A Collaborative Event Processing System for

Protection of Critical Infrastructures From
Cyber Attacks*

Leonardo Aniello, Giuseppe A. Di Luna, Giorgia Lodi, and Roberto Baldoni

University of Rome “La Sapienza”
Via Ariosto 25, 00185, Rome, Italy
{aniello,lodi,diluna,baldoni}@dis.uniromal.it

Abstract. We describe an Internet-based collaborative environment that
protects geographically dispersed organizations of a critical infrastruc-
ture (e.g., financial institutions, telco providers) from coordinated cyber
attacks. A specific instance of a collaborative environment for detecting
malicious inter-domain port scans is introduced. This instance uses the
open source Complex Event Processing (CEP) engine ESPER to cor-
relate massive amounts of network traffic data exhibiting the evidence
of those scans. The paper presents two inter-domain SYN port scan de-
tection algorithms we designed, implemented in ESPER, and deployed
on the collaborative environment; namely, Rank-based SYN (R-SYN)
and Line Fitting. The paper shows the usefulness of the collaboration in
terms of detection accuracy. Finally, it shows how Line Fitting can both
achieve a higher detection accuracy with a smaller number of participants
than R-SYN, and exhibit better detection latencies than R-SYN in the
presence of low link bandwidths (i.e., less than 3Mbit/s) connecting the
organizations to Esper.

1 Introduction

The seamless, ubiquitous, and scalable nature of the Internet has made it a con-
venient platform for critical infrastructures (e.g., telco, financial, power grids) as
it allows them to benefit from reduced maintenance and management costs, and
at the same time, offer a wider range of on-line and user-friendly services (such
as on-line banking and e-commerce). The growing intersection between these
critical infrastructures and Internet has however exposed them to a variety of
security related risks, such as increasingly sophisticated cyber attacks aiming at
capturing high value (or, otherwise, sensitive) information, or disrupting service
operation for various purposes. Today’s cyber attacks result in both tangible
and intangible economic losses due to the lack of service availability and infras-

tructural resilience, and the decreased level of trust on behalf of the customers’.

* This research is partially funded by the EU project CoMiFin (Communication
Middleware for Financial Critical Infrastructures [10])

! Recent studies evaluate around 6 millions dollars per day the tangible loss for a
utility company of a down of an e-service [14].

2 LNCS: L. Aniello, G. A. Di Luna, G. Lodi, R. Baldoni

(Bl oo e
| !,! rocEssINg
) ORGANIZATION 1 \

L) S i
L3

ORGANIZATION 2|

BLACKLIST

COLLABORATIVE
192.168.0X5 ANALYSIS

=i s:x
Big

ORGANIZATION 3

92.168.0.75

18.0.23.50)

- il
BT A e

I e e
=
b) COLLABORATIVE

ORGANIZATION N PROCESSING SYSTEM

" Internet

Fig. 1. Collaborative Event Processing System for inter-domain stealthy port scan.

Hence, this economic argument pushes such organizations to collaborate in order
to set more appropriate defense strategies.

We consider one of the most widespread mechanisms used by attackers for
obtaining information on possible vulnerabilities of any target, i.e., port scan.
Port scan is a preparatory action performed in several coordinated cyber attacks
such as worm spreading, botnet formation and DDoS attacks. Single organiza-
tions use Intrusion Detection Systems (IDSs) to defend themselves from such
actions. However, nowadays attackers attempt to perform their activities in a
stealthy fashion in order to elude local IDSs. In particular, attackers distribute
the port scans both in space and in time executing what we call an inter-domain
stealthy port scan. In an inter-domain stealthy port scan a few ports of interest
at different organizations are probed in order to circumvent configured thresh-
olds (distribution in space), and single probes are delayed so as to bypass time
window controls (distribution in time).

In this paper we propose a collaborative approach that allows us to address the
general problem of protecting geographically dispersed organizations, belonging
to different administrative domains, from cyber attacks. This is the typical sce-
nario of organizations belonging to a critical infrastructure such as inter-utility
of large scale power systems [17], networked telecommunication providers [24] or
financial infrastructure [10]. In particular, we provide a novel collaborative event
processing system for detecting inter-domain malicious port scan activities (see
Figure 1). The system consists of two principal components: an event engine
and a so-called gateway, collocated at each organization network. A gateway
captures network packets and executes a pre-processing on those packets; that
is, it filters out the packets that are not relevant with respect to the processing
of the specific port scan detection algorithm (it might also aggregate the packets
in order to reduce the overall computation to be performed at the event engine
side). The pre-processed packets are sent to the event engine that correlates the
data in order to discover spatial and /or temporal relationships among apparently
uncorrelated data that would have been undetected by in-house IDSs.

LNCS: Collaborative Event Processing for Critical Infrastructures Protection 3

The collaborative processing system is based on the Esper Complex Event
Processing (CEP) engine [5]; through it we designed a novel port scan detection
algorithm named Line Fitting. Line Fitting is implemented on the top of the
collaborative system by means of a set of SQL-like queries that can be configured
at run time. We compare Line Fitting with another algorithm, namely Rank-
based SYN (R-SYN) algorithm which we developed in the context of an intra-
organization intrusion detection system [13]. The use of Esper is motivated by
both the low cost of ownership compared to other similar systems [9] and the
ability of dynamically adapting the detection logic by integrating/removing SQL-
queries for facing new threats that may arise.

We carried out an experimental evaluation in order to assess the detection
and false positive rates of the two algorithms by using real network traces that
include malicious port scans. The assessment aims to evaluate the impact of
the collaboration on such metrics. Additionally, we computed the latency of the
detection in both algorithms when 3, 6 and 9 organizations participate in the
system. Results show that an increased number of collaborative organizations
leads to a more accurate detection. At the same time, collaboration has a rea-
sonable impact on the detection latency: in the presence of link bandwidths
connecting the organizations to the engine in the range of [6.5Mbit/s, 3Mbit/s],
the collaborative system exhibits detection latencies which are acceptable for the
inter-domain port scan detection application. In general, we observe that Line
Fitting achieves high levels of accuracy with a smaller number of organizations
than R-SYN, and with low link bandwidths (less than 3Mbit/s) it also shows
better detection latencies compared to R-SYN.

Finally, our collaborative processing system can manage (i) anonymized data
(during the pre-processing) for privacy purposes, (ii) contract lifecycle (to join
the collaborative processing system) and (iii) monitoring the adherence to the
contract. Contracts and their monitoring are used to enforce trust among pos-
sibly distrusting participants in the system, thus fostering the collaboration.
These topics are outside the scope of this paper; interested readers can refer to
CoMiFin documents where they have been extensively investigated [22],[21],[10].

The rest of the paper is organized as follows. Section 2 introduces Line Fit-
ting. Section 3 describes the architecture we designed and implemented of a
collaborative processing system for inter-domain stealthy port scan detection
based on Esper. Section 4 introduces the implementation of Line Fitting in Es-
per, and Section 5 discusses the principal experimental results we have obtained
from a comparison between Line Fitting and the previously implemented R-
SYN. Section 6 discusses principal related work and finally Section 7 concludes
the paper.

2 Cyber Attacks: Distributed Stealthy Port Scan

We show the benefits of the collaborative approach in the case of inter-domain
stealthy port scans detection. A scanner S sends a SYN packet to a target T’
on a specific port P and waits for a response. If a SYN-ACK packet is received,
S can conclude that P is open and optionally reply with an RST packet to

4 LNCS: L. Aniello, G. A. Di Luna, G. Lodi, R. Baldoni

reset the connection. We call this kind of connections incomplete connections. In
contrast, if an RST-ACK packet is received, S can consider P as closed. If no
packet is received at all and S has some knowledge that T is reachable, then S
can conclude that P is filtered. Otherwise, if S does not have any clue on the
reachability status of T, it cannot assume anything about the state of P.

Not all the port scans can be considered malicious. For instance, there exist
search engines that carry out port scanning activities in order to discover Web
servers to index [19]. It becomes then crucial to distinguish accurately between
actual malicious port scanning activities and benign ones.

Line Fitting SYN port scan detection algorithm The underlying principle
of Line Fitting concerns the observation that a scanner does not repeatedly
perform the same operation towards specific hosts or ports: if the attempt fails
on a T:P a scanner likely carries out a malicious port scan towards different
targets. The rational behind Line Fitting can be summarized as follows.

Let (ip, port) be the pair that identifies a destination host and a TCP port.
Given a set of pairs C' : I P x Port, where I P is the set of IP addresses and Port
is the set of TCP ports, the purpose of an inter-domain stealthy SYN port scan
is to find out the subset A C C representing active TCP ports. A pair (ip;, port;)
is active if and only if a service on port port; is available at the destination IP
ip;. The standard behavior for a scanner is to issue few requests for each element
in C in order to obtain the status of the pair (ip;,port;).

Owing to these observations we define I = A\ C as the set of inactive
pairs: every request issued to an element in I may lead to a failure. As failures
are common during port scan activities, we can assume that I # @ and that
1] > |A].

The line fitting algorithm takes into account the set F}, which is a multiset of
failures generated by the source host h (an element of T generated by h becomes
an element of the set F}). We use the multiset since the multiplicity of any
failure is crucial: we observe that in case of a normal failure (e.g., DNS crashes,
service unavailability) the set F}, contains few elements with high multiplicity.
In contrast, in case of a port scan the set includes many elements with low
multiplicity. An ideal scanner issues few connections towards different (IP, Port)
pairs exhibiting a “fitting curve” behavior; i.e., a horizontal line y = bx + ¢
where b = 0, considering the pairs on x-axis and the multiplicities on y-axis. In
contrast, a non ideal malicious port scan can emerge when b is close to 0.

Therefore, Line Fitting correlates data of the TCP three way handshake
looking for patterns that are similar to a horizontal line representing few requests
towards different (IP, port) pairs distributed over time. The patterns can be
found by applying a linear fitting algorithm with the elements in Fj,, checking
then the similarity between the obtained fitting line and the ideal one. The
algorithm we have designed and implemented can be described as follows.

LNCS: Collaborative Event Processing for Critical Infrastructures Protection 5

Algorithm 1 Line Fitting algorithm
1. Va € F}, if (x is inlier) List_h.add(x)
2. (b, q)=LinearFitting(List_h);

3. if(Match(b , q)){

4. portscanner(h); }

For all the elements x of type [destI P, port, multiplicity], the check at line 1
of the algorithm “if x is inlier” is done using the mean and standard deviation
of the series m(F},) which is the list of multiplicities of all elements in F},. If
the multiplicity of « is in the interval [m — kd , m + kd] where m is the mean,
d the standard deviation and k£ a constant value, x is considered inlier and is
counted for the linear fitting (Line 2 of the algorithm). The linear fitting is
realized through the least squares method and it produces two values of the
fitting curve, namely, b and g which are then analyzed: if b and ¢ are <= than
specific thresholds (the Match method in Line 3 of the algorithm; we set these
thresholds to 1 and 6 respectively in our implementation) the source host A is
considered a scanner and included in a blacklist (Line 4 of the algorithm).

R-SYN port scan detection algorithm The Rank-based SYN (R-SYN) port
scan detection algorithm adapts and combines three port scan detection tech-
niques; namely (i) Half Open connections detection, (ii) Horizontal and Vertical
port scans detection, and (iii) Entropy-based failed connections detection. The
first technique aims at counting the number of incomplete connections. The sec-
ond technique aims at identifying connection attempts to both a port across a
range of IP addresses and a range of ports on a single destination host, and
it uses a modified version of the Threshold Random Walk (TRW) mechanism
introduced in [19]. The third technique aims at discriminating honest failures
from malicious port scans. Finally, R-SYN employs a ranking mechanism that
combines the results obtained from the three techniques in order to minimize
the probability to miss a scanner which cheats by behaving apparently in a good
way. The interested readers can refer to [13] for a detailed description of the
R-SYN algorithm.

3 Collaborative Port Scan Detection System Architecture

Figure 2 illustrates the architecture of the collaborative processing system. The
system consists of so-called Gateway components installed at each organization’s
network participating in the collaborative system, and a single Esper [5] CEP en-
gine instance used for processing purposes and deployed at any of the available
organizations (the CEP engine could be hosted by the organization adminis-
trating the processing system). These two components are described in detail
below.

Gateway Traffic data are captured from the monitored networks of organiza-
tions. The data are to be normalized and transformed in Plain Old Java Objects
(POJOs) in order to be analyzed by the engine. To this end, the Gateway has

6 LNCS: L. Aniello, G. A. Di Luna, G. Lodi, R. Baldoni

ORGANIZATION 1 ORGANIZATION J

GATEWAY ESPER CEP ENGINE

1/0 SOCKET FOJo:
., 1/0 SOCKET
v
S

INPUT STREAMS.

MAIN ENGINE

==

ERR|

13

J lOUTF’uT STREAMS

II SUBSCRIBER

SUSPECTED IPS

SCANNER LIST

ORGANIZATION N

GATEWAY

1/0 SOCKET { |

Fig. 2. Collaborative ESPER-based CEP architecture

been designed and implemented so as to (i) take as input the flows of network
data (TCP data in Figure 2), (ii) filter them to maintain packets related to
TCP three-way handshaking only, and, finally (iii) wrap each packet in a proper
POJO to be sent to Esper.

We implemented TCPPojo for TCP packets. The POJO maps every field in the
header of the protocol. POJOs are serialized and sent through Java sockets to
Esper. When sending the POJOs our implementation maintains the order of the
packets captured within the single organization, which is crucial when evaluating
sequence operators in the Esper engine.

Complex Fvent Processing (CEP) The Esper CEP engine [5] receives PO-
JOs that represent the events it has to analyze (input streams). The processing
logic is specified in a high level SQL-like language named the Event Process-
ing Language (EPL). In order to detect malicious port scanning activities a
number of EPL queries are defined and executed by the engine, as shown in
Figure 2. EPL queries run over a continuous stream of POJOs and produce out-
put streams. When an EPL query finds a match against its clauses in its input
stream, it generates a new tuple that is added to its output stream. A Subscriber
is a Java object that can be subscribed to a particular output stream so that
whenever the query outputs a new tuple, the update() method of the Subscriber
is invoked using the tuple as argument.

We have implemented both algorithms as a set of EPL queries in Esper. In
this paper we report the EPL implementation of the Line Fitting, only. The
interested readers can refer to [13] for details on the implementation of R-SYN.
Note that although the main implementation queries of R-SYN are unchanged
since those discussed in [13], we have however modified the previous implemen-
tation in order to avoid the use of external data structures for the computation
of the entropy-based failed connections. Our new implementation of R-SYN is
fully realized through EPL queries, thus entirely exploiting the powerfulness of
the language.

LNCS: Collaborative Event Processing for Critical Infrastructures Protection 7

4 Line Fitting Implementation in Esper

For the implementation of the Line Fitting algorithm we first use general queries
that filter specific packets of interest. In particular, filtering queries act on the
TCPPojo input stream and filter both SYN packets and any packets involved in
the TCP 3-way handshaking.

We then keep track, in the so-called hal fopen_connection output stream, of
incomplete connections using the following query:

//Half Open (HO) connections
insert into halfopen_connection
select ...
from pattern [
every a = syn_stream --> (
(b = syn_ack_stream(...) --> (
(timer:interval(60 sec) or <c>) and not <d>
) where timer:within(61 sec)))]

We exploit the pattern construct of Esper to detect patterns of incomplete
connections. In particular, a is the stream of SYN packets, b is the stream of
SYN-ACK packets, < ¢ > is the stream of RST packets and < d > is the stream
of ACK packets, all obtained through the filtering queries previously mentioned.
Such pattern matches if the involved packets are within a time window of 61
seconds.

In addition, we need to maintain the connections to unreachable hosts and
closed ports. To this end, we use the query below for detecting unreachable
hosts; it searches a data pattern in which a SYN packet is not followed by any
packet matching the expression (< b > or < ¢ >) within a time interval of 2
seconds. < b > represents the stream of SYN-ACK packets and < ¢ > the RST-
ACK packets stream. We also use the query for detecting connection attempts to
closed ports for which we search patterns of SYN packets followed by RST-ACK
packets within a time interval of 5 seconds.

//Connections to Hosts Unreachable(HU) //Connections to Closed Ports(CP)

insert into host_unreach insert into closed_port
select ..., O as up, 1 as down select
from pattern [from pattern[every a=syn_stream -->
every a = syn_stream --> <c> where timer:within(5 sec)
timer:interval(2 sec) and]

not (or <c>)

Finally, Line Fitting needs to create the stream of events representing failed
connections (failures); for this purpose, we use the following queries:

8 LNCS: L. Aniello, G. A. Di Luna, G. Lodi, R. Baldoni

//Create failures stream from CP //Create failures stream from HU
insert into failures insert into failures

select id,dst,1 as card select id,dst,1 as card

from closed_port from host_unreach

where closed=1 where down=1

//Create failures stream from HO
insert into failures

select id,dst,1 as card

from halfopen_connection

and for each couple (IP, Port) it returns the multiplicity of the multiset using
the following query:

insert into multiset

select sourcelP,destIP,destPort,count(*) as N
from failures

group by sourceIP,destIP,destPort

Only one subscriber is associated with Line Fitting: it generates the list of
scanner IP addresses waiting for 5 distinct events of type failures from the
HO, HU, and CP streams and applies the least square method for the final
computation.

5 Experimental Evaluation

We have carried out an experimental evaluation of the two algorithms. Such
evaluation aims at assessing two metrics; namely the detection accuracy in rec-
ognizing distributed stealthy port scans and detection latency.

Testbed For our evaluation we used a testbed consisting of a cluster of 10 Linux
Virtual Machines (VMs), each of which equipped with 2GB of RAM and 40GB
of disk space. The 10 VMs were hosted in a cluster of 4 quad core 2.8 Ghz
dual processor physical machines equipped with 24GB of RAM. The physical
machines are connected to a LAN of 10Gbit.

The layout of the components on the cluster consisted of one VM dedicated
to host the Esper CEP engine. Each of the remaining 9 VMs represented the
resources made available by 9 simulated organizations participating in the col-
laborative processing system. Each resource hosted the Gateway component. We
emulated a large scale deployment environment so that all the VMs were con-
nected with each other through an open source WAN emulator we have used
for such a purpose. The emulator is called WANem [11] and allowed us to set
specific physical link bandwidths in the communications among the VMs.

LNCS: Collaborative Event Processing for Critical Infrastructures Protection 9

Traces We used five intrusion traces. The first four were used in order to test
the effectiveness of our algorithms in detecting malicious port scan activities
whereas the latter has been used for computing the detection latency (see next
paragraph). All traces include real network traffic of a network that has been
monitored. The traces are obtained from the ITOC research web site [2], the
LBNL/ICSI Enterprise Tracing Project [3] and the MIT DARPA Intrusion de-
tection project [1]. The content of the traces is described in Table 1. In each
trace, the first TCP packet of a scanner always corresponded to the first TCP
packet of a real port scan activity.

tracel [trace2 |traced |traced |traceb
size (MB) 3 5 85 156 287
number of source IPs 10 15 36 39 23
number of connections 1429 |487 9749 |413962 1126949
number of scanners 7 8 7 10 8
number of pckts 18108 |849816(394496|1128729|3462827
3way-handshake pckts 5060 (13484 [136086|883500 (3393087
length of the trace (sec.) 5302 |601 11760 81577 (600
3way-handshake pckt rate (p/s)|0.95 [22.44 [11.57 |10.83 |5655

Table 1. Content of the traces

Detection Accuracy In order to assess the accuracy of R-SYN and Line Fit-
ting, we partitioned the traces simulating the presence of 9 organizations par-
ticipating in the collaborative processing system; the resulting sub-traces were
injected to the available Gateways of each participants in order to observe what
the two algorithms were able to detect. To this end, we ran a number of tests
considering four accuracy metrics (following the assessment described in [27]):
(i) TP (True Positive) which represents the number of suspicious hosts that are
detected as scanners and are true scanners; (ii) F'P (False Positive) which repre-
sents an error of the detection; that is, the number of honest source IP addresses
considered as scanners; (iii) TN (True Negative) which represents the number of
honest hosts that are not detected as scanners; (iv) F'N (False Negative) which
represents a number of hosts that are real scanners that the system does not
detect. With these values we computed the Detection Rate DR and the False
Positive Rate FPR as follows: DR = TPZQ%’ and FFPR = FPIL%'

In all traces, with the exception of trace 4, we observed that none of the two
algorithms introduced errors in the detection of port scanners; that is, in those
cases the FPR was always 0% in our tests. In trace 4 of size 156MB, R-SYN
exhibited a FPR equal to 3.4% against a FPR equal to 0% of Line Fitting; that
is, R-SYN introduces 1 False Positive scanner.

Figure 3 shows the obtained results for the Detection Rate (DR). In this
Figure, it emerges that the collaboration can be beneficial for sharpening the
detection of port scanners. In both algorithms, augmenting the number of par-
ticipants in the collaborative processing system (i.e., augmenting the volume of
data to be correlated) leads to an increase of the detection rate as computed
above. However, the behavior of the two algorithms is different: Line Fitting

10 LNCS: L. Aniello, G. A. Di Luna, G. Lodi, R. Baldoni

Line Fitting vs R-SYN: (Tracel)

100% -

80%
60% |
40%
20% —
0% - o
2 ! —r

! 3
4
5
6 7

Number of organizations

8 9

HR-SYN DR Line Fitting DR

100% -
80% 1
60% 1
40%
20%

0% -

Line Fitting vs R-SYN: (Trace2)

1

q’q"-q"—'lll "y
23, ‘75 V‘ 76 T,
7

Number of organizations

HR-SYN DR Line Fitting DR

8 9

Line Fitting vs R-SYN: (Trace 3)

Line Fitting vs R-SYN: (Trace4)

100%
80%
60%

40%

20%
0% +

100% -
80% |

60% |
40%
20% -
0% = g
23, s 6"" ——
7

12 5 ' B T - 1
5 6 ———y
7 8
Number of organizations 9 Number of organizations 8 9

HR-SYN DR Line Fitting DR HR-SYN DR Line Fitting DR

Fig. 3. Port scan DR vs number of organizations in the collaborative processing system
for R-SYN and Line Fitting algorithms. Each organization contributes to the processing
with a number of network packets that is on average 1/9 of the size of the trace.

(light grey bars in Figure 3) converges more quickly to the highest detection
rate compared to R-SYN (black bars in Figure 3); that is, in Line Fitting a
smaller number of participants to the collaborative processing system and then
a lower volume of data are required in order to achieve 100% of detection rate.
This is principally due to a higher number of processing steps R-SYN executes
and to R-SYN’s subscribers that have to accumulate packets in order to carry
out their TRW computation. In addition, R-SYN examines both good and ma-
licious behaviors assigning a positive score to good ones. This implies that in
some traces R-SYN has to wait more packets in order to effectively mark IP
addresses as scanners.

Detection Latency In the port scan attack scenario, the detection latency
should be computed as the time elapsed between the first TCP packet of the
port scan activity is sent by a certain IP address and the collaborative processing
system marks that IP address as scanner (i.e., when it includes the address in
the blacklist). Note that we cannot know precisely which TCP packet should
be considered the first of a port scan, since that depends on the true aims of
who sends such packet. As already said, in our traces the first TCP packet of a
scanner corresponds to the first TCP packet of a real port scan activity so that
we can compute the detection latency for a certain IP address x as the time
elapsed between the sending of the first TCP packet by = and the detection of
Z as scanner.

In doing so, we need the timestamps of the packets. For such a purpose
we developed a simple Java application named TimerDumping which (i) takes a

LNCS: Collaborative Event Processing for Critical Infrastructures Protection 11

trace as input; (ii) sends the packets contained in the trace (according to the
original packet rate) to the Gateway using a simple pipe; and (iii) maintains the
timestamp of the first packet sent by each source IP address in the trace.

We deployed an instance of TimerDumping on each VM hosting the Gateway
component. Each TimerDumping produces a list of pairs < ip_address,ts >,
where ts is the timestamp of the first TCP packet sent by ip_address. The
timestamps are then used as beginning events for detection latency computation.
Since there are more TimerDumping instances, pairs with the same IP address but
different timestamps may exist. In those cases, we consider the oldest timestamp.
Timestamps are generated using local clocks of the hosts of the cluster. In order
to ensure an acceptable degree of synchronization, we configured all the clustered
machines to use the same NTP server which has been installed in a host located
at the same LAN. The offset between local clocks is in the order of 10 milliseconds
which is accurate for our tests as latency measures are in the order of seconds.

For detection latency tests we used the trace of 287TMB and changed the
physical link bandwidths to the Esper in order to show in which setting one
of the two algorithms can be preferable. Link bandwidth is controlled by the
WANem emulator. We varied the physical link bandwidth using the WANem
emulator with values ranging from 1Mbit/s up to 6.5Mbit/s. Figure 4 shows the
average detection latency in seconds we have obtained in different runs of the
two algorithms.

R-SYN: (Trace 287MB) Line Fitting: (Trace 287MB)
350 160
=®-3 participants =®-3 participants
300 =46 participants 140 ——6 participants
* ==9 participants — 120 ="=9 participants
— 250 o
2 2 100
2 -~
< 200 >
g g w0
c
g 150 % 60
©
= 100 = a0
s0 20
——
—_— 0 -
0 -
1 2 3 4 5 65
1 2 3 4 5 65
Link Bandwidth (Mbit/sec) Link bandwidth (Mbit/sec)

Fig.4. R-SYN and Line Fitting detection latencies in the presence of 3, 6, and 9
participants in the collaborative processing system.

As illustrated in this Figure, for reasonable link bandwidths of a large scale
deployment scenario (between 3Mbit/s up to 6.5Mbit/s) both algorithms show
a similar behavior with acceptable detection latencies for the inter-domain port
scan application (latencies vary between 0.6 to 35 seconds). However, Line Fit-
ting outperforms R-SYN in the presence of relatively low link bandwidths (look-
ing at the left hand side of the curves, Line Fitting exhibits a detection latency
of approximately 150 seconds when 9 participants are available against 250 sec-
onds of R-SYN). In addition, in case of R-SYN, only, results show that when
the collaborative system is formed by a higher number of participants (e.g., 9),
detection latencies are better than those obtained with smaller collaborative

12 LNCS: L. Aniello, G. A. Di Luna, G. Lodi, R. Baldoni

systems. This is principally caused by the larger amount of data available when
the number of participants increases: more data allow us to detect the scanners
more quickly. In contrast, when 3 or 6 participants are available we need to wait
more in order to achieve the final result of the computation. This behavior is
not shown in case of Line Fitting for which an increased amount of information
is not sufficient to overcome the drawback related to the congestion on low link
bandwidths (e.g., 1Mbit/sec).

6 Related Work

Many free IDSs exist that are deployed in enterprise settings. Snort [8] is an open
source Network Intrusion Prevention/Detection System that performs real-time
traffic analysis and packet logging on IP networks to detect probes or attacks.
Bro [6] is an open-source Network IDS that passively monitors network traffic
and searches suspicious activity. Its analysis includes detection of specific attacks
using both defined signatures and events patterns, and unusual activities. In con-
trast to standalone IDSs, collaborative IDSs [4],[20],[25] significantly reduce time
and improve efficiency of misuse detections by sharing information on attacks
among the IDSs distributed at multiple organizations [26]. The main underlying
principle of these approaches, namely the large-scale information sharing and
collaborative detection, is similar to the ours. However, these systems are highly
optimized for a specific type of attack whereas our Esper based architecture is a
general-purpose system which can be effective against diverse attack scenarios.

CEP and Stream Processing (SP) systems play an important role in the
IT technologies [9],[12],[23]. However, all these systems exhibit high cost-of-
ownership. To this end, our solution employs open source CEP systems (e.g.,
JBoss Drools [7], Esper [5]).

The issue of using massive complex event processing among heterogeneous
organizations forming a critical infrastructure for detecting network anomalies
and failures has been suggested and evaluated in [18] and raised in [17]. Also
the usefulness of collaboration and sharing information for telco operators with
respect to discovering specific network attacks has been pointed out in [24].
In these works, it has been clearly highlighted that the main limitation of the
collaboration approach concerns the confidentiality requirements. These require-
ments may be specified by the organizations that share data and can make the
collaboration itself hardly possible as the organizations are typically not willing
to disclose any private and sensitive information. This is also a critical issue in
our collaborative system; however, in the context of the CoMiFIn project and
of companion papers, we have deeply investigated how this architecture can be
adapted to handle such issues [22],[21].

7 Concluding Remarks

It is well known that responsible information sharing among organizations that
belong to the same economic infrastructure is a key factor for increasing their

LNCS: Collaborative Event Processing for Critical Infrastructures Protection 13

productivity (with consequent benefits for customers) such as improving compet-
itiveness and cost reduction [16]. On the cyber security side, information sharing
can facilitate the detection and prevention of cyber attacks.

The paper presented a collaborative processing system based on the Esper
CEP engine. The system protects organizations willing to share specific network
data showing the evidence of distributed cyber attacks. The system has been
instantiated for the detection of inter-domain port scanning. Two port scan de-
tection algorithms have been designed and implemented, namely Line Fitting
and R-SYN algorithms. Results show the effectiveness of the collaboration: aug-
menting the number of participating organizations, the detection accuracy in-
creases. As for detection latencies, the collaboration has a reasonable impact: in
the presence of link bandwidths in the range of [3Mbit/s, 6.5Mbit/s] the two al-
gorithms exhibit acceptable detection latencies for our application. However, we
note that Line Fitting outperforms R-SYN in terms of both detection accuracy
and latency.

Future works include instrumenting the collaborative processing system to
detect botnet-driven HTTP session hijacking attacks [15]. We are also investi-
gating how to distribute the processing over a network of Esper sites in order
to scale in terms of participating organizations. As shown in the performance
results, the link bandwidth of Esper becomes a bottleneck when the number of
organizations sending data increases. Thus, we wish to create a network of Esper
sites able to distribute the load of the organizations’ data and execute a first
line of data aggregation and correlation.

References

1. 2000 DARPA Intrusion Detection Scenario Specific Data Sets. http://www.1l.
mit.edu/mission/communications/ist/corpora/ideval/data/2000data.html.

2. ITOC Research: CDX Datasets. http://www.itoc.usma.edu/research/dataset/
index.html.

3. LBNL/ICSI Enterprise = Tracing Project. http://www.icir.org/
enterprise-tracing/.

4. DShield: Cooperative Network Security Community - Internet Security. http:
//www.dshield.org/indexd.html/, 2009.

5. Where Complex Event Processing meets Open Source: Esper and NEsper. http:
//esper.codehaus.org/, 2009.

6. Bro: an open source Unix based Network intrusion detection system (NIDS). http:
//www.bro-ids.org/, 2010.

7. JBoss Drools Fusion. http://www. jboss.org/drools/drools-fusion.html, 2010.

8. Snort: an open source network intrusion prevention and detection system
(IDS/IPS). http://www.snort.org/, 2010.

9. System S. http://domino.research.ibm.com/comm/research_projects.nsf/
pages/esps.index.html, 2010.

10. Communication Middleware for Monitoring Financial Critical Infrastructures.
http://wuw.comifin.eu, 2011.
11. WANem The Wide Area Network emulator. http://wanem.sourceforge.net/,

2011.

14

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

LNCS: L. Aniello, G. A. Di Luna, G. Lodi, R. Baldoni

Mert Akdere, Ugur Cetintemel, and Nesime Tatbul. Plan-based complex event
detection across distributed sources. PVLDB, 1(1):66-77, 2008.

L. Aniello, G.. Lodi, and R. Baldoni. Inter-Domain Stealthy Port Scan Detec-
tion through Complex Event Processing. In Proc. of 13th European Workshop on
Dependable Computing, Pisa, 11-12 May 2011.

S. Baker and S. Waterman. In the Crossfire: Critical Infrastructure in the Age of
Cyber War, 2010.

Andreas Bogk. Advisory: Weak PNG in PHP session ID generation leads to session
hijacking, March 2010.

F. Cate, M. Staten, and G. Ivanov. The value of Information Sharing, In Protecting
Privacy in the New Millennium Series, Council of Better Business Bureau, 2000.
Carl H. Hauser, David E. Bakken, Ioanna Dionysiou, K. Harald Gjermundrgd,
Venkata S. Irava, Joel Helkey, and Anjan Bose. Security, trust, and qos in next-
generation control and communication for large power systems. IJCIS, 4(1/2):3-16,
2008.

Yiyi Huang, Nick Feamster, Anukool Lakhina, and Jim (Jun) Xu. Diagnosing
network disruptions with network-wide analysis. In Proc. of the 2007 ACM SIG-
METRICS international conference on Measurement and modeling of computer
systems, pages 61-72, New York, NY, USA, 2007. ACM.

J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast portscan detection
using sequential hypothesis testing. In Proc. of the IEEE Symposium on Security
and Privacy, 2004.

M. E. Locasto, J. J. Parekh, A. D. Keromytis, and S. J. Stolfo. Towards collab-
orative security and p2p intrusion detection. In IEEE Workshop on Information
Assurance and Security, United States Military Academy, West Point, NY, 15-17
June 2005.

G. Lodi, R. Baldoni, G. Chockler, E. Dekel, B. P. Mulcahy, and G. Martufi. A
contract-based event driven model for collaborative security in financial informa-
tion systems. In Proc. of the 12th International Conference on Enterprise Infor-
mation Systems, Funchal, Madeira - Portugal, 2010.

G. Lodi, R. Baldoni, H. Elshaafi, B. Mulcahy, G. Csertain, and L. Gonczy. Trust
Management in Monitoring Financial Critical Information Infrastructures. In Proc.
of the 2nd International Conference on Mobile Lightweight Wireless Systems -
Critical Information Infrastructure Protection Track, Barcelona, May 2010.

C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici. A Scalable Application Place-
ment Controller for Enterprise Data Centers. In 16th international Conference on
World Wide Web, 2007.

Y. Xie, V. Sekar, M. K. Reiter, and H. Zhang. Forensic Analysis for Epidemic
Attacks in Federated Networks. In ICNP, pages 43-53, 2006.

C. V. Zhou, S. Karunasekera, and C. Leckie. A peer-to-peer collaborative intrusion
detection system. In 18th IEEE International Conference on Networks, Kuala
Lumpur, Malaysia, November 2005.

C. V. Zhou, C. Leckie, and S. Karunasekera. A survey of coordinated attacks
and collaborative intrusion detection. Computer and Security 29 (2010), pages
124-140, 2009.

C.V Zhou, S. Karunasekera, and C. Leckie. Evaluation of a Decentralized Archi-
tecture for Large Scale Collaborative Intrusion Detection. In Proc. of the 10th
IFIP/IEEE International Symposium on Integrated Network Management, 2007.

