
Timestamping Algorithms:

A Characterization and a Few Properties

Giovanna Melideo1,2, Marco Mechelli1, Roberto Baldoni1, and
Alberto Marchetti Spaccamela1

1 Dipartimento di Informatica e Sistemistica, Università “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

{Melideo, Mechelli, Baldoni, Marchetti}@dis.uniroma1.it
2 Dipartimento di Matematica ed Applicazioni, Universitá di L’Aquila,

Via Vetoio, 67100 L’aquila, Italy

Abstract. Timestamping algorithms are used to capture the causal or-
der or the concurrency of events in asynchronous distributed computa-
tions. This paper introduces a formal framework on timestamping algo-
rithms, by characterizing some conditions they have to satisfy in order
to capture causality. Under the proposed formal framework we derive
a few properties about the size of timestamps and local informations at
processes obtained by counting the number of distinct causal pasts which
could be observed by an omniscient observer during the evolution of a
distributed computation.

1 Introduction

Since the Lamport’s seminal paper [5], that formalized the notion of causal
dependency between events of an asynchronous distributed computation, a lot
of work has been carried out to design distributed algorithms that capture the
causal dependencies (or the concurrency) between events during a computation
[7]. All these algorithms are based on timestamps associated with events and
on the piggybacking of information on messages used to update timestamps. If
these timestamps represent an isomorphic embedding of the partial order of the
computation, the potential causal precedence or the concurrency between two
events can be correctly detected just comparing their timestamps, and we say
that the algorithm characterizes causality.

In this paper we are interested in introducing a formal framework for times-
tamping algorithms. At this aim, we consider some operational aspects which
allow us to characterize some conditions which any timestamping algorithm has
to satisfy in order to characterize causality. Under this framework we prove a
bijective correspondence among the set Cn of causal pasts which could be ob-
served during the execution of all distributed computations of n processes, the
set Imn(φ) of the timestamps which could be assigned by a timestamping algo-
rithm to events in E and the set Imn(I�) of local informations maintained by
processes.

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 609–616, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

610 Giovanna Melideo et al.

An interesting result concerns the reckoning of the causal pasts in Cn, which
permits to characterize also the cardinality of the sets Imn(φ) and Imn(I�).
This is done by counting all prefix-closed subsets of E with respect to the causal
order relation [5] which can never be causal pasts of any distributed computation.

By analyzing the size of non-structured information (i.e. the number of bits)
necessary to code elements in Imn(φ) and in Imn(I�) when the timestamping
algorithm has to characterize causality, we obtain a confirmation of the Charron-
Bost’s result [2]. Algorithms which structure timestamps as vectors of k integers
characterize causality only if k ≥ n (being n the number of processes). Moreover,
we also give a property on the minimum size of control information piggybacked
on outgoing messages.

These properties partially answer a question of Schwartz-Mattern [8] about
the minimum amount of information that has to be managed by a timestamping
algorithm which correctly captures the causality.

The remaining of this paper is structured in 5 sections. Section 2 introduces
the computation model. Section 3 presents a formal framework for timestamping
algorithms. In Section 4 a few properties are given about the size of timestamps,
and the amount of information managed by any timestamping algorithm char-
acterizing causality. Finally, Section 5 relates the results obtained in this paper
with timestamping algorithms presented in the literature [5,10,4,1].

2 Computation Model

A distributed computation consists of a finite set of n sequential application
processes {P1, P2, . . . , Pn} which do not share a common memory and commu-
nicate solely by message exchanging, with an unpredictable but finite delay. The
execution of each process Pi produces a totally ordered set of events Ei. An
event may be either internal or it may involve communication (send or receive
event).

Let E be the disjoint union of totally ordered sets Ei, i.e. E =
⋃n

i=1 Ei. This
set is structured as a partial order by Lamport’s causality relation [5], denoted
as → and defined as follows:

Definition 1. The causality relation →⊆ E × E is the smallest relation satis-
fying the following conditions: e → e′ if one of these conditions holds:
(1) e and e′ are events in the same process and e precedes e′

(2) ∃ m : e = send(m) ∧ e′ = receive(m)
(3) ∃ e′′ : e → e′′ ∧ e′′ → e′.

Two events e and e′ are concurrent if ¬(e → e′) and ¬(e′ → e).
The partial order Ê = (E,→) constitutes a formal model of the distributed

computation it is associated with. Namely:

Definition 2. A relation →⊆ E × E is a causality relation on E if [2]:
(1) (E,→) has no cycles, and
(2) ∀e ∈ E, |{(e, e′) ∈→| e′ ∈ E} ∪ {(e′, e) ∈→| e′ ∈ E}| ≤ 1

(i.e. for every receipt of a message m, there is a single sending of m).

Timestamping Algorithms: A Characterization and a Few Properties 611

According to this model, we denote as ei,j ∈ E a generic j-th event produced
by the process Pi, whose type (internal/send/receive) is defined by the specific
causality relation → considered on these events1.

Moreover, we model all distributed computations of n processes as the set
Ên = {(E,→) |→∈ R→}, where R→ ⊆ 2E×E denotes the set of all causality
relations on E.

For a given computation Ê ∈ Ên, the causal past of e in Ê is the prefix-closed
set of E under the causal order ↑ (e, Ê) = {e′ ∈ E | e′ → e} ∪ {e}. Each
causal past ↑ (e, Ê) ⊆ E can be decomposed in n disjoint subsets ↑1 (e, Ê), ↑2

(e, Ê), . . . , ↑n (e, Ê), where ↑i (e, Ê) =↑ (e, Ê) ∩ Ei.
Following Schwartz-Mattern [8], ∀ Ê ∈ Ên, ({↑ (e, Ê) | e ∈ E},⊆) is an

isomorphic embedding of (E,→). In fact, different causal pasts in the same
computation correspond to different events, and

∀ Ê ∈ Ên, ∀e, e′ ∈ Ê (e �= e′), e → e′ ⇔ ↑ (e, Ê) ⊂ ↑ (e′, Ê). (1)

We denote as Cn =
⋃

bE∈bEn
{↑ (e, Ê) | e ∈ E} the set of causal pasts which

could be observed during the execution of all computations of n processes.

3 A Characterization of Timestamping Algorithms

Techniques to detect causality relations or concurrency between events are based
on timestamps of events produced by the execution of a timestamping algorithm,
which assigns “on-the-fly”, that is during the evolution of the computation Ê
and without knowing its future, to each event e a value φ(e, Ê) of a suitable
partially ordered set (D, <).

A timestamping algorithm A is usually characterized by a partially ordered
set (D, <) called timestamps domain, a timestamping function φ which estab-
lishes a correspondence between events of a computation and timestamps in D,
and a set of rules implementing the algorithm which decide both local informa-
tion at processes and control information piggybacked by messages.

The aim is to assign values in D to events so that for each Ê ∈ Ên, the
suborder ({φ(e, Ê) | e ∈ E}, <) of the timestamps assigned to events is an
isomorphic embedding of (E,→).

This is usually formalized [2,3,8] by requiring the function φ characterizes
causality, i.e. φ is injective and ∀Ê ∈ Ên, ∀e, e′ ∈ Ê, e → e′ ⇔ φ(e, Ê) < φ(e′, Ê).

We denote as Imn(φ) =
⋃

bE∈bEn
{φ(e, Ê) | e ∈ E} ⊆ D the set of timestamps

which could be assigned by any timestamping algorithm to events during the
execution of all computations of n processes.

1 When referring to generic events we drop subscripts and we use the following simple
notation e, e′ and e′′.

612 Giovanna Melideo et al.

A bijective correspondence between Imn(φ) and Imn(I�). A deterministic times-
tamping algorithm assigns a timestamp to an event e only basing on the current
local control information at the process producing e. So, it will assign the same
timestamp to two events which have the same local information at process, even
though they belong to two distinct distributed computations.

We denote as I�(e, Ê) the local control information associated with e by the
timestamping algorithm during the execution of the computation2. Namely, I� is
a function mapping events to values in an ordered set (L,≺), called local domain.
Then, we can say that

∀ Ê1, Ê2 ∈ Ên, I�(e, Ê1) = I�(e′, Ê2) ⇒ φ(e, Ê1) = φ(e′, Ê2). (2)

Let Imn(I�) =
⋃

bE∈bEn
{I�(e, Ê) | e ∈ E} be the set of local informations

which could be associated with events by any timestamping algorithm, during
the execution of all computations of n processes. The following proposition shows
that any timestamping algorithm which characterizes causality is characterized
by a bijective correspondence between Imn(I�) and Imn(φ). In fact, it proves
that if the timestamping function characterizes causality then the converse of
(2) is also true.

Proposition 1. If a timestamping function characterizes causality, then

∀ Ê1, Ê2 ∈ Ên, I�(e, Ê1) = I�(e′, Ê2) ⇔ φ(e, Ê1) = φ(e′, Ê2). (3)

Proof. Sufficiency is given by equation (2). To prove necessity, let e ∈ Ê1, e′ ∈ Ê2

be two events with the same timestamp (i.e. φ(e, Ê1) = φ(e′, Ê2)) and I(e, Ê1) �=
I(e′, Ê2). Since a timestamping algorithm cannot predict the progress of the
computation, there could exist an event e′′ ∈ Ê1 such that I(e′′, Ê1) = I(e′, Ê2).
In this case, condition (2) implies that φ(e′′, Ê1) = φ(e′, Ê2), that is the al-
gorithm must assign to event e′′ the same timestamp as e′. By hypothesis
φ(e, Ê1) = φ(e′, Ê2), so φ(e, Ê1) = φ(e′′, Ê1) holds, that is in the same computa-
tion two events have the same timestamp. As φ characterizes causality, φ(e, Ê)
and φ(e′′, Ê) must be distinct.

A bijective correspondence between Cn and Imn(φ). If φ characterizes causality,
the condition (1) implies that ∀Ê ∈ Ên, ({φ(e, Ê) | e ∈ E}, <) is an isomorphic
embedding of ({↑ (e, Ê) | e ∈ E},⊆), i.e.

∀Ê ∈ Ên, ∀e, e′ ∈ Ê, (e �= e′), ↑ (e, Ê) ⊆↑ (e′, Ê) ⇔ φ(e, Ê) < φ(e′, Ê). (4)

We consider an omniscient observer whose role is to instantaneously detect
if a pair of events is causally related or concurrent only by comparing their
timestamps.

2 We suppose there is no redundant local information at processes, i.e. the local infor-
mation is minimal.

Timestamping Algorithms: A Characterization and a Few Properties 613

The condition (1) implies the observer must have perfect knowledge of all
causal pasts at any time, so it can be argued that the timestamps known by the
observer (Imn(φ), <) have to form an isomorphic embedding of (Cn,⊆). This
implies the decoding function ϕ : Imn(φ) → Cn, which characterizes the algo-
rithm executing by the observer, is bijective and satisfies the following condition:
∀d1, d2 ∈ Imn(φ), d1 < d2 ⇔ ϕ(d1) ⊆ ϕ(d2).

Previous condition directly implies (4). Moreover, since ϕ is bijective and
φ = ϕ−1◦ ↑, we can assert that causal pasts and timestamping functions char-
acterizing causality are also related as follows:

↑ (e, Ê1) =↑ (e′, Ê2) ⇔ φ(e, Ê1) = φ(e′, Ê2). (5)

The operational aspects of timestamping algorithms analyzed in the previous
paragraphs allow us to argue that both Imn(φ) ⊆ D and Imn(I�) ⊆ L are actu-
ally a coding of the set Cn. Then, we can characterize a timestamping algorithm
as a sequence A(D, L, χD, χL) where:

– D = (D, <) is a partial order called timestamps domain;
– L = (L,≺) is a partial order called local domain;
– χD : Cn → D is a mapping from causal pasts to timestamps;
– χL : Cn → L is a mapping from causal pasts to local informations.

Definition 3. A timestamping algorithm A(D, L, χD, χL) characterizes causal-
ity if (i) χD and χL are both injective functions, and (ii) the function φ = χD◦ ↑
characterizes causality (i.e. A characterizes causality if φ characterizes causality
and it timestamps events according to (3) and (5)).

An Example of Timestamping Algorithm: Vector Clocks [3,6]. The Vector Clocks
algorithm codifies causal pasts as integer vectors of size n. Let V Ci be the vector
clock endowed by the process Pi. V Ci[j] represents the number of events on Pj

in the causal past known by Pi. In this case:
(1) D ≡ L ≡ (INn,≤), where ∀ V, V ′ ∈ INn, V ≤ V ′ iff ∀i, V [i] ≤ V ′[i];
(2) χD ≡ χL : Cn → INn is defined as: ∀i, ∀S ∈ Cn, χD(S)[i] = |S ∩ Ei|.

4 Causal Pasts of a Set of Events E

In this section we provide some interesting properties on the set of causal pasts
Cn. Moreover, being |Imn(φ)| = |Imn(I�)| = |Cn|, we are interested in the
reckoning of elements in Cn, obtained as a corollary of Propositions 2 and 3.

The following proposition gives necessary conditions so that a prefix-closed
subset of events S ⊆ E could be a causal past. We recall that each causal past
S ∈ Cn can be decomposed in n subsets S1, S2, . . . , Sn, where Si = S ∩ Ei.

Proposition 2. Let S ⊆ E be a prefix-closed subset of events generated by n
processes. S is a causal past (S ∈ Cn) only if S �= ∅ and when the number k of
nonempty subsets in its decomposition is at least 3, |S| ≥ 2(k − 1).

614 Giovanna Melideo et al.

Proof. The first claim easily follows by the definition of causal past, because at
least e belongs to ↑ (e, Ê), so S �= ∅. If k processes have events in the causal
past S, then at least k − 1 processes have to send messages in order to establish
a dependency. Each of k− 1 messages contributes 2 events to S. Hence, 2(k− 1)
is the minimum number of events in S when k ≥ 3.

The previous proposition proved that if k subsets, with 3 ≤ k ≤ n, are
nonempty in the decomposition of a prefix-closed subset S and |S| ≤ 2k − 3,
then S �∈ Cn. In the following proposition we count the number of these sets, in
order to obtain a precise reckoning of Cn.

Proposition 3. The number of prefix-closed subsets S ⊆ E of size at most
2k − 3 which can be decomposed in k ≥ 3 nonempty subsets is:

n∑
k=3

(
n

k

)(
2k − 3

k

)
. (6)

Proof. By applying basic mathematical enumeration results, since (i) k nonempty
subsets can be on any of n processes and (ii) the number of prefix-closed sets
S of size h which can be decomposed in k nonempty subsets is

(
h−1
h−k

)
, we have

that the number required is:
∑n

k=3

(
n
k

) ∑2k−3
h=k

(
h−1
h−k

)
=

∑n
k=3

(
n
k

) ∑k−3
h=0

(
h+k−1

h

)
.

The value
(
h+k−1

h

)
, denoted as N(h, k), represents the number of prefix-

closed subsets of size h which can be decomposed in at most k subsets. It can
be easily proved that N(h, k) =

∑h
i=0 N(i, k − 1), so the thesis (6) follows by∑k−3

h=0

(
h+k−1

h

)
=

∑k−3
h=0 N(h, k) = N(k − 3, k + 1) =

(
2k−3

k

)
.

For simplicity’s sake and wlog we assume processes generate m event each.

Corollary 1. If n processes generate m events each, then

|Cn| = (m + 1)n − 1−
n∑

k=3

(
n

k

)(
2k − 3

k

)
.

Proof. If each process generates m events, we have (m + 1)n different prefix-
closed subsets of events. The thesis follows by considering that ∅ �∈ Cn and there
are

∑n
k=3

(
n
k

)(
2k−3

k

)
prefix-closed subsets which cannot be causal pasts (Eq. 6).

4.1 Properties

The Corollary 1 and the Properties 1 and 2 directly imply that:

Property 1. A timestamping algorithm characterizes causality only if |Imn(φ)| =
|Imn(I�)| = (m + 1)n − 1− ∑n

k=3

(
n
k

)(
2k−3

k

)
.

As a consequence, the coding of each element in Imn(φ) and Imn(I�) requires
at least �log2 |Cn| = �log2 ((m + 1)n − 1− ∑n

k=3

(
n
k

)(
2k−3

k

)
) bits. Regarding

local information at processes, from an operational point of view, the empty set

Timestamping Algorithms: A Characterization and a Few Properties 615

is usually used in the initial step, so in practice it is necessary to locally use at
least �log2 (|Imn(φ)|+ 1) = �log2 ((m + 1)n − ∑n

k=3

(
n
k

)(
2k−3

k

)
) bits.

Property 2 gives the necessary amount of information piggybacked on mes-
sages, when the timestamping algorithm characterizes causality locally main-
taining only minimal control informations, that is codings of causal pasts.

Let Ip(send(m), Ê) be the control information piggybacked upon message
m, and Imn(Ip) =

⋃
bE∈bEn

{Ip(e, Ê) | e ∈ E} be the set of control informa-
tions which could be piggybacked upon messages during the execution of all
distributed computations on n processes (if e is not a send event we assume
Ip(e, Ê) = ∅).
Property 2. A timestamping algorithm characterizes causality only if |Imn(Ip)|=
(m + 1)n−1 − 1− ∑n−1

k=3

(
n−1

k

)(
2k−3

k

)
.

Proof. Let eu,h be a send event and ei,j the corresponding receive event in any
computation Ê. By definition, ↑ (ei,j , Ê) =↑ (ei,j−1, Ê)∪ ↑ (eu,h, Ê) ∪ {ei,j}. If
we denote Sk =↑k (ei,j−1, Ê))∪ ↑k (eu,h, Ê), we have ↑ (ei,j , Ê) =↑i (ei,j , Ê) ∪
(
⋃

k �=i Sk). Then, distinct values of ↑ (ei,j , Ê) are associated to different values of⋃
k �=i Sk, which are as many as all possible causal pasts which involve events in

n−1 processes. Consequently their number is (m+1)n−1−1−∑n−1
k=3

(
n−1

k

)(
2k−3

k

)
.

As a consequence the coding of each element in Imn(Ip) requires at least
�log2 ((m + 1)n−1 − 1− ∑n−1

k=3

(
n−1

k

)(
2k−3

k

)
) bits.

A remark on the Vector Clock algorithm. If n processes generate m events each,
D = L = {0, . . . , m}n, so |D| = |L| = (m + 1)n. By Proposition 2, D and L are
redundant. In fact, D, L ⊃ Imn(φ) = Imn(I�) = {V ∈ {0, . . . , m}n | kV ≥ 3 ⇒∑n

i=1 V [i] ≥ 2(kV − 1)}, where kV denotes the number of indices i such that
V [i] �= 0, implying |D|, |L| > Cn. Namely, D and L include vectors (as [1,1,1])
which can never be associated with events, codifying prefix-closed subsets which
are not causal pasts.

To codify all elements in D and L it is necessary to use at least n�log2(m+1)
bits, that is more than necessary information. However, from an operational
point of view, a coding that excludes non-potential causal pasts seems to be not
practicable. As a consequence, a timestamping algorithm based on vector clocks
provides the closest coding to the minimal quantity of information required.

5 Related Work

Previous properties give a theoretical confirmation to the fact that some times-
tamping algorithms such as scalar clock [5], plausible clocks [10] and direct de-
pendency vectors [4] are not able to characterize causality on-the-fly3.

3 A deep discussion about these timestamping algorithms is out of the scope of this
paper. Nice surveys can be found in [7,8].

616 Giovanna Melideo et al.

Plausible clocks maintain locally at each process a vector of k < n entries,
that is less than the quantity required by property 1. The scalar clocks are a
particular case of plausible clocks when considering k = 1.

A timestamping algorithm based on direct dependency tracking meets the
requirement of property 1 as each process maintains locally a vector of integers
of size n. However, each message piggybacks only one integer, that is the index
of the send event of the sender process, so by Property 2, it is not appropriate to
characterize causality. On the other hand, it is well-known that the timestamping
algorithm based on direct dependency can off-line (i.e., with some additional
computation) reconstruct all causality relations between events [8]. This give
rise to an interesting remark: if a timestamping algorithm satisfies Property 1 but
not Property 2, it has the necessary information for characterizing the causality
relation but it needs some extra (off-line) computation.

Previous observation is the baseline of the k-dependency vector algorithm
introduced in [1], where, given an integer k ≤ n, each process piggybacks a
subset of size k of the local vector, including the current index of the send event
of the sender process (as in direct dependency algorithm) and other k − 1. The
choice of the other k − 1 values is left to a scheduling policy of the algorithm.

Acknowledgments
We acknowledge the support of the EU ESPRIT LTR Project ”ALCOM-IT”

under contract n. 20244.

References

1. R. Baldoni, A., M. Mechelli and G. Melideo. A General Scheme for Dependency
Tracking in Distributed Computations, Technical Report n. 17.99, Dipartimento
di Informatica e Sistemistica, Roma, 1999.

2. B. Charron-Bost. Concerning the size of logical clocks in distributed systems, In-
formation Processing Letters, 39, 11–16, 1991.

3. C. Fidge. Timestamps in message passing system that preserve the partial ordering,
Proc. 11th Australian Computer Science Conf., 55–66, 1988.

4. J. Fowler and W. Zwaenepoel. Causal distributed breakpoints, Proc. of 10th IEEE
Int’l. Conf. on Distributed Computing Systems, 134–141, 1990.

5. L. Lamport, Time, clocks, and the ordering of events in a distributed system,
Comm. ACM, 217, 558-564, 1978.

6. F. Mattern. Virtual time and global states of distributed systems, M. Cosnard and
P. Quinton eds. Parallel and Distributed Algorithms 215-226, 1988.

7. M. Raynal and M. Singhal, Logical Time: Capturing Causality in Distributed Sys-
tems, IEEE Computer, 29(2):49-57, 1996.

8. R. Schwarz and F. Mattern, Detecting causal relationships in distributed computa-
tions: in search of the holy grail, Distributed Computing 7(3), 149–174, 1994.

9. M. Singhal and A. Kshemkalyani, An Efficient Implementation of Vector Clocks.
Information Processing Letters, 43:47-52, 1992.

10. F. J. Torres-Rojas and M. Ahamad, Plausible Clocks: constant size logical clocks
for distributed systems, Proceedings of the International Workshop on Distributed
Algorithms, 71–88, 1996.

	Introduction
	Computation Model
	A Characterization of Timestamping Algorithms
	Causal Pasts of a Set of Events E
	Properties

	Related Work

