
LCBM: a fast and lightweight collaborative filtering
algorithm for binary ratingsI

F. Petronia,∗, L. Querzonia,∗, R. Beraldia, M. Paoluccib

aDepartment of Computer Control and Management Engineering Antonio Ruberti,
Sapienza University of Rome.

bInstitute of Cognitive Sciences and Technologies, CNR.

Abstract

In the last ten years, recommendation systems evolved from novelties to power-
ful business tools, deeply changing the internet industry. Collaborative Filter-
ing (CF) represents a widely adopted strategy today to build recommendation
engines. The most advanced CF techniques (i.e. those based on matrix factor-
ization) provide high quality results, but may incur prohibitive computational
costs when applied to very large data sets.

In this paper we present Linear Classifier of Beta distributions Means (LCBM),
a novel collaborative filtering algorithm for binary ratings that is (i) inherently
parallelizable (ii) provides results whose quality is on-par with state-of-the-art
solutions (iii) at a fraction of the computational cost. These characteristics
allow LCBM to efficiently handle large instances of the collaborative filtering
problem on a single machine in short timeframes.

Keywords: Collaborative Filtering, Big Data, Personalization,
Recommendation Systems

1. Introduction

Most of todays internet businesses deeply root their success in the ability to
provide users with strongly personalized experiences. This trend, pioneered by
e-commerce companies like Amazon [1], has spread in the last years to possibly
every kind of internet-based companies. As of today, successful players like
Pandora or StumbleUpon provide user personalized access to services like a
core business, rather than an add-on feature.

IA preliminary version of this work appeared in the proceedings of the 17th International
Conference on Business Information Systems.

∗Corresponding author.
Email addresses: petroni@dis.uniroma1.it (F. Petroni), querzoni@dis.uniroma1.it

(L. Querzoni), beraldi@dis.uniroma1.it (R. Beraldi), mario.paolucci@istc.cnr.it
(M. Paolucci)

Preprint submitted to Elsevier April 23, 2016

The fuel used by these companies to feed their recommendation engines
and build personalized user experiences is constituted by huge amounts of user-
provided data (ratings, feedback, purchases, comments, clicks, etc.) collected
through their web systems or on social platforms. For instance, the Twitter
micro-blogging service has surpassed 200 million active users, generating more
than 500 million tweets (micro-blog posts) per day at rates that recently (Aug
2013) peaked at 143199 tweets per second [2]. The amount of data available
to be fed to a recommendation engine is a key factor for its effectiveness [3].
A further key factor in this context is represented by timeliness: the ability to
timely provide users with recommendations that fit their preferences constitutes
a potentially enormous business advantage [4].

A widely adopted approach to build recommendation engines able to cope
with these two requirements is represented by Collaborative filtering (CF) algo-
rithms. The essence of CF lies in analyzing the known preferences of a group
of users to make predictions about the unknown preferences of other users. Re-
search efforts spent in the last ten years on this topic yield several solutions
[5, 6, 7, 8] that, as of today, provide accurate rating predictions, but may in-
cur prohibitive computational costs and large time-to-prediction intervals when
applied on large data sets. This lack of efficiency is going to quickly limit the
applicability of these solutions at the current rates of data production growth,
and this motivates the need for further research in this field.

In this paper we introduce Linear Classifier of Beta distributions Means
(LCBM), a fast and lightweight algorithm for collaborative filtering designed to
work in systems with binary ratings. LCBM uses ratings collected on each item
(i.e. products, news, tweets, movies, etc) to infer a probability density function
shaped as a Beta distribution [9]; the Beta is a continuous family of probability
functions normally used in the context of reputation systems; LCBM uses it
to characterize the probability of observing positive or negative ratings for the
item. A linear classifier is then used to build user profiles that capture the
aptitude of each user to rate items positively or negatively. Differently from
other solutions, LCBM builds a different profile for each users based on her
previous voting history and on the other votes received by the items she voted.
These profiles are leveraged to predict ratings users would express on items they
did not rate.

Our algorithm is able to provide predictions whose quality is on-par with cur-
rent state-of-the-art solutions (based on matrix factorization techniques), but
in shorter time and using less computational resources (memory occupation).
Moreover, it is inherently parallelizable, in that the operations performed in the
training procedure can be distributed and executed concurrently by multiple
processors. Its performance has been extensively assessed through an experi-
mental evaluation based on a large set of well-known public datasets (MovieLens
10M and 100K, Netflix, Tencent Weibo and Yahoo!) and compared with those
offered by open source implementations of state-of-the-art solutions.

The rest of this paper is organized as follows: Section 2 presents related
works; Section 3 defines the system model and the problem; Section 4 presents
our solution, evaluated in Section 5; finally, Section 6 concludes the paper.

2

2. Related Work

Collaborative Filtering (CF) is a thriving subfield of machine learning, and
several surveys expose the achievements in this fields [10, 11, 12, 13, 14].

It became popular in the late ’90s with the spread of online services that
use recommender systems, such as Amazon.com, Yahoo! and Netflix. The
first work on the field of CF was the Tapestry system[15], developed at Xerox
PARC, that used collaborative filtering to filter mails based on the opinion
of other users, expressed with simple annotations (such as “useful survey” or
“excellent”). Shortly after, the GroupLens system[16, 17] was developed, a
pioneer application that gave users the opportunity to rate articles on a 1–5
scale and receive suggestions. CF solutions in the literature are often divided
in two groups: memory-based and model-based [18, 10, 12].
Memory-based algorithms operate on the entire database of ratings to compute
similarities between users or items. Such similarities constitute the “memory”
of the collaborative filtering system, and are successively exploited to produce
recommendations. Similar users or items are identified using a similarity metric,
such as the Pearson correlation coefficient [16] and the cosine similarity [19, 20],
that analyzes and compares the rating vectors of either users or items. The basic
idea is to generate predictions by looking at the ratings of the most similar users
or items; for this reason such techniques are called neighborhood models.

Neighborhood models are categorized as user based or item based. User
based methods compute a similarity score between each pair of users, and then
estimate unknown ratings based on recorded ratings of similar users [21, 22,
23, 24]. Item-oriented methods, instead, use the known ratings to compute
similarities between items, and then provide recommendations by looking at
similar items to those that an user has previously rated [25, 26, 27].

Memory-based methods are used in a lot of real-world systems because of
their simple design and implementation. However, they impose several scalabil-
ity limitations, since the computation of similarities between all pairs of users or
items is expensive (i.e., quadratic time complexity with respect to the number
of users or items), that makes their use impractical when dealing with large
amounts of data. The slope one algorithms [28] were proposed to make faster
prediction than memory-based algorithms, but they were unable to overcome
the scalability issues of the latter.

LCBM differs from memory-based methods in that it does not require any
similarity score to be computed for users or items. Our solution, in fact, only
maintains a lightweight profile for each user and each item, and this allows
LCBM to be much faster than neighborhood models, and to handle large-scale
datasets in a reasonable amount of time with limited memory usage.
Model-based approaches have been investigated to overcome the shortcomings of
memory-based algorithms. They use the collection of ratings to estimate or learn
a model and then apply this model to make rating predictions. There have been
several model-based CF approaches proposed in the literature, which use almost
every existing machine learning technique. Noteworthy examples include cluster
models and Bayesian networks[18], statistical model [29], linear regression [25],

3

MinHash [30]. In this multitude of algorithms, the most successful techniques
are by far latent factor models. The goal of these approaches is to uncover
latent features that explain observed ratings. For instance they can be thought
of as representing user communities (like-minded users) or item communities
(genres). Examples of latent factor algorithms include pLSA [31, 30], neural
networks [32], and Latent Dirichlet Allocation [33].

The state-of-the-art on CF would not be complete without mentioning an
event that impressively boosted the effort of the community in this field: the
Netflix prize [34]. This open competition (2 October 2006 - 21 September 2009)
had the aim to reward the CF algorithm that improved by 10% the Netflix
one, with US$1,000,000. The Netflix Prize definitively consecrated latent factor
models, and a particular family of techniques proved to be superior to all other
approaches: matrix factorization models.
Matrix factorization [35, 36, 37, 5, 6, 38, 39] have become a dominant methodol-
ogy within collaborative filtering. It aims at obtaining two lower rank matrices
P and Q, for users and items respectively, from the global matrix of ratings R,
with minimal loss of information. The approximation is performed by minimiz-
ing an application dependent error function L(P,Q), that measures the quality
of the reconstruction. Let be rij an observed entry in the global matrix of
ratings R, pi the i-th row of P and qj the j-th column of Q. There exists a
wide range of objective functions for matrix factorization. The most used error
function is the regularized squared loss [35, 6, 40, 8, 41, 42, 39]:

L(P,Q) =
∑

(i,j)∈P

(rij − piqj)2 + λ(||P ||2F + ||Q||2F) (1)

where || · ||F is the Frobenius norm and λ ≥ 0 is a regularization coefficient used
to avoid overfitting.

Concretely, a matrix factorization algorithm characterizes both items and
users by vectors of factors inferred from item rating patterns. To make a pre-
diction the system simply computes the dot product of the user vector pi and
the item vector qj . The resulting value captures the interaction between the
user and the item, and can be discretized to fit the actual scale of ratings. The
most popular techniques to minimize the error function L(P,Q) are Alternating
Least Squares (ALS) and Stochastic Gradient Descent (SGD). Both algorithms
need several passes through the training set ratings to achieve convergence.

The Alternating least square (ALS) [5, 39] technique alternates between
fixing P and Q. The idea is that, although both these values are unknown,
when the item vectors are fixed, the system can recompute the user vectors by
solving a least-squares problem (that can be solved optimally), and vice versa.

The stochastic gradient descent (SGD) [6, 8, 41, 39] technique works by
taking steps proportional to the negative of the gradient of the error function.
The term stochastic means that P and Q are updated, at each iteration, for
each given training case by a small step, toward the average gradient descent.
For each given training case rij , the system makes a prediction and computes

4

the associated error, as follows:

εij = rij − piqj (2)

Then it modifies the item and user feature vectors by a magnitude pro-
portional to µ (the learning rate) in the opposite direction of the gradient, as
follows:

pi ← pi + µ(εijqj − λpi) (3)

qj ← qj + µ(εijpi − λqj) (4)

The λ parameter aims at preventing overfitting, and is called the regulariza-
tion factor.

Some recent works aim at increasing the scalability of current MF solutions
[7, 40, 8, 41, 39], however the asymptotic cost of these techniques makes it
difficult to fit the timeliness requirements of real-world applications, especially
when applied on large data sets. Furthermore, each update leads to non-local
changes (e.g. for each observation the user vector increment in SGD is propor-
tional to the item vector, and vice versa) which increase the difficulty (i.e. the
communication costs) of distributed implementations.

LCBM differs from matrix factorization solutions in that it does not associate
a latent factor vector with each user and each item, but just few values that
constitute the profile of users and items. Moreover, the training procedure for
our solution is extremely fast and light (it needs just one pass over the input
data) while matrix factorization solutions requires a lengthy training phase, with
several iterations over the input.

The binary-rating scenario we consider in this work can be considered as a
special case of the more general multi dimensional rating scenario. However it is
worth noticing that it fundamentally differs from one-class collaborative filtering
[43] where only positive feedback are assumed to be available while negative
feedback are treated as absent. Contrarily, in our work negative feedback is
always considered at the same level of importance as positive feedback, but
with an opposite meaning.

Some earlier works on collaborative filtering [44, 45] and reputation [9]
adopted the same statistical method (i.e. Beta distribution) to combine feed-
back. Ungar and Foster [44] proposed a clustering CF approach in which the
connection probabilities between user and item clusters are given by a Beta
distribution. The solution is computationally expensive, as Gibbs sampling is
used for model fitting. Wang et al. [45] applied information retrieval theory
to build probabilistic relevance CF models from implicit preferences (e.g. fre-
quency count). They use the Beta distribution to model the probability of
presence or absence of items in user profiles.

3. System Model and Problem Definition

We consider a system constituted by U = (u1, · · · , uN) users and X =
(x1, · · · , xM) items. Items represent a general abstraction that can be case by

5

symbol description

U users set

ui i-th user

N number of users

X items set

xj j-th item

M number of items

R rating matrix

rij rating expressed by user ui on item xj

Table 1: Notation.

LCBM

Working phase

ratings

Training phase

Item rating PDF
inferenceratings per

item

User profiler
ratings per

user

standard
error

mean

>
predictions

threshold
function

further
metrics

further metrics

Figure 1: LCBM: algorithm block diagram.

case instantiated as news, tweets, shopping items, movies, songs, etc. Users can
rate items with values from a predefined range. Rating values can be expressed
in several different ways (depending on the specific system), however, in this
paper we will consider only binary ratings.

By collecting user ratings it is possible to build a N ×M rating matrix R
that is usually a sparse matrix as each user rates a small subset of the available
items. Each rating rij ∈ R (expressed by user ui on item xj) is binary. Without
loss of generality consider rij ∈ {1,−1}, where the two values can be considered
as corresponding to OK (i.e., positive) and KO (i.e., negative) feedback respec-
tively. The goal of a collaborative filtering system is to predict missing entries
in this matrix (i.e., when rij =?) using the known ratings.

4. The LCBM algorithm

This section introduces the LCBM algorithm for collaborative filtering and
analyzes its asymptotic behavior. First it describes the general structure of the
algorithm and its internal functional blocks detailing their interactions; then the
blocks are described in the following subsections.

6

4.1. Algorithm structure

Our solution departs from existing approaches to CF by considering items as
elements whose tendency to be rated positively/negatively can be statistically
characterized using an appropriate probability density function. Moreover, it
also considers users as entities with different tastes that rate the same items
using different criteria and that must thus be profiled. Information on items
and users represents the basic knowledge needed to predict future user’s ratings.
LCBM is a two-stage algorithm constituted by a training phase, where the model
is built, and a working phase, where the model is used to make predictions.
Figure 1 shows a block diagram of LCBM that highlights its two-stage structure,
its inputs and outputs, its main functional blocks and the interactions among
them.
Training phase — in this first phase collected ratings are fed to both an Item
rating PDF inference block and a User profiler block. In the former case ratings
are grouped by item and the block performs statistical operations on them to
infer for each item the probability density function (PDF) of positive/negative
rating ratios. Each inferred PDF is described by two measures: the mean and
the standard error. In the latter case ratings are grouped by user and the block
uses them to profile each user’s rating behavior. It is important to note that in
order to build accurate profiles this block is also fed with the data produced by
the item’s rating PDF inference block and possible other metrics extracted from
the input data. Such metrics are typically domain dependent; they could refer,
for instance, to user and item attributes (e.g., movie release date), contextual
information (e.g., rating timestamp) or other statistical indicators (e.g., item
degree centrality in the rating graph, where vertices represent users and items
and edges represent ratings). The output of this block for each user ui ∈ U is
a threshold function fi(x), that takes in input an item xj ∈ I and outputs a
prediction for the rating of user ui for such item. The PDF mean values and
the user threshold function represent the final output of this phase.
Working phase — The second phase is in charge of producing the rating
predictions. For each couple (i, j), ui ∈ U, xj ∈ X such that the user ui has
not rated the item xj (i.e., rij =?) the phase outputs the result of applying the
threshold function on the given object, i.e. fi(xj). This function, depending
on its structure, may also take as input further metrics, as for the user profiler
block (for instance, the rating timestamp).

It is important to notice that, while the flow of data between blocks in
the algorithm architecture forces a sequential execution, operations performed
within each block can be easily parallelized favoring a scalable implementation
of the algorithm. In particular, different threads/machines can concurrently
compute the profile associated with different users/items. LCBM can be easily
implemented as a multithreaded application, for single-machine applications, or
as a map-reduce process for large-scale applications. Section 4.5 provides an
overview on the latter implementation.

7

4.2. Item rating PDF inference

Items are profiled by interpreting statistically the frequency of positive and
negative votes. If there is no a priori evidence on the item, we consider positive
and negative ratings equally probable. We assume that this process can be
modeled as a random draw from a Bernoulli trial where the success probability
p is unknown. When we start to collect votes, in the form of OKs and KOs,
these affect the probability of subsequent ratings. What we need to know is
the probability density for p, calculated after we see some extractions of OKs
and KOs. This is known as the conjugate prior and is expressed by a Beta
distribution [9] normally used in the context of reputation systems.

The Beta is a continuous family of probability functions on the interval [0, 1],
indexed by two parameters α and β. If both parameters are set to 1, the beta
reduces to an uniform distribution, indicating complete ignorance. The profile of
an item xj ∈ X is constituted by two values: xj .MEAN and xj .SE. These two
values are respectively the mean and the standard error of the Beta distribution
obtained by setting α equal to the number of positive feedback item xj received
(plus one), and β equal to the number of negative feedback item xj received
(plus one). More formally:

xj .OK = |Y | : Y = {rij | rij ∈ R ∧ rij = 1,∀i ∈ [1, N]}
xj .KO = |Y | : Y = {rij | rij ∈ R ∧ rij = −1,∀i ∈ [1, N]}

α = xj .OKs+ 1

β = xj .KOs+ 1

The mean and standard error of the Beta distribution are as follow:

xj .MEAN =
α

α+ β
=

xj .OK + 1

xj .OK + xj .KO + 2
(5)

xj .SE =
1

xj .OK + xj .KO + 2

√
(xj .OK + 1)(xj .KO + 1)

(xj .OK + xj .KO)(xj .OK + xj .KO + 3)
(6)

The standard error xj .SE decreases with the number of observations (i.e.,
the number of ratings item xj receives); thus, more observations bring a more
precise estimate. Here we use the mean as the expected value for the relative
frequency of positive ratings that item xj will obtain in the future and is our
main predictor. For a large number of observations, the mean approaches the
intuitive value of xj .OK/(xj .OK + xj .KO). The corrections introduced by
the Beta, however, produce better results for few observations, a significant
improvement as early accuracy allows for a quick bootstrap phase. Intuitively,
the more representative is the subset of voters, the lower the Sxj .E and the
more accurate the xj .MEAN estimation.

As an example, Figure 2 shows the inferred PDF for an item that received so
far 8 positive ratings and 3 negatives. This curve expresses the probability that
the item will receive a relative fraction of µ positive ratings in the future. The
mean of the distribution is approximately 0.7. This can be interpreted as the
expected value for µ. For instance, we expect that 7 of the next 10 ratings for

8

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

P
D

F

µ

Figure 2: Item profil-
ing. Beta function after
8 OKs and 3 KOs.

0.1 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.65 0.7 0.8 0.85

quality threshold

OK errors KO errors beta mean

Figure 3: User profiling. Linear classification in one dimension.
OK represented by blue circles and KO by red diamonds. In this
example QT = 0.4.

the item will be positive. The standard error of the distribution is roughly 0.04,
meaning that the true value should be between 0.62 and 0.78 with probability
bigger than 0.75.

The idea of using the beta distribution to combine feedback has been used
in the field since it was proposed in [9], with the goal of derive reputation scores.
Collaborative filtering systems have similarities with reputation systems in that
both collect ratings from members in a community [46]. However, there is a
substantial difference between the two: reputation systems adopt a pessimistic
world view, their final goal is to isolate untrusted parties from the community,
and the ratings are therefore assumed insensitive to user taste; CF systems, in-
stead, adopt an optimistic world view, where participants always report genuine
opinion affected by their specific taste.

4.3. User Profiler

Goal of the User profiler is to identify for each user ui ∈ U a threshold
function fi by analyzing the votes he expressed. In general the function fi takes
an item with its characteristics as input and outputs either a positive (i.e, OK)
or negative (i.e. KO) prediction. The output represents a classification of the
item with respect to the user preferences.

User profiling, in general, may take as input both user characteristics inferred
by its votes and item characteristics obtained from the item profiler. For these
latter data to be available, user profiling starts after the item profiling procedure.
We can therefore assume that xj .MEAN and xj .SE values are already defined
for each item xj ∈ X. These input data can be used to train a classifier. In
this paper we consider two specific classifiers: a single-dimension and a two-
dimensions linear classifiers.

4.3.1. Single dimension linear classifier

The single dimension linear classifier takes as input all user’s ratings together
with xj .MEAN and xj .SE values for all items the user rated. These values
are fed to the classifier to identify a single quality threshold ui.QT for each user
ui ∈ U . Given the value of ui.QT for user ui, the discriminant function fi is
defined as:

fi(xj) =

{
1 (OK), if xj .MEAN ≥ ui.QT
−1 (KO), otherwise

9

where xj is an item and xj .MEAN is its mean value as calculated by the item
rating PDF inference block.

User ratings are collected in a sorted data structure. Without loss of gener-
ality, let this structure be a sorted set of points. Every rating is represented by
a unique point p with two attributes: a key p.key, that gives the point’s rank
in the order, and a boolean value p.value containing the rating. Each key lies
on a [0, 1] scale and its value is determined by the item’s PDF. In particular,
we adopt a worst case estimation approach: if the rating is positive (OK) the
key is obtained by summing 2 · x.SE to the x.MEAN of the item profile, if
negative (KO) by subtracting 2 · x.SE from the x.MEAN . More formally, to
each rating rij ∈ R user ui expressed on item xj we associate a point p with:

p.key =

{
xj .MEAN + 2 · xj .SE, if rij = 1

xj .MEAN − 2 · xj .SE, if rij = −1

p.value = rij

A simple linear classifier is then used to find the quality threshold ui.QT for
user ui that separates the data with a minimal number of errors. We consider an
error a point pe with either pe.value = KO and pe.key > ui.QT or pe.value =
OK and pe.key ≤ ui.QT (see Figure 3 for a graphical representation of such
errors).

Concretely, the ui.QT is set to the key of a specific point p∗, that we call
discriminant point. The discriminant point p∗ is chosen by computing a score
E(p) for each point p, defined as follows:

E(p) = |LOK(p)|+ |RKO(p)|
LOK(p) = |Y | : Y = {pe|pe.value = OK ∧ pe.key ≤ p.key}
RKO(p) = |Y | : Y = {pe|pe.value = KO ∧ pe.key > p.key}

Intuitively, the score E(p) reports the number of errors the algorithm makes
by selecting p as a discriminant point. This latter is therefore chosen among
the points with the minimum value for E(p) (that could be more than one), in
particular by selecting the point p∗ with smallest key among the ones with the
smallest absolute difference between |LOK(p)| and |RKO(p)| (i.e., the algorithm
prefers balanced errors between left and right). The user quality threshold
ui.QT is set to p∗.key:

ui.QT = p∗.key

The solution can be found in polynomial time. The simplest approach is to pass
three times over the points: one to compute |LOK(p)| for each point; one to
compute |RKO(p)| for each point p; one to find the discriminative point p∗.

The pseudocode for the single-dimension linear classifier is shown as Algo-
rithm 1. The code takes as input the set of points L, where each point p ∈ L
is characterized by a key p.key and a value p.value, and is made up of three

10

main steps. In the first step (lines 1-6) the algorithm scans in ascending or-
der the set of points L and calculates for each p ∈ L the value p.leftOK (i.e.
p.leftOK = |LOK(p)|), representing the number of left errors the algorithm
makes by picking that point as discriminative. The second step (lines 7-12) the
same procedure is used to build for each point p ∈ L the dual value p.rightKO
(i.e. p.rightKO = |RKO(p)|). Finally, in the third step (lines 13-28) the value
of QT is calculated following the procedure outlined above: the algorithm se-
lects a discriminative point with (1) minimum value for E(p), then (2) minimum
difference between left and right errors, then (3) minimum key.

Figure 3 shows an example where an user expressed 13 votes, 7 OK (blue
circles) and 6 KO (red diamonds). The user QT value is 0.4. In fact, no other
choice will deliver less than 4 errors (perfectly balanced between left and right)
in the classification task (two with smaller keys and OK values and two with
bigger keys and KO values).

The worst case estimation approach prevents inaccurate item profiles from
corrupting the classification task. Indeed, without this mechanism KO votes
with over-estimate item MEAN would lead to over-strict QT s (OK votes with
under-estimate item MEAN values would lead to over-permissive QT s respec-
tively).

4.3.2. Two-dimensions linear classifier

The two-dimension linear classifier extends the single-dimension one by col-
lecting one further metric Y from the input data and uses this metric to improve
the classifier output quality. This metric is, in most of the cases, domain depen-
dent. It can represent, for instance, a movie release date or the rating timestamp.
The metric Y is used to extend the sorted data structure described before with
one further axis (hence its two-dimensional characteristic), thus placing user rat-
ings on a plane where their x-axis coordinates are defined as before, while their
y-axis coordinates are given by the corresponding Y ’s value. Figure 4 shows
an example of how votes expressed from a user may appear when depicted on
this two-dimensional plane. The training phase consists in the identification of
a discriminant function t(x) = ax + b that cut the plane in two areas. Also in
this case the cut should aim at minimizing the number of “misplaced” points,
i.e. points with value OK lying in an area containing a majority of points with
value KO (and vice-versa).

Linear support vector machine[47] provides a well-known solution to this
problem; Section 5 reports the results of experiments run using LIBSVM as an
algorithm to define t(x). Given the definition of t(x) the threshold function is
defined as follows:

fi(xj , y) =

{
OK, if y · t(xj .MEAN) ≥ 0

KO, otherwise

where y is the value of metric Y , considered for the second axis (e.g., the
rating timestamp or an attribute of the item). Its worth to be noticed that the

11

Algorithm 1 One-dimension linear classifier

Input: L : set of points, one for each rating
Output: QT: user quality threshold

1: c← 0 . Step 1 - compute left OK
2: L← SortAscending(L)
3: for all p ∈ L do
4: if p.value then
5: c← c+ 1

6: p.leftOK← c

7: c← 0 . Step 2 - compute right KO
8: L← SortDescending(L)
9: for all p ∈ L do

10: p.rightKO← c
11: if ¬p.value then
12: c← c+ 1

13: Emin ←∞ . Step 3 - search quality threshold
14: dmin ←∞
15: for all p ∈ L do
16: E(p)← |p.leftOK + p.rightKO|
17: if E(p) < Emin then
18: Emin ← E(p)
19: QT← p.key

20: if E(p) = Emin then
21: dp ← |p.leftOK− p.rightKO|
22: if dp < dmin then
23: dmin ← dp
24: QT← p.key

25: if dp = dmin then
26: if p.key < QT then
27: QT← p.key

28: return QT

12

discriminant function

OK errors
KO errors

beta mean

se
co

n
d

 m
e

tr
ic

Figure 4: User profiling. Linear classification in two dimensions. OK represented by blue
circles and KO by red diamonds.

previous definition is equivalent to the one provided for the single-dimension
linear classifier if y is a positive constant value and t(x) = x−QTj .

4.4. Algorithm analysis

Table 2 reports the cost of the LCBM algorithm compared with costs from
other state-of-the-art solutions. In the table K is the number of hidden features
[35] and E is the number of iterations for matrix factorization algorithms (i.e.,
SGD and ALS). We remark that O(·) is an upper bound, while Ω(·) is a lower
bound for the computational complexity; furthermore, to provide a fair com-
parison we considered as input the maximum possible number of ratings, i.e.
N ·M ; in real settings the number of ratings is usually a small fraction of this
upper bound.

If we consider the time needed to calculate the model, our solution performs
two passes over the set of available ratings, one for each functional block in the
training phase; while the first block (item rating PDF inference) introduces a
linear cost proportional to the number of available ratings, the second one must
train a classifier for each user; its cost is therefore given by the number of users
times the number of items times the cost for building a sorted list of points in the
classifier algorithm (single-dimension linear classifier), i.e. O(N ·M · log(M)).
The cost incurred with a two-dimension linear classifier would see the addition
of the SVM cost. Once the model is built it will be constituted by a value for
each item (its MEAN) and a threshold function for each user, thus the occupied
memory will be O(N+M). Finally, calculating the prediction for a single couple
(ui, xj) requires a single comparison operation over two values, and thus incurs
a constant cost.

4.5. MapReduce algorithm implementation

In this section we report the basic ideas behind the implementation of LCBM
on MapReduce. The two-stage nature of LCBM suggests an implementation

13

LCBM SGD [6] ALS [5]

time to model O(NM · log(M)) O(NMKE) Ω(E(K3(N + M) + K2NM))

time to prediction O(1) O(K) O(K)

memory usage O(N + M) O(K(N + M)) O(M2 + NM)

Table 2: Algorithm cost compared with state-of-the-art solutions.

based on two iterations, one for each functional block (see Figure 1).
The first iteration implements the the item rating PDF inference block. The

map function reads the input data and splits it in <key,value> pairs, where the
key is the item id and the value is the boolean rating (OK or KO). The reduce
function receives the pairs sorted by the key (item id), and computes the profile
of each item by calculating the MEAN and the SE of the corresponding Beta
function (Equations (5) and (6)). Then it stores on the distributed file system
all the item profiles. This latter step is not expected to be excessively time-
consuming as, in general, the number of items in a dataset is a small fraction
of the number of users.

The second iteration implements the user profiler block. The map function
reads again the input data and the item profiles stored in the previous iteration
on the distributed file system, then it outputs a series of <key,value> pairs,
one for each rating. The key this time is the user id while the value is a point
of the classification space (single-or two-dimensional, depending on the specific
classifier that we want to adopt). To define the key of the point the map function
reads the profile of the rated item and operates as described in Section 4.3. The
value of the point is the boolean rating (OK or KO). The Reduce function
receives all the pairs (sorted by the user id), and, for each user, implements the
linear classifier to find the quality threshold of the user. Then it stores on the
distributed file system all the user profiles that can be later used to implement
the working phase.

5. Experimental Evaluation

In this section we report the results of the experimental evaluation we con-
ducted on a prototype implementation of our solution. The goal of this evalu-
ation was to assess how much our solution is effective in predicting ratings and
the cost it incurs in doing so.

5.1. Experimental Setting and Test Datasets

We implemented1 our LCBM algorithm, and evaluated it against open-
source implementations of batch based CF algorithms provided by the Apache

1Our prototype is available at https://github.com/fabiopetroni/LCBM

14

https://github.com/fabiopetroni/LCBM

Dataset MovieLens 100k MovieLens 1M Netflix Tencent Weibo Yahoo!

N 943 69878 480189 1392873 1000990

M 1682 10677 17770 4710 624961

ratings 100000 10000054 100480507 140046992 252800275

Table 3: Datasets description.

Mahout project (mahout.apache.org). We compared LCBM against both memory-
based and matrix factorization solutions, however, this section only reports re-
sults from the latter as memory-based solutions have well-known scalability
issues [11], and our LCBM algorithm outperformed them both in prediction
accuracy and computational cost. We limited our comparative evaluation to
matrix factorization solutions (currently considered the best approach to col-
laborative filtering [39]), focusing on the two factorization techniques presented
in Section 2: SGD and ALS. More precisely, we considered a lock-free and par-
allel implementation of the SGD factorizer based on [6] (the source code can be
found in the ParallelSGDFactorizer class of the Apache Mahout library); the
algorithm makes use of user and item biases for the prediction task. These two
values indicate how much the ratings deviate from the average. This intuitively
captures both users tendencies to give higher or lower ratings than others and
items tendencies to receive higher or lower ratings than others. We also consid-
ered a parallel implementation of ALS with Weighted-λ-Regularization based on
[5] (the source code can be found in the ALSWRFactorizer class of the Apache
Mahout library).

If not differently specified, we set the following parameters for the above al-
gorithms: regularization factor λ = 0.065 (as suggested in [5]), K = 32 hidden
features and E = 30 iterations. We defined these last two parameters by not-
ing that: (i) 30 was the lowest number of iterations needed for the prediction
accuracy score to converge on the considered datasets and (ii) by increasing
further the number of hidden features (i.e., for K > 32) the prediction accuracy
score achieved by the algorithms didn’t improve. Note that Apache Mahout
allows you to define additional optional parameters for the two algorithms. In
our experiments we used the default values for these variables, embedded in
the corresponding source code. The algorithms return a real value (between
−1 and 1) as a preference estimation for a couple (ui, xj). To discretize the
prediction we adopted the most natural strategy: if the result is positive or zero
the algorithm predicts an OK, if negative a KO.

We used five test datasets for our comparative study. The first two datasets
were made available by the GroupLens research lab (grouplens.org) and con-
sist of movie rating data collected through the MovieLens recommendation
website (movielens.org). The third one is the Netflix prize dataset [48] (www.
netflixprize.com). All the ratings in these datasets were on a scale from 1 to
5. The forth dataset is The Yahoo! Music Dataset [49], used in the KDD-Cup
2011, consisting of ratings on musical items with scores between 0 to 100. In

15

www.netflixprize.com
www.netflixprize.com

order to “binarize” these four dataset we adopt the strategy proposed in [30]:
if the rating for an item, by a user, is larger than the average rating by that
user (average computed over his entire set of ratings) we assigned it a binary
rating of 1 (OK), −1 (KO) otherwise. The last dataset is a real binary dataset,
used in the KDD-Cup 2012, consisting of a real trace from the Tencent Weibo
social network [50]. In this dataset an item correspond to a user in the social
network (person, organization, or group), and the rating scores represents the
fact that the user accepts the recommendation of an item (OK), or rejects it
(KO). Table 3 reports the number of users N , items M and ratings in the
considered datasets.

The experiments were conducted on an Intel Core i7 2, 4GHz quad-core
machine with 32GB of memory, using a GNU/Linux 64-bit operating system.
The results of LCBM derive from the single dimension linear classifier, unless
otherwise specified. All the considered algorithms (i.e., LCBM, SGD and ALS)
execute the training procedure in a multithread fashion, using all the available
cores. Moreover, we implemented a map-reduce version of LCBM2. However,
we used the parallel implementation of LCBM in our empirically study, since we
noticed only a marginal improvement in execution time with the map-reduce
implementation (in a 8 machines cluster). In fact, the LCBM algorithm can
handle large instances of the collaborative filtering problem in very reasonable
time on just a machine.

5.2. Evaluation methodology and Performance Metrics

Similar to most machine learning evaluation methodologies, we adopted a
k-fold cross-validation approach. This technique divides the dataset in several
folds and then uses in turn one of the folds as test set and the remaining ones as
training set. The training set is used to build the model. The model is used to
predict ratings that are then compared with those from the test set to compute
the algorithm accuracy score. We randomly split the datasets in 5 folds, so that
each fold contained 20% of the ratings for each item. The reported results are
the average of 5 independent runs, one for each possible fold chosen as test set.

In general, in order to evaluate the results of a binary CF algorithm we can
identify four possible cases: either (i) correct predictions, both for OKs (TP
true positives), and KOs (TN true negatives) or (ii) wrong predictions, both if
OK is predicted for an observed KO (FP false positives) or if KO is predicted
for an observed OK (FN false negatives). These four values constitute the so
called confusion matrix of the classifier.
The Matthews correlation coefficient (MCC)[51] measures the quality of binary
classifications. It returns a value between −1 and +1 where +1 represents a
perfect prediction, 0 no better than random prediction and −1 indicates total
disagreement between prediction and observation. The MCC can be calculated
on the basis of the confusion matrix with the following formula:

MCC =
TP × TN − FP × FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(7)

2Source code is available at https://github.com/fabiopetroni/LCBM

16

https://github.com/fabiopetroni/LCBM

Starting from the confusion matrix we can further define the algorithm Sensi-
tivity (or True Positive Rate (TPR)), i.e. the ratio between TP and TP +FN ,
that measures the proportion of actual OK ratings which are correctly iden-
tified as such. In the same way we can define the algorithm Specificity (or
True Negative Rate (TNR)), i.e. the ratio between TN and TN + FP , that
measures the proportion of KO ratings which are correctly identified as such.
Their complementary values are represented by the False Positive Rate (FPR),
i.e. 1 − TNR, and False Negative Rate (FNR), i.e. 1 − TPR. The Receiver
operating characteristic (ROC) curve [52] visually illustrates the performance
of a binary classifier by plotting different TPR (Y-axis) and FPR (X-axis) val-
ues. The diagonal line of this graph (the so-called line of no-discrimination)
represents a completely random guess: classifiers represented by this line are no
better than a random binary number generator. A perfect classifier would be
represented by a point in the upper left corner of the ROC space (i.e. FPR = 0
and TPR = 1). Real classifiers are represented by curves lying in the space
between the diagonal line and this ideal point.

To assess the load incurred by the system to run the algorithms we also
calculated the time needed to run the test (from the starting point until all
the possible predictions have been made) and the peak memory load during
the test. It is important to remark that running times depend strongly on the
specific implementation and platform, so they must be considered as relative
indicators, whose final scope is to reflect the asymptotic costs already presented
in Table 2.

5.3. Overall performance of LCBMs

In this section we report the results obtained using a single dimension linear
classifier in the training procedure. Figure 5 summarizes the performance of
the CF algorithms over the considered datasets, in terms of achieved prediction
accuracy, time required for the prediction and memory occupation. From Figure
5a it is possible to observe that LCBM consistently outperforms ALS by a large
margin for all the considered datasets. Conversely, SGD outperforms LCBM
in all datasets by a small margin whatever the value chosen for the number of
features K is. By looking at this graph we can consider LCBM as a solution
whose accuracy is very close to the accuracy offered by the best solution available
in the state-of-the-art. However, the real advantages of LCBM come to light by
looking at the load it imposes on the system.

Figure 5b shows the time required to conclude both the training and the
test phases. Tests run with LCBM terminate much earlier that those run with
SGD and ALS. This was an expected result as the time complexity of SGD
is equivalent to the LCBM one only if we consider a single feature (K = 1)
and a single iteration (E = 1) (cfr. Section 4.4). Note, however, that with
this peculiar configuration SGD running time is still slightly larger than LCBM
while its prediction accuracy, in terms of MCC, drops below the LCBM one (not
shown in the graphs). The running time of ALS, as reported in the Figure, is
always larger than LCBM.

17

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

ML100K ML10M Netflix Weibo Yahoo!

M
C

C

SGD K=256

SGD K=32

SGD K=8

LCBM

ALS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

ML100K ML10M Netflix Weibo Yahoo!

M
C

C

SGD K=256

SGD K=32

SGD K=8

LCBM

ALS

(a) MCC

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

ML100K ML10M Netflix Weibo Yahoo!

ti
m

e
 (

s
)

SGD K=256
SGD K=32
SGD K=8

LCBM
ALS

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

ML100K ML10M Netflix Weibo Yahoo!

ti
m

e
 (

s
)

SGD K=256
SGD K=32
SGD K=8

LCBM
ALS

 0

 10

Zoom

 0

 10

Zoom

(b) Time

 0

 5

 10

 15

 20

 25

 30

 35

ML100K ML10M Netflix Weibo Yahoo!

m
e
m

o
ry

 (
G

B
)

SGD K=256
SGD K=32
SGD K=8

LCBM
ALS

 0

 5

 10

 15

 20

 25

 30

 35

ML100K ML10M Netflix Weibo Yahoo!

m
e
m

o
ry

 (
G

B
)

SGD K=256
SGD K=32
SGD K=8

LCBM
ALS

 0

 0.1

 0.2
Zoom

 0

 0.1

 0.2
Zoom

(c) Memory

Figure 5: Collaborative filtering algorithms
performance, in terms of achieved accuracy,
computational time required and memory
occupation. The number of iterations for
the matrix factorization models is set to 30.
The SGD algorithm is trained with 8, 32 and
256 features. The number of features for the
ALS algorithm is set to 32.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 2 4 8 16 32 64 128 256 512 1024

M
C

C

number of features

SGD

LCBM

(a) MCC

 0

 100

 200

 300

 400

 500

 600

 700

 2 4 8 16 32 64 128 256 512 1024

ti
m

e
 (

s
)

number of features

SGD
LCBM

(b) Time

 0

 0.5

 1

 1.5

 2

 2 4 8 16 32 64 128 256 512 1024

m
e
m

o
ry

 (
G

B
)

number of features

SGD
LCBM

(c) Memory

Figure 6: LCBM vs. SGD performance
varying the number K of hidden features, in
terms of achieved accuracy, computational
time required and memory occupation. The
dataset used for the experiments is Movie-
Lens with 107 ratings. The number of iter-
ations was set to 30. The LCBM algorithm
is agnostic to the number of features.

The peak memory occupation is reported in Figure 5c. Also in this plot
the gap between LCBM and MF techniques is evident. To summarize, LCBM
is competitive with existing state-of-the-art MF solutions in terms of accuracy,

18

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

10000054
 ML 10M

100480507
 Netflix

252800275
 Yahoo!

ti
m

e
 (

s
)

ratings

LCBM

ALS

SGD K=32

SGD K=256

(a) Time

 0

 5

 10

 15

 20

 25

 30

 35

10000054
 ML 10M

100480507
 Netflix

252800275
 Yahoo!

m
e
m

o
ry

 (
G

B
)

ratings

LCBM

ALS

SGD K=32

SGD K=256

(b) Memory

Figure 7: Algorithms performance, in terms of time and memory occupation, by increasing
the dataset size.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
P

R

FPR

unpersonalized
LCBM

Figure 8: ROC curves comparing a fixed ap-
proach (i.e., same constant QT value for all
users) with the LCBM solution on the Net-
flix dataset. The plot shows the gain in us-
ing a personalized approach with respect to
a collective one.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-1 -0.5 0 0.5 1

M
C

C

ω

unpersonalized
LCBM

Figure 9: Algorithm accuracy (MCC) ob-
tained by varying a constant ω value to the
QT (LCBM curve) in comparison with a
fixed approach (i.e., same constant QT value
for all users) on the Netflix dataset.

yet it runs faster while using less resources (in terms of memory).
The previous experiments have shown that the most performant matrix fac-

torization solution is SGD. ALS, in facts, always showed the worst performance
in our tests for all the considered metrics. Figure 6 reports the results of an
experiment conducted on the MovieLens (107) dataset varying the number of
hidden features K for the SGD factorizer. The LCBM performance are reported
for comparison, and the corresponding curves are always constant because our
solution is agnostic to K (this parameter is peculiar of matrix factorization so-
lutions). Figures 6b and 6c show graphically what the asymptotic analysis has
already revealed: time and space grow linearly with the number of features (note
that the X-axis in the graphs has a logarithmic scale). The lower CPU time
and memory usage of LCBM is highlighted by the considerable gap between its
curves and the SGD ones. Figure 6a reports the MCC values. As shown before
SGD provides slightly better results than LCBM, and the gap tends to widen

19

as the number of features grows. This, however, comes at the cost of a longer
and more space consuming training procedure.

Figure 7 shows the trend of the time needed to build the model (Figure
7a) and the memory required to store it (Figure 7b) by increasing the dataset
size. LCBM is, consistently with the previous analysis, the most efficient tech-
nique, both in terms of timelessness and memory usage. Moreover, the Figures
highlight the growth of the gap between LCBM and the two MF solutions by
increasing the number of ratings. In other words, the benefits of LCBM, in
time and memory, grow proportionally with the size of the input, making our
solution very appealing when the system has to deal with huge amount of data.

5.4. Benefit of personalization

The graph in Figure 8 reports the ROC curve for LCBM on the Net-
flix dataset. Actually, the output of the LCBM algorithm represents a single
(FPR,TPR) point. In order to obtain a curve for LCBM (blue line in Figure
8), we performed several run of the algorithm, each time shifting the quality
threshold of all the users (i.e., the output of the user profile block) by a con-
stant value ω, that we varied from run to run. In particular, we considered 100
values from ω, uniformly distributed in the range [−1, 1], and we executed a
single LCBM run for each considered value. We obtained the ROC curve by
connecting the corresponding 100 (FPR,TPR) points.

The goal of this experiment was to compare our LCBM algorithm, that asso-
ciates a personalized quality threshold with all the users, with an unpersonalized
solution, that simply uses a constant value as quality threshold for all the users
(i.e., all users have the same QT value, they are assumed to share the same
tastes). To obtain this unpersonalized curve (dashed purple line in Figure 8) we
considered again 100 values from ω, uniformly distributed in the range [−1, 1],
and for each value we executed a modified version of the LCBM algorithm were
all the QT values of the users were set to the ω value. We obtained the ROC
curve by connecting the corresponding 100 (FPR,TPR) points.

Clearly, the latter and simpler solution, offers lower performance with respect
to LCBM. However, the interesting point is that the area between the two curves
(dashed in the graph) clearly shows the added value given by the independent
profiling of users performed by LCBM: calculating and using a personalized QT
value for each user pays back in terms of prediction accuracy. Furthermore,
Figure 9 shows how LCBM performs at its best (in terms of MCC) when the
constant ω value added to theQT is set to 0, thus confirming that the mechanism
used by the user profiler to calculate QT is appropriately designed.

5.5. Two-dimensions linear classifier

Finally, figure 10 shows the improvements obtainable by adopting a two-
dimensions linear classifier that uses different metrics for its second dimension.
In particular, we tested this classifier on the MovieLens 100k dataset and fed
the classifier with three different information: the movie degree centrality, or
the movie release date and the rating timestamp. The rationale behind these

20

 0

 1

 2

 3

 4

 5

CENTRALITY MOVIE DATE TIMESTAMP

M
C

C
 i
m

p
ro

v
e
m

e
n
t
(%

)

degree centrality
movie release time
timestamp

 0

 1

 2

 3

 4

 5

CENTRALITY MOVIE DATE TIMESTAMP

M
C

C
 i
m

p
ro

v
e
m

e
n
t
(%

)

degree centrality
movie release time
timestamp

Figure 10: MCC improvement using a two-
dimension linear classifier. Results obtained
on the MovieLens 100k dataset considering
three different metrics.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

d
e
g
re

e
 c

e
n
tr

a
lit

y

beta mean

OK
KO
discriminant function

Figure 11: Example of a two-dimension clas-
sifier internal state for a specific user using
the item degree centrality as the second met-
ric (MovieLens 100k dataset).

choices depend obviously on the specific metric we consider. The movie degree
centrality was considered an important characteristic of the items to be voted
as it can deeply influence the perspective voter behavior: extremely popular
movies tend to polarize the audience opinions (most of the people express the
same vote, be it positive or negative), while “niche” movie ratings strongly de-
pend on the user peculiar tastes. The movie release date was considered as a
way to distinguish user groups: there are people that are mostly interested in
recent movies, while other people are more used to watch “classics” and tend to
prefer older movies. Finally, the vote timestamp was considered as a variable
able to track the changing user preferences over time. In this latter case the
classifier was trained to identify the changing preferences of the user as time
passes by. The graph shows that, depending on the specific metric we consider,
the two-dimensions linear classifier provides a 1% (rating timestamp) to 3.5%
(movie degree centrality) improvement over the single-dimension classifier. The
marginal improvement tells us that (i) the quality threshold identified for each
user by the single dimension linear classifier is a good estimation of how the
user tend to rank items and that (ii) trying to further enhance this classifica-
tion by looking at how the quality threshold varies with respect to a second
metric shows not provide significant advantages. Figure 11 shows a scatter plot
representing the internal state of the two-dimension classifier for a specific user
using the item degree centrality as the Y axis; the line in the middle represents
the output of the classifier: the fact that this line is only slightly deviating from
being perfectly vertical confirms that the degree centrality metric does not add
significant information to the classifier whose output, as a result, is very close
to the one obtainable from a single-dimension classifier. Similar results were
observed with other metrics (results omitted from this document). What radi-
cally changes by adopting the two-dimension variant of our solution is the time
needed to compute the results. In our test we observed a steady 100% increase
in computation time, independently from the metric considered for the second

21

dimension. In general, we can conclude that the improvements provided by the
two-dimension linear classifier with respect to the single-dimension one are not
worth the extra cost.

6. Conclusions

This paper introduced LCBM, a novel algorithm for collaborative filtering
with binary ratings. LCBM works by analyzing collected ratings to (i) infer
a probability density function of the relative frequency of positive votes that
the item will receive and (ii) to profile each user with a personalized threshold
function. These two pieces of information are then used to predict missing rat-
ings. Thanks to its internal modular nature LCBM is inherently parallelizable
and can thus be adopted in demanding scenarios where large datasets must be
analyzed. The paper presented a comparative analysis and experimental eval-
uation among LCBM and current solutions in the state-of-the-art that shows
how LCBM is able to provide rating predictions whose accuracy is close to that
offered by the best available solutions, but in a shorter time and using less
resources (memory).

References

[1] J. Mangalindan, Amazon’s recommendation secret, CNN Money http://

tech.fortune.cnn.com/2012/07/30/amazon-5/ (2012).

[2] R. Krikorian, New tweets per second record, and
how!, Twitter blog (https://blog.twitter.com/2013/
new-tweets-per-second-record-and-how) (2013).

[3] A. Halevy, P. Norvig, F. Pereira, The unreasonable effectiveness of data,
Intelligent Systems, IEEE 24 (2) (2009) 8–12.

[4] A. Narang, R. Gupta, A. Joshi, V. Garg, Highly scalable parallel collabo-
rative filtering algorithm, in: High Performance Computing (HiPC), 2010
International Conference on, 2010, pp. 1–10. doi:10.1109/HIPC.2010.

5713175.

[5] Y. Zhou, D. Wilkinson, R. Schreiber, R. Pan, Large-scale parallel collabo-
rative filtering for the netflix prize, in: Algorithmic Aspects in Information
and Management, Springer, 2008, pp. 337–348.

[6] G. Takács, I. Pilászy, B. Németh, D. Tikk, Scalable collaborative filter-
ing approaches for large recommender systems, The Journal of Machine
Learning Research 10 (2009) 623–656.

[7] R. Gemulla, E. Nijkamp, P. J. Haas, Y. Sismanis, Large-scale matrix fac-
torization with distributed stochastic gradient descent, in: Proceedings of
the 17th ACM SIGKDD international conference on Knowledge discovery
and data mining, 2011.

22

http://tech.fortune.cnn.com/2012/07/30/amazon-5/
http://tech.fortune.cnn.com/2012/07/30/amazon-5/
https://blog.twitter.com/2013/new-tweets-per-second-record-and-how
https://blog.twitter.com/2013/new-tweets-per-second-record-and-how
http://dx.doi.org/10.1109/HIPC.2010.5713175
http://dx.doi.org/10.1109/HIPC.2010.5713175

[8] Y. Zhuang, W.-S. Chin, Y.-C. Juan, C.-J. Lin, A fast parallel sgd for matrix
factorization in shared memory systems, in: Proceedings of the 7th ACM
conference on Recommender systems, ACM, 2013, pp. 249–256.

[9] A. Jsang, R. Ismail, The beta reputation system, in: Proceedings of the
15th bled electronic commerce conference, 2002, pp. 41–55.

[10] G. Adomavicius, A. Tuzhilin, Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions, Knowl-
edge and Data Engineering, IEEE Transactions on 17 (6) (2005) 734–749.

[11] X. Su, T. M. Khoshgoftaar, A survey of collaborative filtering techniques,
Advances in Artificial Intelligence (2009) 4.

[12] M. D. Ekstrand, J. T. Riedl, J. A. Konstan, Collaborative filtering recom-
mender systems, Foundations and Trends in Human-Computer Interaction
4 (2) (2011) 81–173.

[13] F. Ricci, L. Rokach, B. Shapira, Introduction to recommender systems
handbook, Springer, 2011.

[14] J. A. Konstan, J. Riedl, Recommender systems: from algorithms to user
experience, User Modeling and User-Adapted Interaction 22 (1-2) (2012)
101–123.

[15] D. Goldberg, D. Nichols, B. M. Oki, D. Terry, Using collaborative filtering
to weave an information tapestry, Communications of the ACM 35 (12)
(1992) 61–70.

[16] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, J. Riedl, Grouplens: an
open architecture for collaborative filtering of netnews, in: Proceedings of
the 1994 ACM conference on Computer supported cooperative work, ACM,
1994, pp. 175–186.

[17] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon,
J. Riedl, Grouplens: applying collaborative filtering to usenet news, Com-
munications of the ACM 40 (3) (1997) 77–87.

[18] J. S. Breese, D. Heckerman, C. Kadie, Empirical analysis of predictive algo-
rithms for collaborative filtering, in: Proceedings of the Fourteenth confer-
ence on Uncertainty in artificial intelligence, Morgan Kaufmann Publishers
Inc., 1998, pp. 43–52.

[19] R. Baeza-Yates, B. Ribeiro-Neto, et al., Modern information retrieval, Vol.
463, ACM press New York, 1999.

[20] A. Singhal, Modern information retrieval: A brief overview, IEEE Data
Eng. Bull. 24 (4) (2001) 35–43.

23

[21] J. L. Herlocker, J. A. Konstan, A. Borchers, J. Riedl, An algorithmic frame-
work for performing collaborative filtering, in: Proceedings of the 22nd an-
nual international ACM SIGIR conference on Research and development
in information retrieval, ACM, 1999, pp. 230–237.

[22] J. Zhang, P. Pu, A recursive prediction algorithm for collaborative filtering
recommender systems, in: Proceedings of the 2007 ACM conference on
Recommender systems, ACM, 2007, pp. 57–64.

[23] Y. Shi, M. Larson, A. Hanjalic, Exploiting user similarity based on rated-
item pools for improved user-based collaborative filtering, in: Proceedings
of the third ACM conference on Recommender systems, ACM, 2009, pp.
125–132.

[24] R. Xu, S. Wang, X. Zheng, Y. Chen, Distributed collaborative filtering
with singular ratings for large scale recommendation, Journal of Systems
and Software 95 (2014) 231–241.

[25] B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Item-based collaborative filter-
ing recommendation algorithms, in: Proceedings of the 10th international
conference on World Wide Web, ACM, 2001, pp. 285–295.

[26] G. Linden, B. Smith, J. York, Amazon. com recommendations: Item-to-
item collaborative filtering, Internet Computing, IEEE 7 (1) (2003) 76–80.

[27] M. Deshpande, G. Karypis, Item-based top-n recommendation algorithms,
ACM Transactions on Information Systems (TOIS) 22 (1) (2004) 143–177.

[28] D. Lemire, A. Maclachlan, Slope one predictors for online rating-based
collaborative filtering, Society for Industrial Mathematics 5 (2005) 471–
480.

[29] L. H. Ungar, D. P. Foster, Clustering methods for collaborative filtering,
in: AAAI Workshop on Recommendation Systems, no. 1, 1998.

[30] A. S. Das, M. Datar, A. Garg, S. Rajaram, Google news personalization:
scalable online collaborative filtering, in: Proceedings of the 16th interna-
tional conference on World Wide Web, ACM, 2007, pp. 271–280.

[31] T. Hofmann, Latent semantic models for collaborative filtering, ACM
Transactions on Information Systems (TOIS) 22 (1) (2004) 89–115.

[32] R. Salakhutdinov, A. Mnih, G. Hinton, Restricted boltzmann machines for
collaborative filtering, in: Proceedings of the 24th international conference
on Machine learning, ACM, 2007, pp. 791–798.

[33] D. M. Blei, A. Y. Ng, M. I. Jordan, Latent dirichlet allocation, the Journal
of machine Learning research 3 (2003) 993–1022.

[34] The netflix prize http://www.netflixprize.com.

24

http://www.netflixprize.com

[35] Y. Koren, R. Bell, C. Volinsky, Matrix factorization techniques for recom-
mender systems, Computer 42 (8) (2009) 30–37.

[36] Y. Hu, Y. Koren, C. Volinsky, Collaborative filtering for implicit feedback
datasets, in: Data Mining, 2008. ICDM’08. Eighth IEEE International Con-
ference on, IEEE, 2008, pp. 263–272.

[37] Y. Koren, Factorization meets the neighborhood: a multifaceted collabo-
rative filtering model, in: Proceedings of the 14th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, ACM, 2008,
pp. 426–434.

[38] X. Luo, M. Zhou, Y. Xia, Q. Zhu, An efficient non-negative matrix-
factorization-based approach to collaborative filtering for recommender sys-
tems, Industrial Informatics, IEEE Transactions on 10 (2) (2014) 1273–
1284.

[39] F. Makari, C. Teflioudi, R. Gemulla, P. Haas, Y. Sismanis, Shared-memory
and shared-nothing stochastic gradient descent algorithms for matrix com-
pletion, Knowledge and Information Systems 42 (3) (2014) 493–523.

[40] C. Teflioudi, F. Makari, R. Gemulla, Distributed matrix completion., in:
ICDM, 2012, pp. 655–664.

[41] F. Petroni, L. Querzoni, Gasgd: stochastic gradient descent for distributed
asynchronous matrix completion via graph partitioning., in: Proceedings
of the 8th ACM Conference on Recommender systems, ACM, 2014, pp.
241–248.

[42] S. Kabbur, G. Karypis, Nlmf: Nonlinear matrix factorization methods for
top-n recommender systems, in: Data Mining Workshop (ICDMW), 2014
IEEE International Conference on, IEEE, 2014, pp. 167–174.

[43] R. Pan, Y. Zhou, B. Cao, N. Liu, R. Lukose, M. Scholz, Q. Yang, One-
class collaborative filtering, in: Data Mining, 2008. ICDM ’08. Eighth IEEE
International Conference on, 2008, pp. 502–511. doi:10.1109/ICDM.2008.
16.

[44] L. Ungar, D. P. Foster, A formal statistical approach to collaborative fil-
tering, CONALD’98.

[45] J. Wang, S. Robertson, A. P. de Vries, M. J. Reinders, Probabilistic rele-
vance ranking for collaborative filtering, Information Retrieval 11 (6) (2008)
477–497.

[46] A. Jøsang, R. Ismail, C. Boyd, A survey of trust and reputation systems for
online service provision, Decision support systems 43 (2) (2007) 618–644.

25

http://dx.doi.org/10.1109/ICDM.2008.16
http://dx.doi.org/10.1109/ICDM.2008.16

[47] C.-C. Chang, C.-J. Lin, Libsvm: A library for support vector machines,
ACM Trans. Intell. Syst. Technol. 2 (3) (2011) 27:1–27:27. doi:10.1145/

1961189.1961199.
URL http://doi.acm.org/10.1145/1961189.1961199

[48] J. Bennett, S. Lanning, The netflix prize, in: Proceedings of KDD cup and
workshop, 2007.

[49] G. Dror, N. Koenigstein, Y. Koren, M. Weimer, The yahoo! music dataset
and kdd-cup’11., Journal of Machine Learning Research-Proceedings Track
18 (2012) 8–18.

[50] Y. Niu, Y. Wang, G. Sun, A. Yue, B. Dalessandro, C. Perlich, B. Hamner,
The tencent dataset and kdd-cup’12, in: KDD-Cup Workshop, Vol. 170,
2012.

[51] B. W. Matthews, Comparison of the predicted and observed secondary
structure of t4 phage lysozyme, Biochimica et Biophysica Acta (BBA)-
Protein Structure 405 (2) (1975) 442–451.

[52] J. L. Herlocker, J. A. Konstan, L. G. Terveen, J. T. Riedl, Evaluating
collaborative filtering recommender systems, ACM Transactions on Infor-
mation Systems (TOIS) 22 (1) (2004) 5–53.

26

http://doi.acm.org/10.1145/1961189.1961199
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1145/1961189.1961199
http://doi.acm.org/10.1145/1961189.1961199

	Introduction
	Related Work
	System Model and Problem Definition
	The LCBM algorithm
	Algorithm structure
	Item rating PDF inference
	User Profiler
	Single dimension linear classifier
	Two-dimensions linear classifier

	Algorithm analysis
	MapReduce algorithm implementation

	Experimental Evaluation
	Experimental Setting and Test Datasets
	Evaluation methodology and Performance Metrics
	Overall performance of LCBMs
	Benefit of personalization
	Two-dimensions linear classifier

	Conclusions

