
Mobile Byzantine Fault Tolerant Distributed Storage

Silvia Bonomi?, Antonella Del Pozzo?, Maria Potop-Butucaru†, Sébastien Tixeuil†

?Sapienza Università di Roma,Via Ariosto 25, 00185 Roma, Italy
{bonomi, delpozzo}@dis.uniroma1.it

†Université Pierre & Marie Curie (UPMC) – Paris 6, France
{maria.potop-butucaru, sebastien.tixeuil}@lip6.fr

Abstract

We present the first emulation of a server based regular read/write storage in a synchronous round-
free message-passing system that is subject to mobile Byzantine failures. In a system with n servers
implementing a regular register, our construction tolerates faults (or attacks) that can be abstracted by
agents that are moved (in an arbitrary and unforeseen manner) by a computationally unbounded adver-
sary from a server to another in order to deviate the server’s computation. When a server is infected by
an adversarial agent, it behaves arbitrarily until the adversary decides to ”move” the agent to another
server.

We investigate the case where the moves of the mobile Byzantine agents are decided by the adver-
sary with the only constraints of happening periodically every ∆ time units (period that is completely
decoupled from the message communication delay). Our emulation spans two models: servers self-
diagnose their state (that is, servers are aware that the mobile Byzantine agent left), and servers without
self-diagnose mechanism.

Our results related to the threshold of the tolerated mobile Byzantine faults are significantly different
from the round-based synchronous models. Another interesting side result of our study is that, contrary
to the round-based synchronous consensus implementation that is available in systems prone to mobile
Byzantine faults, our storage emulation does not rely on the necessity of a core of correct processes all
along the computation. That is, every server in the system can be compromised by the mobile Byzantine
agents at some point in the computation. This leads to another interesting conclusion: storage is easier
than consensus in synchronous settings, when the system is hit by mobile Byzantine failures.

Keywords: mobile Byzantine failures, regular register, round free synchronous computation

Contact Author: Silvia Bonomi
Address: Dipartimento di Ingegneria Informatica, Automatica e Gestionale “A. Ruberti”
Universitá degli Studi di Roma “La Sapienza”
Via Ariosto, 25
I-00185 Roma (RM)
Italy
Telephone Number: +39 06 77 27 4017

1 Introduction

Cloud Computing is one of the most popular recent technologies. In a nutshell, clouds offer to organiza-
tions (a.k.a. clients) the possibility to store and access vast amounts of data on remote servers managed by
providers. While the cloud model is very similar to the well known client-server model, clouds typically
experience usual faults and errors that occur in any distributed system, but are also often the target of cy-
ber attacks. Recently, due to multiple causes such as software bugs, errors in internal migrations, or cyber
attacks, have been reported [1, 2, 3, 12] outages of known cloud providers (Google, Akamai, Microsoft).
It is thus highly desirable that such distributed storage systems are able to mask to their clients the unex-
pected yet possible faulty behaviors of their servers. In these architectures where clients request permanent
availability, applying the classical technique consisting in restarting the system anytime an error, a fault, or
an attack is diagnosed is impossible due to temporary system unavailability. In this context, attack tolerant
schemes studied in theoretical distributed computing become extremely relevant for the daily practice of
cloud computing. Many attack models for distributed systems have been proposed, but one of the most
general is the Byzantine model proposed by Lamport et al. [15], which simply assumes that faulty nodes can
behave arbitrarily. Byzantine-tolerant storage problem has been studied in various settings and models (see
e.g., [5, 8, 9, 16, 17, 22] to cite just few of them). In all the aforementioned works, the set of nodes with an
arbitrary behavior does not change during the entire computation (i.e., they are static).

However, when a distributed system is subject to viruses propagation or cyber attacks, the faults are
typically non-stationary since the attack or the viruses can propagate in the network. Conversely, previously
faulty nodes may recover as countermeasures to attacks are run periodically in the system. These observa-
tions led researches to investigate a different distributed adversarial model where the set of Byzantine nodes
varies throughout the execution. Such a model has been formalized starting with the pioneering works of
Reischuk [20] (for the Byzantine agreement problem), and Ostrovsky and Yung [19] (that show how to
compute an arbitrary global function with high probability), where it is assumed that a constant fraction
of the nodes can be corrupted in a given period of time. In the mobile Byzantine fault model, transient
arbitrary state corruptions, which can be abstracted as Byzantine “agents”, are controlled by an omniscient
adversary and moved through the network in order to corrupt the nodes they occupy. A node occupied by a
Byzantine agent then behaves arbitrarily for some transient period of time. Once the Byzantine agent leaves
the node, the node eventually behaves correctly. However, the Byzantine agent may ”infect” another node,
that previously behaved correctly.

2 Related Work and Contributions

In Mobile Byzantine Failures models, there are two main research directions: (i) Byzantines with con-
strained mobility and (ii) Byzantines with unconstrained mobility. Byzantines with constraint mobility were
studied by Buhrman et al. [10]. They consider that Byzantine agents move from one node to another only
when protocol messages are sent (similar to how viruses would propagate). In [10], Buhrman et al. studied
the problem of Mobile Byzantine Agreement. They proved a tight bound for its solvability (i.e., n > 3t,
where t is the maximal number of simultaneously faulty processes) and proposed a time optimal protocol
that matches this bound.

In the case of unconstrained mobility the motion of Byzantine agents is not tied to message exchange.
Several authors investigated the agreement problem in variants of this model: [4, 6, 13, 19, 20, 21]. Reischuk
[20] investigate the stability/stationarity of malicious agents for a given period of time. Ostrovsky and Yung
[19] introduced the notion of mobile virus and investigate an adversary that can inject and distribute faults.

1

Round Based [7] Round Free

G
ar

ay
[1

3]
B

on
ne

t[
6]

,S
as

ak
i[

21
]

n > 3f

n > 4f

C
A

M
C

U
M

∆ > 4δ n > 3f (Th. 6)

k∆ > 2δ

k ∈ {0, 1}
n > (k + 3)f (Th. 3)

∆ > 4δ n > 4f (Th. 3)

k∆ > 2δ

k ∈ {0, 1}
n > (k + 1)2f (Th. 3)

Figure 1: Summary of results and Comparison with the round-based approach.

Furthermore, they advocate that the unconstraint mobility model abstracts the concept of insider threats
(hacker, cracker, black hat) or attacks (DOS, Worms, viruses or Trojan horses).

Garay [13] and, more recently, Banu et al. [4] and Sasaki et al. [21] or Bonnet et al. [6] consider, in
their models, that processes execute synchronous rounds composed of three phases: send, receive, compute.
Between two consecutive rounds, Byzantine agents can move from one node to another, hence the set of
faulty processes has a bounded size although its membership can change from one round to the next. The
main difference between the unconstrained models presented so far is in the knowledge that processes have
been affected from a Byzantine agent. In the Garay’s model a process has the ability to detect its own
infection after the Byzantine agent left it. More precisely, during the first round following the leave of the
Byzantine agent, a process enters a state, called cured, during which it can take preventive actions to avoid
sending messages that are based on a corrupted state. Garay [13] proposed, in this model, an algorithm that
solves Mobile Byzantine Agreement provided that n > 6t (dropped later to n > 4f in [4]). Bonnet et al. [6]
investigated the same problem in a model where processes do not have the ability to detect when Byzantine
agents move. However, differently from Sasaki et al. [21], cured processes have control on the messages
they send. This subtle difference on the power of Byzantine agents has an impact on the bounds for solving
the agreement. If in the Sasaki’s model the bound on solving agreement is n > 6f in Bonnet’s model it is
n > 5f and this bound is proven tight.
Let us note that all the model discussed so far are applied mainly in round-based computations.

BFT and MBFT Register Emulations Traditional solutions to build a Byzantine tolerant storage service
can be divided into two categories: replicated state machines [22] and Byzantine quorum systems [5, 16, 18,
17]. Both the approaches are based on the idea that the state of the storage is replicated among processes and
the main difference is in the number of replicas involved simultaneously in the state maintenance protocol.

Bonomi et al. [7] investigated the emulation of a distributed storage on top of round-based synchronous
system in four of the mobile Byzantine models cited above: Garay [13], Buhrman et al. [10], Sasaki et
al. [21], and Bonnet et al. [6]. The respective number f of simultaneous Byzantine servers that those
implementations can withstand using n servers are n > 3f , n > 4f , n > 4f , and n > 2f , respectively.

2

Our contribution In this paper, we extend the work presented in [7] to the synchronous round free com-
munication model the message transfer delay is bounded by a known constant δ. We first introduce two new
Byzantine Mobile Failure models for the round-free environment, namely CAM and CUM (extensions of
the models introduced by Garay [13] respectively Bonnet et al. [6]), and we propose a protocol emulating
a distributed storage in these models. Diferently from previous work [4, 13, 21, 6] we do not assume that
a core of correct servers always exists. That is, all processes could be corrupted throughout the execution.
Our adversarial model follows the lines of research by Ostrovsky and Yung [19]. However, we do not retain
their round-based coupling between protocol steps and virus moves. In our model, the adversary controls, at
any time, a set of f Byzantine agents that represent a fraction of the total number n of servers and that move
periodically every ∆ time units. We restrict our attention to a subset of representatives of this infinitely
powerful adversary by relating the period ∆ to the maximum message transfer delay δ. In particular, we
started from a scenario where the frequency of the movement is comparable to the round-based scenario
(i.e., ∆ > δ) computing the number of servers that our emulation needs in order to tolerate f Mobile Byzan-
tine Failures and then we modify the emulation to improve its performance in the CAM model when the
period of movement is much larger than δ (i.e., ∆ > 4δ).

Our results show a difference between the round-based approach of Bonomi et al. [7] and the round-free
case (summarized in Figure 1). It should be noted that in the round-free computation the number of replicas
needed to tolerate f Mobile Byzantine Failures does not depend only on f but also on the ratio between ∆
and δ.

3 System Model

We consider a distributed system composed of an arbitrary large set of client processes C and a set of n
server processes S = {s1, s2 . . . sn}. Each process in the distributed system (i.e., both servers and clients)
is identified by a unique integer identifier. Servers run a distributed protocol implementing a shared memory
abstraction.
Communication model and timing assumptions. Processes communicate trough message passing. In par-
ticular, we assume that: (i) each client ci ∈ C can communicate with every server with a broadcast primitive,
(ii) each server can communicate with every other server with a broadcast primitive, and (iii) each server
can communicate with a particular client with a send unicast primitive. We assume that communications are
authenticated (i.e., given a messagem, the identity of its sender cannot be forged) and reliable (i.e., spurious
messages are not created, and sent messages are neither lost nor duplicated).

The system is synchronous in the following sense: (i) the processing time of local computations (except
for wait statements) are negligible with respect to communication delays, and are assumed to be equal to 0,
and (ii) messages take time to travel to their destination processes. In particular, concerning point-to-point
communications, we assume that if a process sends a message m at time t then it is delivered by time t+ δp
(with δp > 0). Similarly, let t be the time at which a process p invokes the broadcast(m) primitive, then
there is a constant δb (with δb ≥ δp) such that all servers have delivered m at time t + δb. For the sake of
presentation, in the following we consider a unique message delivery delay δ (equal to δb ≥ δp), and assume
δ is known to every process.
Failure model. We assume that any client may fail by crashing. Contrarily, servers are affected by Mobile
Byzantine Failures [20, 19, 4, 6, 13, 10, 21, 6] as specified in the following.

3

3.1 Mobile Byzantine Failure Model in Round-free computation

As in the general Mobile Byzantine Failure model introduced by Ostrovsky and Yung [19], we assume
that faults are represented by Byzantine agents managed by a powerful adversary that moves the Byzantine
agents from a server to another. When the Byzantine agent is hosted by a server, the adversary takes the
entire control of the server (i.e. it can corrupt the server’s local variables, force the server to send arbitrary
messages breaking the broadcast specification or execute a different protocol). We assume that at any time
t, at most f servers can be affected by a mobile Byzantine failure; however, during the system life all servers
may be transitory affected by a Byzantine failure.
When an agent occupies a server si, si is faulty. When the agent leaves si, si is cured until it restores its
correct internal state. If a server is neither faulty nor cured, then it is correct. As all the previous works
[20, 19, 4, 13, 10, 21, 6], we assume that each server has a tamper-proof memory where it safely stores the
correct algorithm code that can be retrieved when needed.

Differently from the approach adopted in [4, 13, 21, 6] and similar to [19], the Mobile Byzantine Failure
models we consider in this paper totally decouples the scheduling of the Byzantine agents mobility from the
message transmission. In particular, we assume that Byzantine agents move periodically every ∆ time units.
The length of the period is totally unrelated from the communication time; this means that depending on
how large ∆ is the Byzantine agent may move 0, 1, or multiple times while a single message is travelling.
In Figure 3.1 is depicted a comparison between the round free and the round based scenario. Similarly to
[13, 21, 6], we consider the possibility that a cured server may or may not be aware about its state.

More in details, we will consider the following two models:

• Cured Aware Model (CAM): Byzantine agents move arbitrarily from a server to another every ∆
time units. When a server is in the cured state, it is aware of its state (similar to the Garay’s model
[13]) and thus it can send specific messages to notify other processes about its state.

• Cured Unaware Model (CUM): Byzantine agents move arbitrarily from a server to another every
∆ time units. Differently from the previous model servers do not know if they are correct or cured
when the Byzantine agent leaves the server. However, they execute the correct code (obtained from
the tamper-proof memory).

In order to abstract the knowledge a server has on its state (i.e. cured or correct), we introduce the
cured state oracle. When invoked via report cured state() function, the oracle returns, in the CAM model,
true to cured servers and false to others. Contrarily, the cured state oracle returns always false in the CUM
model. The implementation of the oracle is out of scope of this paper and the reader may refer to [11], [19]
for further details.

4 Regular Register Specification

A register is a shared variable accessed by a set of processes, called clients, through two operations, namely
read() and write(). Informally, the write() operation updates the value stored in the shared variable while the
read() obtains the value contained in the variable (i.e., the last written value). Every operation issued on a
register is, generally, not instantaneous and it can be characterized by two events occurring at its boundaries:
an invocation event and a reply event. These events occur at two time instants (called the invocation time
and the reply time) according to the fictional global time.

4

broadcast()

∆

δ

s1

s2

s3

s4

broadcast()

s d c
s1

s2

s3

s4

∆

δ

Figure 2: Comparation between the Round free model and the Round based one. In the Round free then a
message is broadcast then, since it may happen during the Byzantine agent movements, it may be delivered
by more than f Byzantine servers. This is not true in the Round based model, in which it is know a priori
how many non faulty servers do deliver the message.

An operation op is complete if both the invocation event and the reply event occured (i.e., the process
executing the operation does not crash between the invocation time and the reply time). Then, an operation
op is failed if it is invoked by a process that crashes before the reply event occurs.

Given two operations op and op′, their invocation times (tB(op) and tB(op′)) and reply times (tE(op)
and tE(op′)), we say that op precedes op′ (op ≺ op′) if and only if tE(op) < tB(op′). If op does not precede
op′ and op′ does not precede op, then op and op′ are concurrent (noted op||op′). Given a write(v) operation,
the value v is said to be written when the operation is complete.

In this paper, we consider a single-writer/multi-reader (SWMR) regular register, defined Lamport [14],
which is specified as follows:

• Termination: if a correct client invokes an operation, it eventually returns from that operation (that
is, the operation is complete).

• Validity: A read operation returns the last value written before its invocation (i.e. the value written
by the latest write preceding it), or a value written by a write operation concurrent with it.

5 A Round-free Regular Register Implementation

In this section, we present an algorithm ARreg thta implements a SWMR Regular Register CAM and CUM
failure models described in Section 3.1. Let us recall that mobile Byzantine agents move periodically from
one server to another corrupting their internal states and making servers behaving arbitrarily. As a conse-
quence, if not properly mastered, the movement of Byzantine agents can lead to the compromising of all
the servers; in fact, when the agent leaves a server, the cured server may have arbitrary information stored
locally. The result would be the loss of the register value and the consequent unavailability of the storage
service.

A naive solution to master mobile Byzantine agents, could be to exploit write() operations to clean
servers state and to increase the number of replicas n to ensure the presence of “enough” correct servers
between two following operations. However, such solution has two strong drawbacks: (i) write() operations

5

Table 1: Parameters for ARreg and A∗Rreg Protocols.

nCAM nCUM #replyCAM #replyCUM

k∆ > 2δ, k ∈ {1, 2} ≥ (k + 3)f + 1 ≥ (k + 1)2f + 1 (k + 1)f + 1 (k + 2)f + 1
∆ > 4δ ≥ 3f + 1 ≥ 4f + 1 2f + 1 2f + 1

are not governed by servers and are invoked depending on clients protocols and (ii) the number of replicas
needed to tolerate f mobile Byzantine agents will grow immediately linearly with the time between two
consecutive write() operations. Since Byzantine agents movement is completely decoupled from the com-
munication steps (i.e., Byzantine agents move independently from the events related to the communication),
during a read() or a write() operation the number of servers behaving temporarily arbitrarily may be much
larger than f , even if, at each time instant t they are bounded by f .

Our solution is based on the following key points:

• we define a state maintenance protocol, executed periodically every ∆ time units, that aims at updat-
ing the state of cured servers to a correct state (i.e., recovering the correct register value). In this way,
the effect of a Byzantine agent on a server will totally disapear in a bounded period of time and the
cured server can further be useful to the computation.

• we implement read() and write() operations following the classical quorum-based approach. The
size of the quorum needed to carry on the operations, and consequently the total number of servers
required by the computation, is computed by taking into account the time needed from cured server
to become correct and the frequency of the Byzantine agent movement.

• we define a forwarding mechanism to avoid that READ() and WRITE() messages are “lost” by some
server si due to a concurrent movement of the Byzantine agent. Note that even though communication
channels are reliable, we may have the following situation: a message is sent by a client at time t and
the Byzantine agents move at some t′ < t + δ. As a consequence, some faulty servers may receive
the message in the interval [t, t′] and then the agent moves leaving cured servers without any trace of
the message.

Concerning the frequency of Byzantine agents movement, we started by considering the case in which
Byzantine agents move with a the period ∆ that is large at least one communication step (i.e., ∆ > δ).
This means that for each message traveling in the network, Byzantine agents move at most once. Then we
analyze cases with lower frequency of movement in order to understand the relation between the period
∆, the number of mobile Byzantine agents f and the total number of servers needed to provide a correct
implementation.

Interestingly, we found that the number of replicas n needed to tolerate f Mobile Byzantine failures
does not depend only on the value of f but also on the relation between ∆ and δ. This is not true in the
round-based model.

5.1 ARreg Detailed Description

The protocol ARreg is described in Figures 3 - 5.

Local variables at client ci. Each client ci maintains replyi, that is used during the read() operation to
collect the pairs 〈v, sn〉 sent back from servers. Additionally, the local sequence number csn is incremented

6

each time a write() operation is invoked and is used to timestamp such operations.

Local variables at server si. Each server maintains the following local variables (we assume these variables
are initialized to zero, false or empty sets according their type):

• vali and sni: two integer variables storing respectively the current value of the register known by si
and its corresponding sequence number;

• old vali and old sni, that store respectively the previous value of the register and its corresponding
sequence number. These variables are initialized to ⊥ and −1, respectively.

• curedi: boolean flag updated by the cured state oracle. In particular, while considering the CAM
model, such variable will be set to true when si was occupied by the mobile Byzantine agent and is
reset during the algorithm when si becomes correct. In CUM model curedi is always false.

• echo valsi and echo readi: two sets used to collect information propagated trough ECHO messages.
The first one stores pairs 〈v, sn〉 propagated by servers just after the mobile Byzantine agents moved,
while the second stores the set of concurrently reading clients, propagated trough echos, in order to
notify cured servers and expedite termination of read().

• fw valsi: set variable storing a triple 〈j, 〈v, sn〉〉 meaning that server sj forwarded a write message
with value v and sequence number sn.

• pending readi: set variable used to collect identifiers of the clients that are currently reading.

In order to simplify the code of the algorithm, we also define the following functions:

• select pairs max sn(echo valsi): this function takes as input the set echo valsi and returns, if it
exists, a 4-uple 〈v1, ts1, v2, ts2〉, where ts2 = ts1 + 1, and there exist at least #replyM

1 occurrences
in echo valsi of both 〈v1, ts1〉 and 〈v2, ts2〉. If more than such a 4-uple exist, the function returns the
one with the highest sequence numbers.

• select max sn(echo valsi): this function takes as input the set echo valsi, and returns, if it exists,
a pair 〈v, ts〉 occurring at least #replyM times in echo valsi. If more than one pair satisfy the
condition, it returns the one with the highest sequence number.

• select value(replyi): this function takes as input the replyi set of replies collected by client ci and
returns, if exists, the pair 〈v, sn〉 occurring at least #replyM times. If more pairs exist, it returns the
one with the highest sequence number.

The state maintenance Protocol. The state maintenance protocol is executed by servers periodically, with
period ∆. Servers start cleaning their local variables and then broadcast an ECHO message with current and
past values attached, their sequence numbers, and the set pending readi containing identifiers of clients
that are currently running a read() operation. After δ time units, servers try to update their state by checking
the number of occurrences of each pair 〈v, sn〉 received trough echoes. In particular, they first check if there
exist two pairs 〈v, sn〉 and 〈v′, sn′〉 occurring each at least #replyM times and such that sn′ = sn + 1. If

1This threshold is set according to Table 1 depending both on the mobile Byzantine model (CAM vs. CUM) and the frequency
of movement of the agents.

7

every ∆ time units do:
(01) curedi ← report cured state(); echo valsi ← ∅; echo readi ← ∅;
(02) if (¬curedi)
(03) then broadcast ECHO(i, 〈vali, sni〉, 〈old vali, old sni〉, pending readi);
(04) else broadcast ECHO(i, 〈⊥, 0〉, 〈⊥, 0〉, ∅);
(05) endif
(06) wait(δ);
(07) if (∃〈−, 〈v, ts〉〉, 〈−, 〈v′, ts+ 1〉〉 ∈ echo valsi occurring at least #replyM times)
(08) then 〈v1, ts1, v2, ts2〉 ← select pairs max sn(echo valsi);
(09) val i← v2; sni ← ts2; old vali ← v1; old sni ← ts1;
(10) else if (∃〈−, 〈v, ts〉〉 ∈ echo valsi occurring at least #replyM times)
(11) then 〈v, ts〉 ← select max sn(echo valsi);
(12) old vali ← v; old sni ← ts; val i← ⊥; sni ← 0;
(13) endif
(14) endif
(15) curedi ← false;
(16) for each (j ∈ (pending readi ∪ echo readi)) do
(17) send REPLY (i, 〈vali, sni〉, 〈old vali, old sni〉) to cj ;
(18) endFor
—————————————————————————————————————
when ECHO (j, 〈v, ts〉, 〈ov, ots〉, pr) is received:
(19) echo valsi ← echo seti ∪ {〈j, 〈v, ts〉〉};
(20) echo valsi ← echo seti ∪ {〈j, 〈ov, ots〉〉};
(21) echo readi ← echo readi ∪ pr.

Figure 3: ARreg state maintenance protocol (code for server si).

this holds, a server si can become correct by taking such two pairs as current and old values. Otherwise,
si tries to find at least one pair 〈v, sn〉 occurring at least #replyM times. In this case, si can deduce that
there exists a concurrent write() operation that is updating the register value. Thus, si considers 〈v, sn〉 as
the pair associated to the old value and updates its local state accordingly. Finally, it assigns false to curedi,
meaning that it is now correct and starts replying to clients that are currently reading.

The write() operation. When the writer wants to write a new value v, it increments its sequence number
and propagates the value and corresponding sequence number to servers, then waits for δ time units (the
maximum message transfer delay) before returning.

When a server si delivers a WRITE, it updates its local variables and then forward the message, trough
a WRITE FW(i, 〈v, csn〉), to others to prevent its loss in case of mobile Byzantine agents movement. In
addition, it also sends a REPLY() message to all clients that are currently reading (as far as it knows) to help
them to terminate their read() operation.

When a WRITE FW(j, 〈v, csn〉) message is delivered, it is stored by si in its fw valsi set. Such set is
constantly monitored and it is used together with the echo valsi set to find a couple 〈v, sn〉 that occurs at
least #replyM times and that represents the current value. This continuous check completes the update of
local variables of servers just cured concurrently with the current write() operation.

The read() operation. When a reader wants to read, it broadcast a READ() request and then waits 2δ time
(i.e., one round trip delay) for replies. When it is unblocked from the wait statement, it selects a value v
occurring enough time from the replyi set, sends an acknowledgement message to server to inform that its
operation is now ended and then returns v as result of the operation.

When a server si delivers a READ(j) message from client cj it first puts its identifier in the set pending readi
to remember that cj is reading and needs to receive possible concurrent updates, then si check if it is cured
or not and in case it is not cured, it send a reply back to cj . Note that, the REPLY() message contains both

8

operation write(v):
(01) csn← csn+ 1;
(02) broadcast WRITE(v, csn);
(03) wait (δ);
(04) return write confirmation;

(a) Client code (code for client ci).

when WRITE(v, csn) is received:
(01) old vali ← vali; old sni ← sn1; vali ← v; sni ← csn; curedi ← false;
(02) for each j ∈ (pending readi ∪ echo readi) do
(03) send REPLY (i, 〈vali, sni〉);
(04) endFor
(05) broadcast WRITE FW(i, 〈v, csn〉);
———————————————————————–

when WRITE FW(j, 〈v, csn〉) is received:
(06) fw valsi ← fw valsi ∪ {〈j, 〈v, csn〉〉};
———————————————————————–

when ∃〈j, 〈v, sn〉〉 ∈ (fw valsi ∪ echo valsi) occurring at least #replyM times:
(07) let U = {〈v, sn〉 ∈ (fw valsi ∪ echo valsi) | 〈v, sn〉 occurs at least #replyM times and sn > sni, sn>old sni}
(08) for each 〈v, ts〉 ∈ U ;
(09) if (val i = ⊥ ∧ sn = old sni + 1)
(10) then val i← v; sni ← ts;
(11) ∀j : fw valsi ← fw valsi \ {〈j, 〈v, ts〉〉};
(12) ∀j : echo valsi ← echo valsi \ {〈j, 〈v, ts〉〉};
(13) else if (vali 6= ⊥ ∧ sn = sni + 1)
(14) then old vali ← vali; old sni ← sni; vali ← v; sni ← ts;
(15) ∀j : fw valsi ← fw valsi \ {〈j, 〈v, ts〉〉};
(16) ∀j : echo valsi ← echo valsi \ {〈j, 〈v, ts〉〉};
(17) endif
(18) endif;
(19) endFor.

(b) Server code (code for server si).

Figure 4: ARreg write() operation protocol.

current and old pairs < value, ts >. In any case, si forwards a READ FW message to inform other servers
about cj read request, in case they missed the message as they were affected by the mobile Byzantine agents.

When a READ FW(j) message is delivered, cj is added to pending readi set as the read request is just
received from the client.

When a READ ACK(j) message is delivered, cj is removed from both pending readi and echo readi
sets as it does not need anymore to received updates for the current read() operation.

operation read():
(01) replyi ← ∅;
(02) broadcast READ(i);
(03) wait (2δ);
(04) 〈v, sn〉 ← select value(replyi);
(05) broadcast READ ACK(i);
(06) return v;
———————————————————————–
when REPLY (j, 〈v, ts〉, 〈ov, ots〉) is received:
(07) replyi ← replyi ∪ {〈j, 〈v, ts〉〉};
(08) replyi ← replyi ∪ {〈j, 〈ov, ots〉〉};

(a) Client code (code for client ci).

when READ (j) is received:
(01) pending readi ← pending readi ∪ {j};
(02) if (¬curedi)
(03) then send REPLY (i, 〈vali, sni〉, 〈old vali, old sni〉);
(04) endif
(05) broadcast READ FW(j);
———————————————————————–
when READ FW (j) is received:
(06) pending readi ← pending readi ∪ {j};
———————————————————————–
when READ ACK (j) is received:
(07) pending readi ← pending readi \ {j};
(08) echo readi ← pending readi \ {j};

(b) Server code (code for server si).

Figure 5: ARreg read() operation protocol.

9

5.2 Correctness Proofs

We first establish the termination property of our algorithm, that is independent from the model considered
(CAM, or CUM) and from the time period between two following movements of mobile Byzantine agents.

Definition 1 (Valid Value Set at time t) The valid value set at time t, denoted by V V S(t), is the set of
values containing: (i) the value v written by the last write() that terminated before t, and (ii) any values v′

written by a write() operation running at time t. As we assume a single writer model, there can be at most
one such v′. If no write() has started at time t, V V S(t) contains only ⊥.

Definition 2 (Ti) The time of the i-th movement of mobile Byzantine agents is denoted as Ti = t0 + i∆,
where t0 is the starting time and i ∈ N.

Lemma 1 If a correct client ci invokes write(v) at time t, this operation terminates at time t+ δ.

Proof The claim simply follows by considering that write() returns a write confirmation to the calling client
ci after δ time, independently of the behaviour of the servers (see Lines 03-04, Figure 4(a)). 2Lemma 1

Lemma 2 If a correct client ci invokes read() at itme t, this operation terminates at time t+ 2δ.

Proof The claim simply follows by considering that a read() returns a value to the client after 2δ time,
independently of the behaviour of the servers (see lines 03-06, Figure 5(a)). 2Lemma 2

Theorem 1 (Termination) If a correct client ci invokes an operation, ci returns from that operation in finite
time.

Proof The proof simply follows from Lemma 1 and Lemma 2. 2Theorem 1

Lemma 3 Let op be a write(v) operation invoked by a correct client at time t. Any correct server sj in the
the period [t, t+ δ] has valj = v.

Proof Let us note that a write() operation takes exactly δ time unit to be executed. Thus, op is executed in
the period [t, t+ δ]. During this period, the mobile Byzantine agents move, or do not move. We consider the
two cases separately. In the following, let Ti = t0 + i∆ denote the time of the i-th movement of the mobile
Byzantine agents (with i ∈ N).

• Case 1 - ∀i ∈ N, Ti /∈ [t, t+ δ]. Then, during the execution of the write() operation, the set of faulty
servers does not change. At the beginning of the write() operation, the writer broadcasts a WRITE(v)
message that is delivered to at least n − f non-faulty servers before t + δ. When this happens every
non-faulty server sj assigns v to valj (see line 01 in Figure 4) and cured servers become correct.
Considering that a WRITE(v) message takes at most δ time units to be delivered to its destination and
that messages are not lost, the claim follows for this case.

• Case 2 - ∃i ∈ N, Ti ∈ [t, t + δ]. In this case, during the execution of the write() operation, the set
of faulty servers changes. Let us call F−Ti the set of faulty servers before time Ti and F+

Ti
the set of

faulty servers from Ti on. At the beginning of the write() operation, the writer broadcasts a WRITE(v)
message that will be delivered by time t+ δ.

10

In the worse case, (i) F−Ti ∩F
+
Ti

= ∅, (ii) each server sj ∈ F−Ti delivered the WRITE(v) message before
time Ti when it is faulty and (iii) each server sk ∈ F+

Ti
delivered the WRITE(v) message after time

Ti when it is faulty. Thus, considering that faulty servers during the execution of the operation are at
most 2f , we have that at least n − 2f servers remain correct during the whole operation execution
(i.e., in the time interval [t, t + δ]). Therefore, each of the n − 2f servers executes line 01 in Figure
4 updating its valj with the value v. Considering that the WRITE(v) message is sent by the writer at
time t and that each message takes at most δ time units to be delivered, the claim follows.

2Lemma 3

Lemma 4 Let ∆ be the time interval between two following movements of mobile Byzantine and let δ be
the upper bound on the message transfer delay. Let t0 be the starting time of the computation and let
Ti = t0 + i∆ be the time of the i-th movement of the mobile Byzantine agent (with i ∈ N). If (i) k∆ ≥ 2δ
(with k ∈ {1, 2}) (ii) nCAM ≥ (k + 3)f + 1 and (iii) nCUM ≥ 2(k + 1)f + 1, then at time T2 − 1 (where
T2− 1 = t0 + 2∆− 1) there exists at least (k+ 1)f + 1 correct servers in the CAM model and (k+ 2)f + 1
correct servers in the CUM model storing locally a valid value v (i.e., v ∈ V V S(T2 − 1)).

Proof
Let ⊥ be the initial value of the register at time t0. Let us note that, in the period [t0, T1 − 1] (with

T1−1 = t0 +∆−1) there are no changes in the set of faulty servers. Thus, due to Lemma 3, at time T1−1,
all correct servers (i.e., n− f) store locally a valid value.

Let us now consider the time T1 = t0 + ∆ when mobile Byzantine agent moves and corrupt a new set
of servers.
Let us note that, at time T1 = t0 + ∆ we have, in the worse case, a set of f faulty servers, a set of f
cured servers and a set of n − 2f correct servers. At time T1 servers execute the code shown in Figure 3.
In particular, each server sj broadcasts a ECHO() message with attached the content of its local variables
(lines 03-04) and then remains waiting for δ time units. Let us note that, if no write() operation is running
when the ECHO() message is sent, each correct server will broadcast the same set of values (cfr. Lemma 3).
Contrarily, it may happen that some servers broadcast the concurrent written value and the others echo the
previous value. Let us consider separately the two cases where a write(v) happens or not.

• Case 1 - There not exists a WRITE() message concurrent with the ECHO() message. In this case
V V S(T1) = {⊥}, every servers will receive at least the following values:

– f occurrences of 〈−, 〈⊥,−1〉〉 and f occurrences of 〈−, 〈⊥, 0〉〉 coming from cured processes
(sent in line 04, Figure 3);

– from 0 to f occurrences of 〈−, 〈vj , snj〉〉 and f occurrences of 〈−, 〈vk, snj − 1〉〉 coming from
faulty servers;

– n−2f occurrences of 〈−, 〈v, sn〉〉 and n−2f occurrences of 〈−, 〈⊥, sn′〉〉 coming from correct
processes (sent in line 04, Figure 3).
Note that, since by assumption, no WRITE() message is concurrent with ECHO() messages, then
the following can heppen: v = ⊥, sn = 0 and sn′ = −1 if no write() terminated before time
T1, or, due to Lemma 3 v is the value written by a terminated write, sn = 1 and sn′ = 0 in case
such operation exists.

11

As a consequence, evaluating the condition in line 07, Figure 3 each cured server si will select the
pairs 〈−, 〈v, sn〉〉 and 〈−, 〈⊥, sn′〉〉 (i.e., pairs with at least one valid value), will update accordingly
its local variables (line 09, Figure 3) and finally it will become correct. Considering that ECHO()
messages are sent at time Ti and take at most δ time unit to be delivered to their destination, we have
that at time T1 + δ it follows that nCAM − f (nCUM − f respectively) servers are correct and they
store locally a valid value.

Note that, the set of faulty and correct servers does not change before time T2 and that nCAM ≥
(k + 3)f + 1 and nCUM ≥ 2(k + 1)f + 1, it follows that there always exist at least (k + 1)f + 1
correct servers in the CAM model and (k+ 2)f + 1 correct servers in the CUM model storing locally
a valid value v at time T1 + δ. Considering that T2 = T1 + ∆ and that i∆ > 2δ it follows that
T1 + δ < T2. Thus, due to Lemma 3 and considering that each servers stores, in addition to the
current value, also the previous one, the set of correct servers will continue to keep a valid value until
the mobile Byzantine agent moves again i.e., until time T2 − 1 and the claim follows.

• Case 2 - There exists a WRITE(v, 1) message concurrent with the ECHO() message. In this case,
the set of valid value at time T1 is V V S(T1) = {⊥, v}. As far as faulty and cured servers, we still
have the following situation where each servers will receive:

– f occurrences of 〈−, 〈⊥,−1〉〉 and f occurrences of 〈−, 〈⊥, 0〉〉 coming from cured processes
(sent in line 04, Figure 3);

– from 0 to f occurrences of 〈−, 〈vj , snj〉〉 and f occurrences of 〈−, 〈vk, snj − 1〉〉 coming from
faulty servers;

Concerning ECHO() messages coming from correct servers, their content will depend on the time at
which they will deliver the concurrent WRITE() message. Let x < n − 2f be the number of correct
servers that will deliver the WRITE(v, 1) message before sending the ECHO() at time T1. We have the
following:

– x occurrences of 〈−, 〈v, 1〉〉 and x occurrences of 〈−, 〈⊥, 0〉〉;
– from n− 2f − x occurrences of 〈−, 〈⊥, 0〉〉 and n− 2f − x occurrences of 〈−, 〈⊥,−1〉〉

Evaluating the condition in line 07, each cured server will find it false and will execute line 10 by
selecting 〈−, 〈⊥, 0〉〉 as old value.

Note that, the set of faulty and correct servers does not change before time T2. Considering that
T2 = T1 + ∆ and that i∆ > 2δ it follows that T1 + δ < T2. Thus, due to Lemma 3 and considering
that each servers stores, in addition to the current value, also the previous one, the set of correct
processes will continue to keep a valid value until the mobile Byzantine agent moves again i.e., until
time T2 − 1 and the claim follows.

It follows that the number of correct servers storing a valid value is given by all servers that was
correct also before time T1 that are in the worse case nCAM−2f (nCUM−2f respectively). However,
considering that nCAM ≥ (k + 3)f + 1 and nCUM ≥ 2(k + 1)f + 1, it follows that there always
exist at least (k + 1)f + 1 correct servers in the CAM model and (k + 2)f + 1 correct servers in the
CUM model storing locally a valid value v at time T1 + δ. Considering that T2 = T1 + ∆ and that
i∆ > 2δ it follows that T1 + δ < T2. Thus, due to Lemma 3 and considering that each servers stores,

12

in addition to the current value, also the previous one, the set of correct servers will continue to keep a
valid value until the mobile Byzantine agent moves again i.e., until time T2− 1 and the claim follows.

Note that, since the WRITE(v, 1) message is concurrent with the ECHO() message, it follows that is
has been sent at latest at time T1−1. Thus the write(1) ends latest at time Ti−1+δ and the value⊥ is
no more valid. However, when delivering such a WRITE(v, 1) message, each server sj also broadcasts
a FW WRITE(j, 〈v, 1〉) message. In particular, such message will be sent by n−2f −x processes that
did not took in to account the new value in the ECHO. It follows that by time T1− 1 + 2δ each servers
will stores nCAM − 2f (nCUM − 2f respectively) occurrences of the pair 〈v, 1〉 and execute lines 07
- 19.

2Lemma 4

Lemma 5 Let ∆ be the time interval between two following movements of mobile Byzantine and let δ be
the upper bound on the message transfer delay. Let t0 be the starting time of the computation and let
Ti = t0 + i∆ be the time of the i-th movement of the mobile Byzantine agent (with i ∈ N). If (i) k∆ ≥ 2δ
(with k ∈ {1, 2}) (ii) nCAM ≥ (k + 3)f + 1 and (iii) nCUM ≥ 2(k + 1)f + 1, then at time Ti − 1 (where
Ti− 1 = t0 + i∆− 1) there exists at least (k+ 1)f + 1 correct servers in the CAM model and (k+ 2)f + 1
correct servers in the CUM model storing locally a valid value v (i.e., v ∈ V V S(Ti − 1)).

Proof The claim follows by induction from Lemma 4 considering that at time Ti the number of correct
servers storing a valid value is always at least nCAM − 2f (nCUM − 2f respectively). 2Lemma 5

Form this Lemma, the following Corollary directly follows.

Corollary 1 If (i) k∆ ≥ 2δ (with k ∈ {1, 2}) (ii) nCAM ≥ (k+ 3)f + 1 and (iii) nCUM ≥ 2(k+ 1)f + 1,
then there always exist at least (k + 1)f + 1 correct servers in the CAM model and (k + 2)f + 1 correct
servers in the CUM model storing locally a valid value v (i.e., v ∈ V V S(Ti − 1)).

Theorem 2 (Validity) If (i) k∆ ≥ 2δ (with k ∈ {1, 2}) (ii) nCAM ≥ (k + 3)f + 1 and (iii) nCUM ≥
2(k + 1)f + 1, then any read() operation returns the last value written before its invocation, or a value
written by a write() operation concurrent with it.

Proof Let t be the time at which the reader client ci invokes a read() operation and let Ti < t the last time
when the mobile Byzantine agent moved before the operation invocation. Let v be a valid value at time
Ti − 1.

Let us suppose by contradiction that the read() operation invoked by ci does not return a valid value.
The value vi returned by ci is selected among those stored in the replyi set and it is the value occurring at
least #replyCAM (#replyCUM respectively) times with the highest sequence number. Note that the replyi
set is emptied at the beginning of the read() operation and it is filled in with the pairs received by ci during
the period [t, t + 2δ]. Such pairs correspond, for each correct server sj , with its current local copy of the
register value and old register value. Let us note that, due to Corollary 1, there always exist enough correct
servers answering to a READ() message. Thus, if ci returns a value vi that is not valid, it means that vi is an
old value or a value never written. Let us consider separately the two cases.

• Case 1 - vi is an old value. Due to Lemma 3, at the end of each write() operation, all the correct
servers stores the new value. Considering that (i) nCAM ≥ (k + 3)f + 1 (nCUM ≥ 2(k + 1)f + 1

13

respectively), (ii) there is a single writer in the system that generates sequence numbers following a
total order and (iii) messages are not lost, it follows that there always exists at least nCAM − 2f ≥
#replyCAM (nCUM − 2f ≥ #replyCUM) correct servers answering to the read and we have a
contradiction.

• Case 2 - vi is a value never written. If vi is a value never written, it means that is has been generated
by faulty processes. However, considering that a read() operation lasts exactly 2δ time we have that
the set of processes answering with a wrong value is at most 2f (i.e., cured with no new value and
faulty ones). Due to Lemma 3 and Lemma 5 we have that written values are propagated along time to
at least nCAM − 2f (nCUM − 2f respectively) correct processes that will answer to the read and the
claim follows.

2Theorem 2

Theorem 3 If (i) k∆ ≥ 2δ (with k ∈ 1, 2) (ii) nCAM ≥ (k + 3)f + 1 and (iii) nCUM ≥ 2(k + 1)f + 1,
then the algorithm ARreg implements a SWMR Regular Register resilient to the presence of up to f Mobile
Byzantine failures.

Proof The proof simply follows from Theorem 1 and Theorem 2. 2Theorem 3

6 An Efficient Algorithm for low-frequency movement in the CAM Model

The algorithm A∗Rreg proposed in this section is a modified version of ARreg that exploits the knowledge
about the cured state available in the CAM model to reduce the number of replicas nCAM . The basic idea
is that, when movements are not so frequent, cured servers have enough time to run the state maintenance
protocol, getting correct and help to complete read() operations. This implies that cured servers can now be
part of the quorums answering to read() operations. As a consequence, the global number of servers nCAM
needed to tolerate f Mobile Byzantine agents is decreased. The price to pay is having read() operations
lasting more than in the previous case.

In the following we report the pseudo-code of the algorithm and its description. The main difference
here is that we need to store only the last value forgetting the previous one. In addition, servers are able to
filter out some spurious messages like WRITE FW or ECHO coming from faulty servers that are now cured.

This protocol works when ∆ > 4δ.

The state maintenance protocol. Each server executes every ∆ time units the protocol in Figure 6. The
protocol starts by cleaning local variables and broadcasting a ECHO message: non-cured servers propagate
their current value (together with its sequence number) and their set of currently reading clients, while
cured servers propagate some default values. Cured servers then keep waiting for 2δ time units in order to
collect information propagated by other servers and check if they are able to clean their state with a valid
value. They first filter possible duplicate ECHO messages and write forwarded messages sent by servers that
declared themselves as cured (lines 08-12). This is done to avoid to consider bad messages sent just before
the Byzantine agent leaves a servers. Once the filtering has been done, cured servers may select the value
used to update their state. This is done by considering all the values occurring at least n−2f times: for each
of them a reply is sent to help the read() termination and the value is chosen if the corresponding timestamp
is greater than the current one. At this point, all cured servers become correct.

14

every ∆ time units do:
(01) curedi ← report cured state();
(02) echo valsi ← ∅; echo readi ← ∅; fw valsi ← ∅;
(03) if (¬curedi)
(04) then broadcast ECHO(i, 〈vali, sni〉, pending readi);
(05) else broadcast ECHO(i, 〈⊥,−1〉, ∅);
(06) endif
(07) wait(2δ);
(08) for each j s.t.
(09) (∃〈j, 〈⊥,−1〉〉,∈ echo valsi)
(10) ∀〈j, 〈v, ts〉〉 ∈ fw valsi : remove from fw valsi;
(11) ∀〈j, 〈v, ts〉〉 ∈ echo valsi : remove from echo valsi;
(12) endFor
(13) for each (〈v, ts〉 ∈ echo valsi ∪ fw valsi

occurring ≥ n− 2f times ∧ ts > −1)
(14) for each (j ∈ (pending readi ∪ echo readi)) do
(15) send REPLY (i, 〈vali, sni〉) to cj ;
(16) endFor
(17) if (ts > sni) then val i← v; sni ← ts; curedi ← false;
(18) endFor
——————————————————————————————–
when ECHO (j, 〈v, ts〉, pr) is received:
(19) echo valsi ← echo valsi ∪ {〈j, 〈v, ts〉〉};
(20) echo readi ← echo readi ∪ pr;

Figure 6: A∗Rreg state maintenance protocol (code for server si).

when WRITE(v, csn) is received:
(01) vali ← v;
(02) sni ← csn;
(03) if (curedi)
(04) then curedi ← false;
(05) endif
(06) for each j ∈ (pending readi ∪ echo readi) do
(07) send REPLY (i, 〈vali, sni〉);
(08) endFor
(09) broadcast WRITE FW(i, 〈v, csn〉);
———————————————————————–
when WRITE FW(j, 〈v, csn〉) is received:
(10) fw valsi ← fw valsi ∪ {〈j, 〈v, csn〉〉};

Figure 7: A∗Rreg write() operation protocol.

The write() operation. The client code is the same as in the previous case.
When a server sj delivers a WRITE(v, csn) message, it updates its local copy and then it checks if it was

in the cured state: if so, it resets its state to correct itself, and starts answering to pending read() operations.
Each time a WRITE(v, csn) message is delivered, it is also forwarded to all other servers to avoid that some
server sj delivers the WRITE(v, csn) message just before the mobile Byzantine agent leaves it and later
ignores the message when it becomes cured.

The read() operation. When a client ci wants to read, it broadcasts a READ message, and then waits for 4δ
time. Then, ci selects from its replyi set the pairs that occurs at least n− f times, broadcasts a READ ACK

(i) message to inform servers that its operation has terminated, and finally returns the selected value.
When a server sj delivers a READ message, it first adds the client to the set of concurrent readers and

checks its current state: if it is not cured, it answers immediately by sending back its local state, otherwise

15

operation read():
(01) replyi ← ∅;
(02) broadcast READ(i);
(03) wait (4δ);
(04) 〈val, sn〉 ← select(replyi);
(05) broadcast READ ACK(i);
(06) return val;
———————————————————————–

when REPLY (j, 〈val, sn〉) is received:
(07) replyi ← replyi ∪ {〈j, 〈val, sn〉〉};

(a) Client code (code for client ci).

when READ (j) is received:
(01) pending readi ← pending readi ∪ {j};
(02) if (¬curedi)
(03) then send REPLY (i, 〈vali, sni〉);
(04) endif
(05) broadcast READ FW(j);
———————————————————————–

when READ FW (j) is received:
(06) pending readi ← pending readi ∪ {j};
———————————————————————–

when READ ACK (j) is received:
(07) pending readi ← pending readi \ {j};
(08) echo readi ← echo readi \ {j};

(b) Server code (code for server si).

Figure 8: A∗Rreg read() operation protocol.

it postpones the answer for the moment where it has correct its state.Delivering a READ ACK message, sj
simply removes the identifier of the client from the list of concurrent readers.

6.1 Correctness Proofs

We first establish the termination property of our algorithm, that is independent of the model considered
(CUM and CAM).

Lemma 6 If a correct client ci invokes write(v) at time t, this operation terminates at time t+ δ.

Proof The claim simply follows by considering that write() returns a write confirmation to the calling client
ci after δ time, independentely of the behavior of the servers (see Lines 03-04, Figure 4(a)). 2Lemma 6

Lemma 7 If a correct client ci invokes read() at itme t, this operation terminates at time t+ 4δ.

Proof The claim simply follows by considering that a read() returns a value to the client after 4δ time,
independentely of the behavior of the servers (see Line 06, Figure 8(a)). 2Lemma 7

Theorem 4 (Termination) If a correct client ci invokes an operation, ci returns from that operation in finite
time.

Proof The proof simply follows from Lemma 6 and Lemma 7. 2Theorem 4

In the following section, we assume that when a mobile Byzantine leaves a server si, then si is aware of
being in the cured state if si makes use of the report cured state oracle. In the remaining of the section, ∆
denotes the time between two consecutive moves of the mobile Byzantine agents, and δ denotes the upper
bound on any message transfer delay. Also, t0 denotes the time of the beginning of the execution.

Lemma 8 Let op be a write(v) operation invoked by a correct client at time t. Then any server sj that
remains correct in the interval [t, t+ δ] has valj = v.

16

Proof The claim simply follows from the fact that: (i) at time t, the writer sends a WRITE(v, sn) message
to all servers, (ii) messages are not lost, and (iii) by time t+ δ any correct server sj executes Line 01, Figure
4(b). 2Lemma 8

Lemma 9 Let op be a write(v) operation executed by a client ci during [t, t+ δ]. If there exists i ∈ N such
that Ti ∈ [t, t+ δ], then by time t+ 2δ, there exist at least n− f correct servers sj such that valj = v.

Proof Due to Lemma 6, the operation op is executed in the period [t, t + δ]. During the execution of the
write() operation, the set of faulty servers changes. Let us call F−Ti the set of faulty servers before time Ti
and F+

Ti
the set of faulty servers from Ti on. At the beginning of the write() operation, the writer broadcasts

a WRITE(v) message (line 02, Figure 4(a)) that will be delivered by time t+ δ.
In the worse case, (i) F−Ti ∩ F

+
Ti

= ∅, (ii) each server sj ∈ F−Ti delivered the WRITE(v) message before
time Ti when it is faulty and (iii) each server sk ∈ F+

Ti
delivered the WRITE(v) message after time Ti when

it is faulty.
Thus, considering that faulty servers during the execution of the operation are at most 2f , we have that

at least n− 2f servers, i.e., at least f + 1 servers, remain correct during the whole operation execution (i.e.,
in the time interval [t, t+ δ]). Such set will execute lines 01-09 in Figure 7 updating its valj with the value v
and then they will broadcast a FW WRITE() message. Note that, such message is broadcast at latest at time
t+ δ − 1. Considering that FW WRITE() message takes at most δ time to be delivered to its destination and
considering that at least f +1 correct forward the same pair 〈v, sn〉, it follows that any server sj ∈ sk ∈ F−Ti
will execute lines 13- 17 in Figure 6 storing v by time t+ 2δ and the claim follows.

2Lemma 9

Corollary 2 Let op be a read() operation executed by a client ci during [t, t+4δ]. If there exists i ∈ N such
that Ti ∈ [t, t+δ], then by time t+2δ, there exist at least n−f correct servers sj having ci ∈ pending readj .

Proof [Sketch] The proof follows exactly the same reasoning used in Lemmas 8 and 9, where instead of con-
sidering the WRITE and WRITE FW messages, we consider the READ and READ FW messages. 2Corollary 2

Lemma 10 If ∆ ≥ 4δ and n ≥ 3f + 1, then at time T1 + 2δ there exists at least n − f correct servers sj
with valj ∈ V V S(T1 + 2δ).

Proof Let t0 be the time at which the computation starts and let ⊥ be the initial value of the register. Let
us note that, in the period [t0, T1 − 1] (with T1 − 1 = t0 + ∆ − 1) there are no changes in the set of faulty
servers.

Let us now consider the time T1 = t0 + ∆ when the mobile Byzantine agent moves and corrupts a new
set of servers.
Let us note that, at time T1 = t0 + ∆ we have, in the worse case, a set of f faulty servers, a set of f cured
servers and a set of n− 2f (i.e., at least f + 1) correct servers.
At time T1 servers execute the code shown in Figure 6. In particular, each server sj broadcasts a ECHO()
message with attached the content of its local variables (lines 03-05) and then remains waiting for δ time
units. Let us note that, if no write() operation is running when the ECHO() message is sent, each correct
server will broadcast the same set of values. Contrarily, it may happen that some servers broadcast the
concurrent written value and the others echo the previous value. Let us consider separately the two cases
where a write(v) happens or not.

17

• Case 1 - |V V S(T1, T1 + δ)| = 1 (i.e., there not exists a WRITE() message concurrent with the
ECHO() message). In this case, every servers will receive at least the following values:

– f occurrences of 〈−, 〈⊥,−1〉〉 coming from cured processes (sent in line 04, Figure 6);

– from 0 to f occurrences of 〈−, 〈vj , snj〉〉 coming from faulty servers;

– n− 2f occurrences of 〈−, 〈v, sn〉〉 coming from correct processes (sent in line 05, Figure 6).
Note that, since by assumption, no WRITE() message is concurrent with ECHO() messages, then
the following can heppen: v = ⊥, sn = 0 if no write() terminated before time T1, or v is the
value written by a terminated write and sn = 1 and in case such operation exists.

Considering that n ≥ 3f + 1, evaluating the condition in line 13, Figure 6 each cured server si will
select the pair 〈−, 〈v, sn〉〉 (i.e., a pair corresponding to a valid value), will update accordingly its
local variables (line 17, Figure 6) becoming correct.

Considering that ECHO() messages are sent at time Ti and take at most δ time unit to be delivered to
their destination, we have that at time T1 + δ, n− f servers (i.e., at least 2f + 1) are correct and they
store locally a valid value. Note that, due to Lemma 8 the set of correct processes will continue to
keep a valid value until the mobile Byzantine agent moves again i.e., until time T2 − 1 and the claim
follows.

• Case 2 - |V V S(T1, T1 + δ)| > 1 (i.e., there exists a WRITE(v, 1) message concurrent with the
ECHO() message). In this case, the set of valid value at time T1 is V V S(T1) = {⊥, v}. As far as
faulty and cured servers, we still have the following situation where each servers will receive:

– f occurrences of 〈−, 〈⊥,−1〉〉 coming from cured processes (sent in line 05, Figure 6);

– from 0 to f occurrences of 〈−, 〈vj , snj〉〉 coming from faulty servers;

Concerning ECHO() messages coming from correct servers, their content will depend on the time at
which they will deliver the concurrent WRITE() message. Let x < n − 2f be the number of correct
servers that will deliver the WRITE(v, 1) message before sending the ECHO() at time T1. We have the
following:

– x occurrences of 〈−, 〈v, 1〉〉;
– from n− 2f − x occurrences of 〈−, 〈⊥, 0〉〉.

Each correct server forwards the value written by the write(v) operation trough the WRITE FW()
message sent in line 09, Figure 7. This will happen at latest at time T1 + δ − 1. Considering that
messages are not lost and they take at most δ time units to be delivered to their destinations, we have
that by time T1+2δ−1 each cured servers will deliver also n−2f−x WRITE FW() messages with the
pair 〈v, 1〉. As a consequence, at latest at time T1+2δ−1, each of the f cured server will execute lines
13-17, Figure 6 as they received at least f + 1 times the same pair 〈v, 1, 〉 and they become correct
storing a valid value (i.e., the value 1). Thus, at time T1 + 2δ − 1 no server is in the cured state and
we have n − f correct servers. Let us note that if a second write(v2) operation is issued before time
T1 + 2δ− 1 and the corresponding WRITE() message is delivered before the execution of lines 13-17,
Figure 6, cured servers sj become correct. Considering that ∆ ≥ 4δ we have that T1 + 2δ − 1 < T2

and thus, due to Lemma 8, the set of correct processes continue to keep a valid value until the mobile
Byzantine agent moves again i.e., until time T2 − 1 and the claim follows.

18

2Lemma 10

Lemma 11 If ∆ ≥ 4δ and n ≥ 3f + 1, then at time Ti + 2δ (with i ∈ N) there exists at least n− f correct
servers sj with valj ∈ V V S(Ti + 2δ)).

Proof The claim follows by induction from Lemma 10 considering that at time Ti the number of correct
servers storing a valid value is always at least n− 2f . 2Lemma 11

Corollary 3 If ∆ ≥ 4δ and n ≥ 3f + 1 then at time Ti − 1 (with i ∈ N) there exists at least n− f correct
servers storing locally a valid value v (i.e., v ∈ V V S(Ti − 1))

Proof The Corollary follows directly form the definition of valid values and form Lemma 8 and Lemma 5.
2Corollary 3

Theorem 5 (Validity) Any read() operation returns the last value written before its invocation, or a value
written by a write() operation concurrent with it.

Proof
Let tB(op) the time at which the read() operation has been invoked. When the read() is invoked, the

reader client ci broadcasts a READ() message to all the servers and then it waits until time tB(op) + 4δ
collecting replies.

Due to Corollary 3, at time Ti − 1 there exists at least n − f correct servers storing a value v ∈
V V S(Ti − 1).

Informally speaking, being ∆ > 4δ, depending on the time at which the read() operation is invoked, it
can be concurrent with a Byzantine agents movement at time Ti. In such case the read() operation involves
at most 2f faulty servers, i.e. MaxW = 2f , and at most 2f cured servers, let us call Si cured servers
after Ti. In the best case scenario the operation does not cross any Ti involving at most f faulty servers, i.e.
MaxW = f . Let us consider only the worst case scenario.
Since the read() operation lasts 4δ then all the messages sent within [tB(op), tB(op) + 3δ] are delivered by
the client for sure. Thus we are interested in to count how many correct reply are delivered for sure. Let us
define [Tk, Tk + 2δ] the time window in which the f servers (faulty in [Tk−1, Tk − 1]) are cured.

Let us suppose that during a read() operation there are not n − f correct servers correctly replying.
There are the following case, depending on the presence or absence of concurrency with a write() operation.
case a) no write(v) operations are concurrent with the read(), we have the following case: A read() oper-
ation lasts 4δ, then the request phase is [tB(R), tB(R) + 3δ]. Since ∆ > 4δ, then in [tB(R), tB(R) + 3δ],
at most f faulty servers exist. Moreover there may be f more cured ones. From Lemma 11, the time to
become correct is 2δ. Then, during [tB(R) + 2δ, tB(R) + 3δ] there are at least n− f correct servers.
case b) there is a write(v′) operation concurrent with the read(). Let us call v the value previously stored
by correct servers (or ⊥ if no previous write occurred). If the client is not able to read a valid value (i.e.
to gather n − f occurrences of the same value (v′ or v)) then it mean that due to the concurrency with the
write(v′), it collects: x occurrences of v and n − f − x occurrences of v′. Let tB(W) and tE(W) be the
beginning and ending time of write(v′), then there are two sub-cases:

19

• Ti ∈ [tB(W), tE(W)]: in that case by Lemma 11 after 2δ time n − f servers are storing v′. If some
x correct servers do not reply with v′ then tB(W) > tB(R) + 2δ. Since Ti happens after tB(R) + 2δ
then in [tB(R), tB(R) + 2δ] there are at least n − f correct servers replying with v, thus, we get a
contradiction.

• Ti /∈ [tB(W), tE(W)]: in that case by Lemma 11 after δ time n− f servers are storing v′. There are
two sub sub cases:

– tB(W) ≤ tB(R) in that case the write(v′) operation starts before the read(), thus since it lasts δ
then all correct servers receive v′ and reply with it. Thus we have a contradiction.

– tB(R) + δ ≤ tB(W) ≤ tE(R) − 2δ: if Ti ∈ [tB(R), tB(R) + δ)] then for Lemma 2 at
most at tB(R)+2δ all correct servers reply to client ci. It delivers enough occurrences of v or v′

depending on the arrival order between echomessages carrying v and ci to respect the write(v′)
message which determines the message replies. Thus we have a contradiction.

– tB(R) + 2δ ≤ tB(W) ≤ tE(R)− δ: same reasoning as before.

– tB(W) > tE(R)−δ, since during the write(v′) operation there is no Ti by hypothesis and being
it at the end of the read() operation then it is not concurrent with the [tE(R), tE(R) + 3δ] time
interval. This is case a) proving that there are n− f correct servers correctly replying. Thus we
have a contradiction.

2Theorem 5

Theorem 6 If (i) ∆ > 4δ and nCAM ≥ 3f + 1, then the algorithm A∗Rreg implements a SWMR Regular
Register resilient to the presence of up to f Mobile Byzantine failures.

Proof The proof simply follows considering Theorem 4 and Theorem 5. 2Theorem 6

7 Conclusion

This paper presented the first round-free emulation of a distributed storage with regularity property that
tolerates Mobile Byzantine Failures. We proved that, differently from the synchronous round-based case, in
round-free computations the number of replicas n needed to tolerate f Mobile Byzantine Failures depends
not only on f but also on the ratio between the frequency of the movement ∆ and the upper bound on the
message latency δ (see Figure 1). Interestingly, such relation holds only for “frequent” movements. In the
case of low-frequency movements we obtain the same bounds as for the synchronous round-based case.
We conjecture that our bounds are tight for the synchronous round-free model since the proposed algorithm
targets the better trade-off between time needed to cure servers and operations length. The formal proof of
the tightness of our bounds is not trivial and is one of the open directions of this work.

References

[1] http://www.infoworld.com/article/2666755/security/
akamai-outage-hobbles-google--microsoft--others.html. Accessed September,
2015.

20

[2] http://www.informationweek.com/cloud/cloud-storage/
microsoft-azure-outage-blamed-on-bad-code/d/d-id/1318331. Accessed
September, 2015.

[3] Cloud computing vulnerability incidents: A statistical overview. http://www.cert.uy/
wps/wcm/connect/975494804fdf89eaabbdab1805790cc9/Cloud_Computing_
Vulnerability_Incidents.pdf?MOD=AJPERES. Accessed September, 2015.

[4] N. Banu, S. Souissi, T. Izumi, and K. Wada. An improved byzantine agreement algorithm for syn-
chronous systems with mobile faults. International Journal of Computer Applications, 43(22):1–7,
April 2012.

[5] Rida A. Bazzi. Synchronous byzantine quorum systems. Distributed Computing, 13(1):45–52, January
2000.

[6] François Bonnet, Xavier Défago, Thanh Dang Nguyen, and Maria Potop-Butucaru. Tight bound on
mobile byzantine agreement. In Distributed Computing - 28th International Symposium, DISC 2014,
Austin, TX, USA, October 12-15, 2014. Proceedings, pages 76–90, 2014.

[7] Silvia Bonomi, Antonella del Pozzo, and Maria Potop-Butucaru. Tight self-stabilizing mobile
byzantine-tolerant atomic register. In (to appear) 17th International Conference on Distributed com-
puting and Networking (ICDCN 2016), 2016. Preliminary Technical Report Version available at
http://arxiv.org/pdf/1505.06865v1.pdf.

[8] Silvia Bonomi, Shlomi Dolev, Maria Potop-Butucaru, and Michel Raynal. Stabilizing server-based
storage in byzantine asynchronous message-passing systems. In Proceedings of the ACM Symposium
on Principles of Distributed Computing (PODC 2015), Donostia San-Sebastian, Spain, July 2015.
ACM Press.

[9] Silvia Bonomi, Maria Potop-Butucaru, and Sébastien Tixeuil. Byzantine tolerant storage. In Proceed-
ings of the International Conference on Parallel and Distributed Processing Systems (IEEE IPDPS
2015), Hyderabad, India, May 2015. IEEE Press.

[10] H. Buhrman, J. A. Garay, and J.-H. Hoepman. Optimal resiliency against mobile faults. In Proceedings
of the 25th International Symposium on Fault-Tolerant Computing (FTCS’95), pages 83–88, 1995.

[11] Dorothy E Denning. An intrusion-detection model. Software Engineering, IEEE Transactions on,
(2):222–232, 1987.

[12] Ben Treynor (VP Engineering). http://googleblog.blogspot.fr/2014/01/
todays-outage-for-several-google.html. Accessed September, 2015.

[13] J. A. Garay. Reaching (and maintaining) agreement in the presence of mobile faults. In Proceedings
of the 8th International Workshop on Distributed Algorithms, volume 857, pages 253–264, 1994.

[14] Leslie Lamport. On interprocess communication. part i: Basic formalism. Distributed Computing,
1(2):77–85, 1986.

[15] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382–401, 1982.

21

[16] Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Distributed Computing, 11(4):203–
213, October 1998.

[17] Jean-Philippe Martin, Lorenzo Alvisi, and Michael Dahlin. Minimal byzantine storage. In Proceedings
of the 16th International Conference on Distributed Computing, DISC ’02, pages 311–325, London,
UK, UK, 2002. Springer-Verlag.

[18] Jean-Philippe Martin, Lorenzo Alvisi, and Michael Dahlin. Small byzantine quorum systems. In
Dependable Systems and Networks, 2002. DSN 2002. Proceedings. International Conference on, pages
374–383, 2002.

[19] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks (extended abstract). In Proceedings
of the 10th Annual ACM Symposium on Principles of Distributed Computing (PODC’91), pages 51–59,
1991.

[20] R. Reischuk. A new solution for the byzantine generals problem. Information and Control, 64(1-
3):23–42, January-March 1985.

[21] T. Sasaki, Y. Yamauchi, S. Kijima, and M. Yamashita. Mobile byzantine agreement on arbitrary
network. In Proceedings of the 17th International Conference on Principles of Distributed Systems
(OPODIS’13), pages 236–250, December 2013.

[22] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial.
ACM Computing Surveys, 22(4):299–319, December 1990.

22

