwrites w′ (it is like the event

apply(w′) is logically executed by a process immediately before apply(w)). This overwriting can happen

4The false causality notion has been first identified by Lamport in [18], then it has received more attention by

Cheriton-Skeen in [10] and by Tarafdar and Garg in [28] in the context of causal message ordering and distributed

predicate detection respectively.
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only if there is not a write operation w′′(y) (with x 6= y) such that w′(x) 7→co w′′(y) and w′′(y) 7→co w(x).

Writing semantics is therefore a heuristic that can help to improve ANBKH by reducing, on the average,

the buffer overhead according to the message pattern of the computation. As will see in Section 6 even

the optimality allows to reduce the buffer overhead with respect to not optimal protocols. However,

writing semantics and optimality are orthogonal notions. Then, writing semantics could also be applied

to any optimal protocols.

The protocol presented in [16] is a propagation-based protocol using complete replication. However,

differently from protocols in [1, 6, 25], the propagation is not immediate. The propagation is token-based,

i.e. each process, until obtains the token, locally executes its write operations without propagate them.

When the process obtains the token, it broadcasts a message containing the last write locally executed

(overwritten values are not sent). Actually, that mechanism controls the way in which causally ordered

relations between operations are created. This control assures that, in each protocol’s run, write messages

arrive causally ordered at each process. For this reason the protocol does not need a vector clock to track

causality and does not need to be equipped with a wait condition.

The protocol presented in [2] copes with dynamic replication and mixes propagation and invalidation-

based approaches. The protocol works in a client/server environment and implements causally consistent

distributed objects. A distributed object is dynamically replicated: object copies can be created and

deleted. A client never holds a copy (it only requests the last value to a server), a permanent server

always holds a copy and a potential server can create and delete copies. The copy updating mechanism

is propagation-based inside the set of permanent servers and is invalidation-based for potential servers.

In [15] another optimality criterion has been given by Kshemkalyani and Singhal in the context of

causal message ordering. This criterion formulates necessary and sufficient conditions on the information

to be piggybacked onto messages to guarantee causal message ordering. This optimality criterion differs

from the one we have just defined in two aspects. Firstly it has been given on a different ordering relation,

namely the “happened before” relation, and, secondly, this criterion is orthogonal to the optimality

criterion defined in Section 3.2.3. The latter aims indeed at eliminating any causality relation between

messages (i.e., operations) created at the MCS level by the “happened before” relation and that does not

have a correspondence at the application level.

The optimality criterion we introduce has some relation with the one shown in [12]. The authors

introduce a new relation s→ that tracks only true causality given an application semantics. From an

implementation point of view, they approximate s→ by formulating rules to manage a new system of vector

clocks. As a consequence, they only reduce false causality. The inability to remove all false causalities is

due to the lack of precise application semantics knowledge. In our case, the application semantics is ruled

by 7→co and co→ tracks the application semantics among the events of distributed computations generated

by a CRP protocol exploiting a reliable broadcast primitive. That leads to a complete removal of false

causality created by the “happened-before” relation at the MCS level.
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4 An optimal CRP Protocol (OptP )

The CRP protocol presented in this section (hereafter OptP ) relies on a system of vector clocks, denoted

Writeco, which characterizes 7→co
5. The procedures executed by a MCS process are depicted in Figure

2, 3 and 4. In the following we detail first the data structures and then the protocol behavior.

4.1 Data Structures

Each MCS process pi manages6 the following data structures:

Apply[1...n]: an array of integer (initially set to zero). The component Apply[j] is the number of write

operations sent by pj and applied at pi.

Writeco[1..n]: an array of integer (initially set to zero). Each write operation wi(xh)a is associated

with a vector Writeco, denoted wi(xh)a.Writeco. wi(xh)a.Writeco[j] = k means that the k-th write

operation invoked by an application process apj precedes wi(xh)a with respect to 7→co.

LastWriteOn[1..m, 1..n]: an array of vectors. The component LastWriteOn[h, ∗] indicates the Writeco

value of the last write operation on xh executed at pi. Each component is initialized to [0, 0, ..., 0].

4.2 Protocol Behavior

When a MCS process pi wants to perform wi(xh)v, it atomically executes the procedure write(xh,v),

depicted in Figure 2. In particular, pi increments by one the Writeco[i] component to take the program

order relation of api into account (line 1) and then it sends an update message mwi(xh)v to all MCS pro-

cesses (line 2). This message piggybacks the variable xh, the value v and the current value of Writeco, i.e.

the Writeco associated with wi(xh)v. Then pi stores value v in its local variable xh
7,(line 3), and updates

the control structures (lines 4,5). In particular, LastWriteOn[h] is set equal to the wi(xh).Writeco.

When a MCS process pi wants to perform a read operation on xh, it atomically executes the procedure

read(xh) depicted in Figure 3. At line 1, pi incorporates in the local copy of Writeco the causality order

relations tracked in the Writeco vector associated with the last write operation w, which wrote xh and

stored in LastWriteOn[h]. This is done through a component wise maximum between the two vectors.

Then the requested value is returned.

Each time an update message mwu(xh)v sent by pu arrives at pi, a new thread is spawned. The code

of this thread is depicted in Figure 4.

If the condition of line 2 in Figure 4 is verified, i.e. the activation predicate of OptP holds, the thread

is executed atomically, otherwise pi’s thread waits until the activation predicate at line 2 is verified

to guarantee the respect of 7→co. This means that the vector Wco in m, i.e. wu(xh)v.Writeco, does

5The formal notion of system of vector clocks is given in Section 4.3.
6For clarity of exposition, we omit the subscript related to the identifier of process pi from the data structures.
7When pi receives a self-sent message, it discards the message. In this way it applies their messages following

the order of their sends.
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write(xh,v)

1 Writeco[i] := Writeco[i] + 1; % tracking 7→poi %

2 RELcast [m(xh, v, Writeco)]; % send event %

3 xh := v; % apply event %

4 Apply[i] := Apply[i] + 1;

5 LastWriteOn[h] := Writeco; % storing wi(xh)v.Writeco %

Figure 2: Write procedure performed by the MCS process pi

read(xh)

1 ∀k ∈ [1..n], Writeco[k] := max(Writeco[k], LastWriteOn[h].Writeco[k]); % tracking 7→ro %

2 return(xh); % return event %

Figure 3: Read procedure performed by the MCS process pi

not bring any causality order relation unknown to pi (i.e. ∀ t 6= u : wu(xh)v.Writeco[t] ≤ Apply[t]

and for the sender component u, Apply[u] = wu(xh)v.Writeco[u] − 1). If there exists t 6= u such that

wu(xh)v.Wco[t] > Apply[t] or Apply[u] < wu(xh)v.Writeco[u]− 1, this means that pu is aware of a write

operation w which precedes wu(xh)v with respect to 7→co and that has not been yet executed at pi. Then

the thread is suspended till the execution of such a write at pi. Once the condition becomes true, lines 3

to 5 are executed atomically.

Figure 5 shows a run of the protocol with the evolution of the local data structures related to Writeco.

In particular, a local data structure is depicted each time its value changes. To make Figure 5 readable,

we do not show the evolution of LastWriteOn at process p1. When p2 receives the update message

mw1(x1)a, it compares w1(x1)a.Writeco with its local Apply. Since w1(x1)a.Writeco is equal to [1, 0, 0],

p2 can immediately apply the value a to its own copy x2
1. Then ap2 executes r2(x1) which returns the

value a establishing in this way a read-from relation between w1(x1)a and r2(x1)a. During the w2(x2)b’s

execution, p2 broadcast mw2(x2)b piggybacking w2(x2)b.Writeco = [1, 1, 0]. It must be noticed that

w2(x2)b.Writeco does not take track of w1(x1)c even though it has already been applied when p2 issues

w2(x2)b. This is due to the fact that the application process ap2 does not read the value x1 = c and

thus w2(x2)b||cow1(x1)c. When MCS process p3 receives the update message mw2(x2)b, it cannot apply

b to its copy x3
2 as there exists a write operation that is in the causal past of w2(x2)b whose update has

not arrived at p3 yet (i.e., w1(x1)a). Therefore the predicate triggering the wait statement at line 2 in

Figure 4 is false. Let us finally remark that p3 can apply b to its own x2’s copy even if it has not already

received mw1(x1)c, because w2(x2)b and w1(x1)c are concurrent w.r.t. 7→co.

1 when (receipt(m(xh, v, Wco)) occurs and m was sent by pu and (u 6= i)) do

2 wait until ((∀ t 6= u Wco[t] ≤ Apply[t]) and (Apply[u] = Wco[u]− 1)) % AoptP (m,e) %

3 xh := v; % apply event %

4 Apply[u] := Apply[u] + 1;

5 LastWriteOn[h] := Wco; % storing wu(xh)v.Writeco %

Figure 4: pi’s communication thread
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Figure 5: A run of OptP compliant with the history of Example 1.

Comparison with ANBKH. ANBKH and OptP employ a system of vector clocks: t[1..n] and

Writeco[1..n] respectively. ANBKH uses it to track the happened-before” relation established at the

MCS level while OptP uses Writeco to track at the MCS level the causality order relation established

at the application level. Therefore, both protocols need to piggyback O(n) control information which

is necessary to update the own vector clock system [4, 9]. The local control structure of ANBKH is

O(n) while the one of OptP is O(n ∗m) (i.e. LastWriteOn), where n is the number of processes and m

the number of variables. This difference is due to the fact that read-from order relations are established

during the execution of a read operation (line 1 Figure 3) and this forces to store for each variable xh,

the vector clock associated to the last write operation on xh.

4.3 Correctness Proof

In this section we first prove that Writeco is a system of vector clocks characterizing 7→co and co→ (as the

classical vector clock system characterizes →). We finally prove that OptP is safe, live and optimal. Let

us first introduce a notation that we will use in the rest of the paper and two observations whose proofs

follow directly from the inspection of the code of Section 4.2.

Notation w 7→k
co w′ with k ≥ 0 means there exists a sequence of k 7→co relations w 7→co w1 7→co

. . . wh 7→co wh+1 7→co . . . wk−1 7→co wk 7→co w′ and for any relation wh 7→co wh+1 does not exist a write

operation w′′ such that wh 7→co w′′ 7→co wh+1.

Observation 1. Each component of Writeco does not decrease.
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Observation 2. w is the k−th write operation invoked by the application process api ⇔ w.Writeco[i] = k.

Proof. Since OptP ∈ P, if w is the k − th write operation invoked by the application process api, then

w is the k − th write operation executed by the MCS process pi. During w’s execution, i.e. during the

write procedure of Fig. 2, pi assigns to w the vector clock Writeco[i] = k (line 1).

Writeco is a system of vector clocks characterizing 7→co. This means that for any pair of

write operations w and w′, it is possible to understand if w 7→co w′ or w′ 7→co w or w||cow
′ comparing

w.Writeco and w′.Writeco.

Let Writeco = (w.Writeco|w ∈ H) denote the set of vector clocks values associated to each write by

the protocol of Section 4.2. Let V and V ′ be two vectors with the same number of components. We

define the following relations on these vectors:

• V ≤ V ′ ⇔ ∀k : V [k] ≤ V ′[k] and

• V < V ′ ⇔ (V ≤ V ′ ∧ (∃k : V [k] < V ′[k]).

We denote as V ||V ′ ⇔ ¬(V < V ′) and ¬(V ′ < V ).

We will now show that the system of vector clocks (Writeco, <) characterizes 7→co. Formally:

∀ w,w′ : w 6= w′, (w 7→co w′ ⇔ w.Writeco < w′.Writeco) ∧
∀ w,w′ : w 6= w′, (w||cow

′ ⇔ w.Writeco||w′.Writeco).

Lemma 1. ∀ wi, wj ∈ H : wi 6= wj , (wi 7→co wj ⇒ wi.Writeco < wj .Writeco)

Proof. Let us consider the notation wi 7→k
co wj . The proof is by induction on the value of k.

Basic step. wi 7→0
co wj ⇒ wi.Writeco < wj .Writeco

We distinguish two cases:

(1) i = j. This means that wi and wj have been invoked by the same application process api. Then, wi

and wj have been executed by the same MCS process pi according to the program order. Each time a

MCS process executes a write operation, it performs the write procedure in Figure 2. According to line

1 of Figure 2, each time pi executes a write operation, it increments Writeco[i]. Due to Observation 1,

if wi precedes wj in api program order then wi.Writeco[i] < wj .Writeco[i]. Therefore the claim follows

(i.e., wi.Writeco < wj .Writeco).

(2) i 6= j. There exists a read operation invoked by the application process apj , denoted rj(xh), such

that wi(xh) 7→ro rj(xh) and rj(xh) 7→po wj . apj can read the value written by wi because (1) wi has

been applied at pj and (2) wi is the last write on xh before pj executes rj(xh). For this reason, pj has

set LastWriteOn[h] := wi(xh).Writeco (line 5 of the synchronization thread Fig. 4). Then, when pj

executes line 1 of the read procedure (Figure 3) we have Writeco ≥ wi(xh).Writeco. Since each time

a process pj executes a write operation, it increments Writeco and from Observation 1, the next write

operation executed by pj , denoted wj , is associated with a Writeco such that wj .Writeco > wi.Writeco.

Therefore the claim follows.

Inductive Step. wi 7→k>0
co wj then: (i) ∃ w

′
: wi 7→k−1

co w
′
. By inductive hypothesis we have:

wi.Writeco < w
′
.Writeco, and (ii) w

′ 7→0
co wj . Because of Basic Step w

′
.Writeco < wj .Writeco. From

(i) and (ii), it follows: wi.Writeco < wj .Writeco.
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Lemma 2. ∀ wi, wj ∈ H : wi 6= wj , (wi.Writeco < wj .Writeco ⇒ wi 7→co wj)

Proof. The proof is made by contradiction. We have two cases:

1) let us suppose wi.Writeco < wj .Writeco and wj 7→co wi. From Lemma 1, if wj 7→co wi then

wj .Writeco < wi.Writeco, therefore we have a contradiction.

2) let us assume wi.Writeco < wj .Writeco and wi||cowj . The first condition implies (wi.Writeco[i] =

h) ≤ (wj .Writeco[i] = k). We have two cases:

2.1) k = h. From Observation 2, wj .Writeco[i] = k means that the application process apj has read the

value written by the k-th write operation invoked by api (i.e., wi), therefore wi 7→co wj . This contradicts

the hypothesis that wi||cowj .

2.2) k > h. In this case, apj has read the value written by the k-th write operation invoked by api (from

Observation 2), denoted w′, and then it has written wj . This means that w′ 7→co wj . Since h < k,

wi 7→poi w′ and then wi 7→co wj contradicting the initial assumption.

Theorem 1. ∀wi, wj ∈ H : wi 6= wj , (wi 7→co wj ⇔ wi.Writeco < wj .Writeco)

Proof. The claim follows from Lemma 1 and Lemma 2.

Corollary 1.

∀wi, wj ∈ H : wi 6= wj , (wi 7→co wj ⇔ wi.Writeco[i] ≤ wj .Writeco[i])

Proof. The claim immediately follows from Theorem 1 and from the code of the protocol of Section 4.2.

Theorem 2. ∀wi, wj ∈ H : wi 6= wj , (wi||cowj ⇔ wi.Writeco||wj .Writeco)

Proof. The claim immediately follows from Theorem 1 and Definition of concurrency w.r.t. 7→co.

Corollary 2.

∀wi, wj ∈ H : wi 6= wj , (wi||cowj ⇔ wj .Writeco[i] < wi.Writeco[i] ∧ wi.Writeco[j] < wj .Writeco[j])

Proof. The claim immediately follows from Theorem 2 and from the code of the protocol of Section 4.2.

Corollary 3. Writeco is a system of vector clock characterizing co→.

Proof. The claim immediately follows Property 1, taking into account that the update message mw(x)a

broadcast during w(x)a’s execution is associated with the vector value w(x)a.Writeco piggybacked.
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Safety.

Theorem 3. OptP is safe i.e., let Ê = {E,→}, a distributed computation generated by P ∈ P,

∀ mw, mw′ ∈ M bE : (mw
co→ mw′ ⇒ ∀i ∈ {1 . . . n}, applyi(w) <i applyi(w′))

Proof. Since Property 1 holds, we develop the proof referring to write operations and 7→co, to use the

same notation (i.e., wi 7→k
co wj) and the structure of Lemma 1. The proof is thus by induction on the

value of k.

Basic Step. wi 7→0
co wj . Let us immediately show that if both wi and wj are invoked by the same

application process apt, then the corresponding MCS process pt executes them according to the program

order (line 3 of write procedure (fig. 2)). Each other MCS process p can execute wj only if:

∀ t 6= j wj .Writeco[t] ≤ Apply[t] ∧ for t = j Apply[j] = wj .Writeco[j]− 1 (1)

Let us suppose that wi is the (m)− th write invoked by api and wj is the (l)− th write invoked by apj .

Then from Observation 2 wi.Writeco[i] = m and wj .Writeco[j] = l. There are two possible cases:

• i = j. From Corollary 1 and Observation 1 wi.Writeco[i] < wj .Writeco[i], then wi.Writeco[i] = m,

wj .Writeco[i] = m + h with h ≥ 1. The condition (1) can be explained as follows: for t = i,

Apply[i] = m + h − 1. Then p has already applied the (m + h − 1) − th write operation issued

by pi and all write operations that precede it in api program order. As wi is the (m) − th write

operation executed by pi, before applying wj , p has applied wi.

• i 6= j. From Corollary 1 and Observation 1 wi.Writeco[i] < wj .Writeco[i], then if wi.Writeco[i] =

m, wj .Writeco[i] = m + h with h ≥ 0. In this case the condition (1) can be explained as follows:

for t = i, Apply[i] ≥ m + h. Then p has already applied the (m + h)− th write operation invoked

by the application process api and all write operations that precede it in api program order. As

wi is the (m)− th write operation executed by pi, before applying wj , p has applied wi.

Inductive Step. k > 0. (i) ∃ w
′

: wi 7→k−1
co w

′
. By inductive hypothesis we have: applyk(wi) →

applyk(w′) at process pk. (ii) w
′ 7→0

co wj . Because of Basic Step applyk(w′) → applyk(wj) at the MCS

process pk.

From (i) and (ii), it follows: applyk(wi) → applyk(wj) at process pk.

Liveness.

Theorem 4. All write operations invoked by an application process are eventually applied at each MCS

process.

Proof. Let us assume by the way of contradiction there exists a write operation wj invoked by the

application process apj and then issued by the MCS process pj that can never be applied by pi on its

local copy. This can happen if ∃k 6= j ∈ {1, . . . n} : Apply[k] < wj .Writeco[k] or k = j, Apply][k] <

wj .Writeco[k]− 1. This means that there exists at least one update message mw sent by pk (carrying a
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write w executed by pk) such that w 7→co wj , which has not been received at pi yet. In this case we say

that w blocks wj .

Since (i) communication channels are reliable, (ii) each process executes a computational step in a

finite time, (iii) the operative system scheduler is fair and (iv) each operation is reliably broadcast to all

processes, the update message mw will be eventually received by pi. Now we have two cases:

1. w can be applied at pi unblocking wj , therefore the assumption is contradicted and the claim

follows;

2. there exists a write operation w′ that blocks w. In this case we can apply the same argument to

w′ and due to the fact that (i) the number of write operations that precede wj wrt 7→co is finite

and (ii) 7→co is a partial order, then in a finite number of steps we fall in case 1.

Optimality.

Theorem 5. OptP is optimal (see Definition 5).

Proof. The proof is made by contradiction. Let us assume that a receipt event of the update message

mw(x)v sent by pu occurs at pi and belongs to a distributed computation Ê generated by OptP . Let us then

suppose that there exists an event e ∈ Ei such that: receipti(mw(x)v) <i e and AOptP (mw(x)v, e) = false

while AOpt(mw(x)v, e) = true. If AOptP (mw(x)v, e) = false, it means that the application of the update

corresponding to mw(x)v is delayed at pi. In this sense, according to line 2 of Figure 4, a message mwu(x)v

is delayed by OptP iff one of the following conditions holds:

1. ∃ t 6= u wu(x)v.Writeco[t] > Apply[t]

2. Apply[u] 6= wu(x)v.Writeco[u]− 1.

¿From Corollary 3, Writeco is a system of vector clock characterizing co→. Then, in both cases, there

exists an update message mwk(y)b ∈ M bE , respectively with k 6= u or k = u, that precedes mwu(x)v w.r.t.
co→ and that has not yet been applied at pi. In this case even AOpt(mw, e) is false, contradicting the initial

hypothesis.

5 An Efficient Implementation of the Protocol OptP (OptPef)

Thanks to Theorem 1 and to the transitivity property of the causality order relation 7→co, we can apply

to OptP optimization techniques studied in the context of efficient representations of a system of vector

clocks capturing the happened-before relation. More specifically, we derive an efficient implementation of

OptP , namely OptPef , by using the Singhal-Kshemkalyani (SK) [27] and the direct dependency tracking

techniques [15, 24]. Both techniques aim to reduce the number of entries of a system of vector clocks to be

piggybacked onto protocol messages. Let us remark that they pursue their aims through two orthogonal

principles:
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• SK avoids an MCS process sends vector clock entries that did not change between two successive

messages sent out to the same MCS process [27].

• In direct dependency tracking a MCS process piggybacks onto a protocol message corresponding

to a write operation w those write operations w
′
on which w execution directly depends, that is all

w
′
such that w

′ 7→k
co w with k = 0 [15, 24].

5.1 Adopting Singhal-Kshemkalyani (SK) technique

Between two successive messages (send events) sent by pi to pj , only a few component of vector Writeco

are expected to change. In such a case, it suffices to piggyback these entries, i.e., the pairs (procid,Writeco[procid]),

on protocol messages. Therefore, even though this technique saves communication bandwidth, it intro-

duces local memory overhead. In fact, a MCS process must keep track of the last Writeco sent to each

distinct process in order to select the set of pairs to piggyback onto each message, denoted WSK
8 (this

set is initialized to ∅). Figure 6 shows the write procedure and the synchronization thread of OptP aug-

mented with SK technique (the read operation is the same of OptP ) and Figure 7 depicts the behavior of

this protocol on the run depicted in Figure 5. For example when p3 sends the message notifying w(x2)d,

WSK corresponds to the set WSK = {(1, 1); (2, 1); (3, 1)} as all three components of Writeco changed

since the last p3 sending (the value of such Writeco vectors are depicted in gray rectangles in 7). Let us

note that the last sending of p3 is virtual as it corresponds to the initial value of Writeco.

As each message piggybacks only a subset of the vector clock entries, an additional data structure

is necessary at each process to rebuild the Writeco vector associated with a write and to be stored in

LastWriteOn (see line 5 of Figure 4 and line 6 of Figure 6(b)) in order to correctly track read-from

relations (see Line 1 of Figure 3). To this aim, each MCS process pi manages the following additional

data structure:

LastWritecoBy[1..m, 1..n]: The component LastWritecoBy[u] is the Writeco vector associated with

the last write operation invoked by the application process apu and executed by the MCS process pi.

Each component of LastWritecoBy is initialized to zero. Each time a message is received from pu and the

corresponding write w executed at pi, the vector w.Writeco is rebuilt using the set of pair w.WSK which

are changed since the last write operation issued by pu (see line 5 of Figure 6(b)). LastWritecoBy[i]

corresponds to the vector clock associated to the last send event of pi and it is therefore used to select

pairs in WSK at lines 2-3 of write procedure in Figure 6(a).

When process p1 executes w1(x1)a, it compares Writeco with LastWritecoBy[1] to find the set of

couples, denoted WSK = {(1, 1)}, to be piggybacked onto the message (lines 2-3 Fig. 6(a)). When a

MCS process pi with i = 2, 3 receives a message, it must verify that the elements of WSK verify the apply

condition. Then, pi first rebuilds the Writeco of w1(x1)a (line 5 Fig. 6(b))and finally it stores this vector

in LastWriteOn[1] as in OptP protocol (line 6).

8In a broadcast context, this means a process has to keep track of the last Writeco sent.
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write(xh,v)

1 Writeco[i] := Writeco[i] + 1; % tracking 7→poi %

2 ∀j if (Writeco[j] 6= LastWritecoBy[i][j])

3 then WSK := WSK ∪ (j, Writeco[j]); % selecting pairs that changed since the last write by pi %

4 RELcast [m(xh, v, WSK)]; % send event piggybacking selected pairs %

5 xh := v; % apply event %

6 Apply[i] := Apply[i] + 1;

7 LastWritecoBy[i] := Writeco;

8 LastWriteOn[h] := Writeco; % storing wi(xh)v.Writeco %

9 WSK := ∅;

(a)

1 when (receipt(m(xh, v, WSK)) occurs and m was sent by pu and (u 6= i)) do

2 % exec. of RELrcv %

3 wait until (∀(t, k) ∈ WSK : (t 6= u k ≤ Apply[t]) and (t = u Apply[u] = k − 1));

4 xh := v; % apply event %

5 Apply[u] := Apply[u] + 1;

6 ∀(t, k) ∈ WSK LastWritecoBy[u][t] := k; % rebuilding wu(xh)v.Writeco %

7 LastWriteOn[h] := LastWritecoBy[u]; % storing wu(xh)v.Writeco %

(b)

Figure 6: pi’s write procedure and communication thread of OptP augmented with SK technique
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Figure 7: Run of OptP augmented with SK technique compliant with the history of Example 1

5.2 Exploiting the direct dependency tracking

This technique is based on the notion of causality graph introduced in [15, 24], in the context of causal

deliveries in message passing systems. A write causality graph is a directed acyclic graph whose vertices

are all write operations belonging to H. According to the notation introduced in Section 4.3, there is a

direct edge from w to w′ if w 7→0
co w′ 9. In this case we also say that w is an immediate predecessor of w′

in the write causality graph. It trivially follows that each write operation can have at most n immediate

predecessors, one for each process. Figure 8 shows the write causality graph of the history of Example

1. The write w1(x1)c is a w3(x2)d’s immediate predecessor while w1(x1)a is an immediate predecessor of

w1(x1)c and w2(x2)b.

w1 ( x 1 ) a
w1 ( x 1 ) c

w2 ( x 2 ) b w3 ( x 2 ) d
w1 ( x 1 ) a

w1 ( x 1 ) c

w2 ( x 2 ) b w3 ( x 2 ) d

Figure 8: The causality graph associated to the history of Example 1

9The write causality graph is actually the ”anti-transitive closure” (otherwise known as Hasse Diagram) of the

restriction of relation 7→co to the write operations.
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The protocol. Let us consider again Figure 8, from an operational point of view this graph says that

the execution of w3(x2)d at each MCS process cannot occur before the execution of w2(x2)b (w3(x2)d’s

immediate predecessor). Due to transitivity, the execution of w2(x2)b cannot occur before the execution

of w1(x1)a. This simple principle allows to reduce on the average the amount of control information

on each message as each write operation has only to piggyback information concerning its immediate

predecessors. Immediate predecessors of a write operation act therefore as a causal barrier (CB) of that

write (e.g.w2(x2)b represents w3(x2)d’s causal barrier) and each protocol message needs only to piggyback

information related to members of its causal barrier. To this aim:

LastWriteOn: becomes a vector of pairs (Writeco,WCB) one for each variable. Therefore, let w(xh)v

be the last write operation executed by pi on xh, LastWriteOni[h] = (Writeco,WCB) means that the

vector clocks and the causal barrier associated with w(xh)v are Writeco and WCB respectively.

W−
co: is an additional data structure endowed at each MCS process. It stores the union of the sets

representing the causal barriers of write operations whose value has been read by the application process

api since last api’s write operation (this set is initialized to ∅). This means that once a write operation w

becomes a member of W−
co, w will be no longer an immediate predecessor of any successive write operation

executed by pi. This set is updated each time the read procedure is executed (line 2) and is set to an

empty set just before executing a write operation (line 11).

The protocol is obtained by adding few lines to the protocol shown in Fig.6 and modifying the read

procedure shown in Fig 3. Each time a write operation wi(xh)v is executed, first the SK technique is

applied and the set WSK is computed (line 5 Fig.9(b)). Then, wi(xh)v’s causal barrier, WCB , is deter-

mined by removing from WSK all those pairs that are not immediate predecessors of wi(xh)v and that

are stored in W−
co (line 6 Fig. 9(b)). Then WCB is piggybacked onto the message notifying wi(xh)v as

control information (line 7 Fig. 9(b)). Once a MCS process pi receives this message, it first checks that

any member of wi(xh)v’s WCB has been already executed at pi (line 2 Fig.9(c)), then wi(xh)v.Writeco

is rebuilt according to SK technique (line 5 Fig.9(c)) and finally this vector and wi(xh)v’s causal barrier

are stored into LastWriteOn[h] (line 6 Fig.9(c)).

Line 5 of Figure 9(b) actually proves that the pairs piggybacked by the protocol OptPef are fewer

than or equal to the ones shown in Figure 6. As an example, let us consider the write operation

w3(x2)d executed by p3 and shown in Figure 7, the corresponding message piggybacks the set WSK =

{(1, 1); (2, 1); (3, 1)}. However, the pair (1, 1) refers to the first write operation w1(x1)a executed by p1.

This operation is not an immediate predecessor of w3(x2)d (see Figure 8) as it belongs to W−
co at the time

of w3(x2)d’s writing (the pair (1, 1) is stored into W−
co during the read operation read(x2) executed at p3).

Therefore when executing line 5 of Figure 9(b) this pair is removed from WSK and the set {(2, 1); (3, 1)}
is piggybacked onto the protocol messages as w3(x2)d’s causal barrier. This run is shown in Figure 10.
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read(xh)

1 ∀k ∈ [1 . . . n], Writeco[k] := max(Writeco[k], LastWriteOn[h].Writeco[k]); % tracking 7→ro %

2 W−
co := W−

co

S{LastWriteOn[h].Wco\W−
co};% write operations whose value has been read by pi since last pi’s write. %

3 return(xh); % return event %

(a)

write(xh,v)

1 write(xh, v)

2 Writeco[i] := Writeco[i] + 1; % tracking 7→poi %

3 LastWriteBy[i] := Writeco;

4 ∀j if (Writeco[j] 6= LastWriteBy[i][j])

5 then WSK := WSK ∪ (j, Writeco[j]); % selecting pairs that changed since the last write issued by pi %

6 WCB := WSK −W−
co; % computing the CB of wi(xh)v in the write causality graph %

7 RELcast [m(xh, v, WCB)]Π− pi; % send event piggybacking on the message the causal barrier of wi(xh)v %

8 xh := v; % apply event %

9 Apply[i] := Apply[i] + 1;

10 LastWriteOn[h] := (Writeco, WCB); % storing wi(xh)v.Writeco and the CB of wi(xh)v %

11 WSK := ∅;
12 W−

co := ∅;

(b)

1 when (receipt(m(xh, v, WCB)) occurs and m was sent by pu and (u 6= i)) do

2 % execution of RELrcv %

3 wait until (∀(t, k) ∈ WCB : (t 6= u k ≤ Apply[t]) and (t = u Apply[u] = k − 1));

4 xh := v; % apply event %

5 Apply[u] := Apply[u] + 1;

6 ∀(t, k) ∈ WCB LastWriteBy[u][t] := k; % rebuilding wu(xh)v.Writeco %

7 LastWriteOn[h] := (LastWriteBy[u], WCB); % storing wu(xh)v.Writeco and the CB of wu(xh)v %

(c)

Figure 9: OptPef pseudo code
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Figure 10: A run of OptPef compliant with the history of Example 1.

6 Simulation

This section presents simulation results performed to compare ANBKH and OptP in terms of message

buffer overhead.

6.1 Message Buffer Overhead.

Message buffer overhead measures the utilization of buffers local at each MCS process used to store update

messages. A process stores a message when this message is not immediately applicable upon its receipt.

The message remains in the buffer until it is applied. Upon a message mw receipt, an activation predicate

equals to false determines that mw enters the buffer. Ideally, the activation predicate should determine

even when the message mw exits from the buffer, i.e. as soon as the activation predicate returns true,

apply(w) immediately occurs. However, this assumption ignores that any operative system could choose

to schedule other events, concurrent with apply(w), before it. These events may be send, receive or

either apply events of writes concurrent with w. Then, the buffer utilization depends on (i) the activation

predicate and (ii) the operative system scheduling policies.

We describe the relation between message buffer overhead and the communication primitive [7, 8, 13]

used by a CRP protocol in the following two comments.

Reliable Broadcast and FIFO broadcast. Any safe MCS protocol that communicates via

reliable/FIFO broadcast has to reorder incoming update messages at each process to respect causal con-
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sistency. This reorder is managed by the activation predicate. In this case we focus only on the buffer

utilization due to the activation predicate behavior of any MCS protocol, without further considering

the operative system behavior. In practice, we assume the impact of the operative system on the buffer

utilization as negligible with respect to the one due to the MCS protocol activation predicate. This as-

sumption is justified by the fact that an activation predicate of a MCS protocol relying on a reliable/FIFO

broadcast has to reorder messages by keeping a message in the buffer until some other message arrives

from the network. This time is some order of magnitude greater than the time taken by a good operative

system to schedule an event.

Causal Broadcast. Any MCS protocol relying on a causal broadcast can apply each message upon

its arrive. An activation predicate at MCS level is not necessary, the reordering necessary to ensure

causal consistency is embedded in the communication primitive. Indeed, the communication primitive

uses buffering to perform reorder. In other words, an activation predicate works at communication level

deciding for the delivery of messages. The goodness of the activation predicate affects the buffer overhead

exactly as in the case of the MCS activation predicates. However, since this buffering is transparent at

MCS level, it is no further considered.

Then the evaluation of an MCS protocol implementing causal consistency in terms of message buffer

overhead makes sense only if the protocol uses a reliable/FIFO broadcast.

Clearly, the comparison between different MCS protocols in terms of message buffer overhead makes

sense only if these two protocols employ the same broadcast primitive. We consider in the simulation the

comparison between ANBKH and OptP both using a reliable broadcast primitive 10.

6.2 Simulation Description

We adopted the discrete event simulator OMNeTpp 2.3b1 [23]. We simulated distributed computations

with 10, 20, 30 and 50 processes. The message propagation time and the time to execute an operation

by a process are truncnormally distributed with mean value equal to 1 and deviation equal to 1.2 time

units. Analogously, time between two successive operations in a process is truncnormally distributed

with mean value equal to 9 and deviation equal to 4 time units. Each simulation issues 2000 operations

per process on a single replicated variable and the percentage of write operations is defined by a bernoulli

distribution with probability p. Simulation experiments were conducted by varying the percentage of

write operations (denoted %write) at each application process from 10% to 100% w.r.t. the overall sum

of read and write operations. The results are expressed in terms of:

• the percentage of the ratio %B between the average number of buffered messages by a MCS process

of a given protocol (i.e., OptP or ANBKH) and the average number of messages received by a

MCS process;

For each value shown in the plots we did 40 simulation runs with different seeds and the results were

within four percent each other, so variance is not reported.
10The broadcast is just a useful abstraction, the protocols may employ even n point-to-point communications.
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%B vs. %write Figure 11 shows eight plots: four of ANBKH and four of OptP . These plots rise

three interesting observations:

• %B performance gap. There is roughly one order of magnitude gap between the messages buffered

by ANBKH and the ones buffered by OptP . This is due to the fact that ANBKH guarantees

causal histories by ensuring causal ordering on message deliveries (independently of the read/write

semantics of a shared memory system). This results in a weak sufficient condition which leads to

very poor performance with respect to %B.

• %B of OptP is independent of the number of MCS processes of the computation n. As far as

ANBKH is concerned %B depends on n. The higher is this number, the larger %B is. This is

again due to the fact that ANBKH guarantees causal histories by ensuring causal ordering on

message deliveries. Therefore the higher the number of MCS processes is, the higher is the number

of messages from distinct processes received by a MCS process p before the co-located application

process invokes a write operation w. This means that the number of sending events (issued by

MCS processes different from p) that will precede the sending of w with respect to → will tend

very quickly to n. This implies, in its turn, a probability of causal message ordering violations

which is monotonically increasing with n as well.

In OptP , %B is almost independent of n (all the plots are very closed each other within the interval

of the variance of the simulation). This is due to the fact that the delivery of a message by a process

pi does not always lead to the creation of a causality order relation. In particular, this happens

only if the application process api reads the value written, that is the one piggybacked by the

message delivered.

• %B monotonically increases with the number of write operations in H both in OptP and in

ANBKH plots. As ANBKH ensures causal message ordering, the larger is the number of mes-

sages in a computation, the higher the probability of a causal order violation among those messages

is and this, in its turn, increases %B. In OptP plots, %B also increases with the number of write

operations of a computation. However, this increment is lesser than the one of ANBKH. Let us

consider indeed an ideal scenario of a computation with 100% of write operations. This corresponds

to the worst case scenario for ANBKH (i.e., the computation with the presence of the highest

number of messages and therefore the highest probability of causal message ordering violations).

If we consider this scenario with respect to the relation 7→co, it is easy to see that all 7→co relations

between write operations are due to the program order 7→po. Because of the absence of read oper-

ations, there is indeed no 7→co relation due to the read-from order 7→ro. From the point of view of

the computation this means that each pair of update messages are concurrent wrt co→. Therefore

OptP only buffers those messages which are out of FIFO order.

From the previous discussion, it comes out that performance of ANBKH in terms of buffered mes-

sages is a function of the underlying message pattern generated by a history. More messages in this

pattern means worse performance and this is dominated by two factors: the number of writes w.r.t. the

reads and the number of processes of the computation. Performance of OptP is primarily dominated by
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the number of read-from relations established in a history which of course depends on the semantics of

the underlying application. The number of messages of the computation and the number of processes

have only a second order impact.

7 Conclusion

This paper has introduced an optimality criterion for protocols based on complete replication and prop-

agation of the updates, enforcing causally consistent histories at the application level. This optimality

criterion is based on a predicate evaluated on the computation generated by the protocol. An optimal

CRP protocol ensures the maximum allowed concurrency by the causality criterion. Operationally, this

fact influences the number of update messages buffered at each MCS process. An optimal CRP proto-

col buffers only for the strictly necessary time those updates arrived too early at a process and whose

immediate local update execution would violate the causality order relation.

We proposed a CRP protocol OptP exploiting a reliable broadcast primitive which is optimal with

respect to that criterion. We showed, through a simulation study, that optimality has a strong impact

on message buffer overhead at a MCS process. OptP allows a buffered message saving of one order

of magnitude with respect to ANBKH. Moreover, we derive an efficient implementation of OptP ,

namely OptPef , based on the formal proof that OptP embeds a system of vector clocks capturing the

causality-order relation among operations. OptPef has been derived following two orthogonal principles:

(i) avoiding a process sends vector clock entries that did not change between two successive messages sent

out to the same process [27], and, (ii) a process piggybacks onto a protocol message only those vector

clock entries that correspond to the immediate predecessors of the current write operation with respect
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to 7→co in the write causality graph of the computation [15, 24].

The paper has also formally showed that OptP uses a system of vector clocks characterizing 7→co. This

proof and the transitivity property of 7→co give us powerful optimization tools, borrowed from efficient

representation of Fidge-Mattern vector clocks [11, 22], to derive efficient implementations of OptP .
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