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Abstract

Software replication of stateful services is typically im-
plemented using two-tier architectures, in which clients di-
rectly interact with replicas running distributed agreement
protocols for ensuring consistency. In general, performance
of these protocols is sensitive to network delays, which
might consequently reduce service availability. Therefore,
in previous works we introduced three-tier software replica-
tion, in which agreement protocols run in an apposite tier
(detached from clients and replicas) that can be indepen-
dently deployed in a controlled and stable part of the net-
work.

In this paper, we analyze the performance of replica-
tion protocols implemented using two- and three-tier archi-
tectures using a simplified wide-area network model that
considers two types of behaviors for channels, i.e., normal
(small and predictable latency variations), and slow (high
and unpredictable latency variations). This channel model
is instantiated using traces of real Internet latencies mea-
sured sending HTTP requests to Internet web-sites at vary-
ing rates. Then, by exploiting traces, we simulate simplified
versions of three replication protocols (i.e., active, passive,
and three-tier replication), and we show how the end-to-end
latency of each protocol is related to the number of slow
channels. Results mainly demonstrate that the availability
of a service replicated through a three-tier architecture is
less affected from channel slow-downs.

1 Introduction

Software replication is a well-known class of techniques
suitable for increasing the dependability of stateful soft-
ware services in the presence of failures. During the
last twenty years, several software replication algorithms
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and systems have been proposed in the literature (e.g.,
[26, 9, 13, 15, 21, 20, 22, 24]) differing, among the oth-
ers, for the class of tolerated node and network failures
(e.g., crashes, omissions, Byzantine, and arbitrary behav-
iors), for the class of supported replicas (deterministic and
nondeterministic), and for the consistency criteria enforced
(e.g., lazy replication, linearizability). In general, replica-
tion algorithms typically enforce a given consistency cri-
terion by making replicas exchange some synchronization
messages among them after service requests. As a conse-
quence, achieving actual high availability and consistency
of stateful services replicated using these algorithms re-
quires communication channels to behave in a mostly sta-
ble and predictable way, which, along with the absence of
multicast primitives, may limit the deployment of replicated
stateful services over wide area networks (e.g., the Internet).

Starting from these observations, and in order to re-
duce the sensitivity to network delays of the performance
of replication algorithms, we introduced a novel class of
replication algorithms that exploit a three-tier architecture
in order to avoid service replicas exchange messages among
them [23, 5]. In particular, we have focused on crash-
tolerant algorithms enforcing linearizability (or “strong
replica consistency"), which necessitate running complex
agreement protocols [17]. In three-tier replication, these
protocols run in a single network node that is made highly
available using software replication techniques inside of it,
and that controls the state of service replicas using only a
reliable unicast communication primitive to communicate
with them. This suffices for avoiding replicas directly ex-
change messages, as in other “classical" crash-tolerant al-
gorithms (e.g. active and passive replication [17]) that we
name two-tier.

This work complements other studies of three-tier repli-
cation, by proposing a performance comparison between
two- and three-tier replication algorithms. In particular, in
this work we study how the variability of channel delays in
wide area networks (e.g., the Internet) influences the end-
to-end latency of two algorithms exploiting a two-tier ar-



chitecture (namely, active and passive replication), and of a
three-tier algorithm.

In more detail, our analysis starts from a modeling of al-
gorithms and of the network. Algorithms are modeled by
abstracting out from several “local" (e.g., the computations
performed within a single network node) and “global" de-
tails (e.g., failure detection and group membership proto-
cols). The model then mainly focuses on the patterns of
messages exchanged over the wide area network by the al-
gorithms in absence of failures. The network is modeled as
a collection of point-to-point channels connecting network
nodes characterized by average latencies and their variance.
In particular, a normal channel presents stable and pre-
dictable delays during any protocol run, while a slow chan-
nel may abruptly slow down for an unpredictable amount of
time during some protocol runs, i.e., it has a heavy-tailed
delay distribution [14].1. This simplified network model
is then instantiated using real Internet latency traces (ob-
tained by experiments run in our labs by getting resources
of variable sizes from several HTTP servers deployed over
the Internet) that are then classified (by inspection) as those
of normal and slow channels (ambiguous traces are dis-
carded). Finally, we run trace-based simulation of the algo-
rithms while varying the number of slow and normal chan-
nels. The fairness of the comparison is ensured by the use
of the same set of traces for simulating each protocol. This
follows from addressing network latency fluctuations within
the channel model, which enables reproducing their effects
in the same way in all the protocol simulations. The simula-
tion results show an increased resilience of three-tier repli-
cation to channel slow-downs.

This paper is organized as follows: Section 2 describes
the replication protocols considered throughout this work
introducing their models based on simplified message pat-
terns of failure-free runs; Section 3 describes the test-bed
used for comparing protocols, consisting in the channel
model, and the methods used for instantiating this model
over real traces of Internet channels, as well as for perform-
ing trace-based simulations of protocols; Section 4 presents
the results of our simulations; Section 5 deals with the main
existing contributions relating to our work, and Section 6
concludes the paper.

2 Replication Protocols

This section describes the replication protocols consid-
ered in this work and introduces their simplified models. All
these protocols tolerate crash failures (each replica behaves
according to its specification until it possibly crashes, i.e., it

1Note that all real wide area channels are likely to result “slow" if ob-
served for a sufficient amount of time. However, as pointed out in the
following sections of the paper, normal channels are a useful abstraction to
evaluate sensitivity of distributed algorithms to network delays
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Figure 1. Message Patterns of Two-tier Repli-
cation Protocols

stops performing any further action), and enforce lineariz-
ability (or "strong replica consistency", [19]). In the follow-
ing, we describe two-tier protocols (namely, active and pas-
sive replication) first, and then a three-tier protocol support-
ing deterministic replicas (introduced in [23]), which can be
extended to support non-deterministic replicas with no im-
pact on the pattern of messages exchanged with clients and
replicas. In all these cases, we assume clients and replicas
to communicate through a reliable unicast communication
primitive.

2.1 Two-tier Replication

In two-tier replication protocols, clients directly interact
with replicas that run the same software in distinct network
nodes. By cooperating as peer processes, replicas are there-
fore in charge of enforcing strong consistency before return-
ing replies to clients, which is obtained by running agree-
ment protocols [17]. These protocols commonly use failure
detectors [11] and timeouts to detect replica failures and to
trigger further protocol phases, which ensure liveness in the
presence of failures. The protocol models used for simula-
tions omit all the details related to this complex issue, as we
consider only failure-free runs (see Sect. 3.3).
Active Replication. In active replication (or state ma-
chine replication [27, 12]) protocols, client requests are exe-
cuted by replicas in the same order (until a replica possibly
crashes). Linearizability of executions is thus guaranteed



as long as replicas are deterministic. In the simplified two-
tier active replication protocol model considered through-
out this paper (2TA) each client issues its requests to a ran-
domly chosen replica, and replicas run a fixed-sequencer
uniform total order multicast protocol (implemented over
the reliable unicast primitive) to agree on the order of exe-
cutions.2.

Figure 1(a) depicts a run of 2TA, where arrows represent
unicasts, and numbers identify the sequence of communi-
cations steps. A request (req) is issued by a client (Step 1)
by contacting a randomly chosen replica that forwards the
request to a particular replica, i.e., the so-called sequencer,
which assigns a sequence number (seq) to req (Step 2).
This number is then propagated to other replicas along with
the request (Step 3). Then (Step 4) the sequencer waits for
acknowledgments (ack messages) from other replicas and
notifies them (Step 5) that all acknowledgments have been
received (i.e., that they are stable messages).The contacting
replica, once updated about the stability of the acknowledg-
ments, finally returns the reply back to the client (Step 6).

Passive Replication. In passive replication (or primary-
backup [10]) protocols, the order of request executions and
the state of all replicas after each of such executions are both
determined by a special replica, namely the primary, which
is the only replica accepting and processing client requests
(other replicas are named backups). The primary thus per-
forms a serialization of all request executions, as well as of
state updates toward backups. Passive replication supports
nondeterministic replicas, and linearizability is ensured as
long as only one primary replica exists at any point of a
logical time (or view), which is achieved using a View Syn-
chronous Multicast (VSM) [17].

Figure 1(b) shows a failure-free run of the simplified pas-
sive replication protocol model (2TP) considered through-
out this paper. After having received a client request and
computed both the request result and a state update for
backups (Step 1), the primary sends an update message
to the backups (Step 2) that reply with an acknowledgment
(Step 3). Once all the acknowledgments have been received,
the primary sends the reply back to the client (Step 4). A
new request can be processed only when all updates for the
previous request have been acknowledged by the primary to
all the replicas. Let us note that, being the order of execu-
tions guaranteed by the primary uniqueness (and abstracting
out from the protocols following a primary crash) 2TP ba-
sically reduces to the primary performing a stability check
of the update messages sent to the backups.

2Interested readers can refer to [3] for a formal specification of total
order multicast semantics and applications to sequencer-based implemen-
tations
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2.2 Three-tier Replication

Running distributed agreement protocols among wide
area network nodes can be an overkill [2], mainly because
of the negative effects on performance of the frequent and
unpredictable slow-downs characterizing Internet channels
[25, 30]. Indeed, stateful services replicated using two-tier
protocols (as well as others with similar communication
patterns [14]) can suffer from unavailability periods due
to the same protocols sensitivity to channels slow-downs
even in absence of crashes [8]. This can be intuitively ex-
plained by noting that these protocols require synchroniza-
tion phases, i.e., phases of the protocol code in which at
least one replica has to receive a message from all other
replicas in order to proceed (Steps 3 and 5 in Figure 1(a),
Step 3 in Figure 1(b)). Additionally, WAN channels slow-
downs may cause the elapsing of timeouts necessary to de-
tect failures, which might in turn trigger further unneces-
sary protocol phases and the consequent overhead. Each
slow-down of a channel is therefore a potential performance
threat of stateful services replicated using two-tier proto-
cols, which has been the main of our motivations for three-
tier replication protocols, along with the absence of efficient
and diffused multicast primitives in WANs. Another moti-
vation consisted in observing that an efficient fault-tolerant
replication service can be easily implemented on a single
WAN site hosting several well-connected servers (similar
approaches have been used for tackling different problems
in [29, 28, 16, 18]).

In the resulting three-tier architecture and protocols, a
middle tier (i.e., a set of servers connected by channels
with low and predictable latencies) is interposed between
clients (the client tier) and the actual service replicas (the
end tier). Clients can send their requests only to the mid-
dle tier that runs fault-tolerant agreement protocols and for-
wards client requests to end-tier replicas, along with in-
formation sufficient for getting strong replica consistency
(i.e., sequence numbers and state updates). End-tier repli-
cas compute results according to the information received,
and return replies to middle-tier servers. These servers for-



Channel 1Kb 4Kb

IT1 http://nuxi.iit.unict.it/ http://www.medhoc04.diit.unict.it/home.htm
IT2 http://www.econsoc.unina.it/ http://www.rialc.unina.it/sommario.htm
IT3 http://brett.adm.unipi.it/valutazione/ http://masterelearning.di.unipi.it/
IT4 http://www.etmtraining.polito.it/ http://lambda.di.unito.it/rank2/
USA http://e-lab.propoint.com/ http://ericae.net/
FR http://www.education.gouv.fr/syst/orgs6.htm http://www.csl.sony.fr/
UK http://www.phy.hw.ac.uk/ http://www.hud.ac.uk/courses/
IL http://msradio.huji.ac.il/ http://mathphys.haifa.ac.il/

Table 1. URLs of Web Pages used for Channel Measurements

ward back replies to clients just after having received only
the fastest reply from end-tier replicas. As a result, repli-
cas are not involved in synchronization phases, as well as in
failure detection and management protocols, which reduces
the sensitivity of end-to-end latency to channel slowdowns
(see Sect. 4).

A full three-tier replication protocol supporting deter-
ministic objects appears in [23] that includes formal speci-
fications, the pseudo-code of the algorithm, and its correct-
ness proofs. In this protocol, end-tier replicas process re-
quests in the order determined by unique and consecutive
sequence numbers piggybacked onto each client request by
middle-tier servers. To achieve this, middle-tier replicas im-
plement an instance of a fault-tolerant distributed sequencer
service [6, 7]. Replica determinism and ordered executions
together ensure the equality of all the responses produced
by the end-tier. As a consequence, the middle tier can for-
ward back to clients the first reply received from replicas.

Figure 2 shows the message pattern of the simplified
three-tier protocol model (3T) considered throughout this
paper. As usual, the protocol is initiated by a client issuing a
request toward a randomly chosen middle-tier server (Step
1), that invokes the sequencer to obtain a sequence num-
ber. We abstract out the details of the protocol run among
middle-tier servers as it is assumed to be unaffected by
channels slowdowns by construction3. After the sequence
number has been evaluated, it is sent along with the request
to all end-tier replicas (Step 2), which execute the request
and store the reply in the order of its sequence number, be-
ing thus able to not execute the same request twice and to
return results of possible duplicate invocations. The first re-
sponse returned by replicas to the middle tier (Step 3), is
then forwarded back to the client (Step 4).

This protocol can be extended to support non-
deterministic objects without modifying the pattern of mes-
sages exchanged among clients, middle-tier, and end-tier
replicas. It is possible to show that modifications for sup-
porting nondeterministic replicas would impact only on the
message contents and on the agreement protocols executed
within the middle tier. As a consequence, the simulations
results presented in Sect. 4 can be generalized to the proto-
col version embedding these modifications.

3Let us note that [4] presents a performance study of a middle-tier pro-
tocol implemented within a local area network.

3 Comparison Test-bed

In this section we detail the general framework we devel-
oped for recreating a dynamically changing network envi-
ronment in which comparing the behavior of the replication
protocols we presented above. The characterization of the
dynamics of the network is one of the main problems we
have to face, since a wide-area network exhibits a wide va-
riety of unpredictable changes, which are difficult to capture
into a tractable model which at the same time provides real-
istic and significant results. The metric on which we focus is
the end-to-end latency perceived by clients of the protocols,
exploring in particular its fluctuation when network instabil-
ity is present. We do not consider other characterizing as-
pects of network channels, such as loss rate and throughput,
for reasons explained below. Our comparison framework is
composed by three elements, detailed in the remainder of
this section:

• A simplified model of Internet channels: it defines a
classification of wide-area network channels into two
classes (normal and slow), according to their overall
behavior.

• Instantiation of the channel model based on actual
HTTP traces: a set of real Internet channels is con-
sidered, that are classified according to the model, i.e.
basing on latency measures.

• Application of the model to the replication protocols:
end-to-end latency of the three protocols is computed,
simulating the deployment of the protocols over dis-
tinct combinations of normal and slow channels. La-
tency values for each channel are obtained from the
HTTP traces.

3.1 Model of Internet Channels

The modeling of Internet channel has been subject of a
large amount of studies [25, 30]. Most of these studies rec-
ognize the heavy-tailed nature of channel latencies distribu-
tion, due to variations of traffic patterns along the day, tem-
porary unavailability of network paths, unpredictable bursts
of packet loss and so on. In general, capturing channel be-
havior within a framework which is at the same time realis-
tic and simple enough to be tractable is a very difficult task.



Average Latency (ms)
Res Size (KB) 1 4
Req rate (req/sec) 1 10 100 1 10 100

IT1 30 30 32 48 48 232
IT2 17 17 16 31 31 269
IT3 17 17 19 48 48 640
IT4 23 23 30 40 40 407
USA 776 1104 1497 706 3578 7994
FR 181 126 443 461 659 1300
UK 267 2324 7643 478 294 2921
IL 240 3386 1105 632 2346 2308

Variance (ms2)
Res Size (KB) 1 4
Req rate (req/sec) 1 10 100 1 10 100

IT1 6.6 6.6 92.7 111.8 111.8 305610
IT2 81.8 21.8 24.5 158.3 158.3 11728
IT3 3.6 3.6 10.8 2275 2275 146130
IT4 25.8 25.8 10.2 148 148 79886

USA ∼ 108 ∼ 108 ∼ 108 154180 ∼ 108 ∼ 108

FR 38748 17967 44388 52751 ∼ 108 ∼ 108

UK 76900 ∼ 108 ∼ 108 ∼ 108 ∼ 108 ∼ 108

IL 16712 ∼ 108 ∼ 108 256690 ∼ 108 ∼ 108

Table 2. Variance of latency distributions of
HTTP channels

We are specifically interested in determining how latency
fluctuations affect the overall latency of replication proto-
cols. In other words, for our purposes, it is not necessary to
identify a completely representative model of Internet chan-
nel latency but rather one that focuses on latency fluctua-
tions. Then, we introduce a simplified channel model based
on a sharp classification into two general classes, according
to the behavior of a channel over a given time period T o

(observation period):

• normal channels: average latency during To is
bounded by ¯avg and the variance is lower than v̄. This
models channels whose behavior remains stable in all
runs of the protocol during the observation time.

• slow channels: average latency is higher than ¯avg and
the variance is higher than v̄. This models channels
that can abruptly slow down in some protocol run or
during To.

The separation between the two classes (that is, the val-
ues of ¯avg and v̄) is actually determined by the specific de-
ployment topology and the observation period. Channels
that exhibit average latencies lower than ¯avg and variance
higher than v̄ are excluded from the model. That is, we do
not consider the naturally unstable behavior which is proper
of Internet channels when observed during a long period. In
other words, the fact that a channel is classified as normal or
slow means that “most of the time" during the measurement
period it behaves as such.

3.2 Instantiating the Model through
HTTP Traces

We derived a specific real-world instantiation of the pro-
tocol, by considering latency traces obtained by issuing
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variable-size HTTP requests to servers deployed in differ-
ent locations over Internet. The deployment of replication
protocols over the Internet can be limited by the presence of
corporate firewalls filtering out packets referring to custom
protocols. Then, in practice, solutions such as HTTP tun-
neling or standard HTTP-based protocols (such as SOAP)
are used for inter-domain communication among applica-
tions. Following this observation, in our opinion a HTTP-
level measure could better reproduce realistic deployment
conditions.

In the following we describe the measurement method-
ology for obtaining HTTP traces. We developed a custom
tool that issues HTTP requests and measures their round-
trip time. The tool exploits APIs from the Google search
engine, that define methods for locating web pages, given
their geographical position and size. This allowed us to
vary the size of the HTTP response returned by the queried
HTTP servers. Latency is measured at the network inter-
face level, thus excluding effects due to their processing at
the operating system and application level.

We considered 8 HTTP servers, placed in different geo-
graphical locations (Italy, USA, UK, France, Israel). URLs
of the queried web pages are presented in Table 1. For each
location, we considered web pages of different size (1, 2
and 4Kb)4. Requests start from the measurement tool run-
ning in our department in Rome. Measurement period was
set to 2hrs. Frequencies of requests was 1, 10 and 100 re-
quests per second, for page sizes of 1, 2, 4Kb. The different
measurements are intended to simulate different load con-
ditions on a channel, characterized by the rate and size of
messages transiting on the channel at the moment of proto-
col execution.

4All measures and experiments relative to a 2Kb size are not considered
in the paper for space motivations



(a) Two-tier Active (2TA) (b) Two-tier Passive (2TP) (c) Three-tier (3T)

Figure 4. Topologies Used in the Experiments

Measurement results are showed in Tables 1 and 2, and
plotted in figure 3. Following an observation of the mea-
sured values, we decided to set the thresholds for classifying
channels into normal and slow as follows: ¯avg = 100ms
and v̄ = 10000 (highlighted in Figure 3). Traces not clearly
falling into the two classes (e.g., those corresponding to
channels IT3 for 4Kb) are not taken into account in the sim-
ulations.

3.3 Protocols Evaluation

Starting from the HTTP traces, we performed an evalu-
ation of the end-to-end latency of the protocols execution.
The simulated scenario consists in a set of four replicas in-
voked by a single client. The connection topologies for the
various protocols are depicted in figure 4. In 3T a single
node is considered for the middle-tier. In the 2TA proto-
col the client invokes at each execution a different replica
(chosen at random with uniform distribution).

An execution of a protocol is simulated as follows. First,
each channel in the protocol (depicted as a thick line in the
figure) is associated to the trace of a HTTP channel obtained
from the Internet measurements. The parameters of each
experiment are the number of slow channels (NS) and the
channel load, described by the message rate (MR) and the
message size (MS). Four channels are selected from those
reported in Table 1 according to the experimental parame-
ters. For example, considering an experiment with NS = 2,
MR = 10mess/sec and MS = 4Kb, the channels IT1,
IT2 (normal), FR and UK (slow) might be selected. For the
sake of fairness, this set of channels is used for simulating
all the three protocols. The end-to-end latency of a single
protocol run is computed by considering the message pat-
tern of the protocol and associating a latency value to each
communication step. This is done by sequentially picking
values from the trace associated to the channel on which the
communication step is performed. 1000 runs were executed

for each protocol. The model of the protocols abstracts out
several details:

• Latency of the communication steps involving the
client (depicted as gray lines in the figure) in the end-
to-end latency. This is a step common to all protocols.

• Concurrency between clients. Each execution is mod-
eled as isolated from the others and the effect of con-
current protocol invocations is not considered.

• Computation times at servers. Again, this is common
to all protocols.

• Latency introduced by the middle-tier computation.
As the middle-tier is supposed to be deployed over
a LAN, the processing and network latency it intro-
duces is negligible with respect to that of slow wide-
area channels. A simulation study, presented in [4],
supports our claim showing that the additional latency
due to the middle-tier protocols is in the order of 10ms.
Hence, in the following the middle-tier is abstracted as
a single network node.

• Effect of replica failures.

These simplifications do not affect the generality of our
methodology and the significance of the comparison. In
two-tier replication the failure of a node involves the ex-
piration of time-outs and the execution of membership pro-
tocols, while in three-tier replication failures of replicas are
transparent to the middle-tier and do not cause any further
latency overhead. Moreover, concurrent executions are de-
layed in two-tier protocols, that have to complete a synchro-
nization phase before serving a successive request. In 3T, a
new request can be issued by the middle-tier as soon as the
first replica replies, reducing the delay due to synchroniza-
tion. Then, by not considering replica failures and client
concurrency we are posing ourselves in the best-case sce-
nario mainly for two-tier protocols.



4 Experimental Results

In this section we present the results of our simulations.
Experimental results are depicted in Figure 6, showing the
average latency and variance of the protocols against the
number of slow channels (NS), measured for different val-
ues of message rate (MR) and message size (MS). The
main focus of our work is the analysis of the effect of the
variation of NS over the end-to-end latency. The following
observations apply to all cases, regardless of the values of
MR and MS. When NS = 0, both the average end-to-end
latency and its variance are in general lower in 3T wrt 2TA
and 2TP. In two-tier protocols the synchronization phase
ends when the slowest replica replies, then it introduces a
latency equal to the latency of the slowest channel. Differ-
ently, the 3T can return a reply right after the fastest replica
replies. For this reason, the end-to-end latency is dominated
by that of the fastest channel. Results are coherent with this
interpretation as the absolute values of latency and variance
are conform with those of the channels (i.e., they are always
lower than 100ms and 1000 resp.). 2TA results in a higher
end-to-end latency than 2TP because it introduces an addi-
tional synchronization phase and two communication steps,
i.e. Steps 2 and 5 in Figure 1(a)).

When NS ≥ 1 and NS ≤ 3 the presence of at least one
slow channel, makes the end-to-end latency grow by two or-
ders of magnitude. On the contrary, the end-to-end latency
of 3T is in the same order as that with NS = 0, regardless
of NS (provided one normal channel is present), because
the presence of one normal channel ensures a fast response.
The same applies to variance, with 3T being almost insen-
sitive to the latency fluctuations of slow channels. When
NS = 4, the average end-to-end latency of 3T grows by
one order of magnitude. This sharp variation is due to the
fact that in this situation all replicas reply through a slow
channel. However, we recall from Figure 3, that for slow
channels the average latency can vary between 100ms and
8000ms. This makes 3T outperform 2T also in this situa-
tion. The end-to-end latency of two-tier protocols remains
the same when NS ≥ 2. This happens because end-to-end
latency is dominated by the latency of a slow channel which
is included in the experiments starting from NS = 2.

Finally we comment the effect of MR and MS on end-
to-end latency of 3T (Figure 5). MS does not have a signif-
icant effect on our measurements, resulting only in a small
increment of average latency and variance for 3T. The ef-
fect of an increment of MR is more pronounced, causing a
general, linear growth of average latencies and variances.

5 Related work

Performance of software replication protocols has been
analyzed in the literature mainly by presenting or compar-
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ing latency and throughput of several group communication
protocols (e.g., uniform total order and view synchronous
reliable multicast) useful for replicating stateful services
while enforcing strong consistency. However, these exper-
iments are commonly performed in local area networks,
as only a few group communication systems (e.g., Spread
[1]) offer both primitives supporting the implementation of
linearizability and the possibility of being deployed over
WANs. Further, to the best of our knowledge, no system-
atic comparison of group communication protocols run over
WAN exists, which can be traced back to the sensitivity of
these protocols to channel slow-downs ([8]).

Indeed, in [2], Bakr and Keidar first recognize the lack of
information about the actual behavior of distributed proto-
cols run over WAN channels, and then they analyze the per-
formance of three simple distributed algorithms (i.e., three
simple message patterns) in which a node propagates some
information among a set of peers over the Internet. Signifi-
cantly, this work points out an interesting inversion between
experimental results and theoretical metrics (i.e., the num-
ber of communication steps). Our work starts from a simi-
lar viewpoint, and provides results for the specific software
replication protocols analyzed.

Another relevant contribution related to this paper is pre-
sented in [14]. In this work, starting from Internet connec-
tivity traces, the authors first derive a model of network un-
availability (that can be used to estimate how service avail-
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Figure 6. Average (Left) and Variance (right) of Protocols End-to-end Latency



ability might suffer from network failures), and then they
analyze the effects on end-to-end service availability of sev-
eral techniques (caching, prefetching etc.) that can be ap-
plied to stateless service to reduce the unavailability periods
due to network failures. These techniques are not useful for
increasing the availability of stateful services if strong con-
sistency is required, which is the topic of this work. How-
ever, the network unavailability model can be used to have
useful insights about the probability of clients being unable
to reach nodes despite service replication.

Finally, due to the simplifications done for obtaining a
tractable channel model, this work only marginally relates
to the emerging research direction aiming to model the be-
havior of Internet channels (e.g., [25, 30]), which could be
useful to perform a complementary analytic study of the
protocols simulated using real Internet traces in this paper.

6 Conclusions and Future Work

In this paper we presented a comparison of end-to-end
latency of three protocols for software replications, namely
two-tier active and passive replication and three-tier repli-
cation. The comparison focuses on the sensitivity of pro-
tocols to network channels slow-downs and was carried out
through trace-based simulations, using traces obtained from
Internet measures. The general results of our experiments
are highly favorable for the three-tier protocol that, regard-
less of the number of slow channels, is able to maintain a
stable and low latency.

We are planning to deploy protocols over the PlanetLab
infrastructure5. However, let us point out that such a study
will be complementary to the work presented in this paper.
On one hand, PlanetLab will allow to include aspects not
considered in our model, such as the effect of concurrent
requests and throughput measurements. On the other
hand, it is likely that experiments over PlanetLab cannot
be repeated exactly under the same conditions for all the
protocols. In that sense, our methodology ensures fairness
of comparison among the protocols and repeatability
of simulations. These two aspects allow us to compare
protocols with respect to the very genuine message pattern.
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