
Managing Data Quality in Cooperative
Information Systems

Massimo Mecella1, Monica Scannapieco1,2, Antonino Virgillito1,
Roberto Baldoni1, Tiziana Catarci1, and Carlo Batini3

1 Università di Roma “La Sapienza”, DIS
{mecella,monscan,virgi,baldoni,catarci}@dis.uniroma1.it

2 Consiglio Nazionale delle Ricerche, IASI
3 Università di Milano “Bicocca”, DISCo

batini@disco.unimib.it

Abstract. Current approaches to the development of cooperative in-
formation systems are based on services to be offered by cooperating
organizations, and on the opportunity of building coordinators and bro-
kers on top of such services. The quality of data exchanged and provided
by different services hampers such approaches, as data of low quality can
spread all over the cooperative system. At the same time, improvement
can be based on comparing data, correcting them and disseminating high
quality data. In this paper, a service-based framework for managing data
quality in cooperative information systems is presented. An XML-based
model for data and quality data is proposed, and the design of a broker,
which selects the best available data from different services, is presented.
Such a broker also supports the improvement of data based on feedbacks
to source services.

1 Introduction

A Cooperative Information System (CIS) is a large scale information system
that interconnects various systems of different and autonomous organizations,
geographically distributed and sharing common objectives. Among the different
resources that are shared by organizations, data are fundamental; in real world
scenarios, an organization A may not request data from an organization B if it
does not “trust” B data, i.e., if A does not know that the quality of the data
that B can provide is high. As an example, in an e-Government scenario in which
public administrations cooperate in order to fulfill service requests from citizens
and enterprises [1], administrations very often prefer asking citizens for data,
rather than other administrations that have stored the same data, because the
quality of such data is not known. Therefore, lack of cooperation may occur due
to lack of quality certification.

Uncertified quality can also cause a deterioration of the data quality inside
single organizations. If organizations exchange data without knowing their actual
quality, it may happen that data of low quality spread all over the CIS.

R. Meersman, Z. Tari (Eds.): CoopIS/DOA/ODBASE 2002, LNCS 2519, pp. 486–502, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Managing Data Quality in Cooperative Information Systems 487

On the other hand, CIS’s are characterized by high data replication, i.e.,
different copies of the same data are stored by different organizations. From a
data quality perspective this is a great opportunity: improvement actions can be
carried out on the basis of comparisons among different copies, in order either to
select the most appropriate one or to reconcile available copies, thus producing
a new improved copy to be notified to all involved organizations.

CIS’s designed according to a service-based approach [2] consider cooperation
among different organizations to be obtained by sharing and integrating services
across networks; such services, commonly referred to as e-Services and Web-
Services [3], are exported by different organizations as well defined operations
that allow users and applications to access and perform tasks offered by back-end
business applications.

In this paper, we propose a service-based framework and an overall archi-
tecture for managing data quality in CIS’s. The architecture aims at avoiding
dissemination of low qualified data through the CIS, by providing a support for
data quality diffusion and improvement. At the best of our knowledge, this is a
novel contribution in the information quality area, that aims at integrating, in
the specific context of CIS, both modeling and architectural issues. To enforce
this vision, our work, beside presenting the general architecture, focuses on two
specific elements of the problem, that we consider of primary importance. More
specifically:

❒ we first face the problem of lack of quality certification by proposing a model
for each organization to export data with associated quality information. The
model is XML-based in order to address interoperability issues existing in
cooperative information systems;

❒ then, we present the distributed design of a single architectural service, based
on the model cited above, namely the Data Quality Broker, which allows each
organization involved in the CIS to retrieve data specifying their quality re-
quirements. The service offers only data that satisfies the given requirements
and notifies organizations about the highest quality values found within the
CIS. The design of the distributed service takes into account reliable com-
munication issues and shows the feasibility of our approach in practical sce-
narios.

The structure of the paper is as follows. In Section 2, related research work is
discussed. In Section 3, a service-based framework for Cooperative Information
Systems is proposed. On the basis of such a framework, in Section 4, an archi-
tecture specifically addressing quality related issues is described. In Section 5, a
model for both the exchanged data and their quality is presented. In Section 6,
the distributed design of the Data Quality Broker service is described. Finally,
Section 7 concludes the paper by drawing future work.

2 Related Work

Data Quality has been traditionally investigated in the context of single infor-
mation systems; only recently, a methodological framework for data quality in

488 M. Mecella et al.

cooperative systems has been proposed, consisting of five phases (i.e., definition,
measurement, exchange, analysis and improvement) [4].

In cooperative scenarios, the main data quality issues regard: (i) assessment
of the quality of the data owned by each organization; (ii) methods and tech-
niques for exchanging quality information; (iii) improvement of quality within
each cooperating organization; and (iv) heterogeneity, due to the presence of
different organizations, in general with different data semantics.

For the assessment (i) and the heterogeneity (iv) issues, some of the results
already achieved for traditional systems can be borrowed, e.g., [5,6]. Methods
and techniques for exchanging quality information (ii) have been only partially
addressed in the literature. When considering the issue of exchanging data and
the associated quality, a model to export data and quality data needs to be de-
fined. Some conceptual models to associate quality information to data have been
proposed: an extension of the Entity-Relationship model [7], and a data ware-
house conceptual model with quality features described through the Description
Logic formalism [6]. Both models are thought for a specific purpose: the former
to introduce quality elements in relational database design; the latter to intro-
duce quality elements in the data warehouse design. Whereas, in the present
paper the aim is to enable quality exchanging in a generic CIS, independently
of the specific data model and system architecture.

In [8], the problem of the quality of web-available information has been faced
in order to select data with high quality coming from distinct sources: every
source has to evaluate some pre-defined data quality parameters, and to make
their values available through the exposition of meta-data. Our proposal is dif-
ferent as we propose an ad-hoc service that brokers data requests and replies
on the basis of data quality information. Moreover, we also take into account
improvement features (iii) that are not considered in [8].

3 The Framework

In current business scenarios, organizations need to cooperate in order to offer
services to their customers and partners. Organizations that cooperate have
business links (i.e., relationships, exchanged documents, resources, knowledge,
etc.) connecting each other. Specifically, organizations exploit business services
(e.g., they exchange data or require services to be carried out) on the basis of
business links, and therefore the network of organizations and business links
constitutes a cooperative business system.

As an example, a supply chain, in which some enterprises offer basic products
and some others assemble them in order to deliver final products to customers, is
a cooperative business system. As another example, a set of public administra-
tions which need to exchange information about citizens and their health state
in order to provide social aids, is a cooperative business system derived from the
Italian e-Government scenario [1].

A cooperative business system exists independently of the presence of a soft-
ware infrastructure supporting electronic data exchange and service provisioning.

Managing Data Quality in Cooperative Information Systems 489

Indeed cooperative information systems are software systems supporting coop-
erative business systems; in the remaining of this paper, the following definition
of CIS is considered:

A cooperative information system is formed by a set of organizations
{ Org1, . . . , Orgn } which cooperate through a communication software infras-
tructure N, which may provide software services, referred to as infrastructure
services (IS’s), to organizations as wells as reliable connectivity. Each organiza-
tion Orgi is connected to N through a gateway Gi, on which application services
(AS’s) offered by Orgi to other organizations are deployed. We denote as ASj,i

the j-th application service offered by Orgi.

The difference between application and infrastructure services is that the
latter can be designed independently of organizations. Application services can
perform different operations, such as initiating complex transactions on back-
end systems, providing access to data, etc. In the present work we only consider
read-only access services, that is application services returning application data
stored inside organizations without modifying them. We will assume the follow-
ing definition of application service:

A generic application service ASj,i offered by a cooperating organization Orgi is
a set of operations {s1, ..., sn}, each one specified by a signature of the following
form:

si(p1, ..., pn) → {O1, ...,On}

where p1, ..., pn is the list of parameters and {O1, ...,On} is the set of data items
returned by si.

The Oi’s returned by application services are expressed as XML documents
that convey not only application data items, but also data about the quality of
such data items (see Section 5).

4 An Architecture for Data Quality

A typical feature of CIS’s is the high degree of data replicated in different or-
ganizations. As an example, in an e-Government scenario, the personal data of
a citizen are stored by almost all the administrations. On the basis of the pro-
posed definition of CIS, more than one organization can implement the same
application service. Therefore, according to our assumption of considering only
access data services, several organizations can provide the same data though
with different quality levels. Any requester of data may want to have the data
with the highest quality level, among the provided ones. Thus only the high-
est quality data are returned to the requester, limiting the dissemination of low
quality data. Moreover, the comparison of the gathered data values can be used
to enforce a general improvement of data quality in all the organizations.

490 M. Mecella et al.

In the context of the DaQuinCIS project1, we propose an architecture for the
management of data quality in CIS’s; such an architecture allows the diffusion
of data and related quality and exploits data replication to improve the overall
quality of cooperative data. According to the logical model of a CIS presented
in the previous section, we need to define both a model for the organizations
to exchange data and data quality data and a set of infrastructure services that
realize quality management functions.

Data
Quality
Broker

G1

AS1,1

Org1

ASp,1

Gn

AS1,n

Orgn

ASq,n… …
…

QualityFactory1 QualityFactoryn

Quality
Knowledge
Repository

Notification
Service

Rating
Service

Communication Infrastructure (N)

Fig. 1. An architecture for data quality diffusion and improvement

The model for data quality we propose in this paper is called Data and Data
Quality (D2Q) model. It includes the definitions of (i) constructs to represent
data, (ii) a common set of data quality properties, (iii) constructs to represent
them and (iv) the association between data and quality data. The D2Q model
is described in Section 5.

In order to produce data and quality data according to the D2Q model, each
organization holds a Quality Factory that is responsible for evaluating the
quality of its own data. The overall architecture is depicted in Figure 1. In the
following we give a description of each element:

❒ Data Quality Broker: it is the core of the architecture. It performs, on
behalf of a requesting organization, a data request on all the AS’s, also
specifying a set of quality requirements that the desired data have to satisfy
(quality brokering function). Different copies of the same data received as
responses to the request are reconciled and a best-quality value is selected

1 “DaQuinCIS - Methodologies and Tools for Data Quality in Cooperative Informa-
tion Systems” is an Italian research project carried out by Università di Roma “La
Sapienza”, Università di Milano “Bicocca” and Politecnico di Milano
(http://www.dis.uniroma1.it/∼dq/).

Managing Data Quality in Cooperative Information Systems 491

and proposed to organizations, that can choose to discard their data and
adopt higher quality ones (quality improvement function). Quality brokering
and improvement are described in Section 6. If the requirements specified in
the request cannot be satisfied, then the broker initiates a negotiation with
the requester that can optionally weaken the constraints on the desired data.

❒ Quality Knowledge Repository: it consists of a knowledge base used
by the other components in order to perform their functions. For example,
it maintains (i) the interschema knowledge representing the relationships
among schemas that allow to determine intensional and extensional equiva-
lence of data in different organizations [10], and (ii) historical quality knowl-
edge, including statistics related to data quality ensured by organizations in
the past, that is also used to realize a rating service for source reliability.

❒ Notification Service: it is a publish/subscribe engine used as a general
message bus between components and/or organizations. More specifically, it
allows quality-based subscriptions for organizations to be notified for quality
changes in data. For example, an organization may want to be notified if the
quality of a data it uses degrades below a certain acceptable threshold, or
when high quality data are available.

❒ Rating Service: it associates trust values to each data source in the CIS.
These are used by the Data Quality Broker to determine the reliability of
the quality evaluation made by organizations. Trust values are dynamically
updated from the statistics from the Quality Knowledge Repository and take
also into account the current availability of the data source.

The detailed design of such components is currently under investigation [9,
11]; in this paper, we only focus on the architectural design of the data quality
broker, which is detailed in Section 6.

5 The D2Q Model

All cooperating organizations export their application data and quality data (i.e.,
data quality dimension values evaluated for the application data) according to
a specific data model. Exported data and quality data can be accessed by other
organizations by means of application service operations that each cooperating
organization makes available to the others. The model for exporting data and
quality data is referred to as Data and Data Quality (D2Q) model. In this section,
we first introduce the data quality dimensions used in this paper (Section 5.1),
then we describe the D2Q model with respect to the data features (Section 5.2)
and the quality features (Section 5.3).

5.1 Data Quality Dimensions

Data quality dimensions are properties of data such as correctness or degree
of updating. The data quality dimensions used in this work concern only data
values; instead, they do not deal with aspects concerning quality of logical schema
and data format [12].

492 M. Mecella et al.

In this section, we propose and outline some data quality dimensions to
be used in CIS’s, stemming from real requirements of CIS’s scenarios that we
experienced [1]. The reader should refer to [9] for complete definitions, examples
and possible evaluation methods related to each of them.

In the following, the general concept of schema element is used, correspond-
ing, for instance, to an entity in an Entity-Relationship schema or to a class in
a Unified Modeling Language diagram. We define:

❒ Accuracy. It is the distance between v and v’, being v’ the value considered
as correct.

❒ Completeness. It is the degree to which values of a schema element are
present in the schema element instance.

❒ Currency. The currency dimension refers only to data values that may
vary in time; as an example, values of Address may vary in time, whereas
DateOfBirth can be considered invariant. Therefore, currency can be defined
as the “age” of a value. Namely, currency is the distance between the instant
when a value changes in the real world and the instant when the value itself
is modified in the information system.

❒ Internal Consistency. Consistency implies that two or more values do not
conflict each other. Internal consistency means that all values being com-
pared in order to evaluate consistency are within a specific instance of a
schema element. A semantic rule is a constraint that must hold among val-
ues of attributes of a schema element, depending on the application domain
modeled by the schema element. Then, internal consistency can be defined
as the degree to which the values of the attributes of an instance of a schema
element satisfy the specific set of semantic rules defined on the schema ele-
ment.

5.2 Data Model

The D2Q model is inspired by the data model underlying XML-QL [13]. A
database view of XML is adopted: an XML Document is a set of data items, and
a Document Type Definition (DTD) is the schema of such data items, consisting
of data and quality classes. In particular, a D2Q XML document contains both
application data, in the form of a D2Q data graph, and the related data quality
values, in the form of four D2Q quality graphs, one for each quality dimension
introduced in Section 5.1. Specifically, nodes of the D2Q data graph are linked
to the corresponding ones of the D2Q quality graphs through links, as shown
in Figure 2. Operations offered by the application services return D2Q XML
documents as outputs.

A D2Q XML document corresponds to a set of conceptual data items, which
are instances of conceptual schema elements; schema elements are data and
quality classes, and instances are data and quality objects. Data classes and
objects are straightforwardly represented as D2Q data graphs, as detailed in the
following of this section, and quality classes and objects are represented as D2Q
quality graphs, as detailed in Section 5.3.

Managing Data Quality in Cooperative Information Systems 493

D2Q data
graph

Internal
consistency D2Q
quality graph

Currency D2Q
quality graph

Completeness D2Q
quality graph

Accuracy D2Q
quality graph

D2Q data
graph

Internal
consistency D2Q
quality graph

Currency D2Q
quality graph

Completeness D2Q
quality graph

Accuracy D2Q
quality graph

Fig. 2. The generic structure of a D2Q XML document, returned as result by a service
operation

In order to clarify our definition of data class in XML, we preliminary recall
a typical definition of data class from ODMG [14].

A data class δ (π1, . . . , πn) consists of:

❒ a name δ;
❒ a set of properties πi = < namei : typei >, i = 1 . . . n, n ≥ 1, where
namei is the name of the property πi and typei can be:

– either a basic type2;
– or a data class;
– or a type set-of < X >, where < X > can be either a basic type or a

data class.

We define a D2Q data graph as follows:

A D2Q data graph G is a graph with the following features:

❒ a set of nodes N ; each node (i) is identified by an object identifier and (ii)
is the source of 4 different links to quality objects, each one for a different
quality dimension. A link is a pair attribute-value, in which attribute repre-
sents the specific quality dimension for the element tag and value is an IDREF
link3;

2 Basic types are the ones provided by the most common programming languages and
SQL, that is Integer, Real, Boolean, String, Date, Time, Interval, Currency, Any.

3 The use of links will be further explained in Section 5.3, when quality graphs are
introduced.

494 M. Mecella et al.

❒ a set of edges E ⊂ N × N ; each edge is labeled by a string, which represents
an element tag of an XML document;

❒ a single root node R;
❒ a set of leaves; leaves are nodes that (i) are not identified and (ii) are labeled

by strings, which represent element tag values, i.e., the values of the element
tags labeling edges to them.

Data class instances can be represented as D2Q data graphs, according to
the following rules.

Let δ (π1, . . . , πn) be a data class with n properties, and let O be a data object,
i.e., an instance of the data class. Such an instance is represented by a D2Q
data graph G as follows:

❒ The root R of G is labeled with the object identifier of the instance O.
❒ For each πi = < namei : typei > the following rules hold:

– if typei is a basic type, then R is connected to a leaf lvi by the edge
< R, lvi >; the edge is labeled with namei and the leaf lvi is labeled
with the property value O.namei;

– if typei is a data class, then R is connected to the D2Q data graph
which represents the property value O′ = O.namei by an edge labeled
with namei;

– if typei is a set-of < X >, then:
∗ let C be the cardinality of O.namei; R is connected to C elements as

it follows: if (i) < X > is a basic type, then the elements are leaves
(each of them labeled with a property value of the set); otherwise if
(ii) < X > is a data class, then the elements are D2Q data graphs,
each of them representing a data object of the set;

∗ edges connecting the root to the elements are all labeled with namei.

In Figure 3(a), a D2Q data graph is shown: an object instance Maria Rossi
of the data class Citizen is considered. The data class has Name and Surname
as properties of basic types, a property of type set-of < TelephoneNumber >
and another property of data class type ResidenceAddress; the data class
ResidenceAddress has all properties of basic types.

5.3 Quality Model

So far the data portion of the D2Q model has been described. However, or-
ganizations export XML documents containing not only data objects, but also
quality data concerning the four dimensions introduced in Section 5.1.

Quality data are represented as graphs, too; they correspond to a set of
conceptual quality data items, which are instances of conceptual quality schema
elements; quality schema elements are referred to as quality classes and instances
as quality objects. A quality class models a specific quality dimension for a specific
data class: the property values of a quality object represent the quality dimension
values of the property values of a data object. Therefore, each data object (i.e.,

Managing Data Quality in Cooperative Information Systems 495

MARIA

00198

Name

Street Country

ZIPCode

VIA SALARIA 113 ROMA ITALY

ROSSI

TelephoneNumber

+390649918479

+393391234567

TelephoneNumber

City

Surname

ResidenceAddress

Links to
quality
objects/values

MARIA

00198

Name

Street Country

ZIPCode

VIA SALARIA 113 ROMA ITALY

ROSSI

TelephoneNumber

+390649918479

+393391234567

TelephoneNumber

City

Surname

ResidenceAddress

Links to
quality
objects/values

(a) D2Q data graph

0.7

0.9

Accuracy_Name

Accuracy_Street

Accuracy_Country

Accuracy_ZIPCode

0.3 0.9 0.9

0.7

0.5

0.2

Accuracy_TelephoneNumber

Accuracy_City

Accuracy_ ResidenceAddress

Accuracy D2Q
quality graph

Accuracy_Surname

Accuracy_TelephoneNumber

Link from a
data
object/value

0.7

0.9

Accuracy_Name

Accuracy_Street

Accuracy_Country

Accuracy_ZIPCode

0.3 0.9 0.9

0.7

0.5

0.2

Accuracy_TelephoneNumber

Accuracy_City

Accuracy_ ResidenceAddress

Accuracy D2Q
quality graph

Accuracy_Surname

Accuracy_TelephoneNumber

Link from a
data
object/value

(b) Accuracy D2Q quality graph

Fig. 3. An example

node) and value (i.e., leaf) of a D2Q data graph is linked to respectively four
quality objects and values.

Let δ (π1, . . . , πn) be a data class. A quality class δD (πD
1 , . . . , π

D
n) consists

of:

❒ a name δD, with D ∈ { Accuracy, Completeness, Currency,
InternalConsistency };

❒ a set of tuples πD
i = < nameDi : typeDi >, i = 1 . . . n, n ≥ 1,

where:

496 M. Mecella et al.

❒ δD is associated to δ by a one-to-one relationship and corresponds to the
quality dimension D evaluated for δ;

❒ πD
i is associated to πi of δ by a one-to-one relationship, and corresponds to

the quality dimension D evaluated for πi;
❒ typeDi is either a basic type or a quality class or a set-of type, according to

the structure of the data class δ.

In order to represent quality objects, we define aD2Q quality graph as follows:

A D2Q quality graph G
D is a D2Q data graph with the following additional

features:

❒ no node nor leaf is linked to any other element;
❒ labels of edges are strings of the form D name (e.g., Accuracy Citizen);
❒ labels of leaves are strings representing quality values;
❒ leaves are identified by object identifiers.

A quality class instance can be straightforwardly represented as a D2Q qual-
ity graph, on the basis on rules analogous to the ones previously presented for
data objects and D2Q data graphs. As an example, in Figure 3(b), a D2Q qual-
ity graph concerning accuracy is shown, and links are highlighted; for instance,
the accuracy of Maria is 0.7.

Service operations return a result document which consists of D2Q graphs.
Specifically, for each data class instance there is a D2Q data graph linked to
four D2Q quality graphs, expressing the quality of the data objects for each
dimension introduced in Section 5.1.

Let { O1, . . . , Om } be a set of m objects which are instances of the same data
class δ; a D2Q XML document is a graph consisting of:

❒ a root node ROOT ;
❒ m D2Q data graph Gi, i = 1 . . .m, each of them representing the data objects

Oi;
❒ 4 ∗ m D2Q quality graph GD

i , i = 1 . . .m, each of them representing the
quality graph related to Oi concerning the quality dimension D;

❒ ROOT is connected to the m D2Q data graphs by edges labeled with the
name of the data class, i.e., δ;

❒ for each quality dimension D, ROOT is connected to the m D2Q quality
graph GD

i by edges labeled with the name of the quality class, i.e., δD.

The model proposed in this work adopts several graphs instead of embedding
metadata within the data graph. Such a decision increases the document size,
but on the other hand allows a modular and “fit-for-all” design: (i) extending
the model to new dimensions is straightforward, as it requires to define the
new dimension quality graph, and (ii) specific applications, requiring only some
dimension values, will adopt only the appropriate subset of the graphs.

Managing Data Quality in Cooperative Information Systems 497

6 The Data Quality Broker

In this section, we present a distributed implementation of the Data Quality
Broker component (DQB). For some issues concerning the high level design of
this component, as well as examples of its possible usage in real scenarios, the
reader should also refer to [15].

As mentioned in Section 4, the DQB service provides the following features:

❒ Quality brokering function: an organization can invoke DQB specifying
a data request constrained by a set of data quality requirements. The data
request is performed by invoking an operation s. DQB discovers (through the
Quality Knowledge Repository) all application services in the CIS offering s
or operations equivalent to s4, invokes them, gathers all responses and then
returns only data items satisfying the requirements.

❒ Quality improvement function: DQB notifies organizations with low
quality data and proposes them the highest quality value obtained in the
previous step. Organizations may choose to adopt such a highest quality
data.

The idea behind the brokering function is that DQB filters the normal inter-
action that a client has with organizations in the CIS, adding the possibility to
discover and invoke equivalent services in different organizations and to execute
a quality-based filtering of the results obtained. The improvement function is a
feedback mechanism that uses the results of the brokering to propagate highest
quality data.

The design of DQB is presented by specifying how the above functions are
provided to organizations by each copy of the service and implemented through
distributed protocols. A distributed service is inherently more scalable and ro-
bust than a service implemented as a centralized component, since request load
is automatically shared among all the components implementing DQB and the
fault of a single component does not impact on the availability of the whole
service. These features make this choice more appropriate in the CIS context.

Details on how to perform quality comparison and how to determine the
highest quality value are abstracted in this context, since we assume they are
provided from other architectural components.

6.1 Preliminary Assumptions

In order to model the communication environment of the CIS we make the
following assumptions:

❒ both application and infrastructure services are implemented by one or more
software components. Such software components can fail by crashing, thus
causing the down of the service;

4 In the context of this paper, we simply consider an intuitive definition of operational
equivalence, i.e., two operations are equivalent if they return equivalent data, as
defined in the Quality Knowledge Repository.

498 M. Mecella et al.

❒ the communication infrastructure N is abstracted as an asynchronous dis-
tributed system [16]: communication links provided by N are reliable (i.e.,
each message sent by a non-down component is eventually delivered to a
non-down recipient) but message transfer delay is unpredictable. Moreover,
a service can be arbitrarily slow down due to unpredictable service workload.

On the basis of such assumptions, it is impossible to distinguish a down ser-
vice from one that is up but extremely slow [17]; therefore, in order to guarantee
service termination, an additional assumption is required: only a minority of
DQB software components can crash at the same time.

6.2 Service Design

Some preliminary definitions are required before specifying the service. We define
a quality requirement as a constraint on the value of a specific dimension over a
property of a data object, represented as a D2Q data graph:

A data quality requirement is a set qr = { p, D, op, v }, where p is the name
of a property, D is a data quality dimension defined in the D2Q model, op can
be =, <, >, ≤ or ≥, and v is a value defined in the domain of the data quality
dimension D.

If eval(D,O) is a function that assesses the quality of D for the data
object O, we say that a data object O satisfies a data quality requirement
qr = { p, D, op, v } if O “contains” a property that corresponds to p and
eval(D,O) op v is true.

The input to the primitive read, which will be defined in the following, is a
set of quality requirements QR = { qr1, . . . , qrn }; O satisfies QR when it
satisfies each qri ∈ QR.

The functions of DQB are provided by two primitives:

❒ read(s,QR): it invokes the operation s upon all the AS’s that implement it
or an equivalent operation, and returns only the data that satisfy the set of
quality requirements QR. It represents the way a software system belonging
to an organization can access the DQB service;

❒ propose(O): it proposes the data object O to organizations. It is the mecha-
nism that DQB uses in order to provide organizations with quality feedbacks.

The DQB service is invoked by a software system inside an organization Orgi
by making a call to the read primitive. read will return to its caller all (and
only) the data objects satisfying all the requirements. Among all the obtained
objects, one will be chosen to be proposed to each organization, through the
propose primitive; the propose is used by the DQB service to give a non-invasive
feedback upon the quality of a data object, allowing an organization to improve
the quality of its data while maintaining its autonomy in the decision.

The implementation of the service relies on a function abstracted as a further
primitive realized in cooperation with other architectural components:

Managing Data Quality in Cooperative Information Systems 499

❒ compare({O1, . . . ,On},QD): it returns the data object with the highest
quality in the set {O1, . . . ,On}, with respect to the set of quality dimen-
sions QD.

G1

AS1,1

Org1

Asp,1

DQB1

…

read()

propose()

Gr

AS1,n

Orgn

ASq,n

DQBn

…

read()

propose()

Communication Infrastructure (N)

…G1

AS1,1

Org1

Asp,1

DQB1

…

read()

propose()

Gr

AS1,n

Orgn

ASq,n

DQBn

…

read()

propose()

Communication Infrastructure (N)

…

Fig. 4. Deployment of the Data Quality Broker service

The compare primitive abstracts the execution of a quality comparison
among a set of data instances. The comparison is possible only if the two data
objects are instance of equivalent classes, otherwise the returned result is not
determined. Here we do not specify the mechanisms and the criteria used for
the comparison. These issues are beyond the scope of this paper. We just point
out that the comparison have to take into account the trust values provided by
the Rating Service, in order to avoid that erroneous evaluations from mistrusted
organizations let low quality data propagate.

6.3 DQB Protocols

The DQB service is implemented by a set of identical software components
{DQB1, .., DQBn}, where each DQBi is deployed inside a different organiza-
tion Orgi and is executed independently of the others (see Figure 4).

Each DQBi locally implements the primitives defined in the previous section.
Moreover, it has access to a reliable multicast primitive [18], denoted RM(m),
used to send a message m to other DQBi with specific delivery guarantees. In-
formally, reliable multicast ensures that each non-crashed component eventually
delivers the same set of messages sent by other components. The primitive can be
implemented in an asynchronous distributed system with simple deterministic
algorithms [18].

We describe in the following the steps of the protocol executed by DQB com-
ponents when a read(s,QR) is invoked on a DQBi. For the sake of simplicity,
we assume the same operation s as implemented by more than one organiza-
tion. Real-world cases present equivalent operations returning equivalent data,
discovered through the Quality Knowledge Repository. The protocol works as
follows (an example of the run of the protocol is depicted in Figure 5):

500 M. Mecella et al.

DQB1

ASp,2

ASq,3

ASr,4

DQB2

DQB3

DQB4

RM(s()) Reply 2
Reply 4

τ Ob ← compare(... ...)

RM(propose(Ob))DQB1

ASp,2

ASq,3

ASr,4

DQB2

DQB3

DQB4

RM(s()) Reply 2
Reply 4

τ Ob ← compare(... ...)

RM(propose(Ob))

Fig. 5. An example of the Data Quality Broker execution

1. Let Orgi be the invoking organization, DQBi invokes s on each application
service ASj,� with # �= i, by issuing RM(s) to the group of application
services implementing s. Then DQBi starts a timeout τ .

2. Each ASj,� returns to DBQi a D2Q XML document containing objects and
their quality.

3. If the timeout τ expires before all the application services have replied,DQBi

further waits only till the majority is reached. This condition eventually will
occur as previously supposed.

4. After gathering the replies, DQBi will return to its caller a D2Q XML
document Y including the data objects that satisfy the quality requirements.

5. DQBi applies the compare primitive in order to obtain the highest quality
data object Ob among the ones in Y.

6. DQBi invokes propose(Ob) on each DQB component by issuing
RM(propose(Ob)).

Intuitively, the protocol always terminates, exploiting the preliminary con-
dition that at least a majority of components will reply. The reliable multicast
primitive, which is used for the communication, also ensures that all the non-
crashed DQB components receive the proposal. Note that in order to ensure
termination, the service can guarantee only a best-effort semantic, i.e., it might
not return all the data which satisfy the requirements. In this case a negotia-
tion can start between DQB and the requester, that can choose to relax the
conditions both for quality of data and for protocol parameters, for example
specifying less strict quality requirements or a higher timeout value.

7 Conclusions and Future Work

Managing data quality in CIS’s merges issues from many research areas of com-
puter science such as databases, software engineering, distributed computing,
security, and information systems. This implies that the proposal of integrated
solutions is very challenging. In this paper, an overall framework to support
data quality management in CIS’s has been proposed. Specifically, this frame-
work includes (i) a model for data and quality data exported by cooperating
organizations and (ii) the design of an infrastructure service for brokering and
improving quality data.

The complete development of a complex framework for data quality manage-
ment in CIS’s requires the solution of further issues, such as:

Managing Data Quality in Cooperative Information Systems 501

❒ Application services considered in the work are simple read-only data access
services, that export data with the associated quality. More general applica-
tion services (i.e., encapsulating business logic, able to make updates, etc.)
will be considered; the impact of such extensions on the quality of the data
they “manage” will be considered.

❒ Algorithms for data quality improvement in distributed settings will be also
investigated. Given multiple copies of the same data, there are two ways ac-
cording to which it is possible to engage improvement actions:(i) a reconcil-
iation approach, consisting of reconciling the differences among the multiple
copies into a single representation; (ii) a selecting approach, that implies the
choice of the copy of data with the best quality. Both these approaches have
been widely considered in the literature, but in our framework we have the
further opportunity to rely on the available quality data in adopting each of
them.

❒ The “reliability” of cooperating organizations and more generally trust issues
also need to be taken into account; as an example, by considering what
happens if an organization provides data with a low quality but certifies a
high quality for them.

Acknowledgments. This work is supported by MIUR, COFIN 2001 Project
“DaQuinCIS – Methodologies and Tools for Data Quality in Cooperative Infor-
mation Systems” (http://www.dis.uniroma1.it/∼dq/).

References

1. C. Batini and M. Mecella, “Enabling Italian e-Government Through a Cooperative
Architecture,” IEEE Computer, vol. 34, no. 2, 2001.

2. U. Dayal, M. Hsu, and R. Ladin, “Business Process Coordination: State of the
Art, Trends and Open Issues,” in Proceedings of the 27th Very Large Databases
Conference (VLDB 2001), Roma, Italy, 2001.

3. F. Casati, D. Georgakopoulos, and M.C. Shan, Eds., Proceedings of the 2nd VLDB
International Workshop on Technologies for e-Services (VLDB-TES 2001), Rome,
Italy, 2001.

4. P. Bertolazzi and M. Scannapieco, “Introducing Data Quality in a Cooperative
Context,” in Proceedings of the 6th International Conference on Information Qual-
ity (IQ’01), Boston, MA, USA, 2001.

5. H. Galhardas, D. Florescu, D. Shasha, and E. Simon, “An Extensible Framework
for Data Cleaning,” in Proceedings of the 16th International Conference on Data
Engineering (ICDE 2000), San Diego, CA, USA, 2000.

6. M. Jarke, M. Lenzerini, Y. Vassiliou, and Panos Vassiliadis, Eds., Fundamentals
of Data Warehouses, Springer Verlag, 1999.

7. H.B. Kon, R.Y. Wang and S.E. Madnick, “Data Quality Requirements: Analy-
sis and Modeling,” in Proceedings of the 9th International Conference on Data
Engineering (ICDE ’93), Vienna, Austria, 1993.

8. G. Mihaila, L. Raschid, and M. Vidal, “Querying Quality of Data Metadata,” in
Proceedings of the 6th International Conference on Extending Database Technology
(EDBT’98), Valencia, Spain, 1998.

502 M. Mecella et al.

9. M. Mecella, M. Scannapieco, A. Virgillito, R. Baldoni, T. Catarci, and C. Batini,
“Architectural Support for Data Quality in Cooperative Information Systems,”
Technical report of the DaQuinCIS project, Dipartimento di Informatica e Sis-
temistica, Università di Roma “La Sapienza”, Roma, Italy, 2002.

10. T. Catarci and M. Lenzerini, “Representing and Using Interschema Knowledge in
Cooperative Information Systems,” Journal of Intelligent and Cooperative Infor-
mation Systems, vol. 2, no. 4, 1993.

11. M. Scannapieco, “Data Quality in Cooperative Information Systems,” Doctoral
Poster at the 28th Very Large Databases Conference (VLDB 2002), Hong Kong,
2002.

12. T.C. Redman, Data Quality for the Information Age, Artech House, 1996.
13. A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu, “XML-QL: A

Query Language for XML,” in Proceedings of the 8th International World Wide
Web Conference (WWW8), Toronto, Canada, 1999.

14. R.G.G. Cattell and D.K. Barry, Eds., The Object Database Standard: ODMG 2.0,
Morgan Kaufmann Publishers, 1997.

15. M. Scannapieco, V. Mirabella, M. Mecella, and C. Batini, “Data Quality in e-
Business,” in Proceedings of the Workshop on Web Services, e-Business, and the
Semantic Web: Foundations, Models, Architecture, Engineering and Applications,
in conjunction with CAiSE 2002, Toronto, Ontario, Canada, 2002.

16. F.B. Schneider, “What Goods are Models and What Models are Good?,” in
Distributed Systems, S. Mullender, Ed. ACM Press, 1994.

17. M.J. Fischer, N.A. Lynch, and M.S. Paterson, “Impossibility of Distributed Con-
sensus with One Faulty Process,” Journal of the ACM, vol. 32, no. 2, 1985.

18. V. Hadzilacos and S. Toueg, “Fault-Tolerant Broadcasts and Related Problems,”
in Distributed Systems, S. Mullender, Ed. ACM Press, 1994.

	Introduction
	Related Work
	The Framework
	An Architecture for Data Quality
	The D^2Q Model
	Data Quality Dimensions
	Data Model
	Quality Model

	The Data Quality Broker
	Preliminary Assumptions
	Service Design
	DQB Protocols

	Conclusions and Future Work

