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ABSTRACT
Balanced graph partitioning is a fundamental problem that
is receiving growing attention with the emergence of dis-
tributed graph-computing (DGC) frameworks. In these frame-
works, the partitioning strategy plays an important role
since it drives the communication cost and the workload bal-
ance among computing nodes, thereby affecting system per-
formance. However, existing solutions only partially exploit
a key characteristic of natural graphs commonly found in the
real-world: their highly skewed power-law degree distribu-
tions. In this paper, we propose High-Degree (are) Repli-
cated First (HDRF ), a novel streaming vertex-cut graph
partitioning algorithm that effectively exploits skewed de-
gree distributions by explicitly taking into account vertex
degree in the placement decision. We analytically and exper-
imentally evaluate HDRF on both synthetic and real-world
graphs and show that it outperforms all existing algorithms
in partitioning quality.
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1. INTRODUCTION
The last few years have witnessed a huge growth in infor-

mation production. Some corporations like IBM estimate
that “2.5 quintillion bytes of data are created every day”,
amounting to 90% of the data in the world today having been
created in the last two years [10]. On the face of this growth,
researchers from both academia and industry have focussed
their efforts on the design of new, efficient, approaches for
parallel data analysis able to withstand the deluge of data
expected in forthcoming years.

Given the proliferation of data which can be represented
as graphs of interconnected vertices, a graph-based com-
putation paradigm provides a nice, suitable, abstraction to
perform computation on it. Large amounts of data, particu-
larly scale-free graphs or power-law graphs1, fall within this
paradigm. An example is recommendation systems where
the input data is usually provided in the form of votes (edges)
that users (vertices) express on products (vertices). Addi-
tionally, graph-based computation finds application in many
diverse and important fields such as social networks, com-
putational biology, chemistry, and computer security. A key
problem in graph computation is that it is often difficult
to scale with increasing input data sizes as graphs are not
easily partitionable into independent subgraphs that can be
computed in parallel.

To be able to work on large datasets, distributed graph-
computing (DGC) frameworks (such as GraphLab [18] or
Pregel [20]) forcibly partition the input graph by placing its
constituting elements, be they either vertices or edges, in dis-
tinct partitions, one for each available computing resource.
During the partitioning phase, data elements that share con-
nections with other elements already placed in other parti-
tions result in having remote connections amongst them.
Since these partitions are usually placed on different ma-
chines, this can incur unnecessary or excessive network and
computation costs. To address this issue, one frequently
used technique is to create and locally place replicas of re-
motely connected data among these partitions. While this
reduces the access cost, replicated data elements must be
synchronized during computation so as to avoid replica states

1We use scale-free and power-law graphs synonymously.



from diverging and generating meaningless computation re-
sults. This synchronization can significantly hinder perfor-
mance as it forces replicas to coordinate and exchange data
several times during computation.

The way the input dataset is partitioned has a large im-
pact on the performance of the graph computation. A naive
partitioning strategy may end up replicating a large frac-
tion of the input elements on several partitions, severely
hampering performance by inducing a large replica synchro-
nization overhead during the computation phase. Further-
more, the partitioning phase should produce evenly balanced
partitions (i.e. partitions with similar sizes) to avoid pos-
sible load skews in a cluster of machines over which the
data is partitioned. Several recent approaches have looked
at this problem. Here we focus our attention on stream-based
graph partitioning algorithms, i.e. algorithms that partition
incoming elements one at a time on the basis of only the
current element properties and on previous assignments to
partitions (no global knowledge on the input graph). Fur-
thermore, these algorithms are usually one-pass, i.e. they
refrain from changing the assignment of a data element to a
partition once this has been done. These algorithms are the
ideal candidates in settings where input data size and con-
straints on available resources restrict the type of solutions
that can be employed.

Other characteristics of input data also play an impor-
tant role in partitioning. It has been shown that vertex-cut
algorithms are the best approach to deal with input graphs
characterized by power-law degree distributions [1, 12]. This
previous work also clearly outlined the important role high-
degree nodes play from a partitioning quality standpoint.
Nevertheless, few algorithms take this aspect into account
[27, 24]. Understandably, this is a challenging problem to
solve for stream-based approaches due to their one-pass na-
ture.

In this paper, we leverage the idea that a partitioning
algorithm should do its best to cut, i.e., replicate, high-
degree vertices. In particular, we introduce High Degree
(are) Replicated First (HDRF ), a stream-based graph par-
titioning algorithm based on a greedy vertex-cut approach
that leverages information on vertex degrees.
HDRF is characterized by the following desirable properties:
(i) it outputs partitions with the smallest average replica-
tion factor among all competing solutions when applied on
power-law graphs (Figure 2) while (ii) providing close to op-
timal load balancing (Figure 3). The former is obtained by
greedily replicating vertices with larger degrees, while the
latter is provided by a parametrizable balancing term whose
impact can be tuned to adapt the algorithm behavior to
any data input order. On the one hand, lowering the average
replication factor is important to reduce network bandwidth
cost, memory usage and replica synchronization overhead at
computation time. A fair distribution of load on partitions,
on the other hand, allows a more efficient usage of avail-
able computing resources. HDRF takes into account both
of these aspects in an integrated way, significantly reduc-
ing the time needed to perform computations on large-scale
graphs.

Summing up, this paper provides the following contribu-
tions:

• a novel stream-based graph partitioning algorithm, na-
mely HDRF, that performs better than any competing
solution (i.e. processes less vertex-cuts while balancing

the load) when applied on power-law graphs;

• a theoretical analysis of HDRF that provides an average-
case upper bound for the vertex replication factor;

• a comprehensive experimental evaluation based both
on simulations and on a working prototype integrated
with GraphLab [19] that shows how a system using
HDRF achieves up to 2× speedup than adopting a
standard greedy placement, and close to 3× speedup
than using a constrained solution.

The rest of this paper is organized as follows: we define the
problem in Section 2; we briefly describe existing solutions
in Section 3; we introduce HDRF in Section 4; we show
theoretical bounds for HDRF in Section 5; we present the
results of an extensive experimental evaluation in Section 6
and we conclude the paper in Section 7.

2. PROBLEM DEFINITION
The problem of optimally partitioning a graph to mini-

mize vertex-cuts while maintaining load balance is a funda-
mental problem in parallel and distributed applications as
input placement significantly affects the efficiency of algo-
rithm execution [25]. An edge-cut partitioning scheme re-
sults in partitions that are vertex disjoint while a vertex-cut
approach results in partitions that are edge disjoint. Both
variants are known to be NP-Hard [16, 11, 2] but have dif-
ferent characteristics and difficulties [16]; for instance, one
fundamental difference between the two is that a vertex can
be cut in multiple ways and span several partitions while an
edge can only connect two partitions.

One characteristic observed in real-world graphs from so-
cial networks or the Web is their skewed power-law degree
distribution: most vertices have relatively few connections
while a few vertices have many. It has been shown that
vertex-cut techniques perform better than edge-cut ones on
such graphs (i.e., create less storage and network overhead)
[12]. For this reason modern graph parallel processing frame-
works, like GraphLab [19], adopt a vertex-cut approach to
partition the input data over a cluster of computing nodes.
The focus of this paper is on streaming vertex-cut partition-
ing schemes able to efficiently handle graphs with skewed
power-law degree distribution.
Notation — Consider a graph G = (V,E), where V =
(v1, · · · , vn) is the set of vertices and E = (e1, · · · , em) the
set of edges. We define a partition of edges P = (p1, .., pk) to
be a family of pairwise disjoint sets of edges (i.e. pi, pj ⊆ E,
pi ∩ pj = ∅ for every i 6= j). Let A(v) ⊆ P be the set of par-
titions each vertex v ∈ V is replicated. The size |p| of each
partition p ∈ P is defined as its edge cardinality, because
computation steps are usually associated with edges. Since
we consider G having a power-law degree distribution, the
probability that a vertex has degree d is P (d) ∝ d−α, where
α is a positive constant that controls the “skewness” of the
degree distribution, i.e. the smaller the value of α, the more
skewed the distribution.
Balanced k-way vertex-cut problem — The problem
consists in defining a partition of edges such that (i) the
average number of vertex replicas (i.e. the number of parti-
tions each vertex is associated to as a consequence of edge
partitioning) is minimized and (ii) the partition load (i.e.
the number of edges associated to a partition) is within a
given bound from the theoretical optimum (i.e. |E|/|P |) [2].



More formally, the balanced |P |-way vertex-cut partitioning
problem aims at solving the following optimization problem:

min
1

|V |
∑
v∈V

|A(v)| s.t. max
p∈P
|p| < σ

|E|
|P | (1)

where σ ≥ 1 is a small constant that defines the system tol-
erance to load imbalance. The objective function (Equation
(1)) is called replication factor (RF ), which is the average
number of replicas per vertex.
Streaming setting — Without loss of generality, here we
assume that the input data is a list of edges, each identified
by the two connecting vertices and characterized by some
application-related data. We consider algorithms that con-
sume this list in a streaming fashion, requiring only a single
pass. This is a common choice for several reasons: (i) it han-
dles situations in which the input data is large enough that
fitting it completely in the main memory of a single comput-
ing node is impractical; (ii) it can efficiently process dynamic
graphs; (iii) it imposes the minimum overhead in time and
(iv) it’s scalable, providing for straightforward parallel and
distributed implementations. A limitation of this approach
is that the assignment decision taken on an input element
(i.e., an edge) can be based only on previously analyzed data
and cannot be later changed.

3. STREAMING ALGORITHMS
Balanced graph partitioning is a well known NP-hard prob-

lem with a wide range of applications in different domains.
We do not discuss offline and edge-cut partitioning tech-
niques since they are out of the scope of the paper. It is
possible to divide existing streaming vertex-cut partitioning
techniques in two main families: hashing and constrained
partitioning algorithms and greedy partitioning algorithms.

Hashing and constrained partitioning algorithms —
All of these algorithms ignore the history of the edge as-
signments and rely on the presence of a predefined hash
function h : N → N. The input of the hash function h can
be either the unique identifier of a vertex or of an edge.
All these algorithms can be applied in a streaming setting
and achieve good load balance if h guarantees uniformity.
Four well-known existing heuristics to solve the partitioning
problem belong to this family: hashing, DBH, grid and PDS.
The simplest solution is given by the hashing technique that
(pseudo-)randomly assigns each edge to a partition: for each
input edge e ∈ E, A(e) = h(e) mod |P | is the identifier of
the target partition. This heuristic results in a large num-
ber of vertex-cuts in general and performs poorly on power-
law graphs [12]. A recent paper describes the Degree-Based
Hashing (DBH ) algorithm [27], a variation of the hashing
heuristic that explicitly considers the degree of the vertices
for the placement decision. DBH leverages some of the same
intuition as HDRF by cutting vertices with higher degrees
to obtain better performance. Concretely, when processing
edge e ∈ E connecting vertices vi, vj ∈ V with degrees di
and dj , DBH defines the hash function h(e) as follows:

h(e) =

{
h(vi), if di < dj

h(vj), otherwise

Then, it operates as the hashing algorithm.
The grid and PDS techniques belong to the constrained

partitioning family of algorithms [14]. The general idea of

these solutions is to allow each vertex v ∈ V to be replicated
only in a small subset of partitions S(v) ⊂ P that is called
the constrained set of v. The constrained set must guaran-
tees some properties; in particular, for each vi, vj ∈ V : (i)
S(vi)∩S(vj) 6= ∅; (ii) S(vi) 6⊆ S(vj) and S(vj) 6⊆ S(vi); (iii)
|S(vi)| = |S(vj)|. It is easy to observe that this approach
naturally imposes an upper bound on the replication factor.
To position a new edge e connecting vertices vi and vj , it
picks a partition from the intersection between S(vi) and
S(vj) either randomly or by choosing the least loaded one.
Different solutions differ in the composition of the vertex
constrained sets. The grid solution arranges partitions in a
X × Y matrix such that |P | = XY . It maps each vertex v
to a matrix cell using a hash function h, then S(v) is the set
of all the partitions in the corresponding row and column.
It this way each constrained sets pair has at least two parti-
tions in their intersection. PDS generates constrained sets
using Perfect Difference Sets [13]. This ensure that each
pair of constrained sets has exactly one partition in the in-
tersection. PDS can be applied only if |P | = x2 + x + 1,
where x is a prime number.

Greedy partitioning algorithms — This family of meth-
ods uses the entire history of the edge assignments to make
the next decision. The standard greedy approach [12] breaks
the randomness of the hashing and constrained solutions by
maintaining some global status information. In particular,
the system stores the set of partitions A(v) to which each
already observed vertex v has been assigned and the current
partition sizes. Concretely, when processing edge e ∈ E con-
necting vertices vi, vj ∈ V , the greedy technique follows this
simple set of rules:

Case 1: If neither vi nor vj have been assigned to a par-
tition, then e is placed in the partition with the smallest
size in P .

Case 2: If only one of the two vertices has been already
assigned (without loss of generality assume that vi is the
assigned vertex) then e is placed in the partition with the
smallest size in A(vi).

Case 3: If A(vi) ∩ A(vj) 6= ∅, then edge e is placed in the
partition with the smallest size in A(vi) ∩A(vj).

Case 4: If A(vi) 6= ∅, A(vj) 6= ∅ and A(vi)∩A(vj) = ∅, then
e is placed in the partition with the smallest size in A(vi)∪
A(vj) and a new vertex replica is created accordingly.

Symmetry is broken with random choices. An equivalent
formulation consists of computing a score Cgreedy(vi, vj , p)
for all partitions p ∈ P , and then assigning e to the parti-
tion p∗ that maximizes Cgreedy. The score consists of two
elements: (i) a replication term Cgreedy

REP (vi, vj , p) and (ii) a

balance term Cgreedy
BAL (p). It is defined as follows:

Cgreedy(vi, vj , p) = Cgreedy
REP (vi, vj , p) + Cgreedy

BAL (p) (2)

Cgreedy
REP (vi, vj , p) = f(vi, p) + f(vj , p) (3)

f(v, p) =

{
1, if p ∈ A(v)

0, otherwise

Cgreedy
BAL (p) =

maxsize− |p|
ε+ maxsize−minsize

(4)

where maxsize is the maximum partition size, minsize is the
minimum partition size, and ε is a small constant value.



A recent paper [24] proposes an hybrid solution that tries
to combine both edge-cut and vertex-cut approaches to-
gether. The resulting heuristic, called Ginger, aims at op-
timizing the partitioning in a DGC framework. However,
Ginger is not a streaming solution, since it needs extra re-
assignment phases after the original streaming graph parti-
tioning.

We remark there are other facets of graph partitioning
that may affect performance of a DGC framework and have
been addressed in other works. For example, some applica-
tions are based on dynamic graphs and provided a hashing-
based partitioning solution to manage such type of input
[21]. Another aspect is the use of other metrics for opti-
mization. For example [28] proposes a solution aimed at
aggressively replicating vertices to improve the performance
of queries on the graph and to keep them local to each single
partition as much as possible. Further contributions along
these lines are orthogonal and out of the scope of this paper.

4. THE HDRF ALGORITHM
In this section, we present HDRF, a greedy algorithm tai-

lored for skewed power-law graphs.
In the context of robustness to network failure, Cohen et

al. [7, 8] and Callaway et al [6] have analytically shown that
if only a few high-degree vertices (hubs) are removed from
a power-law graph then it is turned into a set of isolated
clusters. Moreover, in power-law graphs, the clustering co-
efficient distribution decreases with increase in the vertex
degree [9]. This implies that low-degree vertices often be-
long to very dense sub-graphs and those sub-graphs are con-
nected to each other through high-degree vertices.

Our partitioning scheme leverages these properties by fo-
cusing on the locality of low-degree vertices. In particular, it
tries to place each strongly connected component with low-
degree vertices into a single partition by cutting high-degree
vertices and replicating them on a large number of parti-
tions. As the number of high-degree vertices in power-law
graphs is very low, encouraging replication for only these
vertices leads to an overall reduction of the replication fac-
tor.

Concretely, when HDRF creates a replica, it does so for
the vertex with the highest degree. However, obtaining de-
grees of vertices for a graph that is consumed in a stream-
ing fashion is not trivial. To avoid the overhead of a pre-
processing step (where the input graph should be fully scan-
ned to calculate the vertex exact degrees), a table with par-
tial degrees of the vertices can be maintained that is con-
tinuously updated while input is analyzed. As each new
edge is considered in the input, the degree values for the
corresponding vertices are updated in the table. The partial
degree values collected at runtime are usually a good indi-
cator for the actual degree of a vertex since it is more likely
that an observed edge belongs to a high-degree vertex rather
than to a low-degree one.2

More formally, when processing edge e ∈ E connecting
vertices vi and vj , the HDRF algorithm retrieves their par-
tial degrees and increments them by one. Let δ(vi) be the
partial degree of vi and δ(vj) be the partial degree of vj .
The degree values are then normalized such that they sum

2During experiments, we noticed no significant improve-
ments in the algorithm performance when using exact de-
grees instead of their approximate values.

up to one:

θ(vi) =
δ(vi)

δ(vi) + δ(vj)
= 1− θ(vj) (5)

As for the greedy heuristic, the HDRF algorithm computes
a score CHDRF(vi, vj , p) for all partitions p ∈ P , and then
assigns e to the partition p∗ that maximizes CHDRF. The
score for each partition p ∈ P is defined as follows:

CHDRF(vi, vj , p) = CHDRF
REP (vi, vj , p) + CHDRF

BAL (p) (6)

CHDRF
REP (vi, vj , p) = g(vi, p) + g(vj , p) (7)

g(v, p) =

{
1 + (1− θ(v)), if p ∈ A(v)

0, otherwise

CHDRF
BAL (p) = λ ·Cgreedy

BAL (p) = λ · maxsize− |p|
ε+ maxsize−minsize

(8)

The λ parameter allows control of the extent of partition
size imbalance in the score computation. We introduced
this parameter because the standard greedy heuristic may
result in highly imbalanced partition sizes, especially when
the input is ordered somehow. To see this problem note that
Cgreedy

BAL (p) (Equation 4) is always smaller than one, while

Cgreedy
REP and CHDRF

REP are either zero or greater than one. For
this reason, the balance term CBAL in the greedy algorithm
or when 0 < λ ≤ 1 is used only to choose among partitions
that exhibit the same value for the replication term CREP,
thereby breaking symmetry.

However, this may not be enough to ensure load balance.
For instance, if the stream of edges is ordered according
to some visit order on the graph (e.g., breadth first search
or depth first search), when processing edge e ∈ E con-
necting vertices vi and vj there is always a single partition

p∗ with Cgreedy
REP (vi, vj , p

∗) ≥ 1 (resp. CHDRF
REP (vi, vj , p

∗) >
1) and all the other partitions p ∈ P s.t. p 6= p∗ have

Cgreedy
REP (vi, vj , p) = 0 (resp. CHDRF

REP (vi, vj , p) = 0). In this
case, the balance term is useless as there is no symmetry
to break, and the heuristic ends up placing all edges in a
single partition p∗. This problem can be solved by setting
a value for λ > 1. In our evaluation (Section 6), we em-
pirically studied the trend of the replication factor and the
load balance by varying λ (Figure 6). Moreover, note that
when λ → ∞ the algorithm resembles a random heuristic,
where past observations are ignored and it only matters to
have partitions with equal size. The following summarizes
the behavior of the HDRF algorithm with respect to the λ
parameter:

λ = 0, agnostic of the load balance

0 < λ ≤ 1, balance used to break the symmetry

λ > 1, balance importance proportional to λ

λ→∞, random edge assignment

When λ = 1 the HDRF algorithm can be represented by
a set of simple rules, exactly as in greedy, with the exception
of Case 4 that is modified as follows:

Case 4 If A(vi) 6= ∅, A(vj) 6= ∅ and A(vi)∩A(vj) = ∅, then
- if δ(vi) < δ(vj), e is assigned to the partition with the
smallest size p∗ ∈ A(vi) and a new replica of vj is created
in p∗;



- if δ(vj) < δ(vi), e is assigned to the partition with the
smallest size p∗ ∈ A(vj) and a new replica of vi is created
in p∗.

HDRF can be run as a single process or in parallel in-
stances to speed up the partitioning phase. As with greedy,
HDRF also needs some state to be shared among parallel
instances during partitioning. In particular, we noticed that
sharing the values of A(v), ∀v ∈ V is sufficient to let HDRF
perform at its best. Note that optimizing the execution time
of HDRF was a goal beyond the scope of this work; we will
consider it as part of our future work.

5. THEORETICAL ANALYSIS
In this section we characterize the HDRF algorithm be-

havior from a theoretical perspective, focussing on the ver-
tex replication factor. In particular we are interested in
an average-case analysis of HDRF. A worst-case analysis
would provide poor performance, as expected for any sim-
ilar greedy algorithm, while failing to capture the typical
behavior of HDRF in real cases. In the rest of this section
we assume λ = 1 for the sake of simplicity.

Cohen et al. [8] considered the problem of a scale-free
network (characterized as a power-law graph) attacked by
an adversary able to remove a fraction c of vertices with the
largest degrees. In particular they characterized the approx-
imate maximum degree M̃ observable in the graph’s largest
component after the attack. If |V | � 1/c this value can be
approximated by the following equation:

M̃ = mc1/(1−α) (9)

where m is the (global) minimum vertex degree and α is the
parameter characterizing the initial vertex degree distribu-
tion.

Let us now consider the algorithm aHDRF as an approx-
imation of HDRF : aHDRF performs exactly as HDRF, but
for the fact that we assume it knows the exact degree of each
input vertex (and not the observed degree as for HDRF ).

Theorem 1. Algorithm aHDRF achieves a replication fac-
tor, when applied to partition a graph with |V | vertices on
|P | partitions, that can be bounded by:

RF ≤ τ |P |+ 1

|V |(1− τ)

|V |(1−τ)−1∑
i=0

[
1 +m

(
τ +

i

|V |

) 1
1−α

]

τ =

(
|P | − 1

m

)1−α

Proof. The replication factor bound is the sum of two
distinct parts. The first part considers the fraction τ of
vertices with the largest degrees in the graph, referred to as
hubs. The worst case for hubs is to be replicated in all the
partitions, with a corresponding replication factor of τ |P |.
τ represents the fraction of vertices that must be removed
from the graph such that the maximum vertex degree in the
remaining graph is |P | − 1; this value is obtainable through

Equation (9) by imposing M̃ = |P | − 1.
The second part of the equation consider the contribution

to the replication factor from non-hub vertices, i.e. all ver-
tices whose degree is expected to be smaller than |P | − 1
after the τ vertices with the largest degrees have been re-
moved from the graph (together with their edges). When

aHDRF processes an edge connecting a hub vertex with a
non-hub vertices, it always favors the replication the hub
vertex (that has a larger degree) and replicates the non-hub
vertex only if executes Case 1 or Case 2, that is only if it
is the first time it observes that vertex. Since the degree
of non-hub vertices, ignoring the connections with hub ver-
tices, is bounded by mτ1/(1−α), and since the connections
with hub vertices can produce at most one replica, the worst
case replication factor for non-hub vertices is bounded by:

1

|V |(1− τ)

(
1 +mτ

1
1−α

)
This bound can be further improved by considering what

happens to the graph once the non-hub vertex v0 with the
largest degree is removed. The previous bound is valid for
v0. However, the removal of v0 from the graph will change
the degree distribution, thus also reducing the bound for
the next non-hub vertex with the largest degree. Using this
consideration, it is possible to iteratively bound the degree
of each non-hub vertex vi with m(τ + i/|V |)1/(1−α) where
0 ≤ i ≤ |V |(1−τ)−1. Hence, the total worst case replication
factor for non-hub vertices, is bounded by:

1

|V |(1− τ)

|V |(1−τ)−1∑
i=0

[
1 +m

(
τ +

i

|V |

) 1
1−α

]

If edges arrive in random order, aHDRF gives an approx-
imation of HDRF. In this case, the observed values for ver-
tex degrees are a good estimate for the actual degrees. We
can conclude that, assuming random order arrival for edges,
HDRF is expected to achieve a replication factor, when ap-
plied to partition a graph with |V | vertices on |P | partitions,
of at most RF of Theorem 1.

For example, consider a graph with α = 2.2, |P | = 128,
m = 1 and 1M vertices. The average-case upper bound for
the replication factor of HDRF is ≈ 5.12 while the actual
result it achieves is ≈ 1.37. The bounds for DBH and hash-
ing [12, 27] with this configuration are respectively ≈ 5.54
and ≈ 5.88, while the actual results they achieve are ≈ 1.89
and ≈ 2.52.

The upper bound given by Theorem 1 cannot be extended
to other algorithms (e.g., greedy). Informally, HDRF breaks
network at hubs by replicating a small fraction of vertices
with large degrees. In contrast, greedy and other algorithms
are agnostic to the degree of vertices when replicating them.
Intuitively, these algorithms try to break network by remov-
ing random vertices. Unfortunately, power-law graphs are
resilient against removing random vertices (see [7] for de-
tails). This implies that, in order to fragment a scale-free
network, a very large number of random vertices should be
removed. In other words, greedy and other algorithms tend
to replicate a large number of vertices in different partitions.
This intuition is verified in our experiments (see Section 6).

6. EVALUATION
This section presents experimental results for the HDRF

partitioning algorithm. The evaluation was performed on
real-world graphs by running the proposed algorithm both in
a stand-alone partitioner (useful for scaling up to large par-
tition numbers) and running an implementation of HDRF



1

2

4

8

16

4 8 16 32 64 128 256

re
p
lic

a
ti
o
n
 f
a
c
to

r

partitions

(a) Tencent Weibo

1

2

4

8

16

4 8 16 32 64 128 256

re
p
lic

a
ti
o
n
 f
a
c
to

r

partitions

PDS
grid

hashing
DBH

greedy
HDRF

(b) Netflix

1

2

4

8

16

4 8 16 32 64 128 256

re
p
lic

a
ti
o
n
 f
a
c
to

r

partitions

PDS
grid

hashing
DBH

greedy
HDRF

(c) MovieLens 10M

1

2

4

8

16

4 8 16 32 64 128 256

re
p
lic

a
ti
o
n
 f
a
c
to

r

partitions

PDS
grid

hashing
DBH

greedy
HDRF

(d) twitter-2010

Figure 1: Replication factor varying the number of target partitions (log-log scale).

Dataset |V | |E|
Tencent Weibo 1.4M 140M

Netflix 497.9K 100.4M
MovieLens 10M 80.6K 10M

twitter-2010 41.7M 1.47B

Table 1: Statistics for real-world graphs.

integrated into GraphLab3. The evaluation also reports ex-
periments on synthetic graphs generated randomly with in-
creasingly skewed distributions to study the extent to which
HDRF performance is sensitive to workload characteristics.

6.1 Experimental Settings and Test Datasets
Evaluation Metrics — We evaluate the performance of
HDRF by measuring the following metrics:

Replication factor: is the average number of replicas per
vertex. This metric is a good measure of the synchronization
overhead and should be minimized.

Load relative standard deviation: is the relative standard
deviation of the number of edges hosted in target partitions.
An optimal partitioning strategy should have a value for this
metric close to 0.

Max partition size: is the number of either vertices or
edges hosted in the largest partition. We consider this met-
ric with respect to both vertices and edges as each conveys
different information. Edges are the main input for the com-
putation phase, thus more edges in a partition mean more
computation for the computing node hosting it; conversely,
the number of vertices in the system, and, therefore, in the
largest partition, also depends on the number of replicas
generated by the partitioning algorithm.

Execution time: is the number of seconds needed by the
DGC framework to perform the indicated computation on
the whole input graph. Better partitioning, by reducing the
number of replicas, is expected to reduce the synchronization
overhead at runtime and thus reduce the execution time as
well.
Datasets — In our evaluation, we used as datasets both
synthetic power-law graphs and real-word graphs. The for-
mer were used to study how HDRF performance vary when
the degree distribution skewness of the input graph gradu-
ally increases. In particular, each synthetic graph was gen-
erated with 1M vertices, minimum degree of 5 and edges
using a power law distribution with α ranging from 1.8 to
4.0. Therefore, the number of edges in the graphs ranges

3The stand-alone software and the GraphLab patch are
available at https://github.com/fabiopetroni/VGP.

from ∼ 60M (α = 1.8) to ∼ 3M (α = 4). Graphs were gen-
erated with gengraph [26]. We also tested the performance
of HDRF on real-world graphs: twitter-2010 from LAW
(Laboratory for Web Algorithmics) [5, 4], Tencent Weibo
from the KDD-Cup 2012 [22], Netflix from the Netflix Prize
[3] and MovieLens 10M from the GroupLens research lab
(http://grouplens.org). Table 1 reports some statistics
for these 4 datasets.
System Setup — We implemented a stand-alone version
of a graph partitioner that captures the behavior of a DGC
framework during the graph loading and partitioning phase.
Within our partitioner, we implemented the five different al-
gorithms described so far: hashing, DBH, grid, PDS, greedy
and HDRF. Furthermore, we compared our solution against
two offline methods: Ginger [24] and METIS [15], a well-
known edge-cut partitioning algorithm. To compute the
replication factor delivered by METIS, we used the same
strategy of [12]: every edge-cut forces the two spanned par-
titions in maintaining a replica of both vertices and a copy
of the edge data. To run realistic tests needed to measure
execution time, we implemented and integrated HDRF into
GraphLab v2.2. Experiments with GraphLab where con-
ducted on a cluster consisting of 8 machines with dual 16-
core Intel Xeon CPUs and 128GB of memory each. We
experimented with 32, 64 and 128 partitions by running mul-
tiple instances on a single machine.
Data input order — Since the input dataset is consumed
as a stream of edges, the input order can affect the perfor-
mance of the partitioning algorithm. We considered three
different stream orders as in [25]: random, where edges ar-
rive according to a random permutation; BFS, where the
edge order is generated by selecting a vertex uniformly at
random and performing a breadth first search visit starting
from that vertex; DFS, that works as BFS except for the
visit algorithm that is depth-first search. All reported re-
sults are based on a random input order unless otherwise
mentioned in the text.

6.2 Performance Evaluation
The experimental results reported in this section are or-

ganized as follows: we first report on experiments that show
the ability of HDRF to deliver the best overall performance
in terms of execution time with the smallest overhead (repli-
cation factor) and close to optimal load balance when exe-
cuted on real-world graphs. We then study how HDRF per-
formance is affected by changes in the characteristics of the
input dataset and changes in the target number of parti-
tions. Finally, the last set of results analyze the sensitivity
of HDRF to input stream ordering.
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Figure 2: Replication factor (log scale) with |P | = 133. HDRF is compared against streaming (a) and offline
(b) solutions.

6.2.1 Runtime comparison
We first measured HDRF performance against other stream-

ing partitioning algorithms on our set of real-world graphs.
These experiments were run by partitioning the input graphs
on a set of target partitions in the range [3, 256] with our
stand-alone partitioner. Figure 1 reports the replication
factor that the considered partitioning algorithms achieve
on different input graphs4. Moreover, Figure 2a provides a
snapshot of the evaluation, by setting the number of target
partition to 133, a number compliant with PDS constraints.
It can be observed that HDRF is the algorithm that pro-
vides the smallest replication factor for all the considered
datasets.

In particular, for the Weibo dataset, characterized by large
edge count differences among high-degree and low-degree
vertices, it is possible to observe how HDRF and DBH are
the best performers as they both exploit vertex degrees. In
all the other datasets HDRF is always the best performer,
albeit with larger absolute RF values. Summarizing, on the
considered datasets HDRF achieves on average a replica-
tion factor about 40% smaller than DBH, more than 50%
smaller than greedy, almost 3× smaller than PDS, more than
4× smaller than grid and almost 14× smaller than hashing.
We experimented with other datasets as well (i.e. arabic-
2005, uk-2002, indochina-2004 from LAW, and Yahoo! Mu-
sic from the KDD-Cup 2011). In all our test HDRF out-
performs competing solutions, simultaneously guaranteeing
close to perfect load balance (results omitted due to space
constraints).

Next, we compared HDRF against two offline partition-
ing algorithms: Ginger and METIS. Note that these offline
solutions have full knowledge of the input graph that can be
exploited to drive their partitioning choices. Figure 2b com-
pares the replication factor achieved by these two solutions
and HDRF (we maintain |P | = 133 to be coherent with Fig-
ure 2a). We do not report the results for the twitter-2010
dataset since METIS produced greatly unbalanced parti-

4Due to specific constraints imposed by the PDS and grid al-
gorithms on the total number of partitions, their data points
are not aligned with those of the other algorithms.
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Figure 3: Load relative standard deviation produced
by different partitioning algorithms on the Movie-
Lens 10M dataset.

tions5, making a comparison on this dataset unfair. The
poor performance of METIS was an expected result since
it has been proved that edge-cut approaches perform worse
than vertex-cut ones on power-law graphs [12]. However,
HDRF outperforms Ginger as well, by reducing its replica-
tion factor by 10% on average. In addition, HDRF has the
clear advantage of consuming the graph in a one-pass fash-
ion while Ginger needs several passes over the input data to
converge. These results show that HDRF is always able to
provide a smaller average replication factor with respect to
all other algorithms, both streaming and offline, when used
to partition graphs with power-law degree distributions.

Figure 3 reports the load relative standard deviation pro-
duced by the tested streaming algorithms when run on the
MovieLens 10M dataset with a variable number of target
partitions (results for other datasets showed similar behav-
ior so we omit them). The curves show that HDRF and
greedy provide the best performance as the number of tar-
get partitions grows. As expected, hashing provides well bal-

5Note that the scope of Metis is to balance vertex load
among partitions.
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Figure 4: Speedup in the execution time for the
SGD algorithm on the Tencent Weibo dataset by ap-
plying HDRF with respect to greedy and PDS, with
32, 64 and 128 partitions.

anced partitions, but it still performs worse that the other
algorithms as its expected behavior with respect to load bal-
ancing is only probabilistic. Grid performs similarly, even
if its more complex constraints induce some skew in load.
DBH and PDS are the worse performers, with load skew
growing at a fast pace as the number of target partitions
grows. Note that replication factor reflects communication
cost, and edge-imbalance reflects workload-imbalance; pro-
viding good performance with these two metrics means that
HDRF can provide partitioning results that make the exe-
cution of application algorithms more efficient.

To this end, we studied how much all of this translates
to a performance improvement with respect to the execu-
tion time. Since a DGC framework has to periodically syn-
chronize all the vertex replicas, having fewer replicas in the
system is expected to provide an advantage and to speed
up the execution time. To investigate the impact of the
different partitioning techniques we ran the Stochastic Gra-
dient Descent (SGD) algorithm for matrix completion [17,
23] on GraphLab, using the Tencent Weibo dataset and 100
latent factors, with 32, 64 and 128 partitions respectively.
Figure 4 reports the measured speed-up, obtained by using
HDRF to partition the input over greedy and PDS6. The
SGD algorithm runs up to 2× faster using HDRF as input
partitioner with respect to greedy, and close to 3× faster
than PDS. The actual improvement is larger as the number
of target partitions grows. Moreover, the speedup is pro-
portional to the gain in RF (see Figure 1a) and, as already
shown in [12], halving the replication factor approximately
halves runtime. Furthermore, having partitions with fewer
replicas also help SGD to converge faster [23].

We tested the speedup for other datasets and algorithms
as well, namely Single Source Shortest Path (SSSP), Weakly
Connected Components (WCC), Page Rank (PR) and Al-
ternating Least Squares (ALS). The results (not reported
here due to space constraints) confirmed our intuitions: the
speedup is proportional to both the advantage in replication
factor and the actual network usage of the algorithm. The
speedup it is larger for IO-intensive algorithms (e.g. SGD,

6We needed to use respectively 31, 57 and 133 partitions, to
fit PDS constraints.

ALS and PR) and smaller for algorithm with less network
IO (SSSP and WCC). None of the tests we conducted with
HDRF showed a slowdown with respect to other solutions.

Our results show that HDRF is the best solution to parti-
tion input graphs characterized by skewed power-law degree
distributions. HDRF achieves the smallest replication factor
with close to optimal load balance. These two character-
istics combined make application algorithms execute more
efficiently in the DGC framework.

6.2.2 Performance sensitivity to input shape
We next analyze how the input graph degree distribution

affects HDRF performance. To this end, we used HDRF to
partition a set of synthetic power-law graphs. In doing so,
we experimentally characterize the sensitivity of the average
replication factor on the power-law shape parameter α, and
on the number of partitions. Figure 5a reports the repli-
cation factor improvement for HDRF with respect to other
algorithms, expressed as a multiplicative factor, by varying
α in the range [1.8, 4.0] with |P | = 128 target partitions
(|P | = 133 and |P | = 121 for PDS and grid respectively).
The curves show two important aspects of HDRF behavior:
(1) with highly skewed degree distributions (i.e. small val-
ues of α), its performance is significantly better than greedy
and other algorithms (with the exception of DBH); (2) with
less skewed degree distributions, the performance of HDRF
approaches that provided by greedy, while all the other so-
lutions (including DBH ) perform worse. These results show
how HDRF behavior approximates greedy ’s behavior as the
number of high degree vertices in the input graph grows as
in this case making a different partitioning choice on high-
degree vertices is less useful (as there are a lot of them). Note
that Gonzalez et al. [12] showed that the effective gain of a
vertex-cut approach relative to an edge-cut approach actu-
ally increases with smaller α. Our solution boosts this gain,
not only with respect to constrained techniques but also over
the greedy algorithm. Figure 5b reports the replication fac-
tor, and clearly shows that HDRF is able to outperform all
competing algorithms for all values of α. At the extremes,
HDRF is better than DBH when α is very small and per-
forms slightly better than greedy when α is very large.

6.2.3 Performance sensitivity to input order
A shortcoming of the standard greedy algorithm is its in-

ability to effectively handle streams of input edges when
they are ordered. If the input stream is ordered such that
two subsequent edges always share a vertex, greedy always
places all the edges and their adjacent vertices in a single
partition, whatever the target partition number is. The fi-
nal result is clearly far from being desirable as all of the
computation load will be incurred by a single node in the
computing cluster.

To overcome this limitation, we explicitly introduced the
parameter λ in the computation of the score for each par-
tition in HDRF (Equations (6) and (8)), that defines the
importance of the load balance in the edge placement deci-
sion (Section 4). Figure 6 shows the result of an experiment
run on the Netflix dataset, where the input stream of edges
is ordered according to either a depth-first-search (DFS) or
a breadth-first-search (BFS) visit on the graph. The figure
shows the average replication factor (Figure 6a), the size
of the largest partition expressed as number of contained
edges (Figure 6b) and the size of the largest partition ex-
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Figure 6: HDRF behavior on the Netflix dataset varying λ, with input edge stream either random or ordered
(DFS or BFS graph visits). Reference grey lines represent greedy, hashing and PDS performance.

pressed as number of contained vertices (Figure 6c) all while
varying the value of λ in the range [0.1, 100] (log-log axes).
All three figures report the performance obtained with the
greedy, hashing and PDS algorithms as horizontal grey lines
for reference.

With λ ≤ 1 HDRF behaves exactly as greedy (curves BFS
and DFS): all edges are placed in a single partition and no
vertex is replicated. This behavior is confirmed by the size
of the largest partition that in this case contains exactly |E|
edges and |V | vertices (Figures 6b and 6c). For λ > 1 the
CBAL factor starts to play a fundamental role in balancing
the load among the available partitions: the average repli-
cation factor for HDRF with both DFS and BFS inputs is
just slightly larger than what is achievable with a random
input7 and still substantially lower than what is achievable
with PDS or hashing (Figure 6a). At the same time, the size
of the largest partition drops to its minimum (Figures 6b and
6c) indicating that the algorithm immediately delivers close
to perfect load balancing (i.e. |E|/|P | edges per partition),
while the number of vertices hosted in the largest partition

7The difference is due to HDRF ’s usage of partial informa-
tion on vertex degrees. Such values are not a good proxy of
real vertex degrees if the input stream is not random.

reaches its minimum. By further increasing λ toward larger
values, the effect of CBAL dominates the HDRF score com-
putation and the algorithms behavior quickly approaches the
behavior typical of hashing : large average replication factor,
with close to perfect load balancing.

These results show that i) the CBAL term in HDRF score
computation plays an effective role in providing close-to-
perfect load balancing among partitions while keeping a low
average replication factor, and ii) by setting the value of λ
slightly larger than 1, it is possible to let HDRF work at a
“sweet spot” where it can deliver the best performance, even
when working on an ordered stream of edges. This last point
makes HDRF particularly suitable for application settings
where it is not possible to randomize the input stream before
feeding it to the graph partitioning algorithm.

7. CONCLUSION
Distributed graph-computing frameworks provide program-

mers with convenient abstractions to enable computation on
large datasets. In these frameworks, system performance is
often determined by the graph data partitioning strategy,
which impacts the communication cost and the workload
balance among compute resources. In this paper, we pro-



posed HDRF, a novel stream-based graph partitioning algo-
rithm for distributed graph-computing frameworks. HDRF
is based on a greedy vertex-cut approach that leverages in-
formation on vertex degrees. Through a theoretical analysis
and an extensive experimental evaluation on real-world as
well as synthetic graphs using both a stand-alone partitioner
and implementation of HDRF in GraphLab, we showed that
HDRF is overall the best performing partitioning algorithm
for graphs characterized by power-law degree distributions.
In particular, HDRF provides the smallest average replica-
tion factor with close to optimal load balance. These two
characteristics put together allow HDRF to significantly re-
duce the time needed to perform computation on graphs and
makes it the best choice for partitioning graph data.
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