
Multi-writer Regular Registers in Dynamic
Distributed Systems with Byzantine Failures

Silvia Bonomi, Amir Soltani Nezhad
Università degli Studi di Roma “La Sapienza”,

Via Ariosto 25, 00185 Roma, Italy
bonomi@dis.uniroma1.it

amir.soltaninezhad@gmail.com

MIDLAB TECHNICAL REPORT 7/11 - 2011

Abstract

In this paper, we address the problem of building of a multi-writer/ multi-
reader regular register storage resilient to byzantine failures in a distributed
system affected from churn. A protocol implementing such a register in a syn-
chronous system is proposed and some feasibility constraints on the arrival
and departure of processes are given. The protocol is proved to be correct
under the assumption that the constraint on the churn is satisfied, and we
show that the implementation satisfies the wait-freedom property as soon as
the number of writers is bounded and known.

Keywords: Churn, Dynamic system, Multi-writer Regular Register, Byzan-
tine Failures, Synchronous System, Wait-Freedom.



1 Introduction

In recent years, the ever cheaper and more powerful hardware, together with the
always increasing availability of bandwidth led software as a service comput-
ing paradigm to transform many distributed applications into services offered by
clouds providers. Among all the possible cloud services, distributed storage like
Amazon Simple Storage Service (S3) [4] is one of the most popular ones, due to
its capability to provide simple read and write interfaces ensuring a certain degree
of consistency and a well defined service availability level. Note that, usually such
a kind of services is regulated by specific contracts (i.e. Service Level Agreement),
and thus service providers must guarantee such a level of quality of service despite
any types of failures including malicious ones.
A common approach to ensure storage availability is to keep a fixed number of
replicas each one hosted at a separate server aligned, and many protocols have
been proposed to build byzantine-fault-tolerant (BFT) storage services on top of
a message-passing system. However, they do not consider the possibility to have
changes in the set of servers hosting replicas. Servers can leave due to the ordinary
or unexpected maintenance procedures, and new replicas need to be set up (i.e.
join) in order to maintain a minimum number of active replicas needed to provide
the service. These changes caused by joins and departures of servers (churn phe-
nomenon), if not properly mastered, can either block protocols or violate the safety
of the storage.

In this paper, we consider a distributed system composed of n servers imple-
menting a distributed storage service, where at any given time t, the number of
servers that can be inactive (i.e. the number of servers that is joining or leaving the
service) is limited to a certain percentage cn, where c ∈ [0, 1]. In this environment,
we present a BFT implementation of a distributed storage offering the multi-writer
regularity semantics, which is able to resist the bounded churn and tolerates up to
f byzantine failures. Moreover, we will prove that if the protocol works under syn-
chrony assumptions, it ensures the wait-freedom property as soon as the number of
writers is bounded by a finite integer m.

The rest of the paper is contributed as follows: in Section 2, we define the
system model. Section 3 provides the multi-writer/multi-reader regular register
specification while in Section 4, we detail the algorithm and the correctness proofs.
Section 5 presents the related works, and finally Section 6 concludes the paper.

2



2 System Model

Distributed System. We consider a distributed system composed of a universe of
clients Uc (i.e. the client system) and of a disjoint universe of servers Us (i.e. the
server system).
The client system is composed of an arbitrary number of processes (i.e. Uc =
{c1, c2, . . . cm}) while the server system is dynamic, i.e. processes may join and
leave the system at their will. In order to model processes continuously arriv-
ing to and departing from the server system, we assume the infinite arrival model
[13], i.e. the set of processes that can participate in the server system (also called
server-system population) is composed of a potentially infinite set of processes
Us = {. . . si, sj , sk . . . }. However, the server system is composed, at each time,
of a finite subset of the server-system population. We assume that each server in
the server-system population has a unique identifier (i.e. its index).
A server enters the server system by executing the connect() procedure. Such an
operation aims at connecting the new process to both clients and servers, which
already belong to the system. A server leaves the distributed system by means of
the disconnect() operation. In the following, we will assume that the disconnect()
operation is a passive operation i.e., processes do not take any specific actions, and
they just stop executing algorithms.
Initially, every server si ∈ Us is in the down state; si changes its state from down
to up as soon as it invokes the connect() operation. When a server si disconnects
itself from the server system, it changes again its state coming back to down.
Processes belonging to the distributed system (both clients and servers) communi-
cate only by exchanging messages on top of authenticated communication primi-
tives. As in [5], in the following, we assume the existence of a protocol managing
the arrival and the departure of servers in the distributed system; such a protocol is
also responsible for the connectivity maintenance among the processes belonging
to the distributed system.
Synchronous system. The distributed system is synchronous. In particular, (i)
there exists a known upper bound on processing delays (i.e. the duration of ev-
ery computational step can be bounded ) and (ii) processes are equipped with a
broadcast and a point-to-point communication primitive, which have the following
specifications:

• There exists a known and finite bound δ such that every message broadcast
at some time t is delivered up to time t+ δ (TimelyBroadcastDelivery).

• There exists a known and finite bound δ′ < δ such that every message sent
at some time t is delivered up to time t+ δ′ (TimelyChannelDelivery).

3



Distributed Computation. A distributed computation run on top of the distributed
system involve the participation of a subset of the up servers. We identify as Cs(t)
the subset of up servers of Us that participate in the distributed computation at
time t (i.e. the server-computation set). We assume that at time t0, when the
server-computation set is set up, n servers belong to the server computation (i.e.
|Cs(t0)| = n).
When a server si wants to join the distributed computation, it has to execute the
join() operation. We assume that each server si can invoke a join() operation if
and only if it is up and it has terminated the connect() procedure. Let us note that
a join() operation, invoked at some time t, is generally not instantaneous and takes
time to be executed: how much this time is, depends on the specific implementa-
tion provided for the join() operation. However, from time t when the server si
joins the server-computation set, it can receive and process messages sent by any
other processes participating in the computation, and it changes its state from up to
joining.
A server si remains in the joining state until it terminates the execution of the join()
operation (i.e. until it gets the join Confirmation event), and we denote as J(t) the
set of servers that are in the joining state at time t. As soon as the join Confirmation
event occurs, si changes its state from joining into active. In the following, we will
denote as A(t) the set of active servers at time t.
When a server sj participating in the distributed computation wishes to leave, it
stops executing the server protocols (i.e. the leave operation is passive) and comes
back to the up state. Without loss of generality, we assume that if a server leaves
the computation and later wishes to re-join, it executes again the join() operation
with a new identity. In Figure 1 it is shown the state-transition diagram of a correct
server.

Let us note that at each time t, the set of servers participating in the distributed
computation is partitioned into active processes and joining processes. i.e.

Cs(t) = A(t) ∪ J(t).

Moreover, let us remark that (i) there may exist processes belonging to the
server system, which never join the distributed computation (i.e. they execute the
connect() procedure, but they never invoke the join() operation), and (ii) there may
exist processes that even after leaving the server computation, still remain inside
the server system.
Failure Model. As in [11] and [12], we assume that clients can fail only by crash-
ing, while servers can suffer arbitrary failures. Servers that obey their specification
are said to be correct. On the contrary, a faulty server can deviate arbitrarily from
its specification. We assume at most f servers can be faulty at any time during the

4



Up

Down

JoiningActive Join_Confirmation

leave()

connect() disconnect()

leave()join()

Servers System Us

Servers  Computation Cs

Figure 1: State-transition diagram of a Correct Server

whole computation. It is important to note that servers know the value f , but they
are not able to know the subset of Cs(t) representing the faulty processes.
Non-Quiescent Churn. We assume that at time t0 at the beginning of the compu-
tation, n processes participate and are active in the computation (i.e. |A(t0)| = n).
Then, the server computation starts, and it can alternate periods of churn and peri-
ods of stability. More specifically, there exist some periods Tchurn in which servers
join and leave the computation, and then there exist some periods Tstability where
the computation becomes stable, and no join or leave operations are triggered.
However, no assumption is made about how long Tchurn and Tstability are. We
assume that during each churn period Tchurn, the churn is continuous, that is at
each time t ∈ Tchurn, cn processes leave the computation and cn invoke the join()
operation (where c ∈ [0, 1] is a percentage of servers).
As a consequence, the number of servers participating in the server-computation
set remains always constant and equal to n. However, considering that (i) leave op-
erations as passive (i.e. they are instantaneous) and (ii) join operations takes time,
the set of active servers, i.e. the set of processes that effectively stores the value of
the register, has a variable size (i.e. each time t ∈ Tchurn, |A(t)| ≤ n.
Let us finally remark that in this churn model, there is no guarantee that a server
remains permanently in the computation and additionally, this model is general
enough to encompass both (i) a distributed computation prone to continuos churn
i.e., there exists a time t ( with t = t0) after which churn holds forever, and (ii) a
distributed system prone to quiescent churn i.e., there exists a time t after which
stability holds forever.

5



3 Multi-Writer/Multi-Reader Regular Registers

A register is a shared variable accessed by a set of processes through two opera-
tions, namely read() and write(), that allows them to read the value contained in
the variable or to modify such a value. Registers have been introduced by Lamport
[9] and in this paper, we will consider a multi-writer/multi-reader regular register
as specified in [15].
Basic Definitions. Each register operation can be characterized by two events oc-
curring at its boundary: an invocation event and a reply event. These events occur
at two time instants (invocation time and reply time). According to these time in-
stants, it is possible to state when two operations are concurrent with respect to the
real time execution.
Given two operations op and op′, having respectively invocation times tB(op)
and tB(op

′) and return times tE(op) and tE(op
′), we say that op precedes op′

(op ≺ op′) iff tE(op) < tB(op
′). If op does not precede op′ and op′ does not pre-

cede op then they are concurrent (op||op′). Given an operation op, we will say that
op is completed if both the invocation event and a reply event occur, otherwise
we will say that it is failed. We will consider a failed operation op as concurrent
with all the other operations started at some t > tB(op). Considering all the oper-
ations H invoked on the register and the precedence relation introduced so far, it is
possible to define the execution history, denoted as Ĥ = (H,≺), as a partial order
between the operations of H induced by the precedence relation.
Note that, for a given execution history containing concurrent operations, it is pos-
sible to find several linearizations where concurrent operations are ordered differ-
ently. In the following, we introduce the concepts of consistent permutation to
identify these linearizations and the notion of legal permutation to identify the per-
mutations that are valid for the register semantics (i.e. where a read returns the
value written by the last write in the sequence).

Definition 1 ( Permutation π Consistent with Ĥ ) Let Ĥ = (H,≺) be the exe-
cution history of a register R, then a permutation π of operations belonging to H
is consistent with Ĥ if, for any pair of operations op, op′ in π, op precedes op′ in π
whenever op precedes op′ in Ĥ .

Definition 2 (Legal Permutation π) Let Ĥ = (H,≺) be the execution history of
a register R and let π be a permutation of operations belonging to H , then π is
legal if any read()/join() operation op in π returns the value written by last write()
preceding respectively op in π.

In order to simplify the notation, for any given read()/join() operation op, let us
denote as write(op) the set of all the write() operations w, issued on the register,

6



such that w does not follow op in the execution history (i.e. write(op) = {w ∈
H|w is a write ∧ (tB(w) < tE(r))}).

Definition 3 (Multi-Writer Regularity 2 (MWR2)) Let Ĥ = (H,≺) be an exe-
cution history of a multi-writer regular register and let π be a permutation of the
operations in H . Let r ∈ H be a read() operation issued by a client ci and let πr
be the projection of π onto write(r) ∪ {r}, then r satisfies MWR2 if :
• πr is legal

• πr is consistent with Ĥ

Informally to satisfy MWR2, we require that for each pair of read() operations,
the write() operations, which do not follow both of them are perceived in the same
order.

Specification In the following, we will say that an algorithm implements a MW-
MR regular register if the following conditions hold:
• Termination: If a correct client issues an operation on the register, it even-

tually returns from that operation.

• MW- Validity: any read() operation satisfies MWR2.

Moreover, we will say that an algorithm satisfies the wait-freedom property
if and only if it implements the register guaranteeing that any process (both client
or server) can complete any operation in a finite number of steps, regardless of the
execution speeds or failures experienced by other processes [8].

4 Regular Register Implementation

The principles behind the design of our algorithms are (i) minimizing the inter-
actions in the set of servers to avoid faulty ones to compromise the state of the
register and (ii) providing algorithms requiring the minimum number of commu-
nication steps, to minimize the number of replicas necessary to ensure the register
availability. In particular, in order to satisfy MWR2 consistency, write() operations
are totally ordered according to the pair< sn, id > where sn is the sequence num-
ber of the operation, and id is the identifier of the client issuing the operation.
Moreover, in order to enforce the wait-freedom property of our algorithm, in the
following we will assume that:

1. up to m clients can write on the regular register while all the clients are
allowed to read.

7



2. At time t0 all the servers belonging to the distributed computation know the
set of writers.

Local variables at a client ci Each client ci maintains just one local variable,
denoted cl repliesi, where it stores the replies received from servers during the
execution of the read() operation. Moreover, the writer clients also maintain the
sni integer variable representing the sequence number to associate to each write()
operation.
Local variables at a server si Each server si maintains the following local vari-
ables.

• Two variables denoted valuei and sni; valuei contains the local copy of the
regular register, while sni is the associated with the sequence number.

• A boolean activei, initialized to false , that is switched to true just after si
has joined the system.

• A set variable writersi used during write() operations, where si stores the
identities of the writers clients.

• A variable denoted last writeri where si stores the identity of the writer
that has updated the register more recently.

• Two set variables, denoted repliesi and reply toi, that are used in the period
during which si joins the system. The local variable repliesi contains the 3-
uples < id, value, sn >, which si has received from other processes during
its join period, while reply toi contains the processes that are joining the
system concurrently with si (as far as si knows).

The join() operation. The algorithm implementing the join operation is described
in Figure 2. The server si first initializes its local variables (line 01), and waits for
a period of δ time units (line 02). This waiting period is necessary to avoid the
server to lose messages related to possibly concurrent write operations (cfr. [5] for
details).
If valuei has not been updated during this waiting period (line 03), si broadcasts
(with the broadcast() operation) an INQUIRY(i) message to the servers that are in
the computation (line 05) and waits for 2δ time units, i.e., the maximum round trip
delay (line 06)1.
When this period terminates, si updates its local variables valuei, sni and last writeri

1The statement wait(2δ) can be replaced by wait(δ + δ′), which provides a more efficient join
operation; δ is the upper bound for the dissemination of the message sent by the reliable broadcast
that is a one-to-many communication primitive, while δ′ is the upper bound for a response that is sent
to a process whose id is known, using a one-to-one communication primitive. So, wait(δ) is related
to the broadcast, while wait(δ′) is related to point-to-point communication. We use the wait(2δ)
statement to make easier the presentation.

8



operation join(i):
(01) valuei ← ⊥; sni ← −1; active i← false;

writersi ← ∅; last writeri ← ⊥;
repliesi ← ∅; reply toi ← ∅;

(02) wait(δ);
(03) if (valuei = ⊥) then
(04) repliesi ← ∅;
(05) broadcast INQUIRY(i);
(06) wait(2δ);
(07) < j, val, sn, lw >← select most recent(repliesi)
(08) if (sn > sni)
(09) then sni ← sn;
(10) valuei ← val;
(11) last writeri ← lw;
(12) end if
(13) end if;
(14) activei ← true;
(15) for each j ∈ reply toi do
(16) send REPLY (< i, valuei, sni, last writeri >) to pj ;
(17) endfor
(18) return(join Confirmation).

————————————————————————————————-
(19) when INQUIRY(j) is delivered:
(20) if (activei)
(21) then send REPLY (< i, valuei, sni, last writeri >) to pj
(22) else reply toi ← reply toi ∪ {j}
(23) end if.

(24) when REPLY(< j, value, sn, lw >) is received:
(25) repliesi ← repliesi ∪ {< j, value, sn, lw >, }

Figure 2: The join() protocol for a synchronous system (server code)

to the values obtained from the select most recent() function. More in detail, such
a function considers every 4-tuple contained in the set repliesi and selects the value
v such that there exists at least f +1 occurrences of the pair < v, sn > in repliesi.
In the case that more than one pair appear in the set with f + 1 occurrences, it
selects the pair having the highest pair < sn, lw > according to the lexicographic
order (lines 07-12), on the contrary, if there not exists a pair < v, sn > in repliesi
occurred at least f + 1 times, it returns the value null.
After si got a value, it becomes active (line 14), which means that it can answer
the inquiries it has received from the other servers, and does it if reply to 6= ∅
(line 15). Finally, si returns the join Confirmation event to indicate the end of the
join() operation (line 18).

When a server si receives a message INQUIRY(j), it answers sj by sending
back a REPLY(< i, registeri, sni, last writeri >) message containing its local
variable if it is active (line 21). Otherwise, si postpones its answer until it becomes
active (line 22 and lines 14-15). Finally, when si receives a message REPLY(<

9



j, value, sn, lw >) from a server sj it adds the corresponding 4-tuple to its set
repliesi (line 25).
The read() operation. The algorithms for the read operation associated with the
regular register (both client and server side) are described in Figure 3.
After having initialized its local variables, the client ci broadcasts a READ(i) mes-
sage to make inquiries from the servers about the current value of the regular
register (line 02) and waits for 2δ time units, i.e., the maximum round trip de-
lay (line 03). When this period terminates, ci selects the value for which it has at
least f + 1 same replies (line 04). Finally, Ci returns the value (line 06).

operation read(i):
(01) cl repliesi ← ∅;
(02) broadcast READ(i);
(03) wait (2δ);
(04) < j, val, sn >← select most recent(cl repliesi)
(05) sni ← sn;
(06) return(val).
————————————————————————————–

when REPLY(< j, val, sn >) is delivered:
(07) cl repliesi ← cl repliesi ∪ {< j, val, sn >};

(a) Client Protocol

when READ(j) is delivered:
(01) if (activei)
(02) then send REPLY (< i, valuei, sni >) to pj ;
(03) else reply toi ← reply toi ∪ {j};
(04) end if.

(b) Server Protocol

Figure 3: The read() protocol for a synchronous system

When a server delivers a READ(j) message, it answers by sending back a RE-
PLY message containing its local copy of the register together with the sequence
number if it is active (line 02), otherwise it postpones its answer until it becomes
active (Figure 3 line 03 and Figure 2 line 16).
Finally, when a client ci delivers a REPLY message, it puts the received value and
sequence number in its cl repliesi set (line 07).
The write() operation. The algorithms for the write operation associated with the
regular register (both client and server side) is described in Figure 4. The write()
operation is initiated from a writer client cw that first issues a read() operation
to obtain an updated sequence number, and then it disseminates to all the servers
currently in the computation, the pair < value, sn > (lines 02 - 03 ). In order to
guarantee the correct delivery of that value, the writer is required to wait for δ time
units before terminating the write operation (line 04).

10



operation write(v):
(01) read(i);
(02) sni ← sni + 1;
(03) broadcast WRITE(i, < v, snw >);
(04) wait (δ);
(05) return(ok).

(a) Client Protocol

when WRITE(j,< val, sn >) is delivered:
(01) if ((j ∈ writersi) ∧ ((sn, j) > (sni, last writeri))
(02) then valuei ← val;
(03) sni ← sn;
(04) last writeri ← j;
(05) end if;

(b) Server Protocol

Figure 4: The write() protocol for a synchronous system

When a message WRITE(j,< val, sn >) is delivered to a server si, it checks if
the message comes from the writer client (line 01) and if it so, it takes into account
the pair (val, sn) if it is more up-to-date than its current pair (lines 02-05).

Due to the lack of space, we report here only the main theorem, and we omit
the proofs that can be found in the appendix A.

Theorem 1 Termination. If a server invokes the join() operation, and does not
leave the system for at least 3δ time units, or a client invokes the read() operation,
or invokes the write () operation and does not crash, then it terminates the invoked
operation.

Theorem 2 Let R be a regular register and let Ĥ = (H,≺) be an execution
history ofR generated by the algorithm in Figures 2 - 4. If c < n−(m+2)f

4δn then any
read() operation satisfies MWV2.

5 Related Work

To the best of our knowledge, this is the first algorithm implementing a regular
register with multiple writers in the presence of both churn and byzantine failures.
Byzantine fault tolerant systems based on quorums. Traditional solutions to
build byzantine storage can be divided into two categories: replicated state ma-
chines [14] and byzantine quorum systems [11], [12]. Replicated state machines
uses 2f + 1 server replicas and require that every non-faulty replica agrees to pro-
cess requests in the same order [14]. Quorum systems, introduced by Malkhi-
Reiter in [11], do not rely on any form of agreement, and they just need a subset
of the replicas (i.e. quorums) to be involved simultaneously. The authors provide

11



a simple wait-freedom implementation of a safe register using 5f servers. [3] pro-
poses a protocol for implementing a single-writer and multiple-reader atomic reg-
ister that holds wait-freedom property using just 3f + 1 servers. This is achieved
at the cost of longer (two phases) read and write operations.
Registers under quiescent churn. In [10], [7] and [6], a Reconfigurable Atomic
Memory for Basic Object (RAMBO) is presented. RAMBO works on top of a
distributed system where processes can join and fail by crashing. To guarantee
the reliability of data, in spite of network changes, RAMBO replicates data at sev-
eral network locations and defines configurations to manage small and transient
changes. For the large changes in the set of participating processes, RAMBO de-
fines a reconfiguration procedure whose aim is to move the system from an exist-
ing configuration to a new one by changing the membership of the read quorums
and of the write quorums. Such a reconfiguration is implemented by a distributed
consensus algorithm. Thus, the notion of churn is abstracted by a sequence of
configurations. Moreover, to ensure liveness of the system, RAMBO assumes that
there exist stability periods long enough to allow the algorithm to converge (i.e.,
assumption of quiescent churn).
In [1] Aguilera et al. show that a crash resilient atomic register can be realized
without consensus, and thus on a fully asynchronous distributed system provided
that the number of reconfigurations is finite, and thus the churn is quiescent. Con-
figurations are managed by taking into account any changes (i.e. join and failure
of processes) suggested by the participants and the quorums are represented by
any majority of processes. To ensure the liveness of read and write operations,
the authors assume that the number of reconfigurations is finite, and that there is a
majority of correct processes in each reconfiguration.

6 Conclusion and Future Work

This paper presented an implementation of a multiple-readers/multiple-writers reg-
ular register variable on top of a distributed server system characterized by both
churn and byzantine failures. We have shown that our algorithm works in the pres-
ence of bounded churn and bounded communication delays. Moreover, we have
shown that the algorithms provide wait-freedom guarantees as soon as the number
of writers is bounded. As a future work, we are investigating how to extend the
current algorithm to let it work under weaker synchrony requirements.

12



References
[1] Aguilera M. K., Keidar I., Malkhi D., Shraer A., Dynamic atomic storage without con-

sensus, in Proceedings of 28th Annual ACM Symposium on Principles of Distributed
Computing (PODC) 2009.

[2] Aguilera M., Chen W.,Toueg S. Failure Detection and Consensus in the Crash-
recovery Model. Distributed Computing, 13(2), 99-125, 2000.

[3] Aiyer A. S., Alvisi L., Bazzi R. A. Bounded Wait-Free Implementation of Optimally
resilient Byzantine Storage without (Unproven) Cryptographic assumptions in Pro-
ceedings of 21th International Symposium on Distributed Computing (DISC), 2007.

[4] Amazon’s Simple Storage Service. Available at http://aws.amazon.com/s3.

[5] Baldoni R., Bonomi S., Kermarrec A.M., Raynal M., Implementing a Register in a
Dynamic Distributed System, in Proceedings of the 29th IEEE International Confer-
ence on Distributed Computing Systems (ICDCS), 2009.

[6] Chockler G., Gilbert S., Gramoli V., Musial P. M. and Shvartsman A., Reconfigurable
distributed storage for dynamic networks Journal Parallel Distributed Computing,
69(1), 100-116, 2009.

[7] Gilbert S., Lynch N., and Shvartsman A., RAMBO II: Rapidly Reconfigurable Atomic
Memory for Dynamic Networks, in Proceedings of International Conference on De-
pendable Systems and Networks (DSN), 2003.

[8] Maurice Herlihy Wait-free synchronization ACM Transaction on Programming Lan-
guages and Systems (TOPLAS) 13 (1), pp. 124-149, 1991

[9] Lamport. L., On Interprocess Communication, Part 1: Models, Part 2: Algorirhms,
Distributed Computing, 1(2):77-101, 1986.

[10] Lynch, N. and Shvartsman A., RAMBO: A Reconfigurable Atomic Memory Ser-
vice for Dynamic Networks, in Proceedings of the 16th International Symposium on
Distributed Computing (DISC), 2002.

[11] Malkhi D., Reiter M. K. Byzantine Quorum Systems, Distributed Computing 11(4),
203-213, 1998.

[12] Martin J., Alvisi L., Dahlin M.. Minimal Byzantine Storage, in Proceedings of the
16th International Symposium on Distributed Computing (DISC), 2002.

[13] Merritt M. and Taubenfeld G., Computing with Infinitely Many Processes, in Pro-
ceedings of the 14th Int’l Symposium on Distributed Computing (DISC),

[14] Schneider Fred B. , Implementing Fault-Tolerant Services Using the State Machine
Approach, ACM Computing Surveys, 22(4), 299-319, 1990

13



[15] Shao C., Pierce E. and Welch J.L. Multi-writer Conditions for Shared Memory Ob-
jects in Proc. 17th Int’l Symposium on Distributed Computing (DISC’03) LNCS
#2848, pp. 106-120, 2003.

14



Appendix A - Correctness Proofs

Theorem 1 Termination. If a server invokes the join() operation, and does not
leave the system for at least 3δ time units, or a client invokes the read() operation,
or invokes the write () operation and does not crash, then it terminates the invoked
operation.

Proof The termination of the join(), read() and write() operations follows from
the fact that the wait() statement terminates. 2Theorem 1

Lemma 1 ∀t : |A(t)| ≥ n(1− 3δc).

Proof Let first consider the case t0 = 0 where all the processes are active (i.e.
|A(t0)| = n), and let us consider the case where a churn period starts from time t1.
Due to definition of c, at time t1, nc processes leave the system and nc processes
invoke the join operation; hence, |A(t0 + 1)| = n − nc. During the second time
unit, nc new processes enter the system and replace the nc processes that left the
system during this time unit. In the worst case, the nc processes that left the system
are processes that were present at time t0 (i.e., they are not processes that entered
the system between t0 and t0 + 1). So, |A(t0 + 2)| ≥ n − 2nc. Note that, the
cardinality of the set of active processes continues to decrease until processes that
have invoked the join() at time t1 terminate the operation and in the worst case, it
happens at time t1 + 3δ. Thus, considering a churn period Tchurn longer than 3δ
time units , i.e. the longest period needed to terminate a join operation, it follows
that |A(t0 + 3δ)| ≥ n − 3δnc = n(1 − 3δc). It is easy to see that the previous
reasoning depends only on (1) the fact that there are n processes at each time t,
and (2) the definition of the churn rate c, from which it is possible to conclude that
∀t : |A(t)| ≥ n(1− 3δc). 2Lemma 1

Lemma 2 If ∀t : |A(t)|−(δnc) > (m+2)f then the select most recent function
returns always a value different from null.

Proof (Sketch) Let us consider the worst case scenario where at time t all the m
writers issue a write() operation and then crash before they terminate. Let us now
consider a server si that invokes its join() operation at the same time t.
Joining the system, si executes the algorithm shown in Figure 2 and, after waiting
δ time units, it sends an INQUIRY message. Any correct active servers, receiving
such a message will answer by sending back its local copy of the register. Thus, at

15



time t + 3δ when the join() operation terminates, si stores in its replyi variable a
set of at least |A(t+ 2δ)| − (δcn) values sent by active processes.

Due to the property of the broadcast primitive, if a client sends a WRITE mes-
sage and then crashes, such a message is not guaranteed to be delivered to all the
servers and in the worst case, it is delivered only to f servers (the maximum num-
ber of replicas that can be updated and whose update cannot be useful for a reader
or a joiner). Thus, si might receive mf replies from these servers storing the value
written by the failed writes. In addition, f byzantine servers might provide wrong
values.

However, considering that |repliesi| ≥ |A(t + 2δ)| − (δcn) > (m + 2)f , it
means that there exist at least f + 1 servers not affected by the crashed writers,
storing the same copies of a value and the claim follows. 2Lemma 2

Corollary 1 If c < n−(m+2)f
4δn then the select most recent function always returns

a value different from null.

Proof It follows directly from Lemma 1 and Lemma 2 by considering that ∀t : |A(t)|−
(δnc) > (m+ 2)f and knowing that in the worse case ∀t : |A(t)| ≥ n(1− 3δc).

2Corollary 1

Lemma 3 If c < n−(m+2)f
4δn , then when a server si terminates the execution of

join(), its local variable valuei contains the last value written in the regular reg-
ister (i.e., the last value before the join() invocation), or a value whose write is
concurrent with the join() operation.

Proof (Sketch) Let si be a process that issues a join() operation. It always executes
the wait(δ) statement at line 02. Then, there are two cases according to the value
of the predicate valuei = ⊥ evaluated at line 03 of the join operation.

• valuei 6= ⊥. it is possible to conclude that si has received a WRITE() mes-
sage and accordingly updated valuei. As (1) the write operation lasts 3δ
time units, (2) the join operation lasts at least 3δ time units, and (3) the mes-
sage WRITE() -sent in the last part of the write - takes at most δ time units,
it follows from valuei 6= ⊥ that the join() and the write() operations over-
lap, i.e., they are concurrent and then can appear in the permutation π in any
order, which proves the lemma for that case.

• valuei = ⊥. In that case, si broadcasts an INQUIRY(i) message and waits
for 2δ time units. Let t be the time at with si broadcasts the INQUIRY(i)
message. At the end of the 2δ round trip upper bound delay, si updates

16



valuei with the value returned by the select most recent function evaluated
on the set of replies it has received. We consider two sub-cases.

- Case 1: No write is concurrent with the join operation. As ∀t : |A(t)|−
(δcn) > (m + 2)f (Lemma 2), at least f + 1 servers, which have the
copies of the last written value, answer the inquiry of si and conse-
quently, si sets valuei to that value by 2δ time units after the broadcast,
which proves the lemma.

- Case 2: There is (at least) one write issued by a client cj concurrent
with the join operation. In that case, si can receive both WRITE() mes-
sages and REPLY() messages. According to the values received at time
t+3δ, si will update valuei to the value written by a concurrent update,
or the value written before the concurrent writes.

2Lemma 3

Theorem 2 Let R be a regular register and let Ĥ = (H,≺) be an execution
history of R generated by the algorithm in Figures 2 - 4. If c < n−(m+2)f

4δn , then
any read() operation satisfies MWV2.

Proof The proof follows from Lemma 3 by considering that a read() operation is
a particular case of a join(). 2Theorem 2

17


