
A Practical Comparison Between the TAO Real-Time
Event Service and the Maestro/Ensemble Group

Communication System�

Carlo Marchetti1, Paolo Papa2, Stefano Cimmino1, Leonardo Querzoni1,
Roberto Baldoni1, and Emanuela Barbi2

1 Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”

Via Salaria 113, 00198, Roma, Italy
{marchet,cimmino,querzoni,baldoni}@dis.uniroma1.it

2 AMS (Alenia Marconi Systems) S.p.A.
Radar & Technology division

Via Tiburtina km 12,400, Roma, Italy
{ppapa,ebarbi}@amsjv.it

Abstract. In this paper we present the results of a practical experience on the eval-
uation of two message-passing middleware platforms for developing distributed
applications, i.e. the ACE/TAO Real Time Event Channel (RTEC) and the Mae-
stro/Ensemble group communication toolkit (M/E). In particular, we compare their
functionalities and their performances in a simple yet meaningful deployment con-
figuration. The functional comparison points out the different characteristics of
the two systems. In particular, M/E simplifies the coding of applications with
strong requirements in terms of group membership tracking and ordered message
delivery guarantees, while RTEC provides users with unreliable message delivery
between loosely coupled processes. The performance comparison shows that, un-
der stressing conditions, M/E sacrifices throughput stability for enforcing reliable
and ordered message delivery, while RTEC offers a more stable throughput of
unordered messages sacrificing message delivery reliability under heavy load. In
normal operating conditions, the two systems perform almost similarly.

1 Introduction

The growing interest in open platforms for building mission critical systems currently
motivates increasing R&D efforts in the area of middleware platforms [Sch02], as well
as on the assessment and evaluation of previous works [CKV01,MCGS03,BCMT02].
In these areas, both group communication and event notification services are nowadays
widely recognized as good candidates for implementing systems with stringent non-
functional requirements, e.g. fault-tolerance, timeliness, throughput, scalability. For this
reason, we are currently evaluating and assessing functionalities and performance of
these platforms, in order to implement a Flight Data Processor (FDP) that is one of the
� This work is partially supported by the european project EUPubli.com funded by the European

Community and by the italian project MAIS funded by the Italian Ministry of Research

R. Meersman, Z. Tari (Eds.): CoopIS/DOA/ODBASE 2004, LNCS 3291, pp. 1558–1570, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



A Practical Comparison Between the TAO Real-Time Event Service 1559

core components of an air traffic control (ATC) system. At a high abstraction level, FDP
has the function of relating radar traces to the flight information stored in a database, and
to provide flight controllers with information about the current and expected status of
flights. Concerning non-functional requirements, the FDP implementation is expected
to be highly available, and to respect stringent timeliness and throughput requirements.

In this context, group communication systems have several success stories showing
efficiency and effectiveness of some well-known features [CDD96,Bir99], i.e. the group
membership service, and the support of several distinct multicast primitives with various
reliability and message ordering guarantees (e.g. reliable, causal, and atomic) [CKV01],
easing the achievement of fault tolerance and high availability.

After being successfully applied in other domains, e.g. stock tracking [Bet00], event
notification services [EFGK03,RK98] are gaining popularity in ATC environments
[Obj00,LBB99,LMB00]. Indeed, allowing the coding of applications that react to in-
coming events, and favoring scalability by sharply decoupling senders from receivers,
event-based systems seem well suited for distributed systems with no central control,
and to implement ATC applications that must monitor and react to changes, e.g. in the
environment or in process status.

In this paper we report the results of our experiences on the practical evaluation of
two distinguished representatives of group communication systems (Maestro/Ensemble
group communication toolkit (M/E) [Vay98,VB98,Hay98]) and event-based systems
(ACE/TAO Real Time Event Channel (RTEC) [HLS97,SLM98,Obj03]). We compare
these systems under both the functionalities they provide1 and the achievable perfor-
mance in a simple yet meaningful configuration. Concerning functionalities, M/E con-
firms success stories on group communication systems by simplifying the development
of fault-tolerant services based on the process group approach and virtual synchrony
[GS97,Bir99], but it also suffers from the tight coupling between senders and receivers
imposed by the process group approach and from the absence of advanced filtering mech-
anisms provided by event-based systems. In contrast, RTEC confirms the advantages of
event-based systems, i.e. strong decoupling of senders and receivers, sophisticated event
filtering and correlation mechanisms, and the possibility of associating timeouts and
priorities to events, but it suffers from the lack of mechanisms for reliable and ordered
message delivery.

Concerning performance, we present experimental results on average message la-
tency and its standard deviation evaluated under several distinct load conditions in a
small-scale system. Results show that both systems under normal operating conditions
offer quite reliable message delivery with predictable latency. In contrast, under stress-
ing load conditions, RTEC can loose messages, while M/E introduces significant and
highly unpredictable delays in order to continue guaranteeing reliable message deliv-
ery. We conclude elaborating on these results, outlining some desired functionalities not
supported by current event-based systems, which could be implemented using group
communications or their internal mechanisms.

1 Let us note that a former relevant debate started about ten years ago, i.e. the so-called CATOCS
controversy [CS93,Bir94], resulted in pointing out the main differences between the large
classes of group communication and event systems. This paper focuses instead on two specific
systems, which results in a more granular - even if less general - analysis.



1560 C. Marchetti et al.

The remainder of this paper is organized as follows: Sections 2.1 and 2.2 summarize
the main features of RTEC and M/E, respectively; Section 3 illustrates the functional
comparison; Section 4 deals with the performance comparison; finally, Section 5 presents
our concluding remarks.

2 Overview of RTEC and M/E

In this section we outline the main features of the two analyzed platforms. Interested
readers can find further details in [HLS97,SLM98,Obj03] about RTEC, and in [Vay98,
VB98,Hay98] about M/E.

2.1 The TAO Real-Time Event Channel (RTEC)

The ACE ORB (TAO) is a freely available, open-source implementation of CORBA.
The CORBA Event Service [Obj01] component was defined to offer developers a ba-
sic event service, other than the simple CORBA RPC-like invocation mechanism. The
service’s programming model consists of (i) suppliers, i.e. senders of events, (ii) con-
sumers, i.e. receivers of events and (iii) event channels (EC), that allow consumers to
receive events sent on the channel by suppliers. Consumers and suppliers must regis-
ter with event channels in order to receive/send events. Event channels are standard
CORBA objects and they can be found in a way similar to any CORBA object, so that
a global registration service is not required. The registration of a new consumer or sup-
plier is transparent to existing ones and thus it doesn’t affect the overall computation.
RTEC extends the CORBA Event Service to satisfy the quality of service (QoS) needs
of real-time applications in many domains, such as avionics, telecommunications and
process control. The main advanced features provided by RTEC are (i) support for cen-
tralized event filtering and correlation, enabling consumers to identify a desired subset
of events by specifying logical OR and AND event dependencies; (ii) efficient and pre-
dictable event dispatching, obtained through application-specified number and priority
of threads responsible for dispatching events; (iii) scalability achieved through the ef-
ficient use of network and computational resources, e.g. using multicast protocols and
building collections of channels that share filtering information (multiple EC can join
into a federation, and the resulting federated EC acts as one logical EC). Concerning
communications, RTEC channels can use IIOP, UDP, and IP multicast. In this work we
consider suppliers and consumers running over a UDP-based Event Channel Federation,
as suggested in [Obj03] for implementing scalable and efficient systems (especially if
compared with IIOP-based configurations requiring at least a TCP connection between
each pair of channels). Let us note that in UDP and IP-multicast based configurations,
RTEC is admitted to lose messages due to the unreliability of the underlying network
protocol. In this case, consumers are not notified of lost messages, unless implementing
application-level acknowledgement mechanism.

2.2 Maestro/Ensemble (M/E)

M/E is a middleware platform enabling distributed system developers to use group com-
munication abstractions in an object-oriented manner. The core of the system is Ensemble



A Practical Comparison Between the TAO Real-Time Event Service 1561

[Hay98], which is a flexible and efficient group toolkit, offering typical group commu-
nication services, e.g. a group membership service and several multicast primitives with
different semantics.

The basic notion underlying group communications is the process group, i.e. a set
of processes, called members, which communicate and coordinate to provide a service.
Groups are dynamic, i.e. processes are allowed to join and voluntarily leave a group
using appropriate primitives. Furthermore, faulty processes are excluded from groups
after crashing. The group membership service provides each process of a group with a
consistent view vi composed by the identifiers of all non-crashed processes currently
belonging to the group. Upon a membership change, processes agree on a new view
through a view change protocol. At the end of this protocol, group members are provided
with a view vi+1 that (i) is delivered to all the members of vi+1 through a view change
event, and (ii) contains the identifier of all the members that deliver vi+1. Concerning
processes joining a group, M/E provides a built-in state transfer mechanisms which
allows automatic alignment of new members with the computation of older ones when
needed. However, since the join or leave of a member leads to run the membership
change protocol, these kind of events slow down the computation of all group members.

Communications among processes of a group is provided with different reliability
and ordering guarantees, including fifo, causal and total order (or atomic) multicast. In
this paper we focus on the total order multicast primitive, which intuitively ensures that
exchanged messages are delivered in the same order by participating processes.

Ensemble provides fine-grained control over its functionalities, which can be se-
lected simply layering several micro-protocols, i.e. well-defined stackable components,
each implementing a simple and specific function. The group membership and total
order multicast services for instance can be enabled by including the corresponding
micro-protocols into the stack. The Maestro toolkit lays on top of Ensemble services to
provide developers with an advanced object-oriented framework comprising an open and
extensible hierarchy of classes deemed useful to build complex distributed applications.

3 Functional Comparison

Even if different in nature and originally designed at different times for different classes
of systems, RTEC and M/E can be compared by abstracting out their peculiarities. From
a distributed systems point of view, both RTEC and M/E can be seen as message passing
systems mainly differing in the following features: (i) message addressing scheme, (ii)
communication reliability, (iii) message filtering, (iv) ordering, (v) real-time guarantees,
and (vi) fault-tolerance support.

Addressing scheme. One of the main advantages of event-based systems is their message
addressing scheme, enabling processes to send information over the wire without caring
about the recipients that receive messages according to their preferences. Furthermore,
recipients of messages are typically not aware of senders. Therefore, senders and re-
ceivers in event-based systems are loosely coupled. RTEC inherits this advantage from
the CORBA Event Service, in which suppliers put events on channels and consumers
simply bind to channels in order to receive anonymous events. An event channel is an in-
tervening object that allows multiple suppliers to communicate with multiple consumers



1562 C. Marchetti et al.

asynchronously. In contrast, in M/E processes are tightly coupled, as each process has to
become a member of the group before initiating the communication with other members.
In particular, a process joining a group obtains the full list of active members by deliver-
ing the view change event, and explicitly specifies that set of recipients of the messages it
sends. Processes can send messages to a single member of the group (in case of a point-
to-point communication) or to the entire group (in case of a broadcast communication).
Finally, receivers are aware of senders, as each sent message is labelled with the sender’s
identifier. Tightly coupling favors the possibility to introduce properties into the system,
e.g. ordered communications, but reduces to some extent scalability. In fact, the size
of the view grows linearly with the number of participating processes. Furthermore, a
process joining or leaving the group forces the group to run the membership algorithm,
which slows down the overall computation (leading the system to block in the worst
case [CHTCB96]). In contrast, having loosely coupled processes favors scalability, as
(i) processes do not have to store information about other participants, and (ii) the join
and leave of a process are transparent to other participants.

Communication reliability. RTEC, as well as the CORBA Event Service, provides no
guarantee of reliable message delivery2. This is confirmed by the experiments described
in Section 4 that use UDP as underlying transport protocol. A valuable alternative could
be the use of IIOP based on TCP and thus providing reliable message delivery, at the price
of significantly reducing the service scalability. In contrast, even if based on UDP, M/E
is able to provide reliable message delivery. Reliability is achieved by including into
the Ensemble’s stack a specific set of micro-protocols, which implement well-suited
retransmission strategies to ensure reliable message delivery even in the presence of
process crashes. Retransmission are usually requested through an efficient NAK-based
mechanism. It is worth noting that M/E is able to provide a very strong reliability property,
guaranteeing that all members of a view v that neither crash nor leave the group deliver
the same set of messages in v. This property, called atomicity or agreement, obviously
comes at the cost of a performance overhead, as shown in Section 4. It is also important
to note that this property would not be achieved by RTEC even using IIOP as underlying
transport protocol.

Message filtering. Standard COS Event Channels can be chained together to create an
event filtering graph, but traversing such a graph usually introduces an unacceptable
overhead for RT applications. RTEC extends the CORBA Event Service specification
providing a centralized feature of event filtering with a correlation mechanism that
allows consumers to specify logical OR and AND event dependencies in order to obtain
flexible filtering. Events can be filtered based on the event type and source id, and can be
correlated in a group so that the delivery of some events can be delayed until all events in
the group are available. On the contrary, M/E does not provide any type of filtering: once
a process has joined a group, it will receive all messages sent by any other group member.
Message filtering can be added either implementing a specific application level filtering
mechanism, or designing a specific micro-protocol to be included into Ensemble’s stack.

2 The CORBA Notification Service augments the Event Service taking into account reliable
message delivery [RTD01,Obj02].



A Practical Comparison Between the TAO Real-Time Event Service 1563

Note that in such cases, messages would be filtered out by destinations. In contrast,
RTEC is able to filter events at the channel level, thus reducing traffic load and relieving
consumers from implementing filtering mechanisms.

Message ordering. RTEC provides no means to implement ordered message delivery.
Note that even if some ordering mechanism could be implemented at the application
level, e.g. exploiting filters, the lack of reliable message delivery could result in distinct
consumers receiving distinct sets of ordered events. In contrast, M/E implements several
multicast primitives with different ordering guarantees, i.e. FIFO, causal and total or-
der multicast. In particular, total order multicast [BCM04,DSU03] is a communication
abstraction deemed useful for several application scenarios, e.g. active software replica-
tion [Sch93]. M/E achieves this primitive by enhancing the reliability properties of the
multicast service with an ordering property, provided by a specific micro-protocol. In
particular, M/E’s total order multicast guarantees that correct processes (i.e. processes
that do not crash) deliver the same ordered sequence of messages. In contrast, faulty
processes are allowed to exhibit a wider set of behaviors, e.g. to deliver messages in
different orders. Total order multicast incurs a performance overhead which is due to the
mechanisms enforcing reliable message delivery and to the necessary synchronization
among members to achieve total order.

Real time guarantees. RTEC extends the standard CORBA Event Service interfaces
by allowing consumers and suppliers to specify their execution requirements and char-
acteristics using QoS parameters such as worst-case execution time, rate, etc. These
parameters are then used by the channel’s dispatching mechanism to integrate with
the system-wide real-time scheduling policy to determine event dispatch ordering and
preemption strategies. Moreover RTEC allows consumers to specify event dependency
timeouts. These timeouts are used by the service to propagate temporal events in coordi-
nation with system scheduling policies. On the contrary, M/E is not concerned with real
time guarantees. Members of a group have no guarantees about message transmission
and/or processing delays, and they are not able to specify real-time related requirements.
In fact, the experiments of Section 4 show that M/E sacrifices throughput stability and
message latency to guarantee the reliable message delivery. Despite the extensibility of
M/E, it is not possible to provide real time guarantees simply by adding a few micro-
protocols. Indeed, this would require adopting specific design principles and mechanisms
which would drive to a complete re-design of M/E into a new system.

Fault-tolerance. RTEC is not concerned with fault-tolerance. TAO partially supports
the ORB level requirements to achieve Fault Tolerance for CORBA Objects (including
the Event Service). The implementation of the full set of requirements mandated by the
FT-CORBA specification is under development. As a consequence, failures in RTEC
are not automatically handled by the infrastructure. Concerning M/E, it was primarily
conceived to support the development of dependable applications. As such, it offers
a complete set of mechanisms and protocols to nicely handle failures. Several micro-
protocols are used to achieve fault tolerance. First, a micro-protocol provides suspicions
of members’ failures. The group membership protocol, exploiting these suspicions, is
then able to provide each member with an updated and consistent view of the group.



1564 C. Marchetti et al.

Furthermore, M/E is able to provide the well-known virtual synchrony property, which
guarantees that any two processes belonging to view vi and installing view vi+1 deliver
the same set of messages in vi. This is an important property as it greatly simplifies
the design and development of distributed fault-tolerant applications. Moreover M/E
provides a built-in state transfer mechanisms which allows automatic alignment of new
members joining the group.

Table 1. Functional comparison summary

Feature RTEC M/E
Addressing scheme loosely coupled tightly coupled

Communication reliability unreliable reliable
Message filtering complex filters no filtering
Message ordering unordered total order

Real-time guarantees supported not supported
Fault-tolerance not supported supported

Table 1 summarizes the previous discussion. The following section presents perfor-
mance analysis that integrates the comparison.

4 Performance Comparison

As aforementioned, the FDP system has stringent timeliness and high-availability con-
straints, and the number of hosts on which FDP will run mainly depends on the latter
requirement, i.e. scalability is not a main concern. In contrast, the FDP is expected to
run over a network whose load is not a-priori known3. Therefore, to compare how the
two platforms perform, we analyzed how they behave with respect to message latency
in a small-scale setting, but under a wide range of load conditions.

4.1 Experimental Setting

Testbed platform. The testbed platform consists of two 1,2Ghz Pentium IV hosts
equipped with 1Gb of RAM, interconnected via a private Fast Ethernet (100 Mbps)
hub and running Linux RedHat 7.2 as operative system. On both hosts, we installed and
configured TAO 1.3 and Maestro/Ensemble 1.40. No other program was running on the
hosts during the experiments.
Testbed applications. We coded two simple test applications (one for each system) that
run 1000 times the following basic experiment (see Figure 1): every D msec a process
pa on host A sends a timestamped message m with a payload of S bytes to a process
pb on host B (step 1). Upon receiving m from the network (step 2), pb immediately

3 The network load is mainly due to the number of radars, of flights, and of flight control work-
stations, which could vary from a few units to hundreds.



A Practical Comparison Between the TAO Real-Time Event Service 1565

Node A

1
L

a
te

n
cy

Sender

Receiver

process pA

Node B

Sender

Receiver

process pB

Network
Infrastructure

2

5
4

3

Node A

1
L

a
te

n
cy

Sender

Receiver

process pA

Node B

Sender

Receiver

process pB

Network
Infrastructure

2

5
4

3

Fig. 1. Test-bed scenario

sends m back to pa (step 4). Upon receiving m (step 5), pa evaluates the time T elapsed
from the first sending of m and stores T/2 for further analysis4, as a likely estimation of
message latency. In the RTEC test application, each process embeds both a consumer and
a supplier bound to a single event channel, while in the M/E application both processes
join the same group and use the Ensemble’s total order multicast primitive (based on
a fixed sequencer ordering protocol [DSU03,BCM04]) to exchange messages. Each
application finally returns data of the overall experiment, i.e. the estimated average
message latency (aL) and its standard deviation (stdL), as well as the 1000 estimated
values of message latencies. For both platforms, we let vary D (message sending rate
expressed in milliseconds) and S (message size expressed in bytes) in the sets reported
in Table 2.

Table 2. Ranges of experimental parameters

Parameter Values
D(msec) {0, 1, 2, 4, 8, 16, 32}
S(bytes) {0, 10, 100, 1000}

For each pair of values of D and S, each application was run 10 times. Each value
plotted in the following figures is thus evaluated on the basis of a batch of 10.000 basic
experiments.

4.2 Experimental Results

Figure 2 plots the estimated average latency aL and standard deviation stdL as functions
of S and D for both RTEC and M/E. It is first possible to observe that not surprisingly
both systems suffer from heavy load conditions determined by low values of D and high
values of S. However, the message sending rate D has higher impact on performance than

4 To take measurements, we used the high-resolution timer available on Pentium machines (with
resolution 1

1396µsec).



1566 C. Marchetti et al.

0.1

1

10

100

1000

0 1 2 4 8 16 32

D (msec)

aL
 (

m
se

c)

1

10

100

1000

S (bytes)

(a) RTEC average latency

0.1

1

10

100

1000

0 1 2 4 8 16 32

D (msec)

aL
 (

m
se

c)

1

10

100

1000

S (bytes)

(b) M/E average latency

0.1

1

10

100

1000

0 1 2 4 8 16 32

D (msec)

st
d

L
 (

m
se

c)

1

10

100

1000

S (bytes)

(c) RTEC latency standard deviation

0.1

1

10

100

1000

0 1 2 4 8 16 32

D (msec)

st
d

L
 (

m
se

c)

1

10

100

1000

S (bytes)

(d) M/E latency standard deviation

Fig. 2. Average latency (aL) and standard deviation (stdL) of RTEC and M/E as functions of S
and D

message size S, at least for values of S and D ranging in those reported in Table 2. Indeed,
when the message sending rate exceeds 4ms both systems reach a quite stable throughput
state in which both aL and stdL fall under 3ms. In contrast, if D ∈ {0, 1, 2}ms, aL
and stdL grow exponentially reaching values of tens or even hundreds of milliseconds,
depending on S. In order to fairly compare the platforms, it is important to complement
information on latency under stressing conditions with the rate of message loss exhibited
by RTEC. Indeed, even if M/E shows higher aL and stdL values when D falls within
4ms, it also continues to deliver the whole set of sent messages according to its reliable
delivery guarantees. In contrast, RTEC suffers from message losses. Table 3 shows the
percentage e% of events correctly received at step 5 of Figure 1 for each event sent at
step 1 (see Section 4.1), as a function of S and D. Note that (i) reductions of e% can be



A Practical Comparison Between the TAO Real-Time Event Service 1567

due to the loss of some event sent at step 1 as well as of some event sent at step 4, and
(ii) no loss was observed for each value of S when D exceeded 4ms.

Table 3. Percentage of events correctly received (e%) in RTEC experiments as a function of S
and D

D S=0 S=10 S=100 S=1000
0 89.23% 88.9% 59.6% 15.77%
1 91.81% 90.77% 70.32% 37.79%
2 100% 100% 99.25% 82.47%
4 100% 100% 99.99% 100%

Admitting message loss allows RTEC to outperform M/E in heavy load conditions.
Indeed, under these conditions, the average latency of messages delivered by RTEC is
lower than the latency of M/E, that stores and keeps retransmitting messages at the sender
in order to ensure reliability. In other words, M/E sacrifices latency for implementing
reliable message delivery.

This behaviour appears clear in figures 3(a) and 3(b) where the detailed distributions
of message latencies as a function of D and S for both RTEC and M/E are shown. Note
that we omit to report distributions for D = 4ms as they are very similar to the obtained
setting D = 8ms.

Each distribution plots on the Y axis the number of messages having an estimated
latency falling in the range plotted on the X axis. Note that the ranges of X and Y axis
vary from distribution to distribution in order to show differences.

Figure 3(a) shows how RTEC looses messages under heavy load conditions in order
to maintain good performance, while M/E always delivers all messages at the cost of an
higher latency.

5 Concluding Remarks

In this paper we reported the results of a practical experience on the comparison of
two systems deemed suitable for developing a Flight Data Processor, i.e. the TAO Real-
time Event Channel (RTEC) and the Maestro/Ensemble toolkit (M/E). We remark that
a former scientific debate, namely the CATOCS controversy [CS93,Bir94], emphasized
benefits and limitations of event-based and group communication systems at the be-
ginning of research on these platforms. This work reinforces these results by shedding
some light on the specific differences and similarities, even in performance terms, of
two representative systems belonging to these classes. Let us also note that the results
of the comparison can be regarded as a starting point for future research activities. In
particular, from Table 1, it follows that it could be interesting to investigate (i) how to
extend a group communication system, e.g. M/E, with advanced message filtering and
correlation mechanisms, as well as with weaker addressing schemes, and (ii) how to
extend an event-based system, e.g. RTEC, with powerful communication semantics as



1568 C. Marchetti et al.

Samples Distribution when D = 0 msec

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250 300 350 400 450

latency [msec]

ev
en

ts
 r

ec
ei

ve
d

 o
ve

r 
10

00
 [

#]
1

10

100

1000

S (bytes)

Samples Distribution when D = 2 msec

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160

latency [msec]ev
en

ts
 r

ec
ei

ve
d

 o
ve

r 
10

00
 [

#]

1

10

100

1000

S (bytes)

Samples Distribution when D = 8 msec

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10 12 14

latency [msec] (max 68 msec)

ev
en

ts
 r

ec
ei

ve
d

 o
ve

r 
10

00
 [

#]

1

10

100

1000

S (bytes)

Samples Distribution when D = 32 msec

0

100

200

300

400

500

600

700

800

900

1000

0 6 12 18 24 30

latency [msec] (max 67 msec)

ev
en

ts
 r

ec
ei

ve
d

 o
ve

r 
10

00
 [

#]

1

10

100

1000

S (bytes)

(a) RTEC distributions

Samples Distribution when D = 8 msec

980

982

984

986

988

990

992

994

996

998

1000

0 40 80 120 160 200 240 280

latency [msec]ev
en

ts
 r

ec
ei

ve
d

 o
ve

r 
10

00
 [

#]

1

10

100

1000

Samples Distribution when D = 0 msec

0

100

200

300

400

500

600

700

800

900

1000

0 210 420 630 840 1050 1260 1470

latency [msec]

ev
en

ts
 r

ec
ei

ve
d

 o
ve

r 
10

00
 [

#]

1

10

100

1000

Samples Distribution when D = 2 msec

900

910

920

930

940

950

960

970

980

990

1000

0 70 140 210 280 350 420 490 560

latency [msec]

ev
en

ts
 r

ec
ei

ve
d

 o
ve

r 
10

00
 [

#]

1

10

100

1000

S (bytes)

Samples Distribution when D = 32 msec

950

955

960

965

970

975

980

985

990

995

1000

0 10 20 30 40 50 60 70 80

latency [msec]ev
en

ts
 r

ec
ei

ve
d

 o
ve

r 
10

00
 [

#]

1

10

100

1000

S (bytes)S (bytes)

S (bytes) S (bytes)

(b) M/E distributions

Fig. 3. Latency distributions of RTEC and M/E. Please note that latency values on x axis vary
among graphs



A Practical Comparison Between the TAO Real-Time Event Service 1569

reliable and totally ordered message delivery without significantly impacting on perfor-
mance. Furthermore, it could be interesting to analyze how fault-tolerance and real-time
support could be integrated into a system. Investigating these issues could take to the
design of a platform collecting all the benefits achievable among the analyzed systems.

References

[BCM04] R. Baldoni, S. Cimmino, and C. Marchetti. Total order communications over asyn-
chronous distributed systems: Specifications and implementations. Technical Report
06/04, Università di Roma “La sapienza”, January 2004.

[BCMT02] R. Baldoni, S. Cimmino, C. Marchetti, and A. Termini. Performance Analisys
of Java Group Toolkits: a Case Study. In Proc. of the International Workshop on
scientiFic engIneering of Distributed Java applIcations (FIDJI’2002), pages 49–60,
Luxembourg, November 2002.

[Bet00] Katherine Betz. A scalable stock web service. In Proceedings of the 2000 Inter-
national Conference on Parallel Processing, Workshop on Scalable Web Services,
pages 145–150, Toronto, Canada, 2000. IEEE Computer Society.

[Bir94] K. P. Birman. A response to Cheriton and Skeen’s criticism of causal and totally
ordered communication. SIGOPS Oper. Syst. Rev., 28(1):11–21, 1994.

[Bir99] K. P. Birman. A Review of Experiences with Reliable Multicast. Software – Practice
and Experience, 29(9):741–774, 1999.

[CDD96] F. Cristian, B. Dancey, and J. Dehn. Fault-tolerance in air traffic control systems.
ACM Trans. Comput. Syst., 14(3):265–286, 1996.

[CHTCB96] T. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost. On the Impossibility
of Group Membership. In Proc. of the 15th ACM Symposium of Principles of
Distributed Computing, 1996.

[CKV01] G. V. Chokler, I. Keidar, and R. Vitenberg. Group communication specifications: a
comprehensive study. ACM Comput. Surv., 33(4):427–469, 2001.

[CS93] D. R. Cheriton and D. Skeen. Understanding the limitations of causally and totally
ordered communication. In Proceedings of the fourteenth ACM symposium on
Operating systems principles, pages 44–57. ACM Press, 1993.

[DSU03] X. Dèfago,A. Schiper, and P. Urbán. Total order broadcast and multicast algorithms:
Taxonomy and survey. Technical Report IC/2003/56, École Polytechnique Fédérale
de Lausanne, Switzerland, September 2003.

[EFGK03] Patrick Th. Eugster, PascalA. Felber, Rachid Guerraoui, andAnne-Marie Kermarrec.
The many faces of publish/subscribe. ACM Comput. Surv., 35(2):114–131, 2003.

[GS97] R. Guerraoui andA. Schiper. Software-Based Replication for Fault Tolerance. IEEE
Computer - Special Issue on Fault Tolerance, 30:68–74, April 1997.

[Hay98] M. Hayden. The Ensemble system - PhD theses. Technical Report Technical Report
TR98-1662, Dept. of Computer Science, Cornell University, Ithaca (NY), 1998.

[HLS97] Timothy H. Harrison, David L. Levine, and Douglas C. Schmidt. The design and
performance of a real-time CORBA event service. In Proceedings of the 12th ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, pages 184–200. ACM Press, 1997.

[LBB99] C. Liebig, B. Boesling, and A. Buchmann. A notification service for next-generation
it systems in air traffic control. In GI-Workshop: Multicast-Protokolle und Anwen-
dungen, Braunschweig, Germany, May 1999.



1570 C. Marchetti et al.

[LMB00] C. Liebig, M. Malva, and A. Buchmann. X2TS: Unbundling active object systems.
In J. Sventek and G. Coulson, editors, Middleware 2000, IFIP/ACM International
Conference on Distributed Systems Platforms and Open Distributed Processing,
volume 1795 of LNCS. Springer-Verlag, April 2000.

[MCGS03] S. Mena, X. Cuvellier, C. Grégoire, and A. Schiper. Appia vs. Cactus: Comparing
protocol composition frameworks. In 22nd Symposium on Reliable Distributed
Systems. Florence, Italy, October 2003.

[Obj00] Object Management Group (OMG). Air Traffic Control, version 1.0. OMG Domain
Specification - document formal/00-05-01, 2000.

[Obj01] Object Management Group (OMG). Event Service Specification, version 1.1. OMG
Adopted Specification - document formal/01-03-01, 2001.

[Obj02] Object Management Group (OMG). Notification Service Specification, version
1.0.1. OMG Adopted Specification - document formal/02-08-04, 2002.

[Obj03] Object Computing, Inc. TAO Developer’s Guide - Building a standard in perfor-
mance - version 1.2a, volume 2. 2003.

[RK98] Adam Rifkin and Rohit Khare. The evolution of internet-scale event notification
services: Past, present, and future. Draft to be published - http://www.ics.uci.edu/ ro-
hit/wacc, 1998.

[RTD01] S. Ramani, K. S. Trivedi, and B. Dasarathy. Reliable Messaging Using the CORBA
Notification Service. In Proc. of the Third International Symposium on Distributed
Objects and Applications (DOA’01), pages 229–238, September 2001.

[Sch93] Fred B. Schneider. Replication Management Using the State Machine Approach.
In S. Mullender, editor, Distributed Systems. ACM Press - Addison Wesley, 1993.

[Sch02] D. C. Schmidt. Middleware for real-time and embedded systems. Communications
of the ACM, 45(16):43–48, June 2002.

[SLM98] D. C. Schmidt, D. L. Levine, and S. Mungee. The design and performance of
real-time object request brokers. Computer Communications, 21:294–324, April
1998.

[Vay98] A. Vaysburd. Building reliable interoperable distributed objects with the Maestro
tools - PhD theses. Technical Report Technical Report TR98-1678, Dept. of Com-
puter Science, Cornell University, Ithaca (NY), 1998.

[VB98] A. Vaysburd and K. Birman. The Maestro Approach to Building Reliable Interoper-
able Distributed Applications with Multiple Execution Styles. Theory and Practice
of Object Systems, 4(2), 1998.


	Introduction
	Overview of RTEC and M/E
	The TAO Real-Time Event Channel (RTEC)
	Maestro/Ensemble (M/E)

	Functional Comparison
	Performance Comparison
	Experimental Setting
	Experimental Results

	Concluding Remarks

