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Abstract

Keeping strongly consistent the state of the replicas of a software service deployed across a

distributed system prone to crashes and with highly unstable message transfer delays (e.g. the Internet),

is a real practical challenge. The solution to this problem is subject to the FLP impossibility result, and

thus there is a need for “long enough” periods of synchrony with time bounds on process speeds and

message transfer delays to ensure deterministic termination of any run of agreement protocols executed

by replicas. This behavior can be abstracted by a partially synchronous computational model. In this

setting, before reaching a period of synchrony, the underlying network can arbitrarily delay messages

and these delays can be perceived as false failures by some timeout-based failure detection mechanism

leading to unexpected service unavailability. This paper proposes a fully distributed solution for active

software replication based on a three-tier software architecture well-suited to such a difficult setting. The

formal correctness of the solution is proved by assuming the middle-tier runs in a partially synchronous

distributed system. This architecture separates the ordering of the requests coming from clients, executed

by the middle-tier, from their actual execution, done by replicas, i.e., the end-tier. In this way clients

can show up in any part of the distributed system and replica placement is simplified, since only the

middle-tier has to be deployed on a well-behaving part of the distributed system that frequently respects

synchrony bounds. This deployment permits a rapid timeout tuning reducing thus unexpected service

unavailability.

Index Terms

Dependable distributed systems, software replication in wide-area networks, replication protocols,

architectures for dependable services;

I. I NTRODUCTION

Replication is a classic technique used to improve the availability of a software service.

Architectures for implementing software replication with strong consistency guarantees (e.g.,

[8], [15], [20], [21], [27]–[29], [31], [35], [36]) typically use a two-tier approach. Clients send

their requests to the replica tier that ensures all replicas are in a consistent state before returning a

reply to the client. This requires replicas (and sometimes even clients, e.g., [34]) to run complex

agreement protocols [12], [23]. From a theoretical viewpoint, a run of these protocols terminates

if the underlying distributed system infrastructure ensures a timet after which (unknown) timing

bounds on process speeds and message transfer delays will be established, i.e., a partially
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synchronous computational model [9], [18]1. Let us remark that in practice partial synchrony

only imposes that aftert there will be a period of synchrony “long enough” to terminate a run

[9].

Before the system reaches a period of synchrony, running distributed agreement protocols

among replicas belonging to a two-tier architecture for software replication can be an overkill

[1]. Under these conditions, the replicated service can show unavailability periods with respect to

clients only due to replication management (even though the service remains correct). Intuitively,

this can be explained by noting that replicas use timeouts to detect failures. Hence, if messages

can be arbitrarily delayed by the network, then timeouts may expire even if no failure has

occurred, causing the protocol to waste time without serving client requests. The use of large

timeouts can alleviate this phenomenon at the price of reducing the capability of the system to

react upon the occurrence of some real failure. One simple way to mitigate this problem is to

observe that in a large and complex distributed system (e.g. the Internet), there can be regions

that reach a period of synchrony before others, e.g. a LAN, a CAN etc. Therefore, placing

replicas over one of such “early-synchronous” regions can reduce such service unavailability

shortening the timeout tuning period. However, in many cases, the deployment of replicas is

not in the control of the protocol deployer but it is imposed by organizational constraints of the

provider of the service (e.g., a server may not be moved from its physical location).

In this paper we propose the use of a three-tier architecture for software replication to alleviate

the unavailability problem that has been previously introduced. This architecture is based on the

idea of ”physically interposing” a middle-tier between clients (client-tier) and replicas (end-tier)

and to ”layer” a sequencer service on top of a total order protocol only within the middle-tier.

This approach is motivated by the following main observation: three-tier replication facilitates

a sharp separation between the replication logic (i.e., protocols and mechanism necessary for

managing software replication) and the business logic embedded in the end-tier. Therefore, the

middle-tier could be deployed over a region of a distributed system showing an early-synchronous

behavior where timeouts can be quickly tuned, limiting thus service unavailability periods.

1This need of synchrony is a consequence of the fact that the problem of “keeping strongly consistent the state of a set of

replicas” boils down to the Consensus problem. Therefore, it is subject to the FLP impossibility result [19], stating that it is

impossible to design a distributed consensus protocols ensuring both safety anddeterministictermination over an asynchronous

distributed system.
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We exploit the three-tier architecture to implement active replication over a set of deterministic

replicas2. To this aim, the middle-tier is in charge of accepting client requests, evaluating a total

order of them and forwarding them to the end-tier formed by deterministic replicas. Replicas

process requests according to the total order defined in the middle-tier and return results to the

latter. The middle-tier waits for the first reply and forwards it to clients.

We present a fully distributed solution for the middle-tier that does not rely on any centralized

service. More specifically, the paper presents in Section II the formal specification of active soft-

ware replication. Section III details the three-tier system model. Section IV introduces the formal

specification of the main component of the middle-tier, namely the sequencer service, which is

responsible for associating in a fault-tolerant manner a request of a client to a sequence number.

In the same section, a fully distributed implementation of the sequencer service is proposed

based on a total order protocol. Section V details the complete three-tier software replication

protocol while its correctness proof is given in Section VI. Even though the paper focuses on

problem solvability, it also discusses in Section VII both practicality of the assumptions done

in the system model and efficiency issues of the proposed protocol. In particular it points out,

firstly, how deploying the middle-tier in an early synchronous region can help in reducing the

service unavailability problem and, secondly, the relation of partial synchrony with respect to

implementations of total order built on top of different software artifacts e.g., unreliable failure

detectors [9], group toolkits [8], the Timely Computing Base (TCB) [39].

Let us finally remark that to have a fast client-replicas interaction, the three-tier architecture

needs the fast response of just one replica while the two-tier requires a majority of replicas to

reply quickly. The price to pay by a three-tier architecture is an additional hop (i.e., a request/reply

interaction) for a client-replica interaction. In the rest of the paper, Section VIII describes the

related work and Section IX draws some conclusion.

II. A SPECIFICATION OF ACTIVE REPLICATION

Active replication [23], [30], [37] can be specified by taking into account a finite set of clients

and a finite set ofdeterministicreplicas. Clients invokeoperationsonto a replicated server by

issuing requests. A request messagereq is a pair〈id, op〉 in which req.id is a unique request

2In [2] it has been shown that the three-tier approach to replication can also be used to handle non-deterministic replicas.
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identifier (unique for each distinct request issued by every distinct client), andreq.op is the actual

operation that the service has to execute. A request reaches all the available replicas thatprocess

the request invoking thecompute(op)method, which takes an operation as an input parameter

and returns a result (res). Replica determinism implies that the result returned bycompute(op)

only depends from the initial state of the replicas and from the sequence of processed requests.

Results produced by replicas are delivered to clients by means ofreplies. A reply messagerep

is a pair〈id, res〉 in which rep.id is the unique request identifier of the original client request

req : rep.id = req.id andrep.res is the result of the processing ofreq. Two requestsreq1 and

req2 are equal, i.e.,req1 = req2 iff req1.id = req2.id, andreq1 = req2 ⇒ req1.op = req2.op.

A correct implementation of an actively replicated deterministic service satisfies the following

properties3:

Termination . If a client issues a requestreq ≡ 〈id, op〉 then it eventually receives a reply

rep ≡ 〈id, res〉, unless it crashes.

Uniform Agreed Order. If a replica processes a requestreq, i.e., it executescompute(req.op),

as i-th request, then the replicas that process thei-th request must processreq as i-th request4.

Update Integrity. For each requestreq, every replica executescompute(req.op) at most once,

and only if a client has issuedreq.

Response Integrity.If a client issues a requestreq and delivers a replyrep, thenrep.res has

been computed by some replica performingcompute(req.op).

III. SYSTEM MODEL

Processes are classified into three disjoint types: a setC = {c1, . . . , cl} of client processes

(client-tier), a setH = {h1, . . . , hn} of active replication handler (ARH) replicas, a setR =

{r1, . . . , rm} of deterministic end-tier replicas. A process behaves according to its specification

until it possibly crashes. After a crash event a process stops executing any action. A process is

correct if it never crashes, otherwise it isfaulty.

Point-to-point communication primitives.Clients, replicas and active replication handlers com-

municate usingreliable asynchronous point-to-point channels modelled through thesend(m, pj)

3These properties are a specialization to the active replication case of the properties proposed in [16]

4As replicas are deterministic, if they processall requests in the same order before failing, then they will produce the same

result for each request. This satisfieslinearizability [26].
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and deliver(m, pj) primitives. Thesend primitive is invoked by a process to send a message

m to processpj. deliver(m, pj) is an upcall executed upon the receipt of a messagem sent by

processpj. Channels satisfy the following properties:

(C1) Channel Validity. If a process receives a messagem, then m has been sent by some

process.

(C2) Channel Non-Duplication. Messages are delivered to processes at most once.

(C3) Channel Termination. If a correct process sends a messagem to a correct process, the

latter eventually deliversm.

Total Order broadcast Communication primitives. ARH replicas communicateamong themselves

using auniform total order broadcast(or uniform atomic broadcast) primitive, i.e., ARH replicas

have access to two primitives, namelyTOCast(m) and TODeliver(m,hi), used to broadcast a

totally ordered messagem to processes inH and to receive a totally ordered messagem sent

by some processhi ∈ H, respectively. The semantics of these primitives are the following [25]:

(TO1) Validity. If a correct processhi invokes TOCast(m), then all correct processes inH
eventually executeTODeliver(m,hi).

(TO2) Uniform Agreement. If a process inH executesTODeliver(m,h`), then all correct

processes inH will eventually executeTODeliver(m,h`).

(TO3) Uniform Integrity. For any messagem, every process inH executesTODeliver(m,h`)

at most once and only ifm was previously sent byh` ∈ H (invoking TOCast(m)).

(TO4) Uniform Total Order. If a processeshi in H first executesTODeliver(m1, hk) and

thenTODeliver(m2, h`), then no process can executeTODeliver(m2, h`) if it has not previously

executedTODeliver(m1, hk).

We assume that any TO invocation terminates. This means that it is necessary to assume that

in the distributed system formed by ARHs and their communication channels, there is a timet

after which there are bounds on process speeds and message transfer delays, but those bounds

are unknown, i.e.,a partial synchrony assumption[18] [9].

Failure Assumptions. The assumption on the termination of the TO primitives implies that if the

specific uniform TO implementation can tolerate up tof failures, then

(A1) ARH Correctness. There are at leastn− f correct ARH replicas.

Moreover we assume:

(A2) Replica Correctness.There is at least onecorrect end-tier replica.
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Practicality of these assumptions will be further discussed in Section VII.

IV. T HE SEQUENCERSERVICE

The sequencer service is available to each ARH replica. This service returns a unique and

consecutive sequence number for eachdistinct client request and it is the basic building block

to satisfy theUniform Agreed Orderproperty of active replication. Furthermore, the service

is able to retrieve a request (if any) associated to a given sequence number. This contributes

to the enforcement of theTerminationproperty despite ARH replica crashes. We first propose

a specification and then a fully distributed and fault-tolerant implementation of the sequencer

service (DSS).

A. Sequencer Specification

The sequencer service exposes two methods, namelyGETSEQ() and GETREQ(). The first

method takes a client requestreq as input parameter and returns a positive integer sequence

number#seq. The second method takes a positive integer#seq as input parameter and returns

a client requestreq previously assigned to#seq (if available), ornull otherwise. Formally, the

sequencer service is specified as follows.

Properties. We denote withGETSEQi() = v (resp.GETREQi() = v) the generic invocation of

the GETSEQ() (resp.GETREQ()) method performed by the generic ARH replicahi ∈ H that

terminates with a return valuev.

A correct implementation of the sequencer service must satisfy properties S1...S6 described

below. In particular, to ensure live interactions of correct ARH replicas with the sequencer

service, the following liveness property must hold:

(S1) Termination. If hi is correct,GETSEQi() and GETREQi() eventually return a valuev.

Furthermore, the following safety properties on theGETSEQi() invocations must hold:

(S2) Agreement.

∀ (GETSEQi(req) = v, GETSEQj (req′) = v′), req = req′ ⇒ v = v′

(S3) Uniqueness.∀(GETSEQi(req) = v, GETSEQj (req′) = v′), v = v′ ⇒ req = req′

(S4) Consecutiveness.∀GETSEQi(req) = v, (v ≥ 1)∧ (v > 1 ⇒ ∃req′ s.t. GETSEQj (req′) =

v − 1)
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The Agreementproperty (S2) guarantees that two ARH replicas cannot obtain different se-

quence numbers for the same client request; theUniquenessproperty (S3) avoids two ARH

replicas to obtain the same sequence number for two distinct client requests; finally, theCon-

secutivenessproperty (S4) guarantees that ARH replicas invokingGETSEQ() obtain positive

integers that are also consecutive, i.e., the sequence of client request ordered according to the

sequence numbers obtained by ARH replicas does not present “holes”.

Finally, upon invokingGETREQ(), ARH replicas must be guaranteed of the following safety

properties.

(S5) Reading Integrity.∀ GETREQi(#seq) = v ⇒ ((v = null)∨(v = req s.t. GETSEQj(v) =

#seq))

(S6) Reading Validity.∀ GETSEQi(req) = v ⇒ GETREQi(v−k) = v′, 0 ≤ k < v, v′ 6= null

The Reading Integrityproperty (S5) defines the possible return values of theGETREQ()

method that returns eithernull or a client request assigned to the sequence number passed

as input parameter. Note that aGETREQ() method implementation that always returningnull

satisfies this property. To avoid such an undesirable behavior, theReading Validityproperty (S6)

states that if an ARH replicahi invokesGETSEQi(req) that returns a valuev = #seq, it will

be then able to retrieve all the client requestsreq1, . . . , req#seq assigned to a sequence number

#seq′ such that1 ≤ #seq′ ≤ #seq.

B. A Fully Distributed Sequencer Implementation

The implementation is based on a uniform total order broadcast primitive exploitable by ARH

replicas (see Section III) used to let the ARHs agree on a sequence of requests. In particular,

each DSS class locally builds a sequence of requests which is updated upon receiving each

requestfor the first time. Following receipts of requests already inserted in the sequence are

simply filtered out. As requests are received in a total order, the local sequence of each DSS

class evolves consistently with others.

The DSS class pseudo-code run by each ARH replicahi is presented in Figure 1. It maintains

an internal state composed by theSequenced array (line 1) that stores in thei-th location the

client request assigned to sequence numberi, and by a#LocalSeq counter (line 2) pointing to

the first free array location (initialized to 1).
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CLASS DSS

1 ARRAY Sequenced := [null, null . . .];

2 INTEGER#LocalSeq := 1;

3 REQUESTGETSEQ(req)

4 begin

5 if (@#seq : Sequenced[#seq].id = req.id)

6 then TOCast(req);

7 wait until (∃#seq : Sequenced[#seq].req id = req id);

8 return (#seq);

9 end

10 REQUESTGETREQ(j)

11 begin

12 return (Sequenced[j]);

13 end

14 when (TODeliver(req, h`)) do

15 if (@#seq : Sequenced[#seq] = req)

16 then Sequenced[#LocalSeq] := req;

17 #LocalSeq := #LocalSeq + 1;

Fig. 1. Pseudo-code of the Sequencer class run by ARH replicahi

The class handles three events, i.e., (i) the invocation of theGETSEQ() method (line 3), (ii) the

invocation of theGETREQ() method (line 10), and (iii) the arrival of a totally ordered message

(line 14).

In particular, upon the invocation of theGETSEQ() method, it is firstly checked whether

the client request (passed as input argument by the invoker) has been already inserted into a

Sequenced array location or not (line 5). If it is not the case, the client request is multicast to

all other sequencers (line 6). When the request has been sequenced, i.e., it appears in a location

of theSequenced array (line 7), its position in the array is returned to the invoker as the request

sequence number (line 8).

Upon the invocation of theGETREQ() method (line 10), the class simply returns the value

contained in the array location indexed by the integer passed as input parameter (line 12).

Therefore, if the array location contains a client request, the latter is returned to the invoker,
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null is returned otherwise.

Finally, when a totally ordered message is delivered to the DSS class by the total order

multicast primitive (line 14), it is firstly checked if the client request contained in the message

already appears in a location of theSequenced array (line 15). If it is not the case, the client

request is inserted into theSequenced array in a position indexed by the#LocalSeq that is

then incremented (lines 16–17).

V. A FULLY DISTRIBUTED MIDDLE -TIER PROTOCOL

The proposed protocol strives to maximize service availability by allowingeverynon-crashed

ARH replica to concurrently(i) accept client requests, (ii) order these requests, (iii) forward

ordered requests to the end-tier, (iv) receive results, and (v) return results to clients. As a

consequence, the replication scheme can shift from a passive one (if the clients send their

requests to a single ARH replica) to a form of active replication (if clients send their request to

all ARH replicas)5.

In order to enforce the active replication specification in the presence of ARH replica failures

and asynchrony of communication channels, we embed within client and end-tier replica pro-

cesses two message handlers, i.e., RR (retransmission and redirectionhandler) within clients,

and FO (filtering and orderinghandler) within end-tier replicas. These handlers intercept and

handle messages sent by and received from the process they are co-located with.

In particular, RR intercepts all the operation invocations of the client and generates request

messages that are (i) uniquely identified and (ii) periodically sent to all ARH replicas according

to some retransmission policy, until a corresponding reply message is received from some ARH

replica. Examples of distinct implementations of the retransmission policy could be: (i) sending

the client request to all ARH replicas each time a timeout expires or (ii) sending the request to

a different ARH replica each time the timeout expires.

FO intercepts all incoming/outgoing messages from/to ARHs in order to ensureordered

request execution(operations are computed by replicas according to the request sequence number

piggybacked by ARHs) andduplicate filtering(the same operation contained in repeated requests

is computed only once). Request messages arriving out of order at FO are enqueued until they

5This replication scheme has been namedasynchronous replicationin [22] (see Section VIII)
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can be executed. FO also stores the result computed for each operation by its replica, along with

the sequence number of the corresponding request message. This allows FO to generate a reply

message upon receiving a retransmitted request, thus avoiding duplicate computations and at the

same time contributing to the implementation ofTermination.

An implementation of FO and RR is presented in [33].

A. Introductory examples

c1

c2

req1=<reqid1,op1>

h1

h2

h3

r1

r2

r3

<1,op1>

GetSeq(req1)=1

req2=<reqid2,op2>

rep1=<reqid1,res1>

compute(op1)

<1,res1>

compute(op1)

GetSeq(req2)=2

<2,op2>

rep2=<reqid2,res2>

compute(op2)

compute(op2)

<2,res2>

compute(op1) compute(op2)

Invoke(op1)

Invoke(op2)

Fig. 2. A failure-free run of the fully distributed three-tier active replication protocol

Let us introduce the middle-tier protocol using two simple introductory examples.

Failure-free run (Figure 2). In this scenario, clientc1 invokes theRetransmission/Redirection

(RR) INVOKE(op1) method to perform operationop1. This method creates a uniquely identified

request messagereq1 = 〈reqid1, op1〉 and then it sendsreq1 to an ARH replica (e.g.,h1). Upon

receivingreq1, h1 invokesGETSEQ(req1) on the DSS class to assign a unique sequence number

(1 in the example) toreq1. Thenh1 sends a message containing the pair〈1, op1〉 to all end-tier

replicas and starts waiting for the first result. TheFiltering and Ordering(FO) message handler

of each end-tier replica checks if the sequence number of the request received is the expected one

with respect to the computation of the replica it wraps, i.e., if the request sequence number is 1 in

this scenario. In the example, the FO handlers ofr1 andr2 immediately verify this condition, and
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thus invokecompute(op1) on their replicas that produce the resultres1. Then FO sends a message

to h1 containing the pair〈1, res1〉. Upon deliveringthe first among these messages,h1 sends a

reply message〈reqid1, res1〉 back toc1. h1 discards following results produced for operationop1

by end-tier replicas (corresponding messages are not shown in Figure 2 for simplicity). Then

h1 servesreq2 sent byc2. To do so,h1 gets thereq2’s sequence number (2) from the DSS

class, sends a message containing a pair〈2, op2〉 to all end-tier replicas and waits for the first

reply from the end-tier. Note that in this scenarior3 receives〈2, op2〉 beforereceiving〈1, op1〉.
However FO executes operations in the order imposed by sequence numbers. Therefore, upon

receiving〈1, req1〉, the FO handler ofr3 executes both the operations in the correct order and

returns toh1 both the results. This ensures that the state ofr3 evolves consistently with respect

the state ofr1 andr2 and contributes to enforcement of theUniform Agreed Orderproperty (see

page 5). As soon ash1 receives the first〈2, res2〉 pair, it sends the result back to the client.

req1=<reqid1,op1>

<1,op1>

GetSeq(req1)=1

req2=<reqid2,op2>

compute(op1)

<1,res1>

compute(op1)

GetSeq(req2)=2

GetReq(1)= req1

<1,op1>,<2,op2>

rep2=<reqid2,res2>

<2,res2>

compute(op1) compute(op2)

c1

c2

h1

h2

h3

r1

r2

r3

req2=<reqid2,op2>

<1,res1>

Invoke(op1
)

Invoke(op2)

Fig. 3. A run of the fully distributed three-tier active replication protocol in presence of failures

Run in the presence of failures(Figure 3). As in the previous example,c1 invokes op1 that

through the RR component reachesh1 in a message containing the〈reqid1, op1〉 pair. Thenh1

gets a unique sequence number (1) for the request by invoking the sequencer. However in this

scenarioh1 crashes after having multicast the request to the end-tier. As channels are assumed

reliable only amongcorrectprocesses, the request may not be received by some end-tier replicas.
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In particular, in Figure 3 the request is received only byr1 andr2. Furthermore,c1 crashes. This

implies thatreq1 will no longer be retransmitted. Thenh2 serves requestreq2 sent by clientc2.

Therefore it gets a sequence number (2) invoking GETSEQ(req2). By checking this sequence

number against a local variable storing the maximum sequence number assigned byh2 to the

requests forwarded to the end-tier,h2 determines that it has not previously sent to end-tier replicas

the request assigned to sequence number1, i.e. req1. As this request could have been sent by

a faulty ARH replica, in order to enforce the liveness of the end-tier replicas,h2 sends to the

end-tier a message containing the〈1, req1〉 pair, in addition to sending the message containing

the 〈2, req2〉 pair necessary to obtain a response to the pending client requestreq2. Therefore,h2

first invokes the sequencerGETREQ(1) method to obtainreq1 and then sends to end-tier replicas

both the〈1, req1〉 and〈2, req2〉 pairs. In this way the unique correct replica of this scenario, i.e.,

r3, is maintained live and consistent byh2. As usual,h2 returns toc2 the result ofop2 as soon

as it receivesres2 from r3.

The following section details the protocols run by ARHs.

B. ARH Protocol

We distinguish the following message types:

Messages exchanged between the client-tier and the middle-tier. We denote with“Request”

the messages sent by clients to ARH replicas, and with“Reply” the messages following the

inverse path;

Messages exchanged between the middle-tier and the end-tier.These messages contain sequence

numbers produced by the sequencer and used by replicas to execute requests in a unique total

order. Therefore we denote with“TORequest” (totally ordered request) the messages sent by

ARH replicas to end-tier replicas, and with“TOReply” (totally ordered reply) the messages

following the inverse path.

As depicted in Figure 4, each ARH replica embeds a local DSS class (Sequencer) that

implements the sequencer service as described in Section IV, which is initialized at line 3. The

internal state of each ARH replica is represented by theLastServedReq integer (line 1), which

dynamically stores the maximum sequence number among the numbers assigned byhi to the

requests forwarded to the end-tier.#seq (line 2) is a variable used to store the sequence number

assigned bySequencer to the client request currently being served byhi. ARH replicas handle
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ARH

1 INTEGERLastServedReq := 0;

2 INTEGER#seq;

3 Sequencer := new DSS();

4 when (deliver [“Request”,req] from c) do

5 #seq := Sequencer.GETSEQ(req);

6 if (#seq > LastServedReq + 1)

7 then for each j : LastServedReq < j < #seq

8 do reqj := Sequencer.GETREQ(j);

9 for each r` ∈ {r1, ..., rm} do send [“TORequest”,〈j, reqj .op〉] to r`;

10 for each r` ∈ {r1, ..., rm} do send [“TORequest”,〈#seq, req.op〉] to r`;

11 LastServedReq := max(LastServedReq, #seq);

12 wait until (deliver [“TOReply”, 〈#seq, res〉] from rk ∈ {r1, ..., rm})
13 send [“Reply”, 〈req.id, res〉] to c

Fig. 4. Pseudo-code of an ARH replicahi

only one event, i.e., the arrival of a client request in a“Request” type message (line 4). In

particular, upon the receipt of a client request,hi first invokesSequencer to assign a sequence

number to the request (stored in the#seq variable, line 5). Then ARH controls whether#seq

is greater thanLastServedReq + 1. Note that if #seq > LastServedReq + 1, then some

other ARH replica served some other client requests with sequence number comprised in the

interval [LastServedReq + 1, #seq − 1]. In this case, as shown in the second example of the

previous section,hi sends these requests again to the end-tier (lines 7–9) in order to preserve

the protocolTerminationproperty (S1) despite possible ARH failures. Requests are retrieved

from Sequencer(line 8) thanks to theReading Validityproperty (S6). Thenhi sends to server

replicas the“TORequest” message containing (i) the operation contained in the client request

currently being served and (ii) the sequence number#seq assigned to the request (line 10).

Finally hi updates theLastServedReq variable (line 11) and waits for the first“TOReply”

message containing#seq as sequence number of the result (line 12). Upon the receipt of the

result,hi forwards the result to the client through a“Reply” message (line 13).
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VI. CORRECTNESSPROOFS

In this section we first show the correctness proof of the sequencer described in Section IV-A

and then the complete middle-tier protocol described in Section V.

A. The sequencer

Theorem 1 ((S1) Termination):If hi is correct,GETSEQi() andGETREQi() eventually return

a valuev.

Proof: By contradiction. Supposehi is correct and invokes a sequencer class method that

never returns. We distinguish two cases, i.e., either the method isGETREQ() (lines 10–13) or it

is GETSEQ() (lines 3–9):

GETREQ() invocation. In this case the invocation can never block: as soon as the content of

the j-th position of the array is read, the method returns. Contradiction.

GETSEQ() invocation. We further distinguish two cases: either∃#seq : Sequenced[#seq].id =

req.id or @#seq : Sequenced[#seq].id = req.id when theif statement at line 5 is evaluated.

• In the first case, line 7 is executed immediately after line 5 and the clause of thewait state-

ment is satisfied. As a consequence,#seq is returned to the invoker at line 7. Contradiction.

• In the second case, statement 6 is executed, i.e., the client request is multicast to other ARH

replicas. As@#seq : Sequenced[#seq].id = req.id, the execution blocks at statement 7.

As the multicast is executed by a correct replica (by hypothesis), from theValidity property

(TO1) of the total order primitive, it follows that statement 14 will eventually be executed.

Therefore at the end of statement 17 there holds∃#seq : Sequenced[#seq].id = req.id

and this in turns provokes the execution to satisfy the clause of thewait statement at line

7. As a consequence,#seq is returned to the invoker. Contradiction.

Theorem 2 ((S2) Agreement):∀ (GETSEQi(req) = v, GETSEQj (req′) = v′), req = req′ ⇒
v = v′.

Proof: By contradiction. Supposehi invokesGETSEQi(req) that returns#seqi, hj invokes

GETSEQj (req) that returns#seqj and#seqi 6= #seqj.

From the pseudo-code of Figure 1 (lines 7–8), it follows that inhi, Sequenced[#seqi] = req

and in hj, Sequenced[#seqj] = req. To insert a request into theSequenced array, a generic

July 27, 2005 DRAFT



MANUSCRIPT 16

ARH replica must execute statement 16 that is executed iff the two conditions at lines 14–15

hold. These conditions imply that each ARH replica inserts a client request intoSequenced at

most once. Without loss of generality, we suppose that every message delivered to each ARH

replica contains a distinct request. As a consequence, statement 16 is executed by bothhi andhj

each time statement 14 is executed, theSequenced array in each ARH replica reflects the order

of its message deliveries, andSequenced[k] contains thek-th message delivered at statement

14. Thenhi has deliveredm = req as #seqi-th message, whilehj has deliveredm = req as

#seqj-th message. Without loss of generality, suppose that#seqi = #seqj − 1. This implies

thathj delivered at least one messagem′ 6= m beforem. This violates property TO4 of the total

order primitive. Contradiction.

Theorem 3 ((S3) Uniqueness):∀(GETSEQi(req) = v, GETSEQj (req′) = v′), v = v′ ⇒ req =

req′.

Proof: By contradiction. Suppose thathi invokesGETSEQi(req) that returns#seq andhj

invokes GETSEQj (req′) that returns#seq, and req 6= req′. From the sequencerAgreement

property (S2), let us supposei = j without loss of generality. However, ifhi invokes

GETSEQ(req) and GETSEQ(req′) both returning#seq, from statements 7–8 (Fig 1) it follows

Sequenced[#seq] = req (when GETSEQ(req) is invoked) andSequenced[#seq] = req′

(when GETSEQ(req′) is invoked), i.e., the value of theSequenced[#seq] location has been

modified between two method invocations. By noting that the value of the genericSequenced

array location is written at most once (statements 16-17), i.e., once the location indexed by

LocalSeq has been written there’s no way to write it again, fromreq 6= req′ it follows

Sequenced[#seq] 6= Sequenced[#seq]. Contradiction.

Theorem 4 ((S4) Consecutiveness):∀GETSEQi(req) = v, (v ≥ 1) ∧ (v > 1 ⇒ ∃req′ s.t.

GETSEQj (req′) = v − 1)

Proof: By contradiction. First suppose thathi invokesGETSEQ(req) that returns a sequence

number#seq < 1. From pseudo-code of Figure 1 statements 7–8, it follows that∃#seq :

Sequenced[#seq].id = req.id ∧ #seq < 1. Therefore,hi previously executed statement 16

havingLocalSeq = #seq < 1. However,LocalSeq is initialized to1 and is never decremented.

Contradiction. Therefore#seq ≥ 1.

Suppose thathi invokesGETSEQi(req) that returns#seq > 1 and that there do not exist a

client requestreq′ and an ARH replicahj such that ifhj invokes GETSEQj(req
′), it obtains
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#seq − 1 as result. Ashi obtained#seq as the result of theGETSEQi(req), the sequencer

Agreementproperty (S2) ensures each ARH replicahj that successfully invokesGETSEQj (req),

returns#seq. The sequencerTerminationproperty (S1) ensures that the method eventually returns

in correct replicas. Then, lethj be a correct replica that invokesGETSEQj (req); from #seq > 1,

it follows that whenhj executes statement 16,LocalSeq > 1. ThereforeLocalSeq has been

previously incremented at statement 17, i.e.,hj previously inserted inSequenced[#seq− 1] the

content of a messagem = req′ and this impliesSequenced[#seq − 1] 6= null. This implies

that eventually, ifhj invokes GETSEQj(req
′), it will obtain #seq − 1 as invocation result.

Contradiction.

Theorem 5 ((S5) Reading Integrity):∀ GETREQi(#seq) = v ⇒ ((v = null) ∨ (v = req s.t.

GETSEQj(v) = #seq)).

Proof: By contradiction. Supposehi invokesGETREQi(#seq) that returns a valuev, v 6=
null and ∀GETSEQj(v) 6= #seq. Without loss of generality supposei = j and thathi first

invokes GETREQi(#seq) = v and thenGETSEQi(v). From pseudo-code in Fig. 1 it follows

v = Sequenced[#seq] (statement 12) and thatSequenced[#seq] 6= null (by hypothesis). From

statement 16,Sequenced[#seq] 6= null implies Sequenced[#seq] = v = req. From statement

15, it follows thatreq is insertedonly in Sequenced[#seq]. Therefore, from statements 5-8,

GETSEQi(req) = #seq. Contradiction.

Theorem 6 ((S6) Reading Validity):∀ GETSEQi(req) = v ⇒ GETREQi(v − k) = v′, 0 ≤
k < v, v′ 6= null

Proof: By contradiction. SupposeGETSEQi(req) = v and GETREQi(#seq − k), 0 ≤
k < #seq, returnsv = null. Without loss of generality, supposev = #seq = 2 and k =

1. By hypothesis,Sequenced[2] 6= null and this implies thatLocalSeq has been previously

incremented (passing from1 to 2) at statement 17. This in turn implies thatSequenced[1]

has been previously written upon the delivery (at statement 14) of a client requestreq, i.e.,

Sequenced[1] = req. As writings in the locations of theSequenced array are performed at most

once (from statements 16-17 and by noting thatLocalSeq is never decremented), whenhi invokes

GETREQi(1) that returnsv = null, it follows (statement 12) thatreq = null. Contradiction.
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B. The three-tier protocol

The following assumption let handling process crashes in a uniform way, i.e., without con-

sidering partial or independent failures of co-located components.

No independent failures of co-located components.RR, DSS and FO are co-located with the

client, with the ARH replica and with the end-tier replica processes, respectively. We assume

that co-located components do not fail independently. This implies that a crash of a client,

ARH replica, end-tier replica process implies the crash of its RR, DSS, FO, respectively, and

vice-versa.

1) Preliminary Lemmas:

Lemma 1:Let req1 and req2 be two requests sent to the end-tier by some ARH replica at

statement 9 or at statement 10 into two “TORequest” messages [“TORequest′′, 〈#seq1, req1.op〉]
and [“TORequest′′, 〈#seq2, req2.op〉], then #seq1 = #seq2 ⇔ req1 = req2.

Proof:

By contradiction. We distinguish the following three cases.

• Both requests are sent by some ARH replica at statement 10. Noting that#seq1 and#seq2

are the return values of theGETSEQ() method invocation performed at statement 5, and

suppose by contradiction#seq1 = #seq2 andreq1 6= req2. From the sequencerUniqueness

property (S3), it follows that#seq1 = #seq2 implies req1 = req2. Contradiction. On the

other hand, suppose by contradictionreq1 = req2 and#seq1 6= #seq2. From the sequencer

Agreementproperty (S2), it follows thatreq1 = req2 implies#seq1 = #seq2. Contradiction.

• A request (say,req1) is sent by some ARH replica at statement 9 and the other (req2) is

sent at statement 10.Note thatreq1 is returned at statement 8 from aGETREQ() invocation

with input argument#seq1. As at statement 5#seq > #seq1, from the sequencerReading

Validity property (S6) it followsreq1 6= null. Therefore, from the sequencerReading

Integrity property (S5), it follows thatGETSEQj(req1) = #seq1. Furthermore, as in the

previous case,#seq2 is the return value of aGETSEQ() method invocation performed

at statement 5, i.e.,GETSEQi(req2) = #seq2. Suppose by contradiction#seq1 = #seq2

and req1 6= req2. Again, from the sequencerUniquenessproperty (S3) it follows that

#seq1 = #seq2 implies req1 = req2. Contradiction. On the other hand, suppose by

contradictionreq1 = req2, and #seq1 6= #seq2. From the sequencerAgreementproperty
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(S2) it follows thatreq1 = req2 implies #seq1 = #seq2. Contradiction.

• Both requests are sent by some ARH replica at statement 9.In this case bothreq1 and

req2 are returned at statement 8 from aGETREQ() invocation with input argument#seq1

and #seq2, respectively. In both cases, at statement 5,#seq > #seq1 and #seq >

#seq2. From the sequencerReading Validityproperty (S6), there followreq1 6= null, and

req2 6= null. Therefore, from the sequencerReading Integrityproperty (S5), it follows that

GETSEQj(req1) = #seq1, and thatGETSEQi(req2) = #seq2. Suppose by contradiction

#seq1 = #seq2 andreq1 6= req2. Also in this case, from the sequencerUniquenessproperty

(S3) it follows that#seq1 = #seq2 implies req1 = req2. Contradiction. On the other hand,

suppose by contradictionreq1 = req2 and#seq1 6= #seq2. From the sequencerAgreement

property (S2) it follows thatreq1 = req2 implies #seq1 = #seq2. Contradiction.

Lemma 2: If an ARH replicahi hasLastServedReq = k, then it has already sent to end-tier

replicask “TORequest′′ messages, i.e., [“TORequest′′, 〈#seqn, reqn.op〉] for eachn : 1 ≤ n ≤
k.

Proof: By contradiction. Assume thathi hasLastServedReq = k > 0 (k = 0 is a trivial

case) and it has not sent to end-tier a “TORequest” message [“TORequest′′, 〈#seqj, reqj.op〉]
such thatj : 1 ≤ j ≤ k.

Without loss of generality, consider the first time thathi setsLastServedReq to k at line

11. As LastServedReq is initialized to 0 at line 2, and for each#seq returned byGETSEQ()

at line 5 there holds#seq > 0 (from the sequencerConsecutivenessproperty (S4)), when

LastServedReq is set to#seq = k at line 11, this implies#seq = k at line 5. We distinguish

two cases:

• k = #seq = 1. This is a trivial case: the condition at line 6 does not hold, thenhi has sent

a [“TORequest′′, 〈1, req1.op〉] to all end-tier replicas (line 10). Contradiction.

• k = #seq > 1. In this case the condition at line 6 holds, thenhi executed lines 7-9

before updatingLastServedReq to k at line 11. This implies thathi has sent to all end-tier

replicas a “TORequest” message [“TORequest′′, 〈#seqn, reqn.op〉] for eachn : 1 ≤ n ≤ k.

Contradiction.
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2) Theorems:For the sake of brevity, we will refer to the properties introduced so far

using their identifiers. As an example, we will refer toChannel Validity, No Duplication, and

Terminationas C1, C2, and C3.

Theorem 7 (Termination):If a client issues a requestreq ≡ 〈id, op〉 unless it crashes, it

eventually receives a replyrep ≡ 〈id, res〉.
Proof: By contradiction. Assume that a client issues a requestreq ≡ 〈id, op〉, it does not

crash and it does not deliver a result. The correctness of the client, along with the retransmission

mechanism implemented by the RR handler, guarantee thatreq is eventually sent to all ARH

replicas. Therefore, from A1 and C3, it follows that acorrectARH replicahc eventually delivers

the client request message.

From the algorithm of Figure 4, upon receiving thereq, hc invokesGETSEQ(REQ) (line 5)

that terminates due to S1. This method returns the sequence number#seq associated with the

current request.

Lemma 2 ensures that at line 11 all requests such that their sequence number is lower than or

equal toLastServedReq (including the current request) have been sent to the end-tier replicas

by hc. A2 and C3 guarantee that at least a correct end-tier replicarc receives all the requests.

This ensures that the FO handler, which executes requests according to their sequence numbers,

eventually invokescompute(req.op) within rc, and then it sends back the result in a TOreply

message.

From the correctness ofhc and rc, and from C3, it follows that the result is delivered tohc

(Figure 4 line 12) that thus sends the replyrep ≡ 〈req.id, res〉 to the client (line 13). For similar

reasons, the RR handler eventually delivers the result to the client that thus receives the result.

Contradiction.

Theorem 8 (Uniform Agreed Order):If an end-tier replica processes a requestreq, i.e., exe-

cutescompute(req.op)), as ith request, then every other end-tier replica that processes theith

request will executereq as ith request.

Proof:

By contradiction. Assume that an end-tier replicark executesreq as ith request and another

end-tier replicarh executes asith a requestreq′ andreq 6= req′.

The FO handlers ofrh andrk ensure that requests are executed at most once and according to

the sequence numbers attached to them by ARH replicas at line 10 of the pseudo-code depicted
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in Fig. 4.

Therefore theith request processed byrk, i.e., req, is associated with a sequence number

#seq = i, i.e.,rk delivered a “TORequest” message containing〈i, req.op〉. For the same reasons,

rh delivered a “TORequest” message containing〈i, req′.op〉. From Lemma 1, it followsreq =

req′. Contradiction.

Theorem 9 (Update Integrity):For any requestreq, every end-tier replica executescompute(req.op)

at most once, and only if a client has issuedreq.

Proof: The case in which the same request is executed twice is trivially addressed by

noting that FO handlers filter out duplicates of TOrequest messages.

Assume thus by contradiction that an operationop executed by a replica, has not been invoked

by a client.

The FO handler executes only operations contained in TOrequest messages delivered tork.

From C1, it follows that ifrk delivers a “TORequest” message containing〈seq, req.op〉, then

the TOrequest message has been sent by an ARH replicahi either at line 9 or at line 10 (see

Figure 4).

If the message has been sent at line 10,hi has receivedreq at line 4. This request has been

then sent from a client in a request message (from C1). Contradiction.

Otherwise, if the TOrequest has been sent at line 9, from S5 and S6 there exists an ARH

replica hj that has previously executedGETSEQj(req). As GETSEQj(req) (line 5) is always

executedafter the delivery of a client request message (line 4) it follows thatreq has been sent

by a client in a request message (from C1). Contradiction.

Theorem 10 (Response Integrity):If a client issues a requestreq and delivers a replyrep,

then rep.reshas been computed by some end-tier replica, which executedcompute(req.op).

Proof: By contradiction. Assume that a client issues a requestreq and delivers a replyrep

andrep.res has not been computed by an end-tier replica.

From C1, if a client deliversrep then an ARH replicahi has previously sent a reply message

containing rep to the client. From the algorithm of Figure 4, ifhi sends a reply message

containingrep ≡ 〈req.id, res〉 (line 13) to the client then (i)hi received a client request message

req from the client (line 4), (ii)hi invokedGETSEQi(req) returning#seq (line 5) and (iii) it has

successively delivered〈#seq, res〉 from a replica (line 12). From C1,〈#seq, res〉 has been sent

by the FO handler of an end-tier replicark. This implies that the request has been previously
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executed invokingcompute(req.op). Contradiction.

VII. PRACTICAL ISSUES

Practicality of the assumptions.Most of the assumptions introduced in Section III are necessary

to ensure the termination property of our protocol. These include the assumption on one replica

being always up, the assumption on reliable point-to-point communication channels and the

assumptions on partial synchrony of the region of the distributed system where ARHs are

deployed, which is at the base of the termination of the TO broadcast primitive. Let us note

that if one of these assumptions is violated, only liveness is affected (i.e., the three-tier protocol

blocks), while safety is always preserved. The assumption on the number of correct replicas is

the weakest one under which the system is still able to provide the service. The assumption

on point-to-point communication channels allows link failures, as long as they are repaired in a

finite time. In practice it is implemented by message retransmission and duplicate suppression.

The assumption on partial synchrony does not mean that the timing bounds have to hold

always. Practically, these bounds have to hold only for a period of time which islong enough

to let complete any run triggered by an invocation of the TO broadcast primitive6.

Efficiency of the three-tier architecture.Up to this section we have focused the attention on

problem solvability of active software replication using a three-tier protocol. In the following

we discuss under which setting the proposed architecture reduces the problem of unexpected

service unavailability pointed out in the introduction. Firstly, three-tier architecture assumes that

a service deployermay place end-tier replicas according to the strategy of the organization that

wants to provide the service. Under this given condition aprotocol deployerhas to select a

region of a distributed system in which to deploy the middle-tier, i.e., the ARHs. For the three-

tier replication protocol to be efficient, the protocol deployer selects a region that better than

others enjoys the following two properties:

• the region shows an “early-synchronous” behavior. Early synchronous means that the dis-

tributed system will reach synchrony bounds of a partially-synchronous system very early

6This follows from the absence of an explicit notion of time in asynchronous system models, in which the term “long enough”

cannot be further characterized and it is commonly replaced by “always”.
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in any run triggered by an invocation of a TO broadcast primitive. Synchronous distributed

systems or systems that exhibit a synchronous behavior ”most-of-the-time” are specific

instantiations of an “early-synchronous” distributed systems.

• as many as possible of the point-to-point reliable channels established among ARHs, end-tier

replicas, and (possibly) clients show a short latency and a low loss rate;

As explained below in this section, the first point enables both fast reaction to real failures

within the middle-tier and infrequent false failure suspicions. This reduces unexpected service

unavailability.

Once the previous point has been guaranteed, the second point maximizes the probability of a

short service time for a request. In our protocol, the receipt of the first reply of an end-tier replica

at the middle-tier triggers indeed the sending of the reply back to the client. This also points

out an interesting tradeoff between the number of end-tier replicas (and thus also of channels

between the middle and the end tiers) and the maximization of the probability of providing a

short end-to-end service time.

Total Order Implementation Selection.As pointed out above, the protocol deployer is in charge

of deploying the middle-tier in a distributed system region that quickly reaches and maintains

synchrony bounds. This follows from the protocol run by ARHs, which, to be efficient, requires

rapid termination of the TO primitive most of the time. To do so, it is important to note

that TO implementations are typically built on top ofsoftware artifacts, i.e., software modules

characterized by the properties they provide. Some examples follow:

• TO implementations built on top of anunreliable failure detector, e.g. ♦S, which is

characterized by specific completeness (safety) and accuracy (liveness) properties [10];

• TO implementations provided for the virtual synchrony programming model, adopted by

several group toolkits (e.g., [5], [8]), which rely on the specification of amembership service

to enforce liveness [13].

• TO implementations developed on top of the “Timely Computing Base” (TCB, [39], [40]),

which includes a well-specifiedtimed agreement service[14].

The liveness properties of these software artifacts and the associated TO implementations

are typically implemented using timeouts. TO implementations are very sensitive to the values

of these timeouts whose definition is up to the protocol deployer. Differently from two-tier
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approaches, the proposed protocol allows the protocol deployer to account for these issues by

selecting a well-defined and possibly highly controlled system region that - independently from

end-tier replica deployment - lets a software artifact and thus the associated TO implementation

work at their best as frequently as possible.

Let us finally remark that clients and replicas have no constraint from the point of view of

synchrony requirements. As a consequence, a service deployer does not have to take this issue

into account when deploying the end-tier replicas, and clients can show up in any part of the

distributed system.

Garbage Collection.Two points in the proposed three-tier protocol are critical with respect

to resource consumption: (i) the memory used by the sequencer service implementation (i.e.,

ARH) grows linearly with the number of client requests, and (ii) FO handlers store all the results

computed by the co-located end-tier replicas.

To address both these issues, it is worth noting that the RR co-located with each client

can be configured to ensure that (i) clients may transmit a request for a new operation only

if the result of the former operation has been already received, and (ii) requests are uniquely

identified through a pair composed by a unique client identifier and a local sequence number, i.e.

req.id = 〈ci, seqci
〉 (this is the approach followed in the RR implementation appearing in [33]).

Using these simple serialization and request identification mechanisms, upon receiving a client

request message (e.g.,req = 〈〈ci, seqci
〉, op〉, whereseqci

is incremented by RR each time a

request is sent byci), ARH and FO can delete from their memories all operations and associated

results pertaining requests issued by the same client and having a local sequence numberseq′ci

that satisfiesseq′ci
< seqci

. Furthermore, upon receivingreq ARH and FO are also enabled to

discard request messages from the same client that satisfy the former inequality. This follows

from noting that if RR is blocking then a clientci issuing a requestreq has certainly received

the reply to all former request (issued with a local sequence number lower thanseqci
). It is

possible to show that the described mechanisms permit to bound memory consumption of both

ARH and FO components by a linear function of the number of clients without impacting on the

protocol correctness. Let us finally remark that implementing the mechanisms outlined above

passes through a simple modification of the specification and of the design of the distributed

sequencer implementation. Moreover, line 9 of the protocol of Fig. 4 has to be modified in

order to forward the overall client request to FO (not just the requested operation). A complete
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proposal for garbage collection has been described in [32].

VIII. R ELATED WORK

In the recent years, the use of the three-tier architectural pattern for building distributed systems

is gaining growing popularity in both industry and research communities.

In particular, the most relevant contribution is due to Alvisi et al. in [42]. In this work, authors

exploit a three-tier architecture for implementing active software replication to toleratebyzantine

faults of clients, middle-tier and end-tier replicas by running agreement protocols exclusively

within the middle-tier, and to further exploit the tiers physical separation to enforce some degree

of confidentiality (a faulty client never receives information that it is not authorized to get). The

focus of this work is onseparatingbyzantine agreement from end-tier replica computationto

favor infrastructure scalability and to enforce confidentiality. In our work, we adopt a similar

scheme to show how this can be used to isolate the synchrony requirements necessary for building

an efficient solution, and decouple these requirements from replica deployment. Further, tolerating

only crash failures enables replication of non-deterministic replicas to be handled through light

changes to the codes of ARH and of FO. In particular, upon getting a result computed by an

end-tier replica, each FO returns to ARH - along with the reply - a state update obtained from

the same replica. ARHs store ordered state updates - e.g., using a second sequencer instance -

and upon receiving the following request from a client they forward to FOs the necessary state

update(s) along with the sequenced request(s), so that FOs can update the corresponding replicas

and make them consistent before letting them compute the results of new requests. Let us note

that this replication scheme differs from passive replication since there is no notion of a primary

replica and thus no delays in the presence of the fault of a specific end-tier replica [2].

A similar architectural pattern is used by Verissimo, Casimiro and Fetzer in [40], presenting

an architectural construct, namely the Timely Computing Base (TCB), for real-time applications

running in environments with uncertain timeliness. The TCB assumes the existence of a small

part of a system satisfying strict synchrony requirements used to implement a set of services,

i.e., timely execution, duration measurementand timing failure detection. These services are in

turn exploited by the remaining large-scale, complex, asynchronous part of the system to run

only the control part of their algorithms with the support of the TCB services. Therefore, the

TCB can be regarded as acoverage amplifier of synchrony assumptionsfor the execution of

July 27, 2005 DRAFT



MANUSCRIPT 26

the time-critical functions of a system, e.g., of the TCB services. As remarked in the previous

section, the agreement service provided by TCB is one of the software artifacts on which efficient

TO primitives for the three-tier replication protocol are built.

In [24], Guerraoui and Schiper define a generic consensus service based on a client-server

architecture for solving agreement related problems, e.g., atomic commitment, group member-

ship, total order multicast etc. In this architecture, a set ofconsensus serversrun a consensus

protocol on behalf ofclients. Authors motivate this architectural choice to favor modularity

and verifiability. As in the three-tier protocol, the architecture confines to a well-defined system

region the solution of agreement problems.

Three-tier systems have gained notable popularity in the transactional system area, in which

these architectures are used to sharply separate the client (or presentation) logic (implemented

by the client-tier), the business logic (implemented by the middle-tier), and the data (maintained

in the end-tier), thus favoring isolation, modularity and maintainability. Current solutions to

reliability in commercial three-tier systems are typically transactional [6], [7], [11], [41] and incur

in significant overheads upon the occurrence of failures. As a consequence, recent works e.g.,

[17], [38], [43], compose software replication and high-availability with transaction processing

in three-tier architectures. Notably, in [22], Frølund and Guerraoui adopt a three-tier architecture

to coordinate distributed transactions while enforcingexactly oncesemantics despite client

reinvocations. According to this scheme, the middle-tier acts as a replicated, highly-available

and centralized transaction manager that coordinates distributed transactions involving a set of

database managers accessed through standard interfaces.

Let us finally remark that the protocol presented in this paper is one of the results derived from

the Interoperable Replication Logic (IRL) project, carried out in our department. This project is

investigating the three-tier approach to software replication in different settings. Main results of

this project can be found in [3], [4], [33]. Specifically, [3] exploits three-tier approach to develop a

middleware platform supporting the development of fault-tolerant CORBA applications according

to the FT-CORBA specification. A simple three-tier replication protocol is outlined in this paper

(middle-tier replicas adopts a primary backup scheme and use perfect failure detectors). Another

three-tier replication protocol, appearing in [4], [33], implements active replication through a

centralizedsequencer service. This protocol incurs a larger message complexity than the one

proposed in this paper and exhibits a single point of failure that shall be removed using classical
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replication techniques.

IX. CONCLUSION

Software services replicated using a two tier approach within a partially synchronous dis-

tributed system can suffer from unexpected unavailability during periods in which timing bounds

do not hold. The problem is even worse if the deployment of server replicas cannot be controlled.

In this case, the only way to reduce this undesirable effect is to design replication protocols

that can take advantage of regions of a large and complex distributed system that show an

early-synchronous behavior. In this paper we have presented a three-tier protocol for software

replication well-suited to such a setting and proved its formal correctness. The protocol aims

to reduce the risk of such unexpected service unavailability by deploying the middle-tier over

an “early-synchronous” region of the distributed system (e.g. a LAN in a networked distributed

system) while leaving, at the same time, clients and end-tier replicas to be deployed everywhere.

The main feature of this protocol is that it allows a fully distributed implementation of the

middle-tier and it ensures the termination of a request/reply interaction despite the crash of all

end-tier replicas but one.

Let us finally remark that the availability of the middle-tier in our protocol becomes a crucial

point. However this environment is managed, then all necessary low-level measures can be taken

to maximize the probability that a client is able reach the middle-tier, for example backup lines

to the Internet, multiple connections to external routers etc.
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