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Abstract

Keeping strongly consistent the state of the replicas of a software service deployed across a
distributed system prone to crashes and with highly unstable message transfer delays (e.g. the Internet),
is a real practical challenge. The solution to this problem is subject to the FLP impossibility result, and
thus there is a need for “long enough” periods of synchrony with time bounds on process speeds and
message transfer delays to ensure deterministic termination of any run of agreement protocols executed
by replicas. This behavior can be abstracted by a partially synchronous computational model. In this
setting, before reaching a period of synchrony, the underlying network can arbitrarily delay messages
and these delays can be perceived as false failures by some timeout-based failure detection mechanism
leading to unexpected service unavailability. This paper proposes a fully distributed solution for active
software replication based on a three-tier software architecture well-suited to such a difficult setting. The
formal correctness of the solution is proved by assuming the middle-tier runs in a partially synchronous
distributed system. This architecture separates the ordering of the requests coming from clients, executed
by the middle-tier, from their actual execution, done by replicas, i.e., the end-tier. In this way clients
can show up in any part of the distributed system and replica placement is simplified, since only the
middle-tier has to be deployed on a well-behaving part of the distributed system that frequently respects
synchrony bounds. This deployment permits a rapid timeout tuning reducing thus unexpected service

unavailability.

Index Terms

Dependable distributed systems, software replication in wide-area networks, replication protocols,

architectures for dependable services;

. INTRODUCTION

Replication is a classic technique used to improve the availability of a software service.
Architectures for implementing software replication with strong consistency guarantees (e.g.,
[8], [15], [20], [21], [27]-[29], [31], [35], [36]) typically use a two-tier approach. Clients send
their requests to the replica tier that ensures all replicas are in a consistent state before returning a
reply to the client. This requires replicas (and sometimes even clients, e.g., [34]) to run complex
agreement protocols [12], [23]. From a theoretical viewpoint, a run of these protocols terminates
if the underlying distributed system infrastructure ensures a tiafeer which (unknown) timing

bounds on process speeds and message transfer delays will be established, i.e., a partially
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synchronous computational model [9], [8]et us remark that in practice partial synchrony
only imposes that after there will be a period of synchrony “long enough” to terminate a run
[9].

Before the system reaches a period of synchrony, running distributed agreement protocols
among replicas belonging to a two-tier architecture for software replication can be an overkill
[1]. Under these conditions, the replicated service can show unavailability periods with respect to
clients only due to replication management (even though the service remains correct). Intuitively,
this can be explained by noting that replicas use timeouts to detect failures. Hence, if messages
can be arbitrarily delayed by the network, then timeouts may expire even if no failure has
occurred, causing the protocol to waste time without serving client requests. The use of large
timeouts can alleviate this phenomenon at the price of reducing the capability of the system to
react upon the occurrence of some real failure. One simple way to mitigate this problem is to
observe that in a large and complex distributed system (e.g. the Internet), there can be regions
that reach a period of synchrony before others, e.g. a LAN, a CAN etc. Therefore, placing
replicas over one of such “early-synchronous” regions can reduce such service unavailability
shortening the timeout tuning period. However, in many cases, the deployment of replicas is
not in the control of the protocol deployer but it is imposed by organizational constraints of the
provider of the service (e.g., a server may not be moved from its physical location).

In this paper we propose the use of a three-tier architecture for software replication to alleviate
the unavailability problem that has been previously introduced. This architecture is based on the
idea of 'physically interposinga middle-tier between clients (client-tier) and replicas (end-tier)
and to ’'layer’ a sequencer service on top of a total order protocol only within the middle-tier.
This approach is motivated by the following main observation: three-tier replication facilitates
a sharp separation between the replication logic (i.e., protocols and mechanism necessary for
managing software replication) and the business logic embedded in the end-tier. Therefore, the
middle-tier could be deployed over a region of a distributed system showing an early-synchronous

behavior where timeouts can be quickly tuned, limiting thus service unavailability periods.

1This need of synchrony is a consequence of the fact that the problem of “keeping strongly consistent the state of a set of
replicas” boils down to the Consensus problem. Therefore, it is subject to the FLP impossibility result [19], stating that it is
impossible to design a distributed consensus protocols ensuring both safefgtandinistictermination over an asynchronous

distributed system.
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We exploit the three-tier architecture to implement active replication over a set of deterministic
replicag. To this aim, the middle-tier is in charge of accepting client requests, evaluating a total
order of them and forwarding them to the end-tier formed by deterministic replicas. Replicas
process requests according to the total order defined in the middle-tier and return results to the
latter. The middle-tier waits for the first reply and forwards it to clients.

We present a fully distributed solution for the middle-tier that does not rely on any centralized
service. More specifically, the paper presents in Section Il the formal specification of active soft-
ware replication. Section lll details the three-tier system model. Section IV introduces the formal
specification of the main component of the middle-tier, namely the sequencer service, which is
responsible for associating in a fault-tolerant manner a request of a client to a sequence number.
In the same section, a fully distributed implementation of the sequencer service is proposed
based on a total order protocol. Section V details the complete three-tier software replication
protocol while its correctness proof is given in Section VI. Even though the paper focuses on
problem solvability, it also discusses in Section VII both practicality of the assumptions done
in the system model and efficiency issues of the proposed protocol. In particular it points out,
firstly, how deploying the middle-tier in an early synchronous region can help in reducing the
service unavailability problem and, secondly, the relation of partial synchrony with respect to
implementations of total order built on top of different software artifacts e.g., unreliable failure
detectors [9], group toolkits [8], the Timely Computing Base (TCB) [39].

Let us finally remark that to have a fast client-replicas interaction, the three-tier architecture
needs the fast response of just one replica while the two-tier requires a majority of replicas to
reply quickly. The price to pay by a three-tier architecture is an additional hop (i.e., a request/reply
interaction) for a client-replica interaction. In the rest of the paper, Section VIII describes the

related work and Section IX draws some conclusion.

Il. A SPECIFICATION OF ACTIVE REPLICATION

Active replication [23], [30], [37] can be specified by taking into account a finite set of clients
and a finite set otleterministicreplicas. Clients invoke@perationsonto a replicated server by

issuingrequests A request message:q is a pair (id, op) in which req.id is a unique request

2In [2] it has been shown that the three-tier approach to replication can also be used to handle non-deterministic replicas.
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identifier (unique for each distinct request issued by every distinct clienty;anap is the actual
operation that the service has to execute. A request reaches all the available replipasctss
the request invoking theompute(op)nethod, which takes an operation as an input parameter
and returns a result-¢s). Replica determinism implies that the result returnedcbynpute(op)
only depends from the initial state of the replicas and from the sequence of processed requests.
Results produced by replicas are delivered to clients by mearepbés A reply messageep
is a pair (id, res) in which rep.id is the unique request identifier of the original client request
req : rep.id = req.id andrep.res is the result of the processing ofq. Two requestseq; and
reqs are equal, i.e.req; = reqs iff reqq.id = regs.id, andreq; = reqs = reqy.op = reqs.op.

A correctimplementation of an actively replicated deterministic service satisfies the following
propertieé:

Termination. If a client issues a requestq = (id, op) then it eventually receives a reply
rep = (id, res), unless it crashes.

Uniform Agreed Order. If a replica processes a request, i.e., it executesompute(req.op),
asi-th request, then the replicas that processitherequest must processq asi-th request

Update Integrity. For each requesteq, every replica executesmpute(req.op) at most once,
and only if a client has issueckq.

Response Integrity.If a client issues a requestq and delivers a replyep, thenrep.res has

been computed by some replica performingpute(req.op).

[l. SYSTEM MODEL

Processes are classified into three disjoint types: &set{c;,...,¢} of client processes
(client-tier), a setH = {h4,...,h,} of active replication handler (ARH) replicas, a set=
{r1,...,mn} of deterministic end-tier replicas. A process behaves according to its specification
until it possibly crashes. After a crash event a process stops executing any action. A process is

correctif it never crashes, otherwise it faulty.

Point-to-point communication primitive€lients, replicas and active replication handlers com-

municate usingeliable asynchronous point-to-point channels modelled througtséme(m, p;)

3These properties are a specialization to the active replication case of the properties proposed in [16]
“4As replicas are deterministic, if they process requests in the same order before failing, then they will produce the same

result for each request. This satisfiegarizability [26].
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and deliver(m, p;) primitives. Thesend primitive is invoked by a process to send a message
m to process,. deliver(m, p;) is an upcall executed upon the receipt of a messagent by
processp;. Channels satisfy the following properties:

(C1) Channel Validity. If a process receives a message thenm has been sent by some
process.

(C2) Channel Non-Duplication. Messages are delivered to processes at most once.

(C3) Channel Termination. If a correct process sends a messageto a correct process, the

latter eventually deliversn.

Total Order broadcast Communication primitiveésRH replicas communicatamong themselves
using auniform total order broadcastor uniform atomic broadca¥fprimitive, i.e., ARH replicas
have access to two primitives, namélpCast(m) and TODeliver(m, h;), used to broadcast a
totally ordered message to processes ifHH and to receive a totally ordered messagesent
by some process; € H, respectively. The semantics of these primitives are the following [25]:
(TO1) Validity. If a correct processh; invokes TOCast(m), then all correct processes irH{
eventually executd@ODeliver(m, h;).
(TO2) Uniform Agreement. If a process inH executesTODeliver(m, hy), then all correct
processes irt{ will eventually executerODeliver(m, hy).
(TO3) Uniform Integrity. For any message:, every process ifi{ executesTODeliver(m, hy)
at most once and only if» was previously sent by, € ‘H (invoking TOCast(m)).
(TO4) Uniform Total Order. If a processes:; in ‘H first executesTODeliver(m, hy) and
thenTODeliver(ms, hy), then no process can execti®Deliver(ms, k) if it has not previously
executedTODeliver(my, hy).

We assume that any TO invocation terminates. This means that it is necessary to assume that
in the distributed system formed by ARHs and their communication channels, there is & time
after which there are bounds on process speeds and message transfer delays, but those bounds

are unknown, i.e.a partial synchrony assumptigi8] [9].

Failure AssumptionsThe assumption on the termination of the TO primitives implies that if the
specific uniform TO implementation can tolerate upftdailures, then
(A1) ARH Correctness. There are at least — f correct ARH replicas.

Moreover we assume:

(A2) Replica Correctness.There is at least oneorrect end-tier replica.
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Practicality of these assumptions will be further discussed in Section VII.

V. THE SEQUENCERSERVICE

The sequencer service is available to each ARH replica. This service returns a unigue and
consecutive sequence number for eddtinct client request and it is the basic building block
to satisfy theUniform Agreed Orderproperty of active replication. Furthermore, the service
is able to retrieve a request (if any) associated to a given sequence number. This contributes
to the enforcement of th&erminationproperty despite ARH replica crashes. We first propose
a specification and then a fully distributed and fault-tolerant implementation of the sequencer
service (DSS).

A. Sequencer Specification

The sequencer service exposes two methods, na@elRSEQ() and GETREQ(). The first
method takes a client requestq as input parameter and returns a positive integer sequence
number#seq. The second method takes a positive integgeg as input parameter and returns
a client requesteq previously assigned tg-seq (if available), ornull otherwise. Formally, the

sequencer service is specified as follows.

Properties We denote wWithGETSEQ;() = v (resp. GETREQ;() = v) the generic invocation of
the GETSEQ() (resp. GETREQ()) method performed by the generic ARH replikac H that
terminates with a return value

A correctimplementation of the sequencer service must satisfy properties S1...S6 described
below. In particular, to ensure live interactions of correct ARH replicas with the sequencer
service, the following liveness property must hold:

(S1) Termination. If h; is correct, GETSEQ;() and GETREQ;() eventually return a value.

Furthermore, the following safety properties on BeTSEQ;() invocations must hold:

(S2) Agreement.

V (GETSEQ;(req) = v, GETSEQ;(req’) ='),req =req' = v =1

(S3) UniquenessY(GETSEQ;(req) = v, GETSEQ;(req’) = v'),v = v = req = req

(S4) Consecutiveness/GETSEQ;(req) = v, (v > 1) A (v > 1 = Jreq’ s.t. GETSEQ;(req’) =
v—1)
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The Agreementproperty (S2) guarantees that two ARH replicas cannot obtain different se-
guence numbers for the same client request; Wnequenessproperty (S3) avoids two ARH
replicas to obtain the same sequence number for two distinct client requests; finalGorthe
secutivenesproperty (S4) guarantees that ARH replicas invokiBgTSEQ() obtain positive
integers that are also consecutive, i.e., the sequence of client request ordered according to the
sequence numbers obtained by ARH replicas does not present “holes”.

Finally, upon invokingGETREQ(), ARH replicas must be guaranteed of the following safety
properties.

(S5) Reading Integrity.V GETREQ;(#seq) = v = ((v = null)V(v = req s.t. GETSEQ;(v) =
#scq))

(S6) Reading Validity. VY GETSEQ;(req) = v = GETREQi(v—k) =v/,0 < k < v,v # null

The Reading Integrityproperty (S5) defines the possible return values of BErREQ()
method that returns eitherull or a client request assigned to the sequence number passed
as input parameter. Note thatGeETREQ() method implementation that always returningi!
satisfies this property. To avoid such an undesirable behavioRehding Validityproperty (S6)
states that if an ARH replica; invokes GETSEQ;(req) that returns a value = #segq, it will
be then able to retrieve all the client requests,, .. ., reqxs, assigned to a sequence number
#seq’ such thatl < #seq’' < #seq.

B. A Fully Distributed Sequencer Implementation

The implementation is based on a uniform total order broadcast primitive exploitable by ARH
replicas (see Section Ill) used to let the ARHs agree on a sequence of requests. In particular,
each DSS class locally builds a sequence of requests which is updated upon receiving each
requestfor the first time Following receipts of requests already inserted in the sequence are
simply filtered out. As requests are received in a total order, the local sequence of each DSS
class evolves consistently with others.

The DSS class pseudo-code run by each ARH repljda presented in Figure 1. It maintains
an internal state composed by tRequenced array (line 1) that stores in theth location the
client request assigned to sequence numipand by a# LocalSeq counter (line 2) pointing to

the first free array location (initialized to 1).
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CLASS DSS

1 ARRAY Sequenced := [null,null .. .];

2 INTEGER#LocalSeq := 1;
3 REQUESTGETSEQ(req)
4 begin
5 if (@#seq : Sequenced[#seq.id = req.id)
6 then TOCast(req);
7 wait until (3#seq : Sequenced[#seq|.req_id = req_id);
8 return (#seq);
9 end
10 REQUESTGETREQ(j)
11 begin
12 return (Sequenced[j]);
13  end
14 when (TODeliver(req, h¢)) do
15 if (@#seq : Sequenced[#seq] = req)
16 then Sequenced[# LocalSeq| := reg;
17 #LocalSeq := # LocalSeq + 1;

Fig. 1. Pseudo-code of the Sequencer class run by ARH replica

The class handles three events, i.e., (i) the invocation oG#ESEQ() method (line 3), (ii) the
invocation of theGETREQ() method (line 10), and (iii) the arrival of a totally ordered message
(line 14).

In particular, upon the invocation of th€eTSEQ() method, it is firstly checked whether
the client request (passed as input argument by the invoker) has been already inserted into a
Sequenced array location or not (line 5). If it is not the case, the client request is multicast to
all other sequencers (line 6). When the request has been sequenced, i.e., it appears in a location
of the Sequenced array (line 7), its position in the array is returned to the invoker as the request
sequence number (line 8).

Upon the invocation of th&SETREQ() method (line 10), the class simply returns the value
contained in the array location indexed by the integer passed as input parameter (line 12).

Therefore, if the array location contains a client request, the latter is returned to the invoker,
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null is returned otherwise.

Finally, when a totally ordered message is delivered to the DSS class by the total order
multicast primitive (line 14), it is firstly checked if the client request contained in the message
already appears in a location of tl¥equenced array (line 15). If it is not the case, the client
request is inserted into th&equenced array in a position indexed by thg LocalSeq that is

then incremented (lines 16-17).

V. A FULLY DISTRIBUTED MIDDLE-TIER PROTOCOL

The proposed protocol strives to maximize service availability by allowewgrynon-crashed
ARH replica toconcurrently (i) accept client requests, (ii) order these requests, (iii) forward
ordered requests to the end-tier, (iv) receive results, and (v) return results to clients. As a
consequence, the replication scheme can shift from a passive one (if the clients send their
requests to a single ARH replica) to a form of active replication (if clients send their request to
all ARH replicasj.

In order to enforce the active replication specification in the presence of ARH replica failures
and asynchrony of communication channels, we embed within client and end-tier replica pro-
cesses two message handlers, i.e., RIRrgnsmission and redirectiohandler) within clients,
and FO f{iltering and orderinghandler) within end-tier replicas. These handlers intercept and
handle messages sent by and received from the process they are co-located with.

In particular, RR intercepts all the operation invocations of the client and generates request
messages that are (i) uniquely identified and (ii) periodically sent to all ARH replicas according
to some retransmission policy, until a corresponding reply message is received from some ARH
replica. Examples of distinct implementations of the retransmission policy could be: (i) sending
the client request to all ARH replicas each time a timeout expires or (ii) sending the request to
a different ARH replica each time the timeout expires.

FO intercepts all incoming/outgoing messages from/to ARHs in order to emsdered
request executiofoperations are computed by replicas according to the request sequence number
piggybacked by ARHs) anduplicate filtering(the same operation contained in repeated requests

is computed only once). Request messages arriving out of order at FO are enqueued until they

®This replication scheme has been nanasginchronous replicatiom [22] (see Section VIII)
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can be executed. FO also stores the result computed for each operation by its replica, along with
the sequence number of the corresponding request message. This allows FO to generate a reply
message upon receiving a retransmitted request, thus avoiding duplicate computations and at the
same time contributing to the implementationT@rmination

An implementation of FO and RR is presented in [33].

A. Introductory examples

91‘ Invoke(op,)
\ req,=<req,,op,> rep,=<req,,,res,>|

Invoke(op,) H

req,=<req,,0p,> rep2:<reqdz,resz>/
>

GetSeq(req,)=2 I

N

\ L

<2,0p,>

<lres>

compute(op,) compute(op,)

"

r J} compute(op,) compute(

I3 0 i compute(op,) %mpule(opz) !—)
/

op,)

Fig. 2. A failure-free run of the fully distributed three-tier active replication protocol

Let us introduce the middle-tier protocol using two simple introductory examples.

Failure-free run (Figure 2). In this scenario, client; invokes theRetransmission/Redirection

(RR) INVOKE(0op;) method to perform operatiosp;. This method creates a uniquely identified
request messageq; = (reqq1,0p1) and then it sendseq; to an ARH replica (e.g.h;). Upon
receivingreqi, hy iINVokesGETSEQ(req;) on the DSS class to assign a unique sequence number

(1 in the example) taeq;. Thenh; sends a message containing the gaiwop;) to all end-tier

replicas and starts waiting for the first result. TFi#ering and Ordering(FO) message handler

of each end-tier replica checks if the sequence number of the request received is the expected one
with respect to the computation of the replica it wraps, i.e., if the request sequence numberis 1 in

this scenario. In the example, the FO handlers,aindr, immediately verify this condition, and

July 27, 2005 DRAFT



MANUSCRIPT 12

thus invokecompute(op, ) on their replicas that produce the restt;. Then FO sends a message

to h, containing the paiK1, res;). Upon deliveringthe firstamong these messagés, sends a

reply messagéreq;q1,res;) back toc;. hy discards following results produced for operatign

by end-tier replicas (corresponding messages are not shown in Figure 2 for simplicity). Then
hi servesreq, sent byc,. To do so,h; gets theregy’'s sequence number) from the DSS
class, sends a message containing a {faivp,) to all end-tier replicas and waits for the first
reply from the end-tier. Note that in this scenaripreceives(2, op,) beforereceiving (1, op).
However FO executes operations in the order imposed by sequence numbers. Therefore, upon
receiving (1, req;), the FO handler of; executes both the operations in the correct order and
returns toh; both the results. This ensures that the state;afvolves consistently with respect

the state of-; andr, and contributes to enforcement of tbaiform Agreed Ordeproperty (see

page 5). As soon ak, receives the first2, res,) pair, it sends the result back to the client.

€1 Invoke(op,)

req,=<reqy ,op,>

C;

Invoke(op,) P

req,=<reg,,0p,> red,=<re, 0p,> rep,=<req, res,>

hy

GetSeq(req,)=2 >
N \\\ GetReq(L)= req; <1, resl>] <2,res,> I

<1,0p,><2,0p,>

<lres>

compute(op,)
{ compute(opg% K3

n

)

]

|_compute(op,) | compute(op,) ’—)

3

Fig. 3. A run of the fully distributed three-tier active replication protocol in presence of failures

Run in the presence of failurggigure 3). As in the previous example, invokes op; that
through the RR component reachiesin a message containing tReegq;q1, op;) pair. Thenh,
gets a unigue sequence number (1) for the request by invoking the sequencer. However in this
scenarioh; crashes after having multicast the request to the end-tier. As channels are assumed

reliable only amongorrectprocesses, the request may not be received by some end-tier replicas.
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In particular, in Figure 3 the request is received only-hyndr,. Furthermoreg¢; crashes. This
implies thatreq; will no longer be retransmitted. Then, serves requesteg, sent by cliente,.
Therefore it gets a sequence numbgy iovoking GETSEQ(req,). By checking this sequence
number against a local variable storing the maximum sequence number assighedobthe
requests forwarded to the end-tigs,determines that it has not previously sent to end-tier replicas
the request assigned to sequence numbele. req,. As this request could have been sent by
a faulty ARH replica, in order to enforce the liveness of the end-tier replitasends to the
end-tier a message containing thiereq;) pair, in addition to sending the message containing
the (2, reqs) pair necessary to obtain a response to the pending client reguestTherefore s,

first invokes the sequenc@eTREQ(1) method to obtaimeq; and then sends to end-tier replicas
both the(1, req;) and (2, reqy) pairs. In this way the unique correct replica of this scenario, i.e.,
r3, IS maintained live and consistent lhy. As usual,h, returns toc, the result ofop, as soon

as it receivesesy from rs.

The following section details the protocols run by ARHs.

B. ARH Protocol

We distinguish the following message types:
Messages exchanged between the client-tier and the middle-Wé denote with“Request”
the messages sent by clients to ARH replicas, and wihply” the messages following the
inverse path;
Messages exchanged between the middle-tier and the endtle@se messages contain sequence
numbers produced by the sequencer and used by replicas to execute requests in a unique total
order. Therefore we denote witti’O Request” (totally ordered reque3tthe messages sent by
ARH replicas to end-tier replicas, and with’O Reply” (totally ordered reply the messages
following the inverse path.

As depicted in Figure 4, each ARH replica embeds a local DSS clasgu¢ncer) that
implements the sequencer service as described in Section 1V, which is initialized at line 3. The
internal state of each ARH replica is represented bylthe Served Req integer (line 1), which
dynamically stores the maximum sequence number among the numbers assighetb liie
requests forwarded to the end-tiérseq (line 2) is a variable used to store the sequence number

assigned bySequencer to the client request currently being served/hy ARH replicas handle
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>
Py
T

INTEGER LastServedReq := 0;
INTEGER #seg;
Sequencer := new DSS(}
when (deliver [‘Request”,reg| from ¢) do

#seq := Sequencer.GETSEQ(req);

if (#seq > LastServedReq + 1)

then for each j : LastServedReq < j < #seq
do regq; := Sequencer.GETREQ(j);

© 0 N O o b~ W N PP

for each 7, € {ry,...,rm} do send[“TORequest’,(j, req;.op)| t0 r¢;

10 for each 7, € {ry,...,rn} do send[“TORequest”,(#seq, req.op)] t0 r¢;
11 LastServedReq := max(LastServedReq, #seq);

12 wait until (deliver [“TOReply”, (#seq,res)] from ry € {r1,...,7m})

13 send[‘Reply”, (req.id,res)] to ¢

Fig. 4. Pseudo-code of an ARH repliéa

only one event, i.e., the arrival of a client request inRequest” type message (line 4). In
particular, upon the receipt of a client requéstfirst invokesSequencer to assign a sequence
number to the request (stored in tiigeq variable, line 5). Then ARH controls whethgfrseq

is greater thanLastServedReq + 1. Note that if #seq > LastServedReq + 1, then some
other ARH replica served some other client requests with sequence number comprised in the
interval [LastServedReq + 1, #seq — 1]. In this case, as shown in the second example of the
previous sectionf; sends these requests again to the end-tier (lines 7-9) in order to preserve
the protocolTerminationproperty (S1) despite possible ARH failures. Requests are retrieved
from Sequencefline 8) thanks to thdReading Validityproperty (S6). Therh; sends to server
replicas the“T'O Request” message containing (i) the operation contained in the client request
currently being served and (ii) the sequence numbeeq assigned to the request (line 10).
Finally h; updates thelastServedReq variable (line 11) and waits for the firstl’O Reply”
message containingtseq as sequence number of the result (line 12). Upon the receipt of the

result, h; forwards the result to the client through“&eply” message (line 13).
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VI. CORRECTNESSPROOFS

In this section we first show the correctness proof of the sequencer described in Section IV-A

and then the complete middle-tier protocol described in Section V.

A. The sequencer

Theorem 1 ((S1) Termination)f h; is correct, GETSEQ;() and GETREQ;() eventually return
a valuev.
Proof. By contradiction. Supposk; is correct and invokes a sequencer class method that
never returns. We distinguish two cases, i.e., either the methG& TREQ() (lines 10-13) or it
is GETSEQ() (lines 3-9):
GETREQ() invocation. In this case the invocation can never block: as soon as the content of
the j-th position of the array is read, the method returns. Contradiction.
GETSEQ() invocation. We further distinguish two cases: eitBérseq : Sequenced|#seq|.id =
req.id or P4#tseq : Sequenced|#seq|.id = req.id when theif statement at line 5 is evaluated.
« In the first case, line 7 is executed immediately after line 5 and the clause whihstate-
ment is satisfied. As a consequengeeq is returned to the invoker at line 7. Contradiction.
« In the second case, statement 6 is executed, i.e., the client request is multicast to other ARH
replicas. Asp#seq : Sequenced[#seq|.id = req.id, the execution blocks at statement 7.
As the multicast is executed by a correct replica (by hypothesis), froriwaheity property
(TO1) of the total order primitive, it follows that statement 14 will eventually be executed.
Therefore at the end of statement 17 there hal@sieq : Sequenced|[#seq|.id = req.id
and this in turns provokes the execution to satisfy the clause ofvétiestatement at line
7. As a consequenceétseq is returned to the invoker. Contradiction.
u
Theorem 2 ((S2) Agreementy: (GETSEQ;(req) = v, GETSEQj(req’) = v'),req = req’ =
v="u.
Proof: By contradiction. Supposk; invokesGETSEQ;(req) that returns#seq;, h; invokes
GETSEQj(req) that returns#seq; and #seq; # #seq;.
From the pseudo-code of Figure 1 (lines 7-8), it follows thatinSequenced|#seq;] = req

and in h;, Sequenced|[#seq;] = req. To insert a request into thEequenced array, a generic
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ARH replica must execute statement 16 that is executed iff the two conditions at lines 14-15

hold. These conditions imply that each ARH replica inserts a client requestuateenced at

most once. Without loss of generality, we suppose that every message delivered to each ARH

replica contains a distinct request. As a consequence, statement 16 is executed/hyabath;

each time statement 14 is executed, $liguenced array in each ARH replica reflects the order

of its message deliveries, arftbquenced|k] contains thek-th message delivered at statement

14. Thenh, has deliveredn = req as #seq;-th message, whilé; has deliveredn = req as

#seq;-th message. Without loss of generality, suppose #aatg; = #seq; — 1. This implies

thath; delivered at least one messagé# m beforem. This violates property TO4 of the total

order primitive. Contradiction. [ |
Theorem 3 ((S3) Uniquenessy{GETSEQ;(req) = v, GETSEQj(req’) = v'),v = v = req =

req.

Proof: By contradiction. Suppose that invokes GETSEQ;(req) that returns#seq and h
invokes GETSEQ;(req’) that returns#seq, and req # req’. From the sequencekgreement
property (S2), let us suppose = j without loss of generality. However, ifi; invokes
GETSEQ(req) and GETSEQ(req’) both returning#seq, from statements 7-8 (Fig 1) it follows
Sequenced[#seq] = req (When GETSEQ(req) is invoked) andSequenced|#seq] = req
(when GETSEQ(req’) is invoked), i.e., the value of thEequenced[#seq] location has been
modified between two method invocations. By noting that the value of the gefiefienced
array location is written at most once (statements 16-17), i.e., once the location indexed by
LocalSeq has been written there’s no way to write it again, fromy # req it follows
Sequenced|#seq| # Sequenced|#seq|. Contradiction. [ |

Theorem 4 ((S4) Consecutivenes8iBETSEQ;(req) = v,(v > 1) A (v > 1 = Jreq s.t.
GETSEQ;(req) =v — 1)

Proof: By contradiction. First suppose thatinvokesGETSEQ(req) that returns a sequence
number #seq < 1. From pseudo-code of Figure 1 statements 7-8, it follows Hateq :
Sequenced|#seq|.id = req.id N\ #seq < 1. Therefore,h,; previously executed statement 16
having LocalSeq = #seq < 1. However,LocalSeq is initialized to1 and is never decremented.
Contradiction. Thereforétseq > 1.

Suppose thab; invokes GETSEQ;(req) that returns#seq > 1 and that there do not exist a
client requestreq’ and an ARH replica:; such that ifh; invokes GETSEQ;(req’), it obtains
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#seq — 1 as result. Ash; obtained#seq as the result of thaGETSEQ;(req), the sequencer
Agreemenproperty (S2) ensures each ARH replicathat successfully invokeSETSEQ;(req),
returns#seq. The sequencérerminationproperty (S1) ensures that the method eventually returns
in correct replicas. Then, lét; be a correct replica that invok&eTSEQ;(req); from #seq > 1,
it follows that whenh,; executes statement 16pcalSeq > 1. ThereforeLocalSeq has been
previously incremented at statement 17, ikg.previously inserted irfequenced|[#seq — 1] the
content of a message = req’ and this impliesSequenced[#seq — 1] # null. This implies
that eventually, ifh; invokes GETSEQ;(req’), it will obtain #seq — 1 as invocation result.
Contradiction. ]

Theorem 5 ((S5) Reading Integrityy: GETREQ;(#seq) = v = ((v = null) V (v = req S.t.
GETSEQ;(v) = #seq)).

Proof: By contradiction. Supposk; invokes GETREQ;(#seq) that returns a value, v #

null and VGETSEQ;(v) # #seq. Without loss of generality suppose= j and thath; first
invokes GETREQ;(#seq) = v and thenGETSEQ;(v). From pseudo-code in Fig. 1 it follows
v = Sequenced|[#seq| (statement 12) and thatequenced|#seq] # null (by hypothesis). From
statement 16Sequenced[#seq] # null implies Sequenced|#seq| = v = req. From statement
15, it follows thatreq is insertedonly in Sequenced[#seq]. Therefore, from statements 5-8,
GETSEQ;(req) = #seq. Contradiction. [ |

Theorem 6 ((S6) Reading Validityy: GETSEQ;(req) = v = GETREQ;(v — k) = v/, 0 <
k<wv, v # null

Proof: By contradiction. SUppoS&ETSEQ;(req) = v and GETREQ;(#seq — k), 0 <

k < 4tseq, returnsv = null. Without loss of generality, suppose = #seq = 2 and k =
1. By hypothesis,Sequenced|2] # null and this implies thatLocalSeq has been previously
incremented (passing from to 2) at statement 17. This in turn implies th&tquenced|1]
has been previously written upon the delivery (at statement 14) of a client requgste.,
Sequenced[1] = req. As writings in the locations of th€equenced array are performed at most
once (from statements 16-17 and by noting thatalSeq is never decremented), whéninvokes

GETREQ;(1) that returnsy = null, it follows (statement 12) thateq = null. Contradiction. =
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B. The three-tier protocol

The following assumption let handling process crashes in a uniform way, i.e., without con-
sidering partial or independent failures of co-located components.

No independent failures of co-located component®R, DSS and FO are co-located with the
client, with the ARH replica and with the end-tier replica processes, respectively. We assume
that co-located components do not fail independently. This implies that a crash of a client,
ARH replica, end-tier replica process implies the crash of its RR, DSS, FO, respectively, and
vice-versa.

1) Preliminary Lemmas:

Lemma 1:Let req; andreq; be two requests sent to the end-tier by some ARH replica at
statement 9 or at statement 10 into two “TORequest” mess&@&sRequest”, (#seqy, req;.op)]
and [“TORequest”, (#seqa, reqa.op)], then#seq = #seqy < reqy = regs.

Proof:

By contradiction. We distinguish the following three cases.

« Both requests are sent by some ARH replica at statemeridiing that#seq; and#seqs
are the return values of theETSEQ() method invocation performed at statement 5, and
suppose by contradictioftseq; = #seqs andreq; # req,. From the sequencéfniqueness
property (S3), it follows thattseq; = #seqs implies req; = reqs. Contradiction. On the
other hand, suppose by contradictiofy, = req, and#seq, # #seq,. From the sequencer
Agreemenproperty (S2), it follows thateq; = reqs implies#seq; = #seqy. Contradiction.

« A request (sayyeq;) is sent by some ARH replica at statement 9 and the otheg) is
sent at statement 10lote thatreq, is returned at statement 8 fromGETREQ() invocation
with input argument#seq;. As at statement Btseq > #seq;, from the sequenceéReading
Validity property (S6) it followsreq; # null. Therefore, from the sequenc&eading
Integrity property (S5), it follows thalGETSEQ;(req;) = #seq;. Furthermore, as in the
previous case#seq, is the return value of &aGETSEQ() method invocation performed
at statement 5, i.e GETSEQ;(reqs) = #seqo. Suppose by contradictioftseq; = #seqs
and req; # reqs. Again, from the sequencddniquenessproperty (S3) it follows that
#sequ = Hseqs implies req; = rege. Contradiction. On the other hand, suppose by

contradictionreq; = reqs, and #seq; # #seqy. From the sequencekgreementproperty
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(S2) it follows thatreq; = reqy implies #seq; = #seqs. Contradiction.

« Both requests are sent by some ARH replica at statemefrt this case bothreq; and
reqe are returned at statement 8 fromGETREQ() invocation with input argumengseq,
and #seq, respectively. In both cases, at statement#seq > #seq: and #seq >
#seqy. From the sequencdReading Validityproperty (S6), there followeq; # null, and
reqs # null. Therefore, from the sequend@eading Integrityproperty (S5), it follows that
GETSEQ;(req1) = #seqi, and thatGETSEQ;(req) = #seq.. Suppose by contradiction
#seqy = #seqo andreq; # reqs. Also in this case, from the sequenddmiquenesproperty
(S3) it follows that#seq; = #seqs impliesreq; = regs. Contradiction. On the other hand,
suppose by contradictioreq, = req, and#seq, # #seqo. From the sequencekgreement
property (S2) it follows thateq, = reqs implies #seq; = #seq.. Contradiction.

u

Lemma 2:1f an ARH replicah; hasLastServedReq = k, then it has already sent to end-tier
replicask “T'ORequest” messages, i.e.;TORequest”, (#seq,, req,.op)] for eachn : 1 <n <
k.

Proof: By contradiction. Assume that; has LastServedReq =k > 0 (k =0 is a trivial
case) and it has not sent to end-tier a “TORequest” messdye Request”, (#seq;, req;.op)]
such thatj : 1 < j <k.

Without loss of generality, consider the first time thatsets LastServedReq to k at line
11. As LastServedReq is initialized to O at line 2, and for eacltseq returned byGETSEQ()
at line 5 there holds#seq > 0 (from the sequence€onsecutivenesproperty (S4)), when
LastServedReq is set to#seq = k at line 11, this implies#seq = k at line 5. We distinguish
two cases:

« k= #seq=1. This is a trivial case: the condition at line 6 does not hold, thehas sent

a [“TORequest”, (1, req,.op)] to all end-tier replicas (line 10). Contradiction.

o« k = #seq > 1. In this case the condition at line 6 holds, thénexecuted lines 7-9
before updatind.astServedReq to k at line 11. This implies thak; has sent to all end-tier
replicas a “TORequest” messag€d 0 Request”, (#seqy,, req,.op)] for eachn : 1 <n < k.
Contradiction.
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2) Theorems:For the sake of brevity, we will refer to the properties introduced so far
using their identifiers. As an example, we will refer @nannel Validity, No Duplication, and
Terminationas C1, C2, and C3.

Theorem 7 (Termination)If a client issues a requesteq = (id,op) unless it crashes, it
eventually receives a replyep = (id, res).

Proof: By contradiction. Assume that a client issues a requegt= (id, op), it does not
crash and it does not deliver a result. The correctness of the client, along with the retransmission
mechanism implemented by the RR handler, guaranteerthats eventually sent to all ARH
replicas. Therefore, from Al and C3, it follows thatarrect ARH replicah,. eventually delivers
the client request message.

From the algorithm of Figure 4, upon receiving thej, h. invokes GETSEQ(REQ) (line 5)
that terminates due to S1. This method returns the sequence ndfmbgrassociated with the
current request.

Lemma 2 ensures that at line 11 all requests such that their sequence number is lower than or
equal toLastServedReq (including the current request) have been sent to the end-tier replicas
by h.. A2 and C3 guarantee that at least a correct end-tier replicaceives all the requests.

This ensures that the FO handler, which executes requests according to their sequence numbers,
eventually invokesompute(req.op) within r., and then it sends back the result in a TOreply
message.

From the correctness df. andr., and from C3, it follows that the result is delivered /o
(Figure 4 line 12) that thus sends the reptp = (req.id, res) to the client (line 13). For similar
reasons, the RR handler eventually delivers the result to the client that thus receives the result.
Contradiction. [ |

Theorem 8 (Uniform Agreed Order)f an end-tier replica processes a requesy, i.e., exe-
cutescompute(req.op)), asit" request, then every other end-tier replica that processe#’the
request will executeeq asi*" request.

Proof:

By contradiction. Assume that an end-tier repligaexecutesreq asi' request and another
end-tier replicar, executes a$'” a requestreq’ andreq # req'.

The FO handlers of, andr; ensure that requests are executed at most once and according to

the sequence numbers attached to them by ARH replicas at line 10 of the pseudo-code depicted
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in Fig. 4.

Therefore thei'* request processed by, i.e., req, is associated with a sequence number
#seq =1, i.e.,r, delivered a TORequeStmessage containing, req.op). For the same reasons,
r, delivered a TORequestmessage containingi, req’.op). From Lemma 1, it followsreq =
req’. Contradiction. [ |

Theorem 9 (Update Integrity)For any requestq, every end-tier replica executesmpute(req.op
at most once, and only if a client has issued.

Proof: The case in which the same request is executed twice is trivially addressed by
noting that FO handlers filter out duplicates of TOrequest messages.

Assume thus by contradiction that an operatiprexecuted by a replica, has not been invoked
by a client.

The FO handler executes only operations contained in TOrequest messages delivered to
From C1, it follows that ifr, delivers a TORequeStmessage containingseq, req.op), then
the TOrequest message has been sent by an ARH répliedher at line 9 or at line 10 (see
Figure 4).

If the message has been sent at line A0has receivedeq at line 4. This request has been
then sent from a client in a request message (from C1). Contradiction.

Otherwise, if the TOrequest has been sent at line 9, from S5 and S6 there exists an ARH
replica h; that has previously execute@ETSEQ;(req). As GETSEQ;(req) (line 5) is always
executedafter the delivery of a client request message (line 4) it follows thathas been sent
by a client in a request message (from C1). Contradiction. [ |

Theorem 10 (Response Integritylj: a client issues a requeséq and delivers a replyep,
thenrep.reshas been computed by some end-tier replica, which executegute(req.op.

Proof: By contradiction. Assume that a client issues a requegstind delivers a replyep
andrep.res has not been computed by an end-tier replica.

From C1, if a client delivergep then an ARH replica:; has previously sent a reply message
containingrep to the client. From the algorithm of Figure 4, if; sends a reply message
containingrep = (req.id, res) (line 13) to the client then (i}; received a client request message
req from the client (line 4), (ii)h; invoked GETSEQ;(req) returning#seq (line 5) and (iii) it has
successively delivere@#seq, res) from a replica (line 12). From CX#seq, res) has been sent

by the FO handler of an end-tier replica. This implies that the request has been previously
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executed invoking:ompute(req.op). Contradiction.

VII. PRACTICAL ISSUES

Practicality of the assumption8/ost of the assumptions introduced in Section Ill are necessary
to ensure the termination property of our protocol. These include the assumption on one replica
being always up, the assumption on reliable point-to-point communication channels and the
assumptions on partial synchrony of the region of the distributed system where ARHSs are
deployed, which is at the base of the termination of the TO broadcast primitive. Let us note
that if one of these assumptions is violated, only liveness is affected (i.e., the three-tier protocol
blocks), while safety is always preserved. The assumption on the number of correct replicas is
the weakest one under which the system is still able to provide the service. The assumption
on point-to-point communication channels allows link failures, as long as they are repaired in a
finite time. In practice it is implemented by message retransmission and duplicate suppression.
The assumption on partial synchrony does not mean that the timing bounds have to hold
always Practically, these bounds have to hold only for a period of time whidbng enough

to let complete any run triggered by an invocation of the TO broadcast prifhitive

Efficiency of the three-tier architecturélp to this section we have focused the attention on
problem solvability of active software replication using a three-tier protocol. In the following
we discuss under which setting the proposed architecture reduces the problem of unexpected
service unavailability pointed out in the introduction. Firstly, three-tier architecture assumes that
a service deployemay place end-tier replicas according to the strategy of the organization that
wants to provide the service. Under this given conditiopratocol deployerhas to select a
region of a distributed system in which to deploy the middle-tier, i.e., the ARHSs. For the three-
tier replication protocol to be efficient, the protocol deployer selects a region that better than
others enjoys the following two properties:

« the region shows an “early-synchronous” behavior. Early synchronous means that the dis-

tributed system will reach synchrony bounds of a partially-synchronous system very early

®This follows from the absence of an explicit notion of time in asynchronous system models, in which the term “long enough”

cannot be further characterized and it is commonly replaced by “always”.
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in any run triggered by an invocation of a TO broadcast primitive. Synchronous distributed
systems or systems that exhibit a synchronous behavior "most-of-the-time” are specific
instantiations of an “early-synchronous” distributed systems.

« as many as possible of the point-to-point reliable channels established among ARHs, end-tier

replicas, and (possibly) clients show a short latency and a low loss rate;

As explained below in this section, the first point enables both fast reaction to real failures
within the middle-tier and infrequent false failure suspicions. This reduces unexpected service
unavailability.

Once the previous point has been guaranteed, the second point maximizes the probability of a
short service time for a request. In our protocol, the receipt of the first reply of an end-tier replica
at the middle-tier triggers indeed the sending of the reply back to the client. This also points
out an interesting tradeoff between the number of end-tier replicas (and thus also of channels
between the middle and the end tiers) and the maximization of the probability of providing a

short end-to-end service time.

Total Order Implementation SelectioAs pointed out above, the protocol deployer is in charge
of deploying the middle-tier in a distributed system region that quickly reaches and maintains
synchrony bounds. This follows from the protocol run by ARHs, which, to be efficient, requires
rapid termination of the TO primitive most of the time. To do so, it is important to note
that TO implementations are typically built on top sfftware artifactsi.e., software modules
characterized by the properties they provide. Some examples follow:
« TO implementations built on top of annreliable failure detectgre.g. ¢S, which is
characterized by specific completeness (safety) and accuracy (liveness) properties [10];
« TO implementations provided for the virtual synchrony programming model, adopted by
several group toolkits (e.g., [5], [8]), which rely on the specification ofeambership service
to enforce liveness [13].
« TO implementations developed on top of the “Timely Computing Base” (TCB, [39], [40]),
which includes a well-specifieimed agreement servidéd4].
The liveness properties of these software artifacts and the associated TO implementations
are typically implemented using timeouts. TO implementations are very sensitive to the values

of these timeouts whose definition is up to the protocol deployer. Differently from two-tier
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approaches, the proposed protocol allows the protocol deployer to account for these issues by
selecting a well-defined and possibly highly controlled system region that - independently from
end-tier replica deployment - lets a software artifact and thus the associated TO implementation
work at their best as frequently as possible.

Let us finally remark that clients and replicas have no constraint from the point of view of
synchrony requirements. As a consequence, a service deployer does not have to take this issue
into account when deploying the end-tier replicas, and clients can show up in any part of the
distributed system.

Garbage Collection.Two points in the proposed three-tier protocol are critical with respect
to resource consumption: (i) the memory used by the sequencer service implementation (i.e.,
ARH) grows linearly with the number of client requests, and (ii) FO handlers store all the results
computed by the co-located end-tier replicas.

To address both these issues, it is worth noting that the RR co-located with each client
can be configured to ensure that (i) clients may transmit a request for a new operation only
if the result of the former operation has been already received, and (ii) requests are uniquely
identified through a pair composed by a unique client identifier and a local sequence number, i.e.
req.id = (¢;, seq.,) (this is the approach followed in the RR implementation appearing in [33]).
Using these simple serialization and request identification mechanisms, upon receiving a client
request message (e.ggq = ((ci, seq.,),op), Whereseq,, is incremented by RR each time a
request is sent by;), ARH and FO can delete from their memories all operations and associated
results pertaining requests issued by the same client and having a local sequence sagfnber
that satisfiesseq,, < seq.,. Furthermore, upon receivingeg ARH and FO are also enabled to
discard request messages from the same client that satisfy the former inequality. This follows
from noting that if RR is blocking then a cliemf issuing a requesteq has certainly received
the reply to all former request (issued with a local sequence number lowersthah It is
possible to show that the described mechanisms permit to bound memory consumption of both
ARH and FO components by a linear function of the number of clients without impacting on the
protocol correctness. Let us finally remark that implementing the mechanisms outlined above
passes through a simple modification of the specification and of the design of the distributed
sequencer implementation. Moreover, line 9 of the protocol of Fig. 4 has to be modified in

order to forward the overall client request to FO (not just the requested operation). A complete
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proposal for garbage collection has been described in [32].

VIIl. RELATED WORK

In the recent years, the use of the three-tier architectural pattern for building distributed systems
is gaining growing popularity in both industry and research communities.

In particular, the most relevant contribution is due to Alvisi et al. in [42]. In this work, authors
exploit a three-tier architecture for implementing active software replication to toleyasantine
faults of clients, middle-tier and end-tier replicas by running agreement protocols exclusively
within the middle-tier, and to further exploit the tiers physical separation to enforce some degree
of confidentiality (a faulty client never receives information that it is not authorized to get). The
focus of this work is onseparatingbyzantine agreement from end-tier replica computatmn
favor infrastructure scalability and to enforce confidentiality our work, we adopt a similar
scheme to show how this can be used to isolate the synchrony requirements necessary for building
an efficient solution, and decouple these requirements from replica deployment. Further, tolerating
only crash failures enables replication of non-deterministic replicas to be handled through light
changes to the codes of ARH and of FO. In particular, upon getting a result computed by an
end-tier replica, each FO returns to ARH - along with the reply - a state update obtained from
the same replica. ARHs store ordered state updates - e.g., using a second sequencer instance -
and upon receiving the following request from a client they forward to FOs the necessary state
update(s) along with the sequenced request(s), so that FOs can update the corresponding replicas
and make them consistent before letting them compute the results of new requests. Let us note
that this replication scheme differs from passive replication since there is no notion of a primary
replica and thus no delays in the presence of the fault of a specific end-tier replica [2].

A similar architectural pattern is used by Verissimo, Casimiro and Fetzer in [40], presenting
an architectural construct, namely the Timely Computing Base (TCB), for real-time applications
running in environments with uncertain timeliness. The TCB assumes the existence of a small
part of a system satisfying strict synchrony requirements used to implement a set of services,
i.e., timely executionduration measuremerand timing failure detectionThese services are in
turn exploited by the remaining large-scale, complex, asynchronous part of the system to run
only the control part of their algorithms with the support of the TCB services. Therefore, the

TCB can be regarded asaverage amplifier of synchrony assumptidos the execution of
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the time-critical functions of a system, e.g., of the TCB services. As remarked in the previous
section, the agreement service provided by TCB is one of the software artifacts on which efficient
TO primitives for the three-tier replication protocol are built.

In [24], Guerraoui and Schiper define a generic consensus service based on a client-server
architecture for solving agreement related problems, e.g., atomic commitment, group member-
ship, total order multicast etc. In this architecture, a setafisensus serversin a consensus
protocol on behalf ofclients Authors motivate this architectural choice to favor modularity
and verifiability. As in the three-tier protocol, the architecture confines to a well-defined system
region the solution of agreement problems.

Three-tier systems have gained notable popularity in the transactional system area, in which
these architectures are used to sharply separate the client (or presentation) logic (implemented
by the client-tier), the business logic (implemented by the middle-tier), and the data (maintained
in the end-tier), thus favoring isolation, modularity and maintainability. Current solutions to
reliability in commercial three-tier systems are typically transactional [6], [7], [11], [41] and incur
in significant overheads upon the occurrence of failures. As a consequence, recent works e.g.,
[17], [38], [43], compose software replication and high-availability with transaction processing
in three-tier architectures. Notably, in [22], Fralund and Guerraoui adopt a three-tier architecture
to coordinate distributed transactions while enforcipactly oncesemantics despite client
reinvocations. According to this scheme, the middle-tier acts as a replicated, highly-available
and centralized transaction manager that coordinates distributed transactions involving a set of
database managers accessed through standard interfaces.

Let us finally remark that the protocol presented in this paper is one of the results derived from
the Interoperable Replication Logic (IRL) project, carried out in our department. This project is
investigating the three-tier approach to software replication in different settings. Main results of
this project can be found in [3], [4], [33]. Specifically, [3] exploits three-tier approach to develop a
middleware platform supporting the development of fault-tolerant CORBA applications according
to the FT-CORBA specification. A simple three-tier replication protocol is outlined in this paper
(middle-tier replicas adopts a primary backup scheme and use perfect failure detectors). Another
three-tier replication protocol, appearing in [4], [33], implements active replication through a
centralizedsequencer service. This protocol incurs a larger message complexity than the one

proposed in this paper and exhibits a single point of failure that shall be removed using classical
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replication techniques.

IX. CONCLUSION

Software services replicated using a two tier approach within a partially synchronous dis-
tributed system can suffer from unexpected unavailability during periods in which timing bounds
do not hold. The problem is even worse if the deployment of server replicas cannot be controlled.
In this case, the only way to reduce this undesirable effect is to design replication protocols
that can take advantage of regions of a large and complex distributed system that show an
early-synchronous behavior. In this paper we have presented a three-tier protocol for software
replication well-suited to such a setting and proved its formal correctness. The protocol aims
to reduce the risk of such unexpected service unavailability by deploying the middle-tier over
an “early-synchronous” region of the distributed system (e.g. a LAN in a networked distributed
system) while leaving, at the same time, clients and end-tier replicas to be deployed everywhere.
The main feature of this protocol is that it allows a fully distributed implementation of the
middle-tier and it ensures the termination of a request/reply interaction despite the crash of all
end-tier replicas but one.

Let us finally remark that the availability of the middle-tier in our protocol becomes a crucial
point. However this environment is managed, then all necessary low-level measures can be taken
to maximize the probability that a client is able reach the middle-tier, for example backup lines

to the Internet, multiple connections to external routers etc.
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