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Abstract—We consider a set of on-line communities (e.g., news,
blogs, Google groups, Web sites, etc.). The content of a community
is continuously updated by users and such updates can be seen
by users of other communities. Thus, when creating an update,
a user could be influenced by one or more updates creating a
semantic causal relationship among updates. This transitively will
allow to trace how an information flows across communities. The
paper presents a software architecture that progressively scan a
set of on-line communities in order to detect such semantic causal
relationships. The architecture includes a crawler, a large scale
storage, a distributed indexing system and a mining system. The
paper mainly focuses on crawling and indexing.

Keywords—On-line communities, progressive scanning, MapR,
Nutch

I. INTRODUCTION

On-line communities are nowadays a fundamental source
of information in business and information security intelligence.
Blogs, wikis, forums, Facebook specific pages, Twitter threads,
Google+ sparks, Meetups, etc. contain information that can
be used, if appropriately crawled and mined, for inferring
trends and evolution about specific topics. In particular, a
social community, and what it publishes, often influences other
communities, and vice-versa, thus creating a network of causal
relationships that can contain useful information about the
evolution of a specific phenomenon.

To make this more concrete, let us consider a set C =

{C1 . . . Cn} of social communities, as shown in Figure 1(a).
Each community Ci performs several updates Ui,j , j = 1..mi

of the published information, which in turn influences the
update(s) of some other communities. As an example, in the
figure, it is shown how the update U1,1 of the community
C1 has influenced the (published information) update U2,3 of
the community C2; notably this update is also influenced by
the update U3,3 performed by the community C3 and, in turn,
influences the update U1,5 of the same community U1. The
reader can observe how, in the meanwhile, community U1 has
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(a) Evolution along the time of a set of social communities showing
how an update is causally influenced by other updates
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(b) Example of semantic causal relationships graph extracted from the
execution of Figure 1.a

Fig. 1. Social communities and corresponding graph showing the influence
among updates

performed several updates (cf. updates U1,2 . . . U1,4).

A system supporting business/security intelligence among
on-line communities should be able to produce a partial order as
shown in Figure 1(b); here we can see that the system correctly
captures all the causal relationships, but (i) the relationship
U3,4 → U3,5 is not captured (false negative), and (ii) the
relationship U1,2 → U1,3 is considered, which indeed is not
valid (false positive).



The aim of this paper is to present the architecture of a
software system able to detect influence among updates of a
set of communities. The system should progressively scan a set
of on-line communities (selected on the basis of some criteria
that is out of the scope of our work) in order to infer causal
relationships among updates of the published information; the
correctness of the system is measurable in terms of precision
and recall, as customary in information retrieval and mining
literature.

Interestingly the notion of causal relationships in message
passing distributed systems is a well known concept developed
in the late seventies by Lamport [12], and then used in computer
networks to reduce the network non-determinism at receiver
side due to unpredictable message delays [2], [16]. In the
context of communities , we are interested in capturing causal
relationships among updates looking at the fact that the authors
of the text of the update Ui,j have been causally affected during
the writing by the text of an update Uk,h. As a matter of fact, if
the author of Ui,j is influenced by Uk,h, then there is a causal
dependence in the Lamport sense between the publishing of Ui,j

and he one of Uk,h. The viceversa is not necessarily true, also
if Ui,j and Uk,h have been published on the same community,
as shown by the graph in Figure1(b).

The following of this paper is as it follows. In Section II
the software architecture is introduced. Section III presents
the software technologies used to implement the proposed
architecture, whereas Section IV describes the interactions
among the different components. Section V provides details
on the web crawling and indexing layers. Section VI discusses
relevant works, and finally Section VII concludes the paper by
outlining future research activities.

II. SOFTWARE ARCHITECTURE

The proposed software architecture needed to perform pro-
gressive scanning of on-line communities is mainly composed
by three different layers, each one in charge of executing
specific tasks. The functionalities of the different layers, shown
in Figure 2, can be summarized in the following ones:

• web crawling and indexing to progressively scan the
updates in on-line communities;

• storage and processing, where to efficiently store the data
and metadata coming from the crawling and indexing
phases;

• data mining, where to detect the semantic causal relation-
ships among updates along the line of what described in
the introduction.

As shown in Figure 2, there is a strong interconnections between
the different layers, therefore, as further clarified in Section
III, all the technologies employed for the proposed architecture
are highly integrated with each other. Figure 2 also highlights
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Fig. 2. Proposed software architecture for progressive scanning of on-line
communities. The red dotted square contains the layers whose functionalities
have been already implemented

which are the layer functionalities implemented at time of
writing: Big Data storage and processing and web crawling and
indexing. Data mining layer functionalities have been designed
but not yet implemented.

In Section III, the different frameworks chosen to imple-
ment the proposed architecture will be presented and briefly
discussed.

III. SOFTWARE ARCHITECTURE IMPLEMENTATION

In order to develop the architecture described in Section II,
the software products used are: MapR, Apache Nutch, Apache
Solr and MapR Mahout.

The storage and processing layer is managed by both MapR
and Solr. MapR [13] is an industry-standard Apache Hadoop-
derived framework easy to use, dependable and especially
fast. Being derived by Hadoop, MapR includes a MapReduce
module for parallel processing of large data sets. The key
improvements introduced by MapR concern distributed file
system’s performance and robustness, allowing continuous read-
write accesses. Moreover, it is Hadoop-API compatible and
supports the Hadoop distributed file system abstraction interface.
These latter features are particularly important to maintain
compatibility with the Hadoop ecosystem and with the other
Hadoop-related projects. Instead, Solr [19] is an open source
enterprise distributed search platform highly reliable, scalable
and fault tolerant. These capabilities are handled by a Solr sub-
layer, called SolrCloud [21]. In this way, Solr is able to provide
distributed indexing and searching capabilities, including full-
text search, hit highlighting and faceted search.

The upper software layer comprises the Apache Nutch [20]
web spider and, again, Solr. Once Nutch has crawled the web
pages/documents of on-line communities, these are indexed to
perform searches upon them very quickly. Actually, Nutch and
Solr do not interact directly, but rather they communicate using



the underlying layer. More details on this will be addressed in
the next section. As previously mentioned, Apache Nutch is a
highly extensible, robust and scalable open source crawler
supporting the MapReduce paradigm. Furthermore, Nutch
observes politeness and implements a robot-exclusion protocol.
They guarantee, respectively, that a web site is not overloaded
with requests from multiple fetchers in rapid succession and
site owners be able to control which parts of their site may be
crawled.

The software architecture completes with the data mining
layer , which relies on Apache Mahout. Mahout [23] is a
library useful to produce free implementations of scalable
machine learning and data mining algorithms, through which is
possible to establish correlation between documents and apply
mining techniques. Many of these implementations exploits the
MapReduce framework and, therefore are suitable to be run
on a MapR cluster.

IV. SOFTWARE MODULES INTERACTIONS

In the previous section, all components have been presented.
As depicted in Figure 3, each layer interfaces with one or more
other ones . Starting from Nutch, all the interactions between
modules will be now discussed.
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Fig. 3. Existing interactions between different software modules of the
proposed software architecture.

The Nutch web crawler makes available a jar job which can be
spread over a cluster using the MapR layer. In this way, Nutch
is able to benefit of an improved distributed file system and of
a MapReduce processing style. Passing in input a set of URLs
to crawl and a list of Solr servers to the underlying layer, the
crawling and indexing jobs can be run in distributed mode.

MapR provides large-scale processing through MapReduce,
BigData storage, ZooKeeper coordination and synchronization
services. Once MapR receives the Nutch’s input, it distributes
the crawling and, subsequently, the indexing jobs over the
cluster. After a preliminary phase in which the Nutch’s crawling
database, presented in Section V, is populated with the data

received in input, Nutch uses its internal components to obtain
a single MapReduce structured output file, later stored in the
MapR distributed file system. The MapReduce output file
contains metadata, the actual HTML source-code and the parsed
content of the previously fetched pages. Once the crawling
task terminates, relying on the MapReduce framework, MapR
starts preparing the pages-related data to be indexed, called
NutchDocuments, and sends them to the Solr servers. Further
information about how this documents are built are reported in
Section V-A.

As mentioned in Section III, SolrCloud enables highly
reliability, scalability and fault tolerance. This is realized
through replication [22] and sharding [24] techniques. The
sharding technique allows to split an index into multiple pieces,
called shards. Each shard lives on its own server and possible
incoming queries are sent to all the shard servers. Combine these
two techniques is absolutely necessary to manage Big Data and
queries from multiple sources. When the Solr layer receives
the Nutch Documents, Solr indexes them to multiple master
shard servers and replicates them on the correspondent slave
shards. In order to manage distributed indexing management,
automatic load-balancing and fail-over queries, Solr depends
on the coordination and synchronization services offered by
MapR’s ZooKeeper. Finally, Solr is in charge to reply to index
queries coming from the mining layer, the one that exploits
the Apache Mahout software library.

Mahout exploits Solr and MapR to, respectively, retrieve
input data on which apply machine learning and data mining
algorithms and to execute large-scale processing using the
MapReduce platform. From an abstract point of view, the
output of this processing is the graph of Figure 1(b). This graph
will be returned to the top layer (possibly a human operator
to further investigate data correlation through appropriate
additional software tools). Mahout can perform recommendation
mining, document clustering and classification. Usually, for
clustering and classifying documents, it is necessary to convert
their raw text into term vectors which can be later consumed
by the Mahout algorithms. In the proposed architecture, the
documents are stored in a distributed Solr index which, properly
configured, can provide for the use of term vectors. They allow
for retrieving a single-document index for any document ID
of the index itself. Therefore, given any document ID, Solr
can quickly list all its unique terms in sorted order, and for
every term it can rapidly know its original positions and offsets.
Mahout can, hence, build its own term vectors starting from
Solr ones and then apply clustering and classification algorithms
to them.

V. APACHE NUTCH: WEB CRAWLING AND INDEXING

Apache Nutch is the ideal candidate for web crawling and,
at the same time, to be run on top of MapR. Being MapR



an Apache Hadoop-derived framework, it integrates perfectly
with Nutch. In fact, initially Apache Hadoop was born as a
Nutch sub-project to become, after few years, a stand-alone
top-level project. This allowed a very easy interfacing between
the MapR and Nutch software layers.

The Nutch’s web crawling capabilities can be easily used for
progressive scanning of on-line communities. The basic Nutch
configuration already provides a desirable feature required for
this project: the timestamp representing the time instant when
a web page is fetched. The temporal aspects are also reflected
in the web crawler’s internal data structures. It maintains a:

• crawl database, in which are stored the information about
every URL known to Nutch. This comprises metadata and
page statuses;

• link database containing, for each known URL, the list of
links, both the source URL and anchor text of the link;

• set of segments. Each segment is a set of URLs fetched
as a unit.

Crawl database and segments, in particular, are responsible
for keeping time-related information. Each time a set of URLs
is due for fetch, they are grouped in a new segment that traces
the date and the time in which it is created. Within the segment,
also the metadata related to the actual page’s fetch time is saved.
The data related to the URLs to fetch are maintained in the
crawl database.

Given this internal structure, it is straightforward to use
Nutch to crawl iteratively the web to provide temporal snapshots
of on-line communities. Hence, the basic configuration of Nutch
helps, but it is not enough to guarantee progressive crawling.
In order to do this, few adjustments are needed and they will
be presented in the following.

Finally, thanks to its link database, it is possible to study
the crawled web structure and apply mining techniques on this
too. While web content mining mainly focuses on the inner-
documents’ structure, the web structure mining can capture
relations at inter-document and web site level [11].

A. Configuring Nutch for on-line progressive scanning

The configuration issues do not depend only on the project’s
requirements, but also on the software pieces with which the
crawler has to interact. Nutch is, in fact, just a web crawler and
does not have any distributed indexing or searching capability.
To make the content crawled by Nutch searchable, Solr is
employed. As MapR and Nutch, Solr is in turn perfectly
integrated with the latter. As already said in Section II, Solr can
be run upon its own distributed infrastructure, called Solr-Cloud,
giving to it the power to process data in a distributed manner,
high availability and fault-tolerance. Solr relies on a XML
schema to know which fields the document can contain and

how those fields should be dealt with when adding documents
to the index or when querying. In this work, Solr documents
coincide with the web pages crawled by Nutch. Nutch has its
own copy of the Solr XML schema and, in its configuration
files, the mapping between the Solr fields and the ones that
Nutch has to send to the distributed index. A correct indexing
requires a perfect alignment between the two XML files.

The default schema provides for a unique ID, that is, the
URL of the web page. If the on-line scanning is supposed to
be progressive, such approach would fail immediately when
the same URL is crawled twice, causing an overwriting of the
previous snapshot of the same page. In order to avoid this, a
new document ID has to be defined during the indexing phase.
In Nutch, this can be accomplished by the use of plugins. They
all define extension points with which is possible enhancing
the Nutch’s features. Through the implementation of a new
extension for the IndexingFilter extension-point, a new
ID has been constructed in the following way: the web page
URL is concatenated with a version 4 Universally Unique
IDentifier (UUID) and, then, the result of the concatenation is
hashed using the SHA-256 cryptographic function. Its choice
has been guided by two reasons: no collision has been found,
even due to theoretical attacks, and the need of having a unique
ID in the distributed index. Such ID is a hexadecimal string
encoding the SHA-256 hash. Analogously, in the same way or
using other extension points, a set of user-defined fields can
be added to the Solr schema and, therefore, to the Solr index.

Another aspect to take into account is: progressive scanning
needs a continuous crawling activity. A nice feature embedded
in the Nutch crawler, but not enabled by the default, is the
Adaptive Fetch Scheduling. This type of scheduler will adapt
the page crawling frequency to the rhythm of page changes
and set the next schedule time accordingly: every time a web
page is fetched, the Adaptive Fetch Scheduler checks if it has
changed. In the positive case, the next fetch interval would be
decreased, otherwise increased up to a minimum or a maximum
value, respectively. This implies that frequently updated web
pages, eventually, will be fetched more than the other ones.
Obviously, the TextProfileSignature has to be enabled
to guarantee that the page will appear to be modified when its
content has been actually updated and not in case of a simple
http header modification, such as date refreshing.

VI. RELATED WORKS

In the last decade, thanks to the advent and to the develop-
ment of new technologies, the amount of data exchanged and
stored on the Internet is increased exponentially. The epochal
change has been characterized by the transition from traditional
data to Big Data. This term includes all the aspects related
to information management and analysis technologies that
exceed the capability of traditional data processing technologies



[7]. Big Data differs from traditional technologies in volume,
velocity and variety. They mean, respectively, the amount of
data, the rate of data generation and transmission and the
types of structured/unstructured data [3]. According to IBM
[8], human beings now create 2.5 quintillion bytes of data per
day and their creation rate has increased so much that 90% of
the data in the world today has been created in the last two
years alone.

In this scenario, the need for new technologies, able to
analyse massive data sets, has grown. The dominant and
most popular technology for Big Data batch processing is
Hadoop. Its effectiveness has been proven, lately, by the Zions
Bancorporation’s case study in which security and forensic
jobs using Hadoop have been performed in near-real-time
fashion [4]. These results have dramatically torn down the
procedures’ execution time of Security Information and Event
Management (SIEM) tools, in which even simply loading the
previous day’s logs was a challenge taking up to one day.
Taking advantage of Hadoop framework, in combination with
distributed machine learning libraries, analysts can have at their
disposal 3rd generation intrusion detection systems able to
perform deeper analytics on the data, providing a consolidated
view of security-related information in near-real-time. In an
analogous manner, this project plans to use the power of an
Hadoop-derived product and an open-source framework for
developing machine learning and data mining algorithms to
correlate Big Data coming from a set of on-line communities.
Such technologies can be also used for enterprise events
analytics, NetFlow monitoring and against Advanced Persistent
Threats (APT) [3]. Even if Hadoop is considered the leading
technology in Big Data analytics, new trends are emerging [1].
These can be divided into paradigms going beyond MapReduce
and paradigms based on it. The first ones, in particular, include
real-time and incremental analytics such as Storm [18] and
Dremel [14], respectively. Storm provides a distributed real-time
computation system capable to process unbounded data streams,
while Dremel analyzes read-only nested data by combining
multi-level execution trees and columnar data layout. This
allows it to run aggregation queries over trillion-row tables in
seconds.

Regarding the middle layer of the proposed architecture, it
has to cope with many challenges. These are mainly related
to web crawler: it has to be scalable, robust to spider traps,
efficient and polite. This latter one is a property that any crawler
shoud respect: it should crawl only allowed pages and respect
specifications from webmasters on what site portions can be
crawled. A key aspect to consider is, furthemore, the crawling
strategy adopted: in [15] a model and a taxonomy of crawl
ordering techniques are widely presented. According to which
is the chosen one, two different parameters can be affected:
coverage and freshness. The first represents the fraction of

desired pages that the crawler acquires successfully, while
the second one is the degree to which the acquired page
snapshots remain up-to-date, relative to the current “live” web
copies. Such key features are important both for the presented
architecture and for web archiving. This latter is the process of
collecting portions of the web to avoid the loss of information
due to pages’ modifications, content additions and pages’
removals. In this way the information can be preserved for
future researchers, historians and the public. The biggest web
archiving organization performing a large-scale effort in web
archiving is the Internet Archive [10]. Its estimated digitalized
collection’s size is in the order of 10 Petabytes. The Internet
Archive has designed its own web crawler, called Heritrix [9],
which has been able to crawl about 80 Terabytes of WARC (Web
ARChive file format) during a period of nine months between
March and December 2011 [17]. The crawling results have
produced captures of about 2.7 billion URIs, whose 2.2 billion
unique, including also images, flash and videos. The crawled
data has been made available for viewing through the Waybach
Machine, named by the Internet Archive as three-dimensional
index. However, the Internet Archive is not the only organization
involved in the campaign of maintaining universal access to all
knowledge: national libraries, national archives and consortia
are involved in archiving culturally important Web content.
Unlike Internet Archive, other entities could be interested in
time-awareness, namely taking in consideration the collections’
time to improve response time and query throughput. Some
of these, to realize time-aware web archives, employ Nutch
and Solr technologies [5]. Our propose pushes on the use of
these two technologies because they easily and deeply interact
with each other. Moreover, Nutch is able to be run on top of
Hadoop, allowing Nutch to exploit the promising features of
MapReduce large-scale processing. Conversely, Heritrix was
not born to cope with Hadoop, but rather it uses its own
infrastructure. Clusters of Heritrix instances running across
multiple machine are managed by a set of packages, called
Heritrix Cluster Controller (HCC). The HCC is constituted by
two main components: the controller itself and a client API for
accessing it. Through the client API, the HCC offers a set of
methods which perform the general functions of finding, listing,
and invoking operations on single remote instances or groups of
them. Nevertheless, a software integration is available to store
crawled content in the Hadoop distributed file system, but not to
run MapReduce jobs upon it. This is really the main difference
between Apache Nutch and Internet Archive Heritrix: while
Heritrix run multiple instance of itself on different servers, the
same Nutch instance spreads the crawling job across multiple
machines.

With respect to existing architectures described in [5], the
one designed in this paper takes advantage of a data mining
layer able to find out the possible correlations between indexed
documents. Instead of having a searchable static document



collection, it provides machine learning tools to establish
semantic relationships. This feature, in particular, can be useful
both for analytics and for enhancing the user experience: in
fact, search results can return documents matching the query
as well as documents semantically related to the first ones.
Similar architectures have been proposed both in [6] and [25]
which present, respectively, a work-in-progress framework for
lightweight semantic search with spatial support over data
extracted from the web and an information retrieval architecture
for aggregating, managing data and profile qualifications for
IT solutions.

VII. CONCLUDING REMARKS

Understanding the influence relationships among updates
published by a group of social communities is of primary
importance in intelligence operations based on open sources.
In this paper we sketched a model of interactions based on
semantic causal relationships among updates and presented a
Hadoop-based software architecture that is able to progressively
scan the group of social communities, to store the huge amount
of information obtained through such scanning and to mine
the stored information to detect semantic causal relationship.

As a future work we plan to (i) define a formal model of
social communities, (ii) study a quality metric which is able to
evaluate the accuracy of the software system with respect to the
semantic causal relationships detected by a software platform
and (iii) analyze and visualize the linearizations of the partial
order shown in Figure 1(b) in order to correlate the information
contained in the updates belonging to the linearizations. The
latter point could be considered as building a “video recorder”
that is able to move back and forward to analyze each single
linearization.
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