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Sommario

Predire quali relazioni è probabile che si verifichino tra oggetti del

mondo reale è un compito fondamentale per diverse applicazioni. Ad

esempio, i sistemi di raccomandazione automatici mirano a predire

l’esistenza di relazioni sconosciute tra utenti e oggetti, e sfruttano

tali informazioni per fornire suggerimenti personalizzati di oggetti

potenzialmente d’interesse per uno specifico utente. Le tecniche di

completamento di matrice mirano a risolvere questo compito, in-

dentificando e sfruttando i fattori latenti che hanno innescato la

creazione di relazioni note, al fine di dedurre quelle mancanti.

Questo problema, tuttavia, è reso difficile dalle dimensioni dei data-

set odierni. Un modo per gestire tale mole di dati, in un ragionevole

lasso di tempo, è quello di distribuire la procedura di completamento

della matrice su un cluster di macchine. Tuttavia, gli approcci cor-

renti mancano di efficienza e scalabilità, poiché, per esempio, non

minimizzano la comunicazione o garantiscono un carico di lavoro

equilibrato nel cluster.
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Un ulteriore aspetto delle tecniche di completamento di matrice pre-

so in esame è come migliorare la loro capacità predittiva. Questo può

essere fatto, per esempio, considerando il contesto in cui le relazioni

vengono catturate. Tuttavia, incorporare informazioni contestuali

generiche all’interno di un algoritmo di completamento matrice è un

compito difficile.

Nella prima parte di questa tesi vengono studiate soluzioni distri-

buite per il completamento della matrice e affrontate le questioni di

cui sopra esaminando tecniche di suddivisione dell’input, basate su

algoritmi di partizionamento di grafi. Nella seconda parte della tesi

ci si concentra su tecniche di completamento di matrice consapevo-

li del contesto, fornendo soluzioni che possono essere applicate sia

(i) quando le voci note nella matrice assumono più valori e sia (ii)

quando assumono tutte lo stesso valore.



Abstract

Predicting which relationships are likely to occur between real-world

objects is a key task for several applications. For instance, recom-

mender systems aim at predicting the existence of unknown rela-

tionships between users and items, and exploit this information to

provide personalized suggestions for items to be of use to a specific

user. Matrix completion techniques aim at solving this task, identi-

fying and leveraging the latent factors that triggered the the creation

of known relationships to infer missing ones.

This problem, however, is made challenging by the size of today’s

datasets. One way to handle such large-scale data, in a reasonable

amount of time, is to distribute the matrix completion procedure

over a cluster of commodity machines. However, current approaches

lack of efficiency and scalability, since, for instance, they do not

minimize the communication or ensure a balance workload in the

cluster.



xii Abstract

A further aspect of matrix completion techniques we investigate is

how to improve their prediction performance. This can be done, for

instance, considering the context in which relationships have been

captured. However, incorporating generic contextual information

within a matrix completion algorithm is a challenging task.

In the first part of this thesis, we study distributed matrix com-

pletion solutions, and address the above issues by examining input

slicing techniques based on graph partitioning algorithms. In the

second part of the thesis, we focus on context-aware matrix comple-

tion techniques, providing solutions that can work both (i) when the

revealed entries in the matrix have multiple values and (ii) all the

same value.



CHAPTER 1

Introduction

The Web, they say, is leaving the era of search and

entering one of discovery. What’s the difference? Search

is what you do when you’re looking for something.

Discovery is when something wonderful that you didn’t

know existed, or didn’t know how to ask for, finds you.

Jeffrey M. O’Brien

Understanding the underlying causes that lead to the creation of

relationships among objects is a crucial task to acquire a deeper

knowledge of the world, and predict its evolution. While some rela-

tionships are relatively easy to capture and model, others, although

present in the world, are by their nature difficult to represent, es-

pecially when their interpretation is hidden inside large amounts of

data. The study of such relationships is essential in several scientific
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fields, ranging from biology to sociology, from physics to engineer-

ing, and its exploitation has led to several important advances in

recent years. For instance, recent techniques for mineral exploration

avoid deep holes to look for regions containing desirable materials,

but just analyze samples near the surface [25]. By understanding the

relationships among deeply buried mineral deposit and near-surface

geochemistry it is possible to predict the location of the former with-

out drilling, therefore minimizing the environmental impact. Simi-

larly, the relationships between users in online social networks, which

drastically changed the way people interact and communicate, are a

rich source of information for computer and social sciences, but also

for commercial purposes. For instance, by understanding the fac-

tors that led to two users to be friends, it is possible to predict and

suggest other users with whom they might be interested to connect

[77].

The current data production rate, however, poses additional chal-

lenges to the task of understanding and modeling such relationships.

The last few years, in particular, have witnessed a huge growth in

information production. Some corporations like IBM estimate that

“2.5 quintillion bytes of data are created every day”, amounting

to 90% of the data in the world today having been created in the

last two years [37]. For this reason, legacy approaches, based, for

instance, on manual inspection, are being rapidly replaced by auto-

matic data mining methods based on machine learning techniques,

able to cope with data at such massive scale and to produce far

better results. The term “data mining”, indeed, derives from the

metaphor of data as something that is very large, contains far too
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much information to be used, but can be mined to extract nuggets

of valuable knowledge.

One successful approach to represent relationships, whose interpre-

tation is hidden inside large scale dataset, is to model the objects as

points in a d dimensional space. The dimensions of such space rep-

resent latent factors that originate the relationships. Each object is

therefore modeled as a vector of real values, one for each considered

latent factor. For instance, consider a person that likes the band

Sex Pistols. A possible explanation for this “like” relationship is

that the musical tastes of the person are geared toward punk music

(factor one) and that he has a rebel character (factor two). Such

explanation can be represented in a two-dimensional space, where

dimensions correspond to the factor punk music and the factor rebel

character. A two-dimensional vector is associated with both the user

and the band, with and high value for the two factors, i.e., they lie

close in the latent factor space. These factors are called “latent” be-

cause they are not directly observable in the data. Moreover, unlike

this example, in real applications (1) it is often impossible to provide

a clear interpretation for them and (2) the number of considered la-

tent factors is much higher. By comparing the latent representations

of different objects it is possible to derive the existence of unknown

relationships among them. For instance, the system might predict

that the above person also likes the band Ramones, since also this

object has a vector representation with an high value for the two

considered latent factors.

In this thesis we restrict our focus to binary relationships, that can

be represented in the form of a matrix, where rows and columns rep-
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resent objects, and entries report the interactions among them. For

example, a matrix might represent friendship relationships between

users in an online social network. In this case, rows and columns

represent users and an entry equal to one indicates that the row

user and the column user are friends. In many practical problems of

interest, only a (usually really small) portion of entries in the data

matrix are known. By leveraging the latent vector representation

of objects is possible to complete the missing part of the matrix,

adding new entries as coherent as possible with the observed data.

For the sake of clarity, consider the following two scenarios, where

such kind of matrix completion techniques have been successfully

applied, as prototypical applications.

Collaborative Filtering in Recommender Systems. A recom-

mender system collects the preferences that a set of users express on

a set of items and, by exploiting this information, tries to provide

personalized recommendations that fit the users’ personal tastes.

Several e-commerce leaders, like Amazon.com, Pandora and Net-

flix, have made recommender systems a crucial cornerstone of their

data management infrastructure to boost their business offerings. In

the last two decades, a consistent research effort has been devoted to

the task of developing algorithms able to generate recommendations.

The resulting research progress has established collaborative filter-

ing (CF) techniques as the dominant framework for recommender

systems [1, 121, 39, 103, 63]. Such methods look at the ratings of

like-minded users to provide recommendations, with the idea that

users who have expressed similar interests in the past will share

common interests in the future. A large bunch of machine learn-
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ing techniques have been exploited for collaborative filtering (see

section 2.1.1). Among this multitude of algorithms, matrix comple-

tion techniques based on latent factor models have emerged as the

best approach to collaborative filtering, due to their advantages with

respect to both scalability and accuracy [123, 66, 73, 91]. The as-

sumption behind such solutions is that only a few factors contribute

to an individual’s tastes or preferences. The data matrix in this

case is composed with users as rows, item as columns and ratings

as entries. By completing this matrix is possible to infer users’ pref-

erences for unrated items, and exploit these predictions to provide

personalized recommendations.

Open Relation Extraction in Natural Language Processing.

Relation extraction is concerned with predicting the existence of

unknown relations (e.g., “was born in”) among real word entities

(e.g., persons, locations, organizations). These systems take in input

a set of real word facts, expressed as relation-subject-object triples,

and correlate them to estimate the likelihood of unobserved facts.

For example, a relation extraction system may be fed with facts

such as “is the singer of”(“Thom Yorke”, “Radiohead”), “is band

member of”(“Ringo Starr”, “The Beatles”), etc. Several machine

learning methods have been leveraged for relation extraction (see

section 4.2.1); they can be broadly classified in closed and open

approaches. Closed approaches [80, 86, 22] aim at predicting new

facts for a predefined set of relations, usually taken from an existing

knowledge base. Open relation extraction techniques [104, 30, 90],

instead, aim at predicting new facts for a potentially unbounded

set of relations, which come from various sources, such as natural
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language text and knowledge bases. One of the most successful

techniques for open relation extraction is based on matrix completion

[104, 90]. The corresponding data matrix is usually represented with

relations as columns and subject-object pairs as rows; an entry equal

to one means that a fact has been observed in input referring to the

subject-object pair (in the row) and the relation (in the column).

By completing the matrix it is possible to estimate the likelihood of

each unobserved fact, associated with a missing entry in the data

matrix, and to exploit this information to predict new facts. In the

above example, for instance, the system might predict the fact “is

band member of”(“Thom Yorke”, “Radiohead”).

The above application scenarios have some peculiar characteristics

and difficulties; for instance, one fundamental difference between the

two is that in recommender systems users can usually provide both

positive and negative feedback (e.g., on a zero-to-five scale) while a

fact in natural language is either observed or not, i.e., there are only

positive observations in input and no explicit negative evidence. The

data matrix reflects these two scenarios, in that revealed entries have

multiple values in the former case, all the same value in the latter

case. This leads to two different ways to learn latent factor models

able to complete the matrix.

One common characteristics of the above scenarios, and of general

instances of the matrix completion problem, is that real applica-

tions may involve millions of objects and billions of entries in the

matrix; for instance, Amazon.com offers thousands of products to

more than 200M active customers, and, only in 2014, the number

of purchases was estimated around 2B [120]. The amount of data
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available for such kind of systems is indeed a key factor for their

effectiveness [49]. In order to cope with datasets at such massive

scales, in a reasonable amount of time, parallel and distributed ap-

proaches are essential. Here we consider a general shared-nothing

distributed architecture which allows asynchronous communication

between computing nodes. The main challenges in this environment

are concerned with the partitioning of the data matrix among the

computing nodes; the goal is to distribute the data so that (1) each

computing nodes operates on subsets of the data with minimum

overlap with each other, in order to minimize the communication

and (2) the workload is fairly balanced among nodes to maximize

the efficiency. However, current solutions only partially solve the

above challenges, in that they use simple or general purpose parti-

tioning algorithms. For example, these techniques do not take into

consideration common characteristics of the input data that can help

in optimizing the data placement over the two aforementioned lines,

as, for instance, the relationships power-law distribution, often vis-

ible in real data, i.e., most objects have relatively few relationships

(e.g., niche movies rated by few) while a few have many (e.g., pop-

ular movies rated by many).

The overall performance of matrix completion solutions can be boosted

not only feeding the system with more data [49], but also integrat-

ing contextual information in the model [90]. To have some insights

on the economic value that a performance improvement in such sys-

tems can generate, consider that Netflix awarded a 10% boost in

prediction accuracy for its recommendation system with $1M via

the widely-publicized Netflix prize [12]. In many application do-
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mains, a context-agnostic approach to matrix completion may lose

predictive power because potentially useful information from mul-

tiple contexts is aggregated. Even human understanding often re-

quires the use of context. For example, the natural language relation

“plays with”(x,y) is unspecific, possible meanings include play sports

or play in a band. However, the comprehension can be facilitated

if contextual information is available, for instance the topic of the

document where the relation is extracted (e.g., sport, music, etc.).

The integration of generic contextual information within a matrix

completion model is a relatively new line of research [2, 96, 97, 114];

some solutions have been proposed, mainly focused on collabora-

tive filtering in recommender systems (see section 4.1). An open

challenge in this domain is how to incorporate such contextual data

when the system is fed only with positive feedback, that is when the

revealed entries in the matrix have all the same value.

1.1 Contributions

This thesis deals with the aforementioned challenges, and provides

scalable solutions for matrix completion, as well as efficient ways

to integrate contextual information in the predictive model, even in

those cases when the revealed entries in the matrix have all the same

value (i.e., there is no negative evidence in input). Our contributions

can be summarized as follows.
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Distributed Matrix Completion.

We investigated distributed matrix completion solutions, able to per-

form the training procedure over a shared noting cluster of com-

puting nodes, using as application scenario collaborative filtering

in recommender systems. We review existing centralized, parallel

(i.e., working on shared memory) and distributed approaches based

on stochastic gradient descent, a popular technique used to learn

the latent factor representations for the objects. We focus on asyn-

chronous version of the stochastic gradient descend algorithm for

large-scale matrix completion problems, and we propose a novel vari-

ant, namely GASGD, that leverages data partitioning schemes based

on graph partitioning techniques and exploits specific characteristics

of the input data to tackle the above challenges, that is to reduce

the communication among computing nodes while maintaining the

load balanced in the system. This approach looks at the input data

as a graph where each vertex represents an object (i.e., either a row

or a column) and each edge represents a relationship between the

two vertices (i.e, an entry in the data matrix).

To partition the input data, we considered several state-of-the-art

graph partitioning algorithms that consume the input data in a

streaming fashion, thus imposing a negligible overhead to the over-

all execution time. However, existing graph partitioning solutions

only partially exploit the skewed power-law degree distribution of

real world dataset. To fill this gap, we propose high degree (are)

replicated first (HDRF ), a novel stream-based graph partitioning

algorithm based on a greedy vertex-cut approach that effectively ex-

ploits skewed degree distributions by explicitly taking into account



10 1. Introduction

vertex degree in the placement decision. HDRF is characterized by

the following desirable properties: (1) it outputs a partition with

the smallest average replication factor among all competing solu-

tions and (2) it provides close to optimal load balancing, even in

those cases where classic greedy approaches typically fail. On the

one hand, lowering the average replication factor is important to

reduce network bandwidth cost, memory usage and replica synchro-

nization overhead at computation time. A fair distribution of load

in the partition, on the other hand, allows a more efficient usage

of available computing resources. Both aspects, when put together,

can positively impact the time needed to execute matrix completion

and, in general, graph computation algorithms. Our experimental

evaluation, conducted on popular real-word datasets, confirm that

HDRF combines both these aspects; matrix completion algorithms

run up to two times faster using HDRF as input partitioner with

respect to state-of-the-art partitioning algorithms. We also report a

theoretical analysis of the HDRF algorithm, and provide an upper

bound for the replication factor.

Context-Aware Matrix Completion. We study context aware

matrix completion solutions, able to incorporate generic contextual

information within the predictive model. We review existing ap-

proaches, mainly proposed for collaborative filtering, that work with

a matrix in which revealed entries have multiple values, that is when

the system is fed with both positive and negative evidence. We

proposed a novel algorithm to incorporate contextual data even in

those cases in which the revealed entries in the matrix have all the

same value, using as application scenario relation extraction, a pop-
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ular natural language processing task. In particular, we propose

CORE, a novel matrix completion model that leverages contextual

information for open relation extraction. Our model integrates facts

from various sources, such as natural language text and knowledge

bases, as well as the context in which these facts have been observed.

CORE employs a novel matrix completion model that extends ex-

isting context-aware solutions so as to work in those situations in

which the system receive in input only positive feedback (i.e., ob-

served facts). Our model is extensible, i.e., additional contextual

information can be integrated when available. We conducted an ex-

perimental study on a real-world dataset; even with limited amount

of contextual information used, our CORE model provided higher

prediction performance than previous solutions.
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CHAPTER 2

Matrix Completion

Essentially, all models are wrong, but some are useful.

George E. P. Box

Matrix completion is at its heart a technique to reconstruct a matrix

for which only a small portion of entries are available. This task is re-

lated with general matrix factorization models, such as matrix recon-

struction or non-negative matrix factorization [119]. In those cases,

however, all entries in the matrix are available and need to be taken

into consideration, and computing a low-rank model is relatively

easy (e.g., through singular value decomposition [13, 108]). Matrix

completion is, instead, impossible without additional assumptions,

and, even with those, the problem is not only NP-hard, but all known

algorithms require time doubly exponential in the dimension of the

matrix [24, 21].
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Approximated matrix completion methods have been proposed to

reduce the computational cost of exact solutions, and, therefore, to

be of practical interest. Such techniques are currently experiencing

a growing interest in several fields of the data mining and machine

learning community, driven by the enormous success they achieve in

recommender systems, an application scenario that we will use as

baseline for exposition.

2.1 Recommender Systems

For users today’s world wide web it’s the tyranny of choice. Consider

that people on average read around ten megabytes (MB) worth of

material a day; hear 400MB a day, and see one MB of information

every second [38]. However, every 60 seconds 1500 blog entries are

created, 98000 tweets are shared, and 600+ videos are uploaded

to YouTube [84]. Studies have repeatedly shown that when people

are confronted with too many choices their ability to make rational

decisions declines [110]. Recommender systems aims at reducing

such choices and make the life of the users easier.

Many of todays internet businesses strongly base their success in

the ability to provide personalized user experiences. This trend,

pioneered by e-commerce companies like Amazon [75], has spread

to many different sectors. As of today, personalized user recom-

mendations are commonly offered by internet radio services (e.g.,

Pandora Internet Radio), social networks (e.g., Facebook), media

sharing platforms (e.g., YouTube) and movie rental services (e.g.,

Netflix). To estimate the economic value of such recommendations,
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consider that 2/3 of the movies watched on Netflix are recommended,

recommendations generate 38% more clickthrough in Google news

and 35% sales in Amazon came from recommendations [6]. In gen-

eral, personalization techniques are considered the lifeblood of the

social web [106].

A widely adopted approach to build recommendation engines is rep-

resented by collaborative filtering algorithms.

2.1.1 Collaborative Filtering

Collaborative filtering (CF) is a thriving subfield of machine learn-

ing, and several surveys expose the achievements in this fields [1,

121, 39, 103, 63]. The essence of CF lies in analyzing the known

preferences of a group of users to make predictions of the unknown

preferences for other users.

The first work on the field of CF was the Tapestry system [46], de-

veloped at Xerox PARC, that used a manual collaborative filtering

system to filter mails, using textual queries, based on the opinion

of other users, expressed with simple annotations (such as “use-

ful survey” or “excellent”). Shortly after, the GroupLens system

[102, 62] was developed, a pioneer application that gave users the

opportunity to rate articles on a 1 to 5 scale and receive automatic

suggestions. Quickly recommender systems and collaborative filter-

ing became a hot topic in several research communities, ranging

from machine learning to human–computer interaction, and a large

number of algorithms started to be proposed. Moreover, in the same

period, commercial deployments of recommender systems, pioneered
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Figure 2.1: Taxonomy of collaborative filtering algorithms.

by companies such as Amazon.com, Yahoo! and Netflix, began to

spread all over the world wide web. The effort of the community

in this field experienced a significant boost in 2006, when Netflix

launched a competition to improve their recommendation engine:

the Netflix prize [12]. The objective of this open competition was to

build a recommender algorithm that could improve the internal Net-

flix solution on a fixed dataset by 10%. The reward for the winner

was US$1,000,000, an amount that demonstrate the importance of

accurate recommendations for vendors. The Netflix prize triggered

a feverish activity, both in academia and among hobbyists, that led

to several advances and novel solutions.

It is possible to divide existing CF techniques in two main groups:

memory-based and model-based [19, 1, 39] (see figure 2.1).

Memory-based algorithms operate on the entire database of ratings

to compute similarities between users or items. Such similarities con-

stitute the “memory” of the collaborative filtering system, and are

successively exploited to produce recommendations. Similar users

or items are identified using a similarity metric, such as the Pearson
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correlation coefficient [102] and the cosine similarity [10, 118], that

analyzes and compares the rating vectors of either users or items.

The basic idea is to generate predictions by looking at the ratings of

the most similar users or items; for this reason such techniques are

called neighborhood models.

Neighborhood models are categorized as user based or item based.

User based methods compute a similarity score between each pair of

users, and then estimate unknown ratings based on recorded ratings

of similar users [51, 133, 113]. Item-oriented methods, instead, use

the known ratings to compute similarities between items, and then

provide recommendations by looking at similar items to those that

an user has previously rated [109, 68, 33].

Memory-based methods are used in a lot of real-world systems be-

cause of their simple design and implementation. However, they

impose several scalability limitations, since the computation of simi-

larities between all pairs of users or items is expensive (i.e., quadratic

time complexity with respect to the number of users or items), that

makes their use impractical when dealing with large amounts of data.

Model-based approaches have been investigated to overcome the short-

comings of memory-based algorithms. They use the collection of

ratings to estimate or learn a model and then apply this model to

make rating predictions. A large amount of machine learning tech-

niques have been used to build such model. In this multitude of

algorithms, a noteworthy families of solutions are dimensionality re-

duction techniques.

The idea behind such solutions is to reduce the dimensionality of

the rating space, in order to discover underlying structures that can
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be leveraged to predict missing ratings. Traditional collaborative

filtering solutions, in fact, view the user-item ratings domain as a

vector space, where a vector with an entry for each user is associated

to each item, and vice-versa. These solutions aims at reducing the

dimensionality of such vectors, and therefore of the domain space, to

some fixed constant number d, so that both users and items can be

represented as a d-dimensional vector. The underlying assumption is

that the interaction between users and items (i.e., the ratings) can be

modeled using just d factors. Such factors can be modeled explicitly,

i.e., topics of interest, or can be considered latent in the ratings

data. Latent representation of users and items can be extracted

using singular value decomposition (SVD) [13, 108], a technique that

decompose the rating matrix in three constituent matrices of smaller

size, and exploit the factorization of them to predict missing ratings.

However, SVD-based models can be applied only when the input

matrix is complete. Since the rating matrix contains, by its nature,

a large portion of missing values, some heuristics must be applied

to pre-fill missing values; examples include, use the item’s average

rating or consider missing values as zeros.

Matrix completion techniques [64, 66, 123] avoid the necessity of

pre-filling missing entries by reasoning only on the observed ratings.

They can be seen as an estimate or an approximation of the SVD,

computed using application specific optimization criteria. Such so-

lutions are currently considered as the best single-model approach

to collaborative filtering, as demonstrated, for instance, by several

public competitions, such as the Netflix prize [12] and the KDD-Cup

2011 [35], and they will be extensively described in the rest of this
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thesis.

Another remarkable families of collaborative filtering solutions are

probabilistic methods, that use statistical probability theory rather

than linear algebra to predict missing ratings. Example of such

methods include probabilistic matrix factorization (PMF) [81, 71],

probabilistic latent semantic analysis/indexing (PLSA/I) [52, 56, 29]

and latent Dirichlet allocation [14]. Other machine learning tech-

niques for collaborative filtering include Markov decision processes

[111], Bayesian networks [19, 137], and neural networks [105]. The

main advantage of dimensionality reduction techniques over other

existing solution is the availability of efficient parallel and distributed

implementations, that make it possible to handle very large-scale in-

stances of the problem, in a reasonable amount of time.

2.2 The Matrix Completion Problem

We consider a system constituted by U = (u1, · · · , un) users and

X = (x1, · · · , xm) items. Items represent a general abstraction that

can be case by case instantiated as news, tweets, shopping items,

movies, songs, etc. Users can either explicitly express their opinion

by rating items with values from a predefined range (i.e., explicit

feedback) or just provide an implicit indication of their taste (i.e.,

implicit feedback), for instance by clicking on a website. Without

loss of generality, here we assume that ratings are represented with

real numbers. By collecting user ratings it is possible to build a n×m
rating matrix R that is usually a sparse matrix as each user rates

a small subset of the available items. Denote by O ⊆ {1, ..., n} ×
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Symbol Description

R Data matrix; rating matrix

n, m Number of rows and columns of R

U Users set; rows

X Items set; columns

T Training set; set of revealed entries in R

O Set of indices identifying revealed entries

P,Q Latent factor matrices

d Dimensionality of the completion; rank of the factorization

Table 2.1: Notation for matrix completion algorithms in recommender systems.

{1, ...,m} the set of indices identifying observed entries in R; (i, j) ∈
O implies that user ui rated (implicitly or explicitly) item xj with

vote rij. The training set is defined as T = {rij : (i, j) ∈ O}. The

goal of a matrix completion algorithm is to predict missing entries

r̂ij in R using ratings contained in the training set.

2.3 Latent Factor Models

Matrix completion approaches based on latent factors models rep-

resent the interactions between users and items using a fixed set of

latent factors. Each user and item is represented through a vector of

weights, one for each latent factor. In this way both users and items

are placed in a latent factor space. The positioning in this space is

driven by the preferences users expressed on items, in such a way

that users with similar tastes are close together, as well as similar

items. Moreover, users and items actually share the latent factor

space; closer is an item to an user higher the estimated likelihood

that such user actually likes the item.
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Figure 2.2: A simple example of factor space, with male versus female on the

x-axis and serious versus escapist on the y-axis, taken from [66].

Figure 2.2 reports a classic example of two dimensions latent factor

space, taken from [66], that shows where some well-knows movies

and fictitious users might be positioned, using as factors the orienta-

tion towards male or female (x-axis) and towards serious or escapist

(y-axis). For example, the model’s prediction of the likelihood that

user “Gus” likes movie “Dumb and Dumber” is very high, while is

very low for the same user and the movie “The Color Purple”. Note

that some users (e.g., “Gus”) and movies (e.g., “The Princess Di-

aries”) are strongly polarized by these two dimensions, while other

users (e.g., “Dave”) and movies (e.g., “Ocean’s”) are neutral with
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respect to them.

In real applications the number of latent factors is much higher (usu-

ally more than 100), and the dimension are often completely unin-

terpretable.

Denote by d� min(n,m) the number of such latent factors, i.e., the

dimensionality of the completion. Concretely, latent factors models

for matrix completion aim at finding an n× d row-factor matrix P ∗

(user vectors matrix ) and an d×m column-factor matrix Q∗ (item

vectors matrix ) such that R ≈ P ∗Q∗. Denote with pi, the i-th row

of P – the d-dimensional latent factor vector associated with user ui

– and qj, the j-th column of Q – the d-dimensional vector of item

xj.

The positioning of users and items in the latent factor space, as

well as the likelihood estimations (e.g., rating prediction), hence the

completion of the matrix, is performed computing the dot product

between user and item vectors. The latent factor vectors are learned

by minimizing (or maximizing) an application dependent objective

function.

2.4 Optimization Criteria

In this section two classical optimization criteria for matrix com-

pletion are presented that, in recommender systems, are usually as-

sociated with the presence of explicit feedback (e.g., a rating from

1 to 5) or implicit feedback (e.g., purchase history) in the system.

The main difference between these two scenarios is that in the former

the matrix completion algorithm receives both negative and positive

input, while in the latter only positive evidence exists.
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2.4.1 Regularized Squared Loss

The regularized square loss [66, 123, 125, 136] is typically used when

both positive and negative evidence is present in input, that is when

the revealed entries in the matrix have multiple values. Classic ex-

amples are systems in which users are given the opportunity to ex-

press ratings on a zero to five stars scale (e.g., Netflix, Amazon.com,

TripAdvisor, etc.).

The basic idea for the completion of the input matrix is that the

new values (added to fill missing entries) must be as much coherent

as possible with the existing data. If the portion of revealed en-

tries is sufficiently large and close to uniformly distributed, one way

to reconstruct the original matrix is adding entries in such a way

to minimize the rank of the final matrix, that is seeking the sim-

plest explanation that fits the observed data [21]. However, this ap-

proach is impractical since the corresponding optimization problem

is NP-hard, and the time complexity of existing rank minimization

algorithms is double exponential in the dimension of the matrix [21].

In practice, the most used optimization criterion is a relaxation of the

rank minimization problems, that aims at minimizing the regularized

square loss, defined as follows:

L(P,Q) =
∑

(i,j)∈O

(rij − piqj)2 + λ(||P ||2F + ||Q||2F ) (2.1)

where || · ||F is the Frobenius norm and λ ≥ 0 is a model specific

regularization parameter. The main advantage of this formulation

is that it leads to a significant reduction in computation time: there
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exist algorithms to minimize L(P,Q) that can efficiently handle very

large instances of the matrix completion problem (see below). On

the other hand, this optimization function is non-convex and thus it

potentially has local minima that are not globally optimal.

The loss function can be more sophisticated than Equation 2.1, in-

cluding user and item bias [123], time [65], implicit feedback [64],

attributes and contextual data [100].

Finally note that Equation 2.1 is in summation form as it is ex-

pressed as a sum of local losses [125] Lij for each element in R:

Lij(P,Q) = (rij − piqj)2 + λ

r∑
k=1

(P 2
ik +Q2

kj) (2.2)

2.4.2 Bayesian Personalized Ranking

In real-world applications most feedback are implicit rather than

explicit. Examples for such feedback include purchases in an online

shop, views in a video portal or clicks on a website. Implicit feedback

are much easier to collect, since users have not to express their taste

explicitly. When only positive observations are present in input, the

revealed entries in the matrix have all the same values. For ease

of exposition, denote such entries with 1s in the matrix R. The

previous optimization criterion is not effective when dealing with

this situation, since the system simply complete the matrix with all

1s (in this way the final matrix has a minimum rank that is equal to

one), and the resulting trained model is unable to predict anything

(i.e., it predicts that everything is true or liked).
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Actually, the underling matrix completion problem when dealing

with revealed entries that have multiple values (e.g., explicit feed-

back) or all the same value (e.g., implicit feedback) is quite similar,

the data is just different. In fact, even when the system detects

only positive feedback, the original matrix is supposed to contain a

mixture of both positive and negative data; however, the revealed

entries are not uniformly distributed but all positive.

One of the most successful approaches to cope with this situation is

based on the observation that the problem is actually related with

ranking more than prediction. For instance, in recommender system

the goal is to provide a personalized ranked list of items that the user

might like the most. The Bayesian personalized ranking (BPR) [99,

89] is a well-known optimization criterion for this task, that has been

successfully applied in several application scenarios, including tweet

recommendation [23], link prediction [77], open relation extraction

[104] and point of interest recommendation [67]. The BPR criterion

adopts a pairwise approach, in that it aims at predicting whether

item xj is more likely to be bought than xk from a specific user u

(i.e. the user-specific order of two items), rather than the probability

for pair (u, xj) or (u, xk). In particular, BPR assumes that user u

prefers all the items for which a positive feedback exists (e.g., all

the items that have been bought by user u) with respect to items

without a feedback (e.g., not bought items). To formalize, denote

with DT : U ×X ×X the training data, defined as:

DT := {(ui, xj, xk)|ui ∈ U ∧ xj, xk ∈ I, j 6= k ∧ rij = 1 ∧ rik =?}

The semantics of (ui, xj, xk) ∈ DS is that user ui is assumed to prefer

item xj over xk. In practice, the BPR criterion aims at maximizing
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the following objective function:

BPR-Opt(P,Q) =
∑

(ui,xj ,xk)∈DT

[
lnσ(piqj−piqk)

]
+λ(||P ||2F + ||Q||2F )

(2.3)

where σ(x) = 1
1+e−x denotes the logistic function and λ ≥ 0 is a

model specific regularization parameter.

A different application scenario for the BPR optimization criterion

will be presented in chapter 4.

2.5 Stochastic Gradient Descent

The most popular technique to minimize or maximize the above

objective functions is stochastic gradient descent (SGD). To be rig-

orous, this technique works in a “descendent” fashion when it is

used to minimize a target objective function, such as L(P,Q), while

it works in an “ascendent” fashion when used to maximize a target

objective function, such as BPR-Opt(P,Q). In this latter case, the

algorithm can be called stochastic gradient ascent.

It has been originally proposed by Simon Funk in a famous article

on its blog [44] during the Netflix prize, and it radically changed

the way in which the matrix completion problem is tackled. For

instance, SGD was the approach chosen by the top three solutions

of KDD-Cup 2011 [35]. SGD can be seen as a noisy version of

gradient descent (GD). Starting from some initial point, GD works

by iteratively updating current estimations of P and Q with values

proportional to the negative of the gradient of the objective function.
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For example, to minimize the regularized squared loss it iteratively

computes:

P ← P − η∂L(P,Q)

∂P

Q← Q− η∂L(P,Q)

∂Q

where η is the learning rate (a non-negative and finite parameter).

GD is slow in practice, since the complete gradient of the objec-

tive function is expensive to compute. SGD, instead, combines im-

plementation ease with a relatively fast running time. The term

stochastic means that P and Q are updated by a small step for

each given training point toward the average gradient descent. Intu-

itively, SGD performs many quick-and-dirty steps toward the min-

imum whereas GD perform a single expensive careful step. For ex-

ample, to minimize the regularized squared loss, for each observed

entry (i, j) ∈ O the model variables are updated proportionally to

the sub-gradient of the local loss (equation 2.2) over pi and qj, as

follows:

pi ← pi − η
∂Lij(P,Q)

∂pi
= pi + η(εij · qj − λpi) (2.4)

qj ← qj − η
∂Lij(P,Q)

∂qj
= qj + η(εij · pi − λqj) (2.5)

where εij = rij − piqj is the error between the real and predicted

ratings for the (i, j) entry, and η is again the learning rate. There-

fore, in each SGD step only the involved user and item vectors are

updated; all other rows and columns remain unaffected. The algo-

rithm proceeds performing several iterations through the available

ratings until a convergence criterion is met. Several studies [83, 18]
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have shown that shuffling the training data before each epoch, that

is a single iteration over the data, improve the convergence time for

the algorithm.

The same technique can be applied to maximize the BPR objective

function of equation 4.2. In this case the algorithm works by it-

eratively updating current estimations in the same direction of the

stochastic gradient, in an ascendent fashion. A complete example of

this will be exposed in chapter 4.

The SGD success stems also from the availability of efficient parallel

and distributed implementations that make it possible to efficiently

exploit modern multi-processor or cluster computing architectures

to handle large scale matrix completion problems. Such solutions

will be discussed in the next chapter.

2.6 Summary

The matrix completion problem arises in various applications in data

mining including collaborative filtering in recommender systems, re-

lational learning, and link prediction in social networks.

In this chapter, latent factor models for matrix completion have been

presented, using as example application scenario collaborative filter-

ing in recommender systems. Two standard optimization criteria

have been exposed, to deal with both the presence of explicit and

implicit feedback in the system, as well as a popular algorithm for

parameter estimation, namely stochastic gradient descent.



CHAPTER 3

Distributed Matrix Completion

There are two possible outcomes: if the result confirms

the hypothesis, then you’ve made a measurement. If the

result is contrary to the hypothesis, then you’ve made a

discovery.

Enrico Fermi

The SGD algorithm for matrix completion is, by its nature, inher-

ently sequential; however, sequential implementations are usually

considered poorly scalable as the time to convergence for large-scale

problems may quickly grow to significant amounts. Parallel ver-

sions of SGD have been designed to overcome this problem by shar-

ing the computation among multiple processing cores working on

shared memory. The main challenge for parallel SGD solutions is

that SGD updates might depend on each other. In particular, two

threads may select training points referring to the same user (i.e.,
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that lie in the same row) or to the same item (i.e., that lie in the

same column). This brings both threads to concurrently update the

same latent factor vector, associated with either the user or the item.

This means that both threads might overwrite the work of the other,

thus potentially affecting the final computation.

A natural approach to parallelize SGD across multiple threads is to

divide the training points evenly among available t threads, such

that each thread performs |T |/t steps per epoch. To manage con-

current updates of shared variables and prevent overwriting each

thread locks, before processing a training point (i, j) ∈ O, both row

pi and column qj. However, lock-based approaches are known to

adversely affect concurrency and, in the end, limit the scalability of

the algorithm. HogWild [87] proposed a lock-free version of PSGD,

where inconsistent updates are allowed. The idea in that, since the

number of threads is usually much smaller than the number of rows

or columns in the matrix, it is unlikely that two threads process the

same vector. Even if this happen, it has been shown that these rare

overwrites negligibly affect the final computation [87].

Other remarkable examples of shared memory SGD include Jellyfish

[94] and two fast cache conscious approaches, namely CSGD [73] and

FPSGD [136].

Beside these recent improvements, parallel SGD algorithms are hardly

applicable to large-scale datasets, since the time-to-convergence may

be too slow or, simply, the input data may not fit into the main

memory of a single computer. Storing training data on disk is in-

convenient because the two-dimensional nature of the rating matrix

R will force non-sequential I/O making disk-based SGD approaches
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unpractical and poorly performant, although technically feasible.

These problems recently motivated several research efforts toward

distributed versions of SGD.

3.1 Distributed Stochastic Gradient Descend

This kind of algorithms [45, 125, 31, 3, 73, 91] are designed to work

in a distributed shared-nothing environment, like, for instance, a

cluster of commodity machines. This design allows to handle large

scale instances of the matrix completion problem, which may exceed

the main memory capacity of a single computing node. The key

challenges faced by distributed SGD algorithms are: (1) minimize

the communication while (2) balancing the workload, so that com-

puting nodes are fed with roughly the same amount of data. An

ideal solution should partition the input data in independent parts

of equal size, such that each node operates on a disjoint part, no

concurrent updates occur and the workload is balanced. In general,

however, this is not achievable. To see this, depict the input data as

a graph, where users and items are vertices and training points (e.g.,

ratings) edges. The ideal solution is achievable only when this graph

is formed by several connected components (one for each computing

node) with roughly the same number of edges. But this is in general

not true as graphs representing real instances of the problem are

usually connected.

In the sequel two families of distributed approaches will be discussed:

stratified SGD [45, 125, 73] and asynchronous SGD [31, 3, 73, 91].
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3.1.1 Stratified SGD

Stratified SGD (SSGD) [45] exploits the fact that some blocks of

the rating matrix R are mutually independent (i.e., they share nei-

ther any row nor any column) so that the corresponding user and

item vectors can be updated concurrently. For each epoch, several

sequences of independent blocks of equal size (that constitute a stra-

tum) are selected to cover the entire available data set. Then the

algorithm proceeds by elaborating each stratum sequentially, assign-

ing each block to a different computing node, until all the input data

have been processed; at that point a new epoch starts. Figure 3.1
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Figure 3.1: Example of stratum schedule used by SSGD in an epoch for a 3 × 3

blocking of R.

shows an example of a strata schedule during a single epoch, for a

distributed setting with three computing nodes. The epoch starts

with the first node processing block R11, the second R22 and the

third R33. The blocks are independent so all vectors updates can be

done concurrently. When computing nodes finish, they communi-

cate all the updated column vectors to the next node. For instance,

the first node send its updated column vectors (the first third of the

entire columns set) to the third node, because it will need them to

process block R31. Then, a new stratum is processed, and so on for

all strata.
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The SSGD algorithm forms the basis of DSGD-MR [125], a MapRe-

duce extension of SSGD, and DSGD++ [73], an efficient version of

SSGD where a thread in each computing node is reserved to contin-

uously communicate vectors’ updates.

However, these solutions only partially solve the above challenges.

On the one side, the workload balance is not guaranteed, since dif-

ferent blocks might contain a different number of entries; this is

partially mitigated by shuffling rows and columns of R before cre-

ating the blocks, but the behavior with respect to load balancing

remains only probabilistic. On the other side, the communication

is quite intensive because, in each epoch, all item vectors (or user

vectors) are exchanged between computing nodes.

3.1.2 Asynchronous SGD

An alternative approach to distribute SGD is represented by asyn-

chronous SGD (ASGD) [31, 3, 73, 91]. ASGD distributes the matrix

R among the set of available computing nodes, so that each of them

only owns a slice of the input data. A problem with such approach

is that, in general, the input partitioner is forced to assign ratings

expressed by a single user (resp. received by a single item) to dif-

ferent computing nodes, in order to maintain the load in the system

balanced. Thereby, user and item vectors must be concurrently up-

dated, during the SGD procedure, by multiple nodes. A common

solution is to replicate vectors on all the nodes that will work on

them, forcing synchronization among the replicas via message ex-

change.
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Given that each node has a local view of the vectors it works on,

the algorithm needs to keep vector replicas on different nodes from

diverging. This is achieved in two possible ways: either by main-

taining replicas always in synch by leveraging a locking scheme

(synchronous approach), or by letting nodes concurrently update

their local copies and then periodically resynchronizing diverging

vectors (asynchronous approach). Synchronous distributed SGD al-

gorithms all employ some form of locking to maintain vector copies

synchronized. This approach is however inefficient, because com-

puting nodes spend most of their time in retrieving and delivering

vector updates in the network, or waiting for lock to be released.

The strictly sequential computation order imposed by this locking

approach on shared vector updates negatively impacts the perfor-

mance of such solutions.

Differently from synchronous algorithms, in ASGD computing nodes

are allowed to concurrently work on shared user/item vectors, that

can therefore deviate inconsistently during the computation. The

system defines for each vector a unique master copy and several

working copies. In the following we will refer to the node that store

the master copy of a vector as master node. Each computing node

updates only the local working copy of pi and qj
1 while processing

training point (i, j) ∈ O. The synchronization between working

copies and master is performed periodically according to the Bulk

Synchronous Processing (BSP) model [47].

Initially all the vector copies are synchronized with their correspond-

ing masters. At the beginning of an epoch, each computing node

1Also the vector master node updates a local working copy.
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shuffles the subset data that it owns. Then, each epoch consists of:

1. a computation phase, where each node updates the local work-

ing copy of user and item vectors using data it owns;

2. a global message transmission phase, where each node sends

all the vector working copies that have been updated in the

previous phase to the corresponding masters;

3. a barrier synchronization, where each master node collects all

the vector working copies, compute the new vector values, and

sends back the result.

New vector values, computed in phase three, are usually obtained by

averaging the working copies [76]. In [127] an exhaustive theoretical

study of the convergence of ASGD is presented.

The algorithm can also work in a completely asynchronous fashion

[125, 73], avoiding the BSP model. With this setting nodes can

communicate continuously, they do not wait that every other node

has completed its pass (the concept of epoch vanishes), and masters

continuously average received working copies and send back updated

values.

The problem is, again, how to balance the load among the comput-

ing nodes and minimize the communication. A common approach to

input data partition is to grid the rating matrix R in |C| blocks and

then assign each block to a different computing node [125]. This par-

titioning approach clearly cannot guarantee a balanced number of

ratings for each block, thus can possibly cause strong load imbalance
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among computing nodes. The problem can be mitigated by apply-

ing some random permutations of columns and rows. While this

approach improves the load balancing aspect, it still lead to non

negligible skews in the rating distributions (see section 3.3 for an

empirical evaluation of this aspect). Furthermore, a second prob-

lem of the grid partitioning approach is that the communication

cost between the computing nodes is not considered as a factor to

be minimized. Matrix blocking, in fact, is performed without con-

sidering the relationships connecting users with items in R. As a

consequence, the number of replicas for each user/item vector can

possibly grow to the number of available computing nodes.

Graph-based Asynchronous Stochastic Gradient Descend

Graph-based asynchronous SGD (GASGD) [91] is a variant of ASGD

that represents the input data as a bipartite graph, where users and

items are associated with vertices and ratings with edges. This new

data format doesn’t change the ASGD algorithm, but allows (1)

to provide input slicing solution based on graph partitioning algo-

rithms and (2) to implement the SGD algorithm on top of distributed

graph-computing (DGC) frameworks (such as GraphLab [69] or Pre-

gel [74]). We consider a part in the partitioning for each computing

node.

The above challenges can be easily adapted to the graph based rep-

resentation. One goal is to fairly balance the edges (i.e., the training

points) among parts. A second goal is to replicate each vertex in the

minimum number of parts (ideally in a single part), so that only few
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computing nodes own a working copy of the corresponding latent

factor vector, and the communication among them is minimized.

Note that graphs representing real instances of the matrix comple-

tion problem usually have a skewed power-law degree distribution,

that is most users (resp. items) express (resp. receive) relatively

few ratings while a few express (resp. receive) many. Exploiting this

characteristic might be beneficial for a input partitioning algorithm,

and, as a result, for the execution time of the matrix completion

procedure.

3.2 Input Partitioner

The way the input dataset is partitioned has a large impact on the

performance of GASGD and, in general, to whichever computation

on the graph. A naive partitioning strategy may end up replicat-

ing a large fraction of the input elements on several parts, severely

hampering performance by inducing a large replica synchronization

overhead during the computation phase. Furthermore, the parti-

tioning phase should produce evenly balanced parts (i.e., parts with

similar sizes) to avoid possible load skews in a cluster of machines

over which the data is partitioned.

Several recent approaches have looked at this problem. Here we

focus our attention on stream-based graph partitioning algorithms,

i.e., algorithms that partition incoming elements one at a time on

the basis of only the current element properties and on previous as-

signments to parts (no global knowledge on the input graph). Fur-

thermore, these algorithms are usually one-pass, i.e., they refrain
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from changing the assignment of a data element to a part once this

has been done. Such algorithms are the ideal candidates in settings

where input data size and constraints on available resources restrict

the type of solutions that can be employed, as, for instance, those

situations in which the graph exceeds the main memory capacity or

the partitioning time should be minimized.

Other characteristics of input data also play an important role in

partitioning. It has been shown that vertex-cut algorithms are the

best approach to deal with input graphs characterized by power-law

degree distributions [5, 47]. This previous work also clearly outlined

the important role high-degree nodes play from a partitioning qual-

ity standpoint. Nevertheless, few algorithms take this aspect into

account [131, 93]. Understandably, this is a challenging problem to

solve for stream-based approaches due to their one-pass nature.

3.2.1 Problem Definition

The problem of optimally partitioning a graph to minimize vertex-

cuts while maintaining load balance is a fundamental problem in

parallel and distributed applications as input placement significantly

affects the efficiency of algorithm execution [128]. An edge-cut par-

titioning scheme results in parts that are vertex disjoint while a

vertex-cut approach results in parts that are edge disjoint. Both

variants are known to be NP-Hard [60, 42, 7] but have different

characteristics and difficulties [60]; for instance, one fundamental

difference between the two is that a vertex can be cut in multiple

ways and span several parts while an edge can only connect two

parts.
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One characteristic observed in real-world graphs from social net-

works or the Web is their skewed power-law degree distribution:

most vertices have relatively few connections while a few vertices

have many. It has been shown that vertex-cut techniques perform

better than edge-cut ones on such graphs (i.e., create less storage

and network overhead) [47]. For this reason modern graph parallel

processing frameworks, like GraphLab [70], adopt a vertex-cut ap-

proach to partition the input data over a cluster of computing nodes.

Here we focus on streaming vertex-cut partitioning schemes able to

efficiently handle graphs with skewed power-law degree distribution.

Notation. Consider a graph G = (V,E), where V is the set of

vertices and E the set of edges. We define a partition of edges

S = (s1, .., sw) to be a family of pairwise disjoint sets of edges (i.e.,

si, sj ⊆ E, si ∩ sj = ∅ for every i 6= j). Let A(v) ⊆ S be the

set of parts each vertex v ∈ V is replicated. The size |s| of each

part s ∈ S is defined as its edge cardinality, because computation

steps are usually associated with edges. Since we consider G having

a power-law degree distribution, the probability that a vertex has

degree d is P (d) ∝ d−α, where α is a positive constant that controls

the “skewness” of the degree distribution, i.e., the smaller the value

of α, the more skewed the distribution.

Balanced k-way vertex-cut problem. Given a graph G and a number

of parts |S|, the problem consists in defining a partition of edges

such that (i) the average number of vertex replicas (i.e., the number
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Symbol Description

G Graph

V Vertices

E Edges

S Partition

A(v) Set of parts each vertex v ∈ V is replicated

Table 3.1: Notation for graph partitioning algorithms.

of parts each vertex is associated to as a consequence of edge parti-

tioning) is minimized and (ii) the maximum partition load (i.e., the

number of edges associated to the biggest part) is within a given

bound from the theoretical optimum (i.e., |E|/|S|) [7]. More for-

mally, the balanced |S|-way vertex-cut partitioning problem aims at

solving the following optimization problem:

min
1

|V |
∑
v∈V

|A(v)| s.t. max
s∈S
|s| < σ

|E|
|S|

(3.1)

where σ ≥ 1 is a small constant that defines the system tolerance

to load imbalance. The objective function (equation (3.1)) is called

replication factor (RF ), which is the average number of replicas per

vertex.

Streaming setting. Without loss of generality, here we assume that

the input data is a list of edges, each identified by the two connect-

ing vertices and characterized by some application-related data. We

consider algorithms that consume this list in a streaming fashion,

requiring only a single pass. This is a common choice for several

reasons: (i) it handles situations in which the input data is large

enough that fitting it completely in the main memory of a single
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grid PDS HDRFDBH greedy

hashing

stream-based 
vertex-cut graph 

partitioning 

hashing

constrained 
partitioning

ignore the history of the 
edge assignments 

(Gonzalez et al., 2012)(Jain et al., 2013) (Petroni et al., 2015)(Xie et al., 2014)

greedy

(Jain et al., 2013)(Gonzalez et al., 2012)

use the entire history of 
the edge assignments

Figure 3.2: Taxonomy of stream-based vertex-cut graph partitioning algorithms.

computing node is impractical; (ii) it can efficiently process dynamic

graphs; (iii) it imposes the minimum overhead in time and (iv) it’s

scalable, providing for straightforward parallel and distributed im-

plementations. A limitation of this approach is that the assignment

decision taken on an input element (i.e., an edge) can be based only

on previously analyzed data and cannot be later changed.

3.2.2 Streaming Algorithms

Balanced graph partitioning is a well known NP-hard problem with

a wide range of applications in different domains. It is possible to

divide existing streaming vertex-cut partitioning techniques in two

main families: “hashing and constrained partitioning algorithms”

and “greedy partitioning algorithms” (see figure 3.2).
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Hashing and constrained partitioning algorithms. All of these algo-

rithms ignore the history of the edge assignments and rely on the

presence of a predefined hash function h : N→ N. The input of the

hash function h can be either the unique identifier of a vertex or of

an edge. All these algorithms can be applied in a streaming setting

and achieve good load balance if h guarantees uniformity. Four well-

known existing heuristics to solve the partitioning problem belong to

this family: hashing, DBH, grid and PDS. The simplest solution is

given by the hashing technique that pseudo-randomly assigns each

edge to a part: for each input edge e ∈ E, A(e) = h(e) mod |S|
is the identifier of the target part. This heuristic results in a large

number of vertex-cuts in general and performs poorly on power-law

graphs [47]. A recent paper describes the Degree-Based Hashing

(DBH ) algorithm [131], a variation of the hashing heuristic that

explicitly considers the degree of the vertices for the placement deci-

sion. DBH leverages some of the same intuitions as HDRF by cut-

ting vertices with higher degrees to obtain better performance. Con-

cretely, when processing edge e ∈ E connecting vertices vi, vj ∈ V
with degrees di and dj, DBH defines the hash function h(e) as fol-

lows:

h(e) =

h(vi), if di < dj

h(vj), otherwise

Then, it operates as the hashing algorithm.

The grid and PDS techniques belong to the constrained partitioning

family of algorithms [54]. The general idea of these solutions is to

allow each vertex v ∈ V to be replicated only in a small subset

of parts Z(v) ⊂ S that is called the constrained set of v. The



3.2 Input Partitioner 43

constrained set must guarantee some properties; in particular, for

each vi, vj ∈ V : (i) Z(vi) ∩ Z(vj) 6= ∅; (ii) Z(vi) 6⊆ Z(vj) and

Z(vj) 6⊆ Z(vi); (iii) |Z(vi)| = |Z(vj)|. It is easy to observe that

this approach naturally imposes an upper bound on the replication

factor. To position a new edge e connecting vertices vi and vj, it picks

a part from the intersection between Z(vi) and Z(vj) either randomly

or by choosing the least loaded one. Different solutions differ in

the composition of the vertex constrained sets. The grid solution

arranges parts in a a × b matrix such that |S| = ab. It maps each

vertex v to a matrix cell using a hash function h, then Z(v) is the

set of all the parts in the corresponding row and column. It this way

each constrained sets pair has at least two parts in their intersection.

PDS generates constrained sets using Perfect Difference Sets [48].

This guarantees that each pair of constrained sets has exactly one

part in their intersection. PDS can be applied only if |S| = a2+a+1,

where a is a prime number.

Greedy partitioning algorithms. This family of methods uses the

entire history of the edge assignments to make the next decision.

The standard greedy approach [47] breaks the randomness of the

hashing and constrained solutions by maintaining some global status

information. In particular, the system stores the set of parts A(v)

to which each already observed vertex v has been assigned and the

current size of each part. Concretely, when processing edge e ∈
E connecting vertices vi, vj ∈ V , the greedy technique follows this

simple set of rules:

Case 1: If neither vi nor vj have been assigned to a part, then e is



44 3. Distributed Matrix Completion

placed in the part with the smallest size in S.

Case 2: If only one of the two vertices has been already assigned

(without loss of generality assume that vi is the assigned vertex)

then e is placed in the part with the smallest size in A(vi).

Case 3: If A(vi)∩A(vj) 6= ∅, then edge e is placed in the part with

the smallest size in A(vi) ∩ A(vj).

Case 4: If A(vi) 6= ∅, A(vj) 6= ∅ and A(vi) ∩ A(vj) = ∅, then e is

placed in the part with the smallest size in A(vi)∪A(vj) and a

new vertex replica is created accordingly.

Symmetry is broken with random choices. An equivalent formulation

consists of computing a score Cgreedy(vi, vj, s) for all parts s ∈ S, and

then assigning e to the part s∗ that maximizes Cgreedy. The score

consists of two elements: (i) a replication term Cgreedy
REP (vi, vj, s) and

(ii) a balance term Cgreedy
BAL (s). It is defined as follows:

Cgreedy(vi, vj, s) = Cgreedy
REP (vi, vj, s) + Cgreedy

BAL (s) (3.2)

Cgreedy
REP (vi, vj, s) = f(vi, s) + f(vj, s) (3.3)

f(v, s) =

1, if s ∈ A(v)

0, otherwise

Cgreedy
BAL (s) =

maxsize− |s|
ε+ maxsize−minsize

(3.4)

where maxsize is the maximum part size, minsize is the minimum

part size, and ε is a small constant value.
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3.2.3 The HDRF Algorithm

High degree are replicated first (HDRF ) [92] is a greedy algorithm

tailored for skewed power-law graphs. In the context of robust-

ness to network failure, Cohen et al. [26, 27] and Callaway et al

[20] have analytically shown that if only a few high-degree vertices

(hubs) are removed from a power-law graph then it is turned into

a set of isolated clusters. Moreover, in power-law graphs, the clus-

tering coefficient distribution decreases with increase in the vertex

degree [34]. This implies that low-degree vertices often belong to

very dense sub-graphs and those sub-graphs are connected to each

other through high-degree vertices.

HDRF leverages these properties by focusing on the locality of low-

degree vertices. In particular, it tries to place each strongly con-

nected component with low-degree vertices into a single part by cut-

ting high-degree vertices and replicating them on a large number of

parts. As the number of high-degree vertices in power-law graphs is

very low, encouraging replication for only these vertices leads to an

overall reduction of the replication factor.

Concretely, when HDRF creates a replica, it does so for the vertex

with the highest degree. However, obtaining degrees of vertices for

a graph that is consumed in a streaming fashion is not trivial. To

avoid the overhead of a pre-processing step (where the input graph

should be fully scanned to calculate the vertex exact degrees), a

table with partial degrees of the vertices can be maintained that is

continuously updated while input is analyzed. As each new edge

is considered in the input, the degree values for the corresponding
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vertices are updated in the table. The partial degree values collected

at runtime are usually a good indicator for the actual degree of a

vertex since it is more likely that an observed edge belongs to a

high-degree vertex rather than to a low-degree one.2

More formally, when processing edge e ∈ E connecting vertices vi

and vj, the HDRF algorithm retrieves their partial degrees and in-

crements them by one. Let δ(vi) be the partial degree of vi and δ(vj)

be the partial degree of vj. The degree values are then normalized

such that they sum up to one:

θ(vi) =
δ(vi)

δ(vi) + δ(vj)
= 1− θ(vj) (3.5)

As for the greedy heuristic, the HDRF algorithm computes a score

CHDRF(vi, vj, s) for all parts s ∈ S, and then assigns e to the part s∗

that maximizes CHDRF. The score for each part s ∈ S is defined as

follows:

CHDRF(vi, vj, s) = CHDRF
REP (vi, vj, s) + CHDRF

BAL (s) (3.6)

CHDRF
REP (vi, vj, s) = g(vi, s) + g(vj, s) (3.7)

g(v, s) =

1 + (1− θ(v)), if s ∈ A(v)

0, otherwise

CHDRF
BAL (s) = µ · Cgreedy

BAL (s) = µ · maxsize− |s|
ε+ maxsize−minsize

(3.8)

The µ parameter allows control of the extent of part size imbalance

in the score computation. We introduced this parameter because

the standard greedy heuristic may result in an highly imbalanced

2While evaluating HDRF performance, we noticed no significant improvements in the algo-

rithm performance when using exact degrees instead of their approximate values.



3.2 Input Partitioner 47

partition, especially when the input is ordered somehow. To see this

problem note that Cgreedy
BAL (s) (equation 3.4) is always smaller than

one, while Cgreedy
REP and CHDRF

REP are either zero or greater than one. For

this reason, the balance term CBAL in the greedy algorithm or when

0 < µ ≤ 1 is used only to choose among parts that exhibit the same

value for the replication term CREP, thereby breaking symmetry.

However, this may not be enough to ensure load balance. For in-

stance, if the stream of edges is ordered according to some visit order

on the graph (e.g., breadth first search or depth first search), when

processing edge e ∈ E connecting vertices vi and vj there is always a

single part s∗ with Cgreedy
REP (vi, vj, s

∗) ≥ 1 (resp. CHDRF
REP (vi, vj, s

∗) > 1)

and all the other parts s ∈ S s.t. s 6= s∗ have Cgreedy
REP (vi, vj, s) = 0

(resp. CHDRF
REP (vi, vj, s) = 0). In this case, the balance term is useless

as there is no symmetry to break, and the heuristic ends up placing

all edges in a single part s∗. This problem can be solved by setting

a value for µ > 1. In our evaluation (section 3.3), we empirically

studied the trend of the replication factor and the load balance by

varying µ (figure 3.12). Moreover, note that when µ → ∞ the al-

gorithm resembles a random heuristic, where past observations are

ignored and it only matters to have parts with equal size. The follow-

ing summarizes the behavior of the HDRF algorithm with respect

to the µ parameter:

µ = 0, agnostic of the load balance

0 < µ ≤ 1, balance used to break the symmetry

µ > 1, balance importance proportional to µ

µ→∞, random edge assignment
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When µ = 1 the HDRF algorithm can be represented by a set of

simple rules, exactly as in greedy, with the exception of Case 4 that

is modified as follows:
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Case 4 If A(vi) 6= ∅, A(vj) 6= ∅ and A(vi) ∩ A(vj) = ∅, then

- if δ(vi) < δ(vj), e is assigned to the part with the smallest size

s∗ ∈ A(vi) and a new replica of vj is created in s∗;

- if δ(vj) < δ(vi), e is assigned to the part with the smallest size

s∗ ∈ A(vj) and a new replica of vi is created in s∗.

HDRF can be run as a single process or in parallel instances to speed

up the partitioning phase. As with greedy, HDRF also needs some

state to be shared among parallel instances during partitioning. In

particular, we noticed that sharing the values of A(v), ∀v ∈ V is

sufficient to let HDRF perform at its best.

3.2.4 Theoretical Analysis

In this section we characterize the HDRF algorithm behavior from

a theoretical perspective, focussing on the vertex replication factor.

In particular we are interested in an average-case analysis of HDRF.

A worst-case analysis would provide poor performance, as expected

for any similar greedy algorithm, while failing to capture the typical

behavior of HDRF in real cases. In the rest of this section we assume

µ = 1 for the sake of simplicity.

Cohen et al. [27] considered the problem of a scale-free network

(characterized as a power-law graph) attacked by an adversary able

to remove a fraction c of vertices with the largest degrees. In particu-

lar they characterized the approximate maximum degree M̃ observ-

able in the graph’s largest component after the attack. If |V | � 1/c

this value can be approximated by the following equation:

M̃ = mc1/(1−α) (3.9)
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where m is the (global) minimum vertex degree and α is the param-

eter characterizing the initial vertex degree distribution.

Let us now consider the algorithm aHDRF as an approximation of

HDRF : aHDRF performs exactly as HDRF, but for the fact that

we assume it knows the exact degree of each input vertex (and not

the observed degree as for HDRF ).

Theorem 1. Algorithm aHDRF achieves a replication factor, when

applied to partition a graph with |V | vertices on |S| parts, that can

be bounded by:

RF ≤ τ |S|+ 1

|V |(1− τ)

|V |(1−τ)−1∑
i=0

[
1 +m

(
τ +

i

|V |

) 1
1−α
]

τ =

(
|S| − 1

m

)1−α

Proof. The replication factor bound is the sum of two distinct pieces.

The first piece considers the fraction τ of vertices with the largest

degrees in the graph, referred to as hubs. The worst case for hubs

is to be replicated in all the parts, with a corresponding replication

factor of τ |S|. τ represents the fraction of vertices that must be

removed from the graph such that the maximum vertex degree in

the remaining graph is |S| − 1; this value is obtainable through

equation (3.9) by imposing M̃ = |S| − 1.

The second piece of the equation considers the contribution to the

replication factor from non-hub vertices, i.e., all vertices whose de-

gree is expected to be smaller than |S| − 1 after the τ vertices with

the largest degrees have been removed from the graph (together with
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their edges). When aHDRF processes an edge connecting a hub ver-

tex with a non-hub vertex, it always favors the replication of the hub

vertex (that has a larger degree) and replicates the non-hub vertex

only if executes Case 1 or Case 2, that is only if it is the first time

it observes that vertex. Since the degree of non-hub vertices, ig-

noring the connections with hub vertices, is bounded by mτ 1/(1−α),

and since the connections with hub vertices can produce at most

one replica, the worst case replication factor for non-hub vertices is

bounded by:
1

|V |(1− τ)

(
1 +mτ

1
1−α

)
This bound can be further improved by considering what happens

to the graph once the non-hub vertex v0 with the largest degree is

removed. The previous bound is valid for v0. However, the removal

of v0 from the graph will change the degree distribution, thus also

reducing the bound for the next non-hub vertex with the largest

degree. Using this consideration, it is possible to iteratively bound

the degree of each non-hub vertex vi with m(τ + i/|V |)1/(1−α) where

0 ≤ i ≤ |V |(1− τ)−1. Hence, the total worst case replication factor

for non-hub vertices, is bounded by:

1

|V |(1− τ)

|V |(1−τ)−1∑
i=0

[
1 +m

(
τ +

i

|V |

) 1
1−α
]

If edges arrive in random order, aHDRF gives an approximation of

HDRF. In this case, the observed values for vertex degrees are a

good estimate for the actual degrees. We can conclude that, assum-

ing random order arrival for edges, HDRF is expected to achieve a
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replication factor, when applied to partition a graph with |V | ver-

tices on |S| parts, of at most RF of Theorem 1.

For example, consider a graph with α = 2.2, |S| = 128, m = 1 and

1M vertices. The average-case upper bound for the replication factor

of HDRF is ≈ 5.12 while the actual result it achieves is ≈ 1.37. The

bounds for DBH and hashing [47, 131] with this configuration are

respectively ≈ 5.54 and ≈ 5.88, while the actual results they achieve

are ≈ 1.89 and ≈ 2.52.

The upper bound given by Theorem 1 cannot be extended to other

algorithms (e.g., greedy). Informally, HDRF breaks network at hubs

by replicating a small fraction of vertices with large degrees. In

contrast, greedy and other algorithms are agnostic to the degree of

vertices when replicating them. Intuitively, these algorithms try to

break network by removing random vertices. Unfortunately, power-

law graphs are resilient against removing random vertices (see [26]

for details). This implies that, in order to fragment a scale-free

network, a very large number of random vertices should be removed.

In other words, greedy and other algorithms tend to replicate a large

number of vertices in different parts. This intuition is verified in our

experiments (see section 3.3).

3.3 Evaluation

This section presents experimental results for the HDRF partition-

ing algorithm, with a particular focus to the benefits it generates on

the GASGD algorithm when used as input partitioner. The evalu-

ation was performed on real-world graphs by running the proposed
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algorithm both in a stand-alone partitioner (useful for scaling up to

large parts number) and running an implementation of HDRF in-

tegrated into GraphLab.3 The evaluation also reports experiments

on synthetic graphs generated randomly with increasingly skewed

distributions to study the extent to which HDRF performance is

sensitive to workload characteristics.

3.3.1 Experimental Settings and Test Datasets

Evaluation Metrics. We evaluate the performance of HDRF by mea-

suring the following metrics:

Replication factor: is the average number of replicas per vertex.

This metric is a good measure of the synchronization overhead and

should be minimized.

Load relative standard deviation: is the relative standard deviation of

the number of edges hosted in target parts. An optimal partitioning

strategy should have a value for this metric close to 0.

Max part size: is the number of either vertices or edges hosted in the

largest part. We consider this metric with respect to both vertices

and edges as each conveys different information. Edges are the main

input for the computation phase, thus more edges in a part mean

more computation for the computing node hosting it; conversely, the

number of vertices in the system, and, therefore, in the largest part,

also depends on the number of replicas generated by the partitioning

algorithm.
3HDRF has been integrated into the official GraphLab PowerGraph source code https:

//github.com/dato-code/PowerGraph. The stand-alone software package for one-pass vertex-

cut balanced graph partitioning is available at https://github.com/fabiopetroni/VGP.

https://github.com/dato-code/PowerGraph
https://github.com/dato-code/PowerGraph
https://github.com/fabiopetroni/VGP
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Dataset |V | |E|
Tencent Weibo 1.4M 140M

Netflix 497.9K 100.4M

MovieLens 10M 80.6K 10M

twitter-2010 41.7M 1.47B

uk-2002 18.5M 298M

arabic-2005 22.7M 640M

Table 3.2: Statistics for real-world graphs.

Execution time: is the number of seconds needed by the DGC

framework to perform the indicated computation on the whole in-

put graph. Better partitioning, by reducing the number of replicas,

is expected to reduce the synchronization overhead at runtime and

thus reduce the execution time as well.

Datasets. In our evaluation, we used as datasets both synthetic

power-law graphs and real-word graphs. The former were used to

study how HDRF performance vary when the degree distribution

skewness of the input graph gradually increases. In particular, each

synthetic graph was generated with 1M vertices, minimum degree of

5 and edges using a power law distribution with α ranging from 1.8

to 4.0. Therefore, the number of edges in the graphs ranges from

∼ 60M (α = 1.8) to ∼ 3M (α = 4). Graphs were generated with

gengraph [129].

We also tested the performance of HDRF on real-world graphs. We

selected three bipartite preference graphs from the recommender sys-

tems community: Tencent Weibo from KDD-Cup 2012 [88], Netflix

from the Netflix Prize [12] and MovieLens 10M made available by
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Figure 3.3: Degree distribution for real-world graph (log-log scale). For bipartite

preference graphs the degree distribution for both users and items is reported.

the GroupLens research lab.4 These were used to test in which ex-

4http://grouplens.org/

http://grouplens.org/
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tent the GASGD algorithm benefits from the HDRF partitioning

scheme, both in execution time and convergence speed. We also

selected another 3 graphs from LAW (Laboratory for Web Algorith-

mics) [16, 15]: twitter-2010, uk-2002 and arabic-2005. The latter

were used to test the behavior of HDRF in a more general environ-

ment.

Table 3.2 reports some statistics for these 6 datasets, while figure

3.3 shows their degree distribution.

System Setup. We implemented a stand-alone version of a graph

partitioner that captures the behavior of a DGC framework during

the graph loading and partitioning phase. Within our partitioner,

we implemented the five different algorithms described so far: hash-

ing, DBH, grid, PDS, greedy and HDRF. Furthermore, we compared

HDRF against two offline methods: Ginger [93], an hybrid solu-

tion that tries to combine both edge-cut and vertex-cut approaches

together, and METIS [59], a well-known edge-cut partitioning algo-

rithm. To compute the replication factor delivered by METIS, we

used the same strategy of [47]: every edge-cut forces the two spanned

parts in maintaining a replica of both vertices and a copy of the edge

data. Experiments were run on an Intel Xeon 8-core machine with

32GB of memory running the GNU/Linux 64-bit operating system.

To run realistic tests needed to measure execution time, we imple-

mented and integrated HDRF into GraphLab v2.2. In each test,

we loaded and partitioned the input graph using HDRF or one

of the comparison algorithms. Experiments with GraphLab where
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conducted both: (1) on an Amazon EC2 cluster, consisting of 315

m3.large6 Linux instances in the US West (Oregon) region, and (2)

on a cluster consisting of 8 machines with dual 16-core Intel Xeon

CPUs and 128GB of memory each, where we experimented with 32,

64 and 128 parts by running multiple instances on a single machine.

We also evaluated the convergence of GASGD with respect to dif-

ferent input partitioner strategy, using a simulator.7 As parameters,

we used d = 100 latent factors, λ = 0.05 for all variables, a constant

learning rate of η = 0.005, and ran 100 epochs.

Data input order. Since the input dataset is consumed as a stream

of edges, the input order can affect the performance of the parti-

tioning algorithm. We considered three different stream orders as

in [128]: random, where edges arrive according to a random per-

mutation; BFS, where the edge order is generated by selecting a

vertex uniformly at random and performing a breadth first search

visit starting from that vertex; DFS, that works as BFS except for

the visit algorithm that is depth-first search. All reported results

are based on a random input order unless otherwise mentioned in

the text.

3.3.2 Performance Evaluation

The experimental results reported in this section are organized as

follows: we first report on experiments that show the benefits that

5This number of parts fits constraints for PDS.
62 vCPU and 7.5 Memory (GB)
7The source code is available at https://github.com/fabiopetroni/GASGD.

https://github.com/fabiopetroni/GASGD
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Figure 3.4: Replication factor varying the number of target parts (log-log scale).

HDRF brings to GASGD and, in general, the ability of HDRF to

deliver the best overall performance in terms of execution time with

the smallest overhead (replication factor) and close to optimal load

balance when executed on real-world graphs. We then study how

HDRF performance is affected by changes in the characteristics of

the input dataset and changes in the target number of parts. Fi-

nally, the last set of results analyze the sensitivity of HDRF to input

stream ordering.
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Figure 3.5: Replication factor (log scale) with |S| = 133. HDRF is compared

against both streaming and offline solutions.

GASGD Runtime

We first measured HDRF performance against other streaming par-

titioning algorithms on our set of real-world bipartite preference

graphs. These experiments were run by partitioning the input graphs

on a set of target parts in the range [3, 256] with our stand-alone par-

titioner. Figure 3.4 reports the replication factor that the consid-

ered partitioning algorithms achieve on the different input graphs.8

Moreover, figure 3.5a provides a snapshot of the evaluation, by set-

ting the number of target parts to 133, a number compliant with

PDS constraints. It can be observed that HDRF is the algorithm

that provides the smallest replication factor for all the considered

datasets.

In particular, for the Weibo dataset it is possible to observe how

HDRF and DBH are the best performers as they both exploit ver-

tex degrees. In all the other datasets HDRF is always the best per-
8Due to specific constraints imposed by the PDS and grid algorithms on the total number

of parts, their data points are not aligned with those of the other algorithms.
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former, albeit with larger absolute RF values. Summarizing, on the

considered datasets HDRF achieves on average a replication factor

about 40% smaller than DBH, more than 50% smaller than greedy,

almost 3× smaller than PDS, more than 4× smaller than grid and

almost 14× smaller than hashing.

Next, we compared HDRF against two offline partitioning algo-

rithms: Ginger and METIS. Note that these offline solutions have

full knowledge of the input graph that can be exploited to drive their

partitioning choices. Figure 3.5b compares the replication factor

achieved by these two solutions and HDRF (we maintain |S| = 133

to be coherent with figure 3.5a). The poor performance of METIS

was an expected result since it has been proved that edge-cut ap-

proaches perform worse than vertex-cut ones on power-law graphs

[47]. Moreover, the scope of Metis is to balance vertex load among

parts. However, HDRF outperforms Ginger as well, by reducing

its replication factor by 10% on average. In addition, HDRF has

the clear advantage of consuming the graph in a one-pass fashion

while Ginger needs several passes over the input data to converge.

These results show that HDRF is always able to provide a smaller

average replication factor with respect to all other algorithms, both

streaming and offline.

Figure 3.6 reports the load relative standard deviation produced by

the tested streaming algorithms when run on the MovieLens 10M

dataset with a variable number of target parts (results for other

datasets showed similar behavior so we omit them). The curves show

that HDRF and greedy provide the best performance as the number

of target parts grows. As expected, hashing provides well balanced
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Figure 3.6: Load relative standard deviation produced by different partitioning

algorithms on the MovieLens 10M dataset.

parts, but it still performs worse that the other algorithms as its ex-

pected behavior with respect to load balancing is only probabilistic.

Grid performs similarly, even if its more complex constraints induce

some skew in load. DBH and PDS are the worse performers, with

load skew growing at a fast pace as the number of target parts grows.

Note that replication factor reflects communication cost, and edge-

imbalance reflects workload-imbalance; providing good performance

with these two metrics means that HDRF can provide partition-

ing results that make the execution of application algorithms more

efficient.

To this end, we studied how much all of this translates to a per-

formance improvement with respect to the execution time. To in-

vestigate the impact of the different partitioning techniques we ran

the GASGD algorithm on GraphLab. Figure 3.7a shows the result

of experiments that were run on an EC2 cluster with 31 machines.

Figure 3.7b reports the results for the Tencent Weibo, with 32, 64

and 128 parts respectively, using a cluster of eight machines. Both

figures report the measured speed-up, obtained by using HDRF to
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Figure 3.7: Speedup in the execution time for the GASGD algorithm.

partition the input over greedy and PDS.9 The SGD algorithm runs

up to two times faster using HDRF as input partitioner with respect

to greedy, and close to three times faster than PDS. The actual im-

provement is larger as the number of target parts grows. Moreover,

the speedup is proportional to the gain in RF (see figure 3.4a) and, as

already shown in [47], halving the replication factor approximately

halves runtime.

Furthermore, having parts with fewer replicas also help GASGD to

converge faster. Figure 3.8 shows the trend on the loss (Eq. 2.1)

with respect to epoch passing. By using HDRF as input partitioner,

the GASGD algorithm approaches a minimum with less (or equal)

epochs, than using greedy or PDS, for all the considered datasets.

To recap, HDRF brings a double benefit when using as input par-

titioner by GASGD: (1) the execution time is faster (using a fixed

number of iterations), (2) the convergence needs less epochs. This

9We needed to use respectively 31, 57 and 133 parts, to fit PDS constraints.
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Figure 3.8: Convergence.

means that the execution time can be further reduced by cutting

the number of iterations, for instance using some convergence cri-

terion (e.g., stop training when the difference of loss between two

subsequent epochs is below a given threshold).

Graph Analytics Runtime

We also studied the performance improvement that HDRF brings

to general graph analytics algorithms, namely Single Source Short-

est Path (SSSP), Weakly Connected Components (WCC), HCC [57]
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algorithm cpu network

SSSP low low

WCC low medium

HCC low medium

PR medium high

GASGD high high

Table 3.3: Algorithms used when measuring execution time with different input

graphs.

and Page Rank (PR). Table 3.3 provides more information on the al-

gorithms in terms of cpu and network resource usage. Here, clearly,

the tested application algorithm plays an important role: some al-

gorithms may concentrate computation on high-degree nodes while

others may place a uniform load on the input graph. In these cases,

we expect different improvements. However, the reduction in syn-

chronization overhead among replicas induced by a smaller average

replication factor shall in any case positively impact performance.

These experiments were run on an EC2 cluster with 31 machines

running GraphLab.

Figure 3.9 reports the replication factor for the twitter-2010, uk-

2002 and arabic-2005 datasets. In all our tests HDRF outperforms

competing solutions.

Figure 3.10 reports the measured speed-up of graph analytics algo-

rithms, obtained by using HDRF to partition the input over greedy

(figure 3.10a) and PDS (figure 3.10b). The results confirmed our

intuitions: the speedup is proportional to both the advantage in

replication factor and the actual network usage of the algorithm.

The speedup it is larger for IO-intensive algorithms (e.g., GASGD
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Figure 3.9: Replication factor varying the number of target parts (log-log scale).

and PR) and smaller for algorithm with less network IO (e.g., SSSP

and WCC). None of the tests we conducted with HDRF showed a

slowdown with respect to other solutions.

Our results show that HDRF is the best solution to partition in-

put graphs characterized by skewed power-law degree distributions.

HDRF achieves the smallest replication factor with close to optimal

load balance. These two characteristics combined make application

algorithms execute more efficiently in the DGC framework.
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Figure 3.10: Speedup in the execution time for graph analytics algorithms. Figures

show improvements for SSSP, WCC, HCC, and PR, by applying HDRF with

respect to greedy and PDS respectively.

Performance sensitivity to input shape

We next analyze how the input graph degree distribution affects

HDRF performance. To this end, we used HDRF to partition a set

of synthetic power-law graphs. In doing so, we experimentally char-

acterize the sensitivity of the average replication factor on the power-

law shape parameter α, and on the number of parts. Figure 3.11a

reports the replication factor improvement for HDRF with respect

to other algorithms, expressed as a multiplicative factor, by vary-

ing α in the range [1.8, 4.0] with |S| = 128 target parts (|S| = 133

and |S| = 121 for PDS and grid respectively). The curves show

two important aspects of HDRF behavior: (1) with highly skewed

degree distributions (i.e., small values of α), its performance is signif-

icantly better than greedy and other algorithms (with the exception

of DBH); (2) with less skewed degree distributions, the performance

of HDRF approaches that provided by greedy, while all the other

solutions (including DBH ) perform worse. These results show how
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Figure 3.11: Replication factor improvement for HDRF in synthetically generated

graphs (log-log scale). Figure (a) reports the replication factor increment and

figure (b) the actual replication factor when α grows (|S| = 128 except for PDS,

where |S| = 133, and grid, where |S| = 121). For figure (a) HDRF represents the

baseline.

HDRF behavior approximates greedy ’s behavior as the number of

high degree vertices in the input graph grows as in this case making a

different partitioning choice on high-degree vertices is less useful (as

there are a lot of them). Note that Gonzalez et al. [47] showed that

the effective gain of a vertex-cut approach relative to an edge-cut ap-

proach actually increases with smaller α. Our solution boosts this

gain, not only with respect to constrained techniques but also over

the greedy algorithm. Figure 3.11b reports the replication factor,

and clearly shows that HDRF is able to outperform all competing

algorithms for all values of α. At the extremes, HDRF is better than

DBH when α is very small and performs slightly better than greedy

when α is very large.
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Figure 3.12: HDRF behavior on the Netflix dataset varying µ, with input edge

stream either random or ordered (DFS or BFS graph visits). Reference grey lines

represent greedy, hashing and PDS performance.

Performance sensitivity to input order

A shortcoming of the standard greedy algorithm is its inability to

effectively handle streaming of input edges when they are ordered.

If the algorithm receives the edges ordered such that two subsequent

edges always share a vertex, the greedy algorithm always places all

the edges and their adjacent vertices in a single part. This leads to

a degenerate partitioning where, whatever the target parts number

is, only a single part holds the whole input graph with the other
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parts being empty. While this eliminates the need for vertex repli-

cas, the final result is clearly far from being desirable as all of the

computation load will be incurred by a single node in the computing

cluster.

To overcome this limitation, we explicitly introduced the parameter

µ in the computation of the score for each part in HDRF (equations

(3.6) and (3.8)), that defines the importance of the load balance in

the edge placement decision (section 3.2.3). Figure 3.12 shows the

result of an experiment run on the Netflix dataset, where the input

stream of edges is ordered according to either a depth-first-search

(DFS) or a breadth-first-search (BFS) visit on the graph. The figure

shows the average replication factor (figure 3.12a), the size of the

largest part expressed as number of contained edges (figure 3.12b)

and the size of the largest part expressed as number of contained

vertices (figure 3.12c) all while varying the value of µ in the range

[0.1, 100] (log-log axes). All three figures report the performance

obtained with the greedy, hashing and PDS algorithms as horizontal

grey lines for reference.

If we first consider the average replication factor (Figure 3.12a), we

can see that as long as µ ≤ 1 HDRF, the CBAL term in HDRF ’s

cost function is always smaller than 1 and thus makes the algorithm

behave exactly as the standard greedy algorithm (curves BFS and

DFS); all edges are placed in a single part and no vertex is replicated.

This behavior is confirmed by the size of the largest part that in this

case contains exactly |E| edges and |V | vertices (Figures 3.12b and

3.12c).
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For µ > 1, even for values only slightly larger than 1, the CBAL fac-

tor starts to play a fundamental role in balancing the load among

the available parts: the average replication factor for HDRF with

both DFS and BFS inputs is just slightly larger than what is achiev-

able with a random input and still substantially lower than what is

achievable with PDS or hashing (figure 3.12a). At the same time,

the size of the largest part drops to its minimum (figures 3.12b and

3.12c) indicating that the algorithm immediately delivers close to

perfect load balancing (i.e., |E|/|S| edges per part). With these

values of µ, the number of vertices hosted in the largest part ap-

proaches its theoretical minimum |V |/|S|; this value is hypothetical

as it is achievable only when the graph is composed of |S| connected

components with the same number of vertices. The difference shown

by HDRF itself when run over a BFS or DFS ordered input with

respect to the randomized input can be traced back to our hypothe-

sis that partial information on vertex degrees collected at runtime is

a good proxy for the actual degree of the vertices; this hypothesis,

in fact, is not true if the input is not randomized: when vertices of

the input graph are visited in a non random order, we cannot expect

the partitioner to see incoming vertices as a completely uniform ran-

dom stream. As a consequence, the partial information on vertex

degrees can be wrong and drive HDRF toward inefficient placement

decisions.

By increasing µ toward larger values, the effect of CBAL dominates

the HDRF cost function; instead of selecting vertices to be replicated

on the basis of their degree, the algorithm tries to simply balance

parts sizes. In this case, its behavior quickly approaches the behavior
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typical of the hashing algorithm: large average replication factor,

with close to perfect load balancing and the largest part containing

a number of vertices that approaches |V |.

These results show that (1) the CBAL term in HDRF score computa-

tion plays an effective role in providing close-to-perfect load balanc-

ing among parts while keeping a low average replication factor, and

(2) by setting the value of µ slightly larger than 1, it is possible to

let HDRF work at a “sweet spot” where it can deliver the best per-

formance, even when working on an ordered stream of edges. This

last point makes HDRF particularly suitable for application settings

where it is not possible to randomize the input stream before feeding

it to the graph partitioning algorithm.

3.4 Summary

Distributed matrix completion algorithms are designed for large

scale instances of the problem. Remarkable examples are stratified

SGD and asynchronous SGD. For these algorithms, system perfor-

mance is often determined by the input partitioning strategy, which

impacts the communication cost and the workload balance among

compute resources. We proposed a transition to a to a graph-based

data representation model. This allows to use graph partitioning

algorithm to tackle the above challenges.

We proposed HDRF, a novel stream-based graph partitioning algo-

rithm. HDRF is based on a greedy vertex-cut approach that lever-

ages information on vertex degrees. Through a theoretical analysis
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and an extensive experimental evaluation on real-world as well as

synthetic graphs using both a stand-alone partitioner and implemen-

tation of HDRF in GraphLab, we showed that HDRF is overall the

best performing partitioning algorithm for graphs characterized by

power-law degree distributions, that is HDRF provides the smallest

average replication factor with close to optimal load balance. These

two characteristics put together allow HDRF to significantly reduce

the time needed to perform computation on graphs and makes it the

best choice for partitioning graph data. In particular, distributed

matrix completion algorithms execute and converge faster when us-

ing HDRF as input partitioner.



CHAPTER 4

Context-Aware Matrix Completion

Computers are useless. They can only give you answers.

Pablo Picasso

The context in which relationships are observed is an important

source of information, whose exploitation can help in the task of

understanding and modeling them, therefore to the ultimate goal of

providing better predictions. For example, leveraging the purpose

of a travel, a hotel recommender system would provide more accu-

rate accommodation suggestions, targeted to, for instance, business

trips rather than holidays. However, incorporating generic contex-

tual information inside a latent factor model is challenging. In the

following, we review some of the current context-aware matrix com-

pletion techniques, developed mostly to enhance the performance of

recommender systems.
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4.1 Context-Aware Algorithms

There is a large body of research that aims at extending matrix

completion models to include such contextual information, mainly

focused on collaborative filtering in recommender systems (see [2,

96, 114] for excellent surveys on this topic). Most of the proposed

solutions are customized algorithms that integrate a specific infor-

mation, such as timestamps [65], user tags [134], geolocations [135],

but fail in capturing generic contextual data.,

A remarkable example of a general framework are collective matrix

factorization (or joint matrix factorization) models [116, 72], which

simultaneously factorize the user-item rating matrix and other ma-

trices containing attributes of both users (e.g., user’s gender, age,

and hobbies) and items (e.g., category and content). However, such

models are unable to consider the information associated with the

interaction between user and item, e.g., the rating event.

One way to integrate interaction-associated contextual information

is using tensor completion models [61, 58, 101, 82, 112]. Such al-

gorithms add a dimension to the user-item rating matrix with con-

textual data, creating a tensor, that can be factorized using existing

techniques, as, for instance, Candecomp/Parafac [61] or Tucker [58]

decompositions. Tensor completion models, however, suffer from

limited scalability with respect to the amount of contextual infor-

mation considered. The computational complexity of such models is,

in fact, exponential with the number of contextual variables included

in the model, and this hampers their applicability in real-world sce-

narios.
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Factorization machines [100, 97, 98] are currently considered the

best solutions for context-aware matrix completion, due to their ad-

vantages with respect to both scalability and accuracy. In fact, they

solve the scalability issues of tensor completion models, experiencing

a linear time complexity in the number of contextual variables con-

sidered. Factorization machines associate a latent factor vector with

each contextual variable. The innovative idea is to model all itera-

tion between pairs of variables (e.g., users, items and context) with

the target (e.g., the rating) using factorized interaction parameters.

Such parameters are obtained computing the dot product between

the latent factor vectors associated with the two variables in the pair

(see below for further details).

All existing solutions for context-aware matrix completion require

in input both positive and negative evidence, that is the revealed

entries in the data matrix have multiple values, a situation that

correspond to the presence of explicit feedback in recommender sys-

tems and that can be managed using the regularized squared loss

optimization criterion.

In what follows we will show how to integrate contextual informa-

tion inside a matrix completion model in those cases in which only

positive evidence exist in input, that is the revealed entries in the

matrix have all the same value, a situation that correspond to the

presence of implicit feedback in recommender systems and that can

be managed using the Bayesian personalized ranking optimization

criterion. To this end, we use, as baseline application scenario, a

popular natural language processing task: open relation extraction.
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4.2 Open Relation Extraction

New generation algorithms for web information retrieval (IR) make

use of a knowledge base (KB) to increase their accuracy. A clear

example of this is the Google knowledge graph [117]. The basic idea

of these techniques is to match the words in a query to real world

entities (e.g., a person, a location, etc.) and use real world connec-

tions among these entities to improve the task of providing the user

with the proper content s/he was looking for. One popular way to

represent such KB is through a graph structure, where entities are

connected to each other through relations (ex, ”born in”, ”contained

by”). This is the idea, for instance, of the web’s linked open data

cloud [28, 8, 9], a public accessible KB consisting of over 60 billion

known facts. Such structures provide exciting opportunities, not

only for IR but also for the entire scientific community. However,

despite their size, these KBs are still far from being completed. For

instance 75% of the people in Freebase [17] have unknown nation-

ality, the place of birth attribute is missing for 71% of all people

[130], and coverage for less common relations is even lower. More-

over, relational data can not only be incomplete but also uncertain,

noisy and include false information. Automatic methods for relation

extraction are therefore needed in order to fill missing information

and remove incorrect facts. These algorithms should not only use

the information already present in the KB but also scan the web,

extracting new information from natural language text in web pages.

Open relation extraction (open RE) is the task of extracting new

facts for a potentially unbounded set of relations from various sources
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such as knowledge bases or natural language text. The task is closely

related to targeted information extraction (IE) [80, 122, 78], which

aims to populate a knowledge base (KB) with new facts for the KB’s

relations, such as wasBornIn(Sepp Herberger, Mannheim). However,

targeted IE methods are inherently limited to an (often small) set of

predefined relations, i.e., they are not “open”. The open RE task is

also related to open information extraction (open IE) [11, 40, 32],

which extracts large amounts of surface relations and their argu-

ments from natural language text. In contrast to targeted IE, the

goal of open IE is to extract all (or most) relations expressed in

natural-language text, whether or not these relations are defined in

a KB. The facts obtained by open IE methods are often not dis-

ambiguated, i.e., the entities and/or the relation are not linked to

a knowledge base; e.g., “criticizes”(“Dante”, “Catholic Church”).1

Although open IE is a domain-independent approach, the extracted

surface relations are purely syntactic and often ambiguous or noisy.

Moreover, open IE methods usually do not “predict” facts that have

not been explicitly observed in the input data. Open RE combines

the above tasks by predicting new facts for an open set of relations.

The key challenge in open RE is to reason jointly over the universal

schema consisting of KB relations and surface relations [104].

4.2.1 Relation Extraction Algorithms

Figure 4.1 presents a taxonomy of existing relation extraction algo-

rithms. The main distinction is between closed and open techniques.

1We mark (non-disambiguated) mentions of entities and relations in quotation marks.
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Closed relation extraction solutions aim at predicting new facts for

a set of predefined relations, usually taken from a KB. Existing

methods either reason within the KB itself [43, 85, 36] or lever-

age large text corpora to learn patterns that are indicative of KB

relations [80, 122, 78].

The latter solutions typically make use of distant supervision, i.e.,

they start with a set of seed instances (pairs of entities) for the

relations of interest, search for these seed instances in text, learn a

relation extractor from the so-obtained training data, and optionally

iterate [80, 122, 78].

The former techniques are typically based on tensor completion mod-

els, which use the available data to learn latent semantic representa-

tions of entities (i.e., subjects and objects) and relations in a domain-

independent way; the latent representations are subsequently used to

predict new facts. Tensor completion models conceptually model the

input data as a subject×relation×object tensor, in which non-zero

values correspond to input facts. The tensor is factored to construct

a new tensor in which predicted facts take large non-zero values.

Examples of such tensor factorization models are TripleRank [43],

RESCAL [85, 86], or PITF [36]. Tensor factorization models are

generally well-suited to reason within a KB because they are able to

predict relations between arbitrary pairs of subjects and objects.

Open relation extraction algorithms aim at predicting new facts for

an unbounded set of relations, that came from various sources, such

that natural language text or knowledge bases. Tensor factorization

model are not well-suited for open RE, since these methods suffer

from limited scalability with the number of relations as well as from
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Figure 4.1: Taxonomy of relation extraction algorithms.

their large prediction space [22]. In fact, open RE models are more

general then targeted IE methods in that they additionally reason

about surface relations that do not correspond to KB relations. For

this reason, [104] argued and experimentally validated that open RE

models can outperform targeted IE methods.

One way to jointly reason about KB and surface relations is to clus-

ter the relations : whenever two relations appear in the same cluster,

they are treated as synonymous [50, 115, 132, 124, 79, 4, 30]. For ex-

ample, if “criticizes” and “hates” are clustered together, then we may

predict “hates”(“Dante”, “Catholic Church”) from the fact “crit-
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icizes”(“Dante”, “Catholic Church”) (which is actually not true).

The general problem with relation clustering is its “black and white”

approach to relations: either two relations are the same or they are

different. This assumption generally does not hold for the surface re-

lations extracted by open IE systems [104]; examples of other types

of relationships between relations include implication or mutual ex-

clusion.

Matrix completion approaches try to address the above problem: in-

stead of clustering relations, they directly predict facts, by learning

and making use of semantic representations of relations and their

arguments. The semantic representations ideally captures all the

information present in the data; it does not, however, establish a di-

rect relationship (such as synonymy) between different KB or surface

relations. The key difference between matrix and tensor completion

models is that the former restrict the prediction space, i.e., these

models generally cannot predict arbitrary facts. Similar to distant

supervision approaches, matrix completion models focus on predict-

ing facts for which some direct evidence exists. In more detail, most

methods restrict the prediction space to the set of facts for which the

subject and the object share at least some relation in the input data.

For this reason, matrix completion models are not suited for in-KB

reasoning; an individual pair of entities usually does not occur in

more than one KB relation. In the open RE context, however, input

relations are semantically related so that many subject-object pairs

belong to multiple relations. The key advantage of matrix methods

is (1) that this restriction allows them to use additional features—

such as features for each subject-object pair—and (2) that they scale
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Figure 4.2: Example for representing open RE as a matrix completion problem.

much better with the number of relations. Examples of such matrix

factorization models include [126, 55, 104, 41, 53].

Figure 4.2 shows an example for representing open RE as a matrix

completion problem. The ones correspond to observed fact, either

inside or outside the KB (i.e., containing a surface relation), for

instance employee(Fermi,Sapienza) (in-KB) or “mayor of”(de Bla-

sio,NY) (out of-KB). By completing the matrix is possible to esti-

mate the likelihood of missing facts, for instance, in the example, of

the fact “mayor of”(Caesar,Rome) or “born in”(de Blasio,NY).

4.3 Context-Aware Open Relation Extraction

CORE [90] is a novel matrix completion model that leverages generic

contextual information for open relation extraction. CORE inte-

grates facts from various sources, such as knowledge bases or open
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information extractors, as well as the context (e.g., metadata about

extraction sources, lexical context, or type information) in which

these facts have been observed.

Consider for example the sentence “Tom Peloso joined Modest Mouse

to record their fifth studio album”. Open IE systems may extract

the surface fact “join”(TP, MM) from this sentence. Note that sur-

face relation “join” is unspecific; in this case, it refers to becoming

a member of a music band (as opposed to, say, an employee of a

company). Most existing open RE systems use the extracted sur-

face fact for further reasoning, but they ignore the context from

which the fact was extracted. Actually, exploiting contextual in-

formation might be beneficial for open RE. For our example, we

may use standard natural language processing tools like a named

entity recognizer to detect that TP is a person and MM an organi-

zation. These coarse-grained types give us hints about the domain

and range of the “join” relation for the surface fact, although the

actual meaning of “join” still remains opaque. Now imagine that the

above sentence was extracted from a newspaper article published in

the music section. This information can help to infer that “join” in-

deed refers to joining a band. Other contextual information, such as

the words “record” and “album” that occur in the sentence, further

strengthen this interpretation. A context-aware open RE system

should leverage such information to accurately predict facts like “is

band member of”(TP, MM) and “plays with”(TP, MM).

Note that the prediction of the fact “is band member of”(TP, MM) is

facilitated if we make use of a KB that knows that TP is a musician

and MM is a music band. If TP and/or MM are not present in
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the knowledge base, however, such a reasoning does not apply. In

our work, we consider both linked entities (in-KB) and non-linked

entity mentions (out of-KB). Since KB are often incomplete, this

open approach to handle named entities allows us to extract facts

for all entities, even if they do not appear in the KB.

4.3.1 The CORE Model

Input data. We model the input data as a set of observations of

the form (r, t, c), where r refer to a KB or surface relation, t re-

fer to a subject-object pair of entities (or entity mentions) and c to

contextual information. An observation obtained from the above ex-

ample may be (“join”, (TP, MM), { types:(person,org), topic:music,

word:record, word:album, . . . }). Denote by R the set of all observed

relations, by E the set of all observed entities, and by T ⊆ E × E
the set of all observed entity pairs, which we refer to as tuples. A

fact takes form r(t) and is composed of a relation r ∈ R and a tuple

t ∈ T ; e.g., “join”(TP, MM). Note that there may be multiple ob-

servations for a fact. Finally, denote by C the set of all contextual

variables ; each observation is associated with a set c ⊆ C of context

variables.

Problem definition. The open RE task is to produce a ranked list

of tuples Tr ⊆ T for each relation r ∈ R; the list is restricted to new

tuples, i.e., tuples t ∈ T for which r(t) has not been observed in the

input. The rank of each tuple reflects the model’s prediction of the

likelihood that the corresponding fact is indeed true. A good model

thus ranks correct facts higher than incorrect ones.
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Symbol Description

R Relations set

T Tuples set

E Entities set

C Contextual variables set

Tr Ranked list of tuples for relation r

V Variables set; R ∪ T ∪ E ∪ C; Columns set

X Training points; Rows set

d Dimensionality of the completion; rank of the factorization

Table 4.1: Notation for matrix completion algorithms in open relation extraction.

Modeling facts. Denote by V = R ∪ T ∪ E ∪ C the set of all ob-

served relations, tuples, entities, and contextual variables. For ease

of exposition, we refer to the elements of V as variables. We model

the input data in terms of a matrix in which each row corresponds

to a fact (i.e., not an observation) and each column to a variable.

We group columns according to the type of the variables; e.g, there

are relation columns, tuple columns, entity columns, and a group

of columns for each type of contextual information. The matrix is

populated such that in each row the values of each column group

sum up to unity, i.e., we normalize values within column groups.

In particular, we set to 1 the values of the variable of the relation

and the tuple of the corresponding fact. We set to 0.5 the variables

corresponding to the two entities referred to by the fact.

An example is shown in Fig. 4.3. Here the first row, for instance,

corresponds to the fact “born in”(Caesar, Rome). Note that we

model tuples and entities separately: the entity variables expose

which arguments belong to the fact, the tuple variables expose their

order.
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Figure 4.3: Example for representing a context-aware open RE problem with

CORE.

Modeling context. As described above, we model the data in terms

of a matrix in which rows corresponds to facts (instead of observa-

tions). The reasoning behind this approach is as follows. First, we

may see a fact in multiple observations; our goal is to leverage all the

available context. Second, facts but not observations are the target

of our predictions. Finally, we are interested in predicting new facts,

i.e., facts that we have not seen in the input data. For these facts,

there is no corresponding observation so that we cannot directly ob-

tain contextual information. To address these points, the CORE

model aggregates the context of relevant observations for each fact;

this approach allows us to provide comprehensive contextual infor-

mation for both observed and unobserved facts.

We group contextual information by the type of information: exam-

ples include metadata about the extraction sources (e.g., from an

article on music), types of the entities of a tuple (e.g., (person, loca-

tion)), or the bag-of-words in the sentence from which an extraction

has been obtained. We aggregate the contextual information for

each tuple t ∈ T ; this tuple-level approach allows us to provide con-

textual information for unobserved facts. In more detail, we count
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in how many observations each contextual variable has been associ-

ated with the tuple, and then normalize the count values to 1 within

each group of columns. The so-obtained values can be interpreted

as the relative frequencies with which each contextual variable is as-

sociated with the tuple. The contextual information associated with

each fact is given by the aggregated, normalized context of its tuple.

Fig. 4.3 shows context information arranged in two groups: tuple

types and tuple topics. We capture information such as that the

tuple (Caesar, Rome) has only been seen in articles on history or

that tuple (Fermi, Rome) is mentioned in both physics and history

articles (slightly more often in the former). Since context is associ-

ated with tuples, facts 2 and 4 on (Fermi, Sapienza) share contextual

information. This form of context sharing (as well as entity shar-

ing) allows us to propagate information about tuples across various

relations.

Factorization model. CORE employs a matrix completion model

based on factorization machines and the open-world assumption to

capture latent semantic information about the individual variables.

In particular, we associate with each variable v ∈ V a bias term bv ∈
R and a latent feature vector f v ∈ Rd, where the dimensionality d of

the latent feature space is a hyperparameter of the model. Denote by

X the set of rows in the input matrix, which we henceforth refer to

as training points. For each training point x ∈ X, denote by xv the

value of variable v ∈ V in the corresponding row of the matrix. Our

model associates with training point x ∈ X a score s(x) computed
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as follows:

s(x) =
∑
v∈V

xvbv +
∑
v1∈V

∑
v2∈V \{v1}

xv1xv2f
T
v1
f v2 (4.1)

Here the bias terms model the contribution of each individual vari-

able to the final score, whereas the latent feature vectors model the

contribution of all pairwise interactions between variables. Note that

only bias terms and feature vectors corresponding to non-zero en-

tries in x affect the score and that x is often sparse. Since we can

compute s(x) in time linear to both the number of nonzero entries

in x and the dimensionality d [97], score computation is fast. As dis-

cussed below, we (roughly) estimate bias terms and feature vectors

such that observed facts achieve high scores. We may thus think of

each feature vector as a low-dimensional representation of the global

information contained in the corresponding variable.

Prediction. Given estimates for bias terms and latent feature vec-

tors, we rank unobserved facts as follows. Fix a relation r ∈ R and

a tuple t ∈ T such that r(t) has not been observed. As indicated

above, the CORE model overcomes the key problem that there is

no observation, and thus no context, for r(t) by context aggregation

and sharing. In particular, we create an test point x̂ for tuple r(t) in

a way similar to creating data points, i.e., we set the relation, tuple,

and entity variables accordingly and add the aggregated, normal-

ized context of t. Once test point x̂ has been created, we can predict

its score s(x̂) using Eq. (4.1). We then rank each unobserved tuple

by its so-obtained score, i.e., tuples with higher scores are ranked
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higher. The resulting ranking constitutes the list Tr of predicted

facts for relation r.

Bayesian personalized ranking. The parameters of the CORE model

are given by Θ = { bv,f v | v ∈ V }. In approaches based on the

closed-world assumption, Θ is estimated by minimizing the error

between model predictions and target values (e.g., 1 for true facts,

0 for false facts). In our setting of open RE, all our observations

are positive, i.e., we do not have negative training data. One way

to handle the absence of negative training data is to associate a

target value of 0 to all unobserved facts. This closed-world approach

essentially assumes that all unobserved facts are false, which may not

be a suitable assumption for the sparsely observed relations of open

RE. Following [104], we adopt the open-world assumption instead,

i.e., we treat each unobserved facts as unknown. Since factorization

machines originally require explicit target values (e.g., feedback in

recommender systems), we need to adapt parameter estimation to

the open-world setting.

In more detail, we employ a variant of the Bayesian personalized

ranking (BPR) optimization criterion [99]. We associate with each

training point x a set of negative samples X−x . Each negative sample

x− ∈ X−x is an unobserved fact with its associated context (con-

structed as described in the prediction section above). Generally,

the negative samples x− should be chosen such that they are “less

likely” to be true than fact x. We maximize the following optimiza-
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tion criterion:

1

|X|
∑
x∈X

 ∑
x−∈X−

x

lnσ(δ(x, x−))

|X−x |
− λ‖Θx‖2

 (4.2)

where σ(x) = 1
1+e−x denotes the logistic function, δ(x, x−) = s(x)−

s(x−) denotes the difference of scores, and Θx = { bv,f v | xv 6= 0 }
the subset of the model parameters relevant for training point x.

Here we use L2 regularization controlled by a single hyperparameter

λ. In essence, the BPR criterion aims to maximize the average

“difference” ln σ(δ(x, x−)) between the score of fact x and each of

its negative samples x−, averaged over all facts. In other words, we

aim to score x higher than each x−. (Note that under the closed-

world assumption, we would instead consider x− as being false.) For

a more in-depth discussion of BPR, see [99].

Sampling negative evidence. To make BPR effective, the set of neg-

ative samples needs to be chosen carefully. A naive approach is to

take the set of all unobserved facts between each relation r ∈ R and

each tuple t ∈ T (or E × E) as the set X−x . The reasoning is that,

after all, we expect “random” unobserved facts to be less likely to be

true than observed facts. This naive approach is problematic, how-

ever, because the set of negative samples is independent of x and

thus not sufficiently informative (i.e., it contains many irrelevant

samples).

To overcome this problem, the negative sample set needs to be re-

lated to x in some way. Since we ultimately use the model to rank
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tuples for each relation individually, we consider as negative evi-

dence for x only unobserved facts from the same relation [104]. In

more detail, we (conceptually) build a negative sample set X−r for

each relation r ∈ R. We include into X−r all facts r(t)—again, along

with their context—such that t ∈ T is an observed tuple but r(t)

is an unobserved fact. Thus the subject-object pair t of entities is

not observed with relation r in the input data (but with some other

relation). The set of negative samples associated with each training

point x is defined by the relation r of the fact contained in x, that

is X−x = X−r . Note that we do not actually construct the negative

sample sets; see below.

Parameter estimation. We maximize Eq. (4.2) using stochastic gra-

dient ascent. This allows us to avoid constructing the sets X−x , which

are often infeasibly large, and worked well in our experiments. In

particular, in each stochastic gradient step, we randomly sample a

training point x ∈ X, and subsequently randomly sample a negative

sample x− ∈ X−x . This sampling procedure can be implemented very

efficiently. We then perform the following ascent step with learning

rate η:

Θ← Θ + η∇Θ

(
lnσ(δ(x, x−))− λ‖Θx‖2

)
One can show that the stochastic gradient used in the formula above

is an unbiased estimate of the gradient of Eq. (4.2). To speed up

parameter estimation, we use a parallel lock-free version of stochastic

gradient ascent as in [95]. This allows the CORE model to handle

(reasonably) large datasets.
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size info

facts 453.9k

14.7k Freebase,

174.1k surface linked,

184.5k surface partially-linked,

80.6k surface non-linked.

relations 4.7k
94 Freebase,

4.6k surface.

tuples 178.5k

69.5k linked,

71.5k partially-linked,

37.5k non-linked.

entities 114.2k
36.8k linked,

77.4k non-linked.

Table 4.2: Dataset statistics.

4.4 Evaluation

We conducted an experimental study on real-world data to com-

pare the CORE model with other state-of-the-art approaches.2 Our

experimental study closely follows the one of [104].

4.4.1 Experimental Setup

Dataset. We made use of the dataset of [104], but extended it with

contextual information. The dataset consisted of 2.5M surface facts

extracted from the New York Times corpus [107], as well as 16k

facts from Freebase [17]. Surface facts have been obtained by using

a named-entity recognizer, which additionally labeled each named

entity mention with its coarse-grained type (i.e., person, organiza-

tion, location, miscellaneous). For each pair of entities found within

2Source code, datasets, and supporting material are available at https://github.com/

fabiopetroni/CORE

https://github.com/fabiopetroni/CORE
https://github.com/fabiopetroni/CORE
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a sentence, the shortest dependency path between these pairs was

taken as surface relation. The entity mentions in each surface fact

were linked to Freebase using a simple string matching method. If

no match was found, the entity mention was kept as is. There were

around 2.2M tuples (distinct entity pairs) in this dataset, out of

which 580k were fully linked to Freebase. For each of these tuples,

the dataset additionally included all of the corresponding facts from

Freebase. Using the metadata3 of each New York Times article, we

enriched each surface fact by the following contextual information:

news desk (e.g., sports desk, foreign desk), descriptors (e.g., finances,

elections), online section (e.g., sports, business), section (e.g., a, d),

publication year, and bag-of-words of the sentence from which the

surface fact has been extracted.

Training data. From the raw dataset described above, we filtered out

all surface relations with less than 10 instances, and all tuples with

less than two instances, as in [104]. Tab. 4.2 summarizes statistics

of the resulting dataset. Here we considered a fact or tuple as linked

if both of its entities were linked to Freebase, as partially-linked if

only one of its entities was linked, and as non-linked otherwise. In

contrast to previous work [104, 22], we retain partially-linked and

non-linked facts in our dataset.

Evaluation set. Open RE models produce predictions for all rela-

tions and all tuples. To keep the experimental study feasible and

comparable to previous studies, we use the full training data but

evaluate each model’s predictions on only the subsample of 10k tu-

ples (≈ 6% of all tuples) of [104]. The subsample consisted of 20%

3Further information can be found at htps://catalog.ldc.upenn.edu/LDC2008T19.

htps://catalog.ldc.upenn.edu/LDC2008T19
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linked, 40% partially-linked and 40% non-linked tuples. For each

(surface) relation and method, we predicted the top-100 new facts

(not in training) for the tuples in the subsample.

Considered methods. We compared various forms of the CORE model

with PITF and the matrix factorization model NFE. Our study fo-

cused on these two factorization models because they outperformed

other models (including non-factorization models) in previous stud-

ies [104, 22]. All models were trained with the full training data

described above.

PITF [36]. PITF is a recent tensor factorization method designed

for within-KB reasoning. PITF is based on factorization machines

so that we used our scalable CORE implementation for training the

model.

NFE [104]. NFE is the full model proposed in the “universal schema”

work of [104]. It uses a linear combination of three component mod-

els: a neighborhood model (N), a matrix factorization model (F),

and an entity model (E). The F and E models together are similar

(but not equal) to the CORE model without context. The NFE

model outperformed tensor models [22] as well as clustering meth-

ods and distantly supervised methods in the experimental study of

[104] for open RE tasks. We use the original source code of [104] for

training.

CORE. We include multiple variants of the model in the experi-

mental study, each differing by the amount of context being used.

We consider as context the article metadata (m), the tuple types (t)
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and the bag-of-words (w). Each tuple type is a pair of subject-object

types of (e.g. (person, location)). The basic CORE model uses rela-

tions, tuples and entities as variables. We additionally consider the

CORE+t, CORE+w, CORE+mt, and CORE+mtw models, where

the suffix indicates which contextual information has been included.

The total number of variables in the resulting models varied be-

tween 300k (CORE) to 350k (CORE+mtw). We used a modified

version of libfm for training.4 Our version adds support for BPR

and parallelizes the training algorithm.

Methodology. To evaluate the prediction performance of each

method, we followed [104]. We considered a collection of 19 Freebase

relations (Tab. 4.3) and 10 surface relations (Tab. 4.4) and restrict

predictions to tuples in the evaluation set.

Evaluation metrics. For each relation and method, we computed the

top-100 evaluation set predictions and labeled them manually. We

used as evaluation metrics the mean average precision defined as:

MAP100
# =

∑100
k=1 Ik · P@k

min{100,#}
(4.3)

where indicator Ik takes value 1 if the k-th prediction is true and

0 otherwise, and # denotes the number of true tuples for the rela-

tion in the top-100 predictions of all models. The denominator is

included to account for the fact that the evaluation set may include

less than 100 true facts. MAP100
# reflects how many true facts are

found by each method as well as their ranking. If all # facts are

found and ranked top, then MAP100
# = 1. Note that this definition

4the surce code is available at https://github.com/fabiopetroni/libfm

https://github.com/fabiopetroni/libfm
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of MAP100
# differs slightly from [104]; this metric is more robust be-

cause it is based on completely labeled evaluation data. To compare

the prediction performance of each system across multiple relations,

we averaged MAP100
# values, in both an unweighted and a weighted

(by #) fashion.

Parameters. For all systems, we used d = 100 latent factors, λ =

0.01 for all variables, a constant learning rate of η = 0.05, and ran

1000 epochs of stochastic gradient ascent. These choices correspond

to the ones of [104]; no further tuning was performed.

4.4.2 Results

Prediction performance. The results of our experimental study are

summarized in table 4.3 (Freebase relations) and table 4.4 (surface

relations). As mentioned before, all reported numbers are with re-

spect to our evaluation set. Each entry shows the number of true

facts in the top-100 predictions and, in parentheses, the MAP100
#

value. The # column list the total number of true facts found by at

least one method. The last two lines show the aggregated MAP100
#

scores.

We start our discussion with the results for Freebase relations (ta-

ble 4.3 and figure 4.4). First note that the PITF model generally

did not perform well; as discussed before, tensor factorization mod-

els such as PITF suffer from a large prediction space and cannot

incorporate tuple-level information. NFE and CORE, both matrix

factorization models, performed better and were on par with each

other. This indicates that the use of factorization machines does not
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Relation # PITF NFE CORE CORE+m CORE+t CORE+w CORE+mt CORE+mtw

person/company 208 70 (0.47) 92 (0.81) 91 (0.83) 90 (0.84) 91 (0.87) 92 (0.87) 95 (0.93) 96 (0.94)

person/place of birth 117 1 (0.0) 92 (0.9) 90 (0.88) 92 (0.9) 92 (0.9) 89 (0.87) 93 (0.9) 92 (0.9)

location/containedby 102 7 (0.0) 63 (0.47) 62 (0.47) 63 (0.46) 61 (0.47) 61 (0.44) 62 (0.49) 68 (0.55)

parent/child 88 9 (0.01) 64 (0.6) 64 (0.56) 64 (0.59) 64 (0.62) 64 (0.57) 67 (0.67) 68 (0.63)

person/place of death 71 1 (0.0) 67 (0.93) 67 (0.92) 69 (0.94) 67 (0.93) 67 (0.92) 69 (0.94) 67 (0.92)

person/parents 67 20 (0.1) 51 (0.64) 52 (0.62) 51 (0.61) 49 (0.64) 47 (0.6) 53 (0.67) 53 (0.65)

author/works written 65 24 (0.08) 45 (0.59) 49 (0.62) 51 (0.69) 50 (0.68) 50 (0.68) 51 (0.7) 52 (0.67)

person/nationality 61 21 (0.08) 25 (0.19) 27 (0.17) 28 (0.2) 26 (0.2) 29 (0.19) 27 (0.18) 27 (0.21)

neighbor./neighborhood of 39 3 (0.0) 24 (0.44) 23 (0.45) 26 (0.5) 27 (0.47) 27 (0.49) 30 (0.51) 30 (0.52)

film/directed by 15 7 (0.06) 7 (0.15) 11 (0.22) 9 (0.25) 10 (0.27) 15 (0.52) 11 (0.28) 12 (0.31)

company/founders 11 0 (0.0) 10 (0.34) 10 (0.34) 10 (0.26) 10 (0.21) 10 (0.22) 10 (0.22) 10 (0.24)

sports team/league 11 1 (0.0) 7 (0.24) 10 (0.23) 10 (0.3) 7 (0.22) 10 (0.27) 8 (0.29) 9 (0.3)

structure/architect 11 7 (0.63) 7 (0.63) 9 (0.7) 11 (0.84) 11 (0.73) 11 (0.9) 11 (0.8) 10 (0.77)

team/arena stadium 9 2 (0.01) 6 (0.14) 6 (0.19) 6 (0.18) 6 (0.15) 6 (0.18) 7 (0.29) 7 (0.2)

team owner/teams owned 9 4 (0.05) 6 (0.17) 7 (0.18) 7 (0.33) 6 (0.27) 7 (0.19) 6 (0.22) 8 (0.34)

film/produced by 8 1 (0.03) 4 (0.06) 3 (0.13) 2 (0.12) 3 (0.03) 6 (0.09) 3 (0.13) 6 (0.15)

roadcast/area served 5 0 (0.0) 4 (0.71) 4 (0.73) 4 (0.65) 4 (0.66) 4 (0.66) 5 (0.64) 5 (0.72)

person/religion 5 2 (0.0) 3 (0.21) 2 (0.22) 1 (0.2) 3 (0.22) 3 (0.25) 2 (0.21) 3 (0.21)

composer/compositions 3 2 (0.1) 2 (0.34) 2 (0.35) 2 (0.34) 2 (0.35) 1 (0.33) 2 (0.22) 2 (0.36)

Average MAP100

# 0.09 0.46 0.47 0.49 0.47 0.49 0.49 0.51

Weighted Average MAP100

# 0.14 0.64 0.64 0.66 0.67 0.66 0.70 0.70

Table 4.3: True facts and MAP100
# (in parentheses) in the top-100 evaluation-set

tuples for Freebase relations. We consider as context the article metadata (m), the

tuple types (t) and the bag-of-words (w). Best value per relation in bold (unique

winner) or italic (multiple winners). Average weighs are # column values.

 0.5  0.55  0.6  0.65  0.7

NFE

CORE

CORE+m

CORE+t

CORE+w

CORE+mt

CORE+mtw

Weighted Average MAP

0.64

0.64

0.66

0.67

0.66

0.70

0.70

Figure 4.4: Weighted Average MAP100

# for Freebase relations

affect performance in the absence of context; after all, both methods

essentially make use of the same amount of information. The key

advantage of CORE over NFE is that we can incorporate contex-

tual information. Our results indicate that using such information

indeed improves prediction performance. The CORE+mtw model
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Relation # PITF NFE CORE CORE+m CORE+t CORE+w CORE+mt CORE+mtw

head 162 34 (0.18) 80 (0.66) 83 (0.66) 82 (0.63) 76 (0.57) 77 (0.57) 83 (0.69) 88 (0.73)

scientist 144 44 (0.17) 76 (0.6) 74 (0.55) 73 (0.56) 74 (0.6) 73 (0.59) 78 (0.66) 78 (0.69)

base 133 10 (0.01) 85 (0.71) 86 (0.71) 86 (0.78) 88 (0.79) 85 (0.75) 83 (0.76) 89 (0.8)

visit 118 4 (0.0) 73 (0.6) 75 (0.61) 76 (0.64) 80 (0.68) 74 (0.64) 75 (0.66) 82 (0.74)

attend 92 11 (0.02) 65 (0.58) 64 (0.59) 65 (0.63) 62 (0.6) 66 (0.63) 62 (0.58) 69 (0.64)

adviser 56 2 (0.0) 42 (0.56) 47 (0.58) 44 (0.58) 43 (0.59) 45 (0.63) 43 (0.53) 44 (0.63)

criticize 40 5 (0.0) 31 (0.66) 33 (0.62) 33 (0.7) 33 (0.67) 33 (0.61) 35 (0.69) 37 (0.69)

support 33 3 (0.0) 19 (0.27) 22 (0.28) 18 (0.21) 19 (0.28) 22 (0.27) 23 (0.27) 21 (0.27)

praise 5 0 (0.0) 2 (0.0) 2 (0.01) 4 (0.03) 3 (0.01) 3 (0.02) 5 (0.03) 2 (0.01)

vote 3 2 (0.01) 3 (0.63) 3 (0.63) 3 (0.32) 3 (0.49) 3 (0.51) 3 (0.59) 3 (0.64)

Average MAP100

# 0.04 0.53 0.53 0.51 0.53 0.53 0.55 0.59

Weighted Average MAP100

# 0.08 0.62 0.61 0.63 0.63 0.61 0.65 0.70

Table 4.4: True facts and MAP100
# (in parentheses) in the top-100 evaluation-set

tuples for surface relations. We consider as context the article metadata (m), the

tuple types (t) and the bag-of-words (w). Best value per relation in bold (unique

winner) or italic (multiple winners). Average weighs are # column values.
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Figure 4.5: Weighted Average MAP100

# for surface relations

performed best overall; it increased the average MAP100
# by four

points (six points weighted) compared to the best context-unware

model. Note that for some relations, including only subsets of the

contextual information produced better results than using all con-

textual information (e.g., film/directed by). We thus conjecture that

extending the CORE model by variable-specific regularization terms

may be beneficial.

Table 4.4 and figure 4.5 summarize our results for surface relations.

In general, the relative performance of the models agreed with the
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Figure 4.6: Some facts predicted by the CORE+mtw model for the Freebase

relation author(x,y) and the surface relation “scientist at”(x,y). Most similar

relations also reported, using cosine similarity between the corresponding latent

feature vectors as distance.

one on Freebase relations. One difference is that using bag-of-word

context significantly boosted prediction performance. One reason for

this boost is that related surface relations often share semantically

related words (e.g., “professor at” and “scientist at”) and may occur

in similar sentences (e.g., mentioning “university”, “research”, ...).

Anecdotal results. Fig. 4.6 shows the top test-set predictions of

CORE+mtw for the author and “scientist at” relations. In both

cases, we also list relations that have a similar semantic represen-

tation in the CORE model (highest cosine similarity). Note that
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semantic similarity of relations is one aspect of the model; predic-

tions incorporate other aspects such as context (i.e., two “similar”

relations in different contexts are treated differently).

Training time. We used a machine with 16-cores Intel Xeon proces-

sor and 128GB of memory. Training CORE took roughly one hour,

NFE roughly six hours (single core only), and training CORE+mtw

took roughly 20 hours. Our implementation can handle reasonably

large data, but an investigation of faster, more scalable training

methods appears worthwhile.

4.5 Summary

Context-aware matrix completion aims at integrating additional in-

formation inside the model, in order to increase the overall predic-

tion performance. In this chapter we presented current solutions for

this task, and extended them in order to work in those settings in

which only positive observations are present in input, using relation

extraction as application scenario.

In particular, we presented CORE, a matrix completion model for

open relation extraction that incorporates contextual information.

Our model is based on factorization machines and the open-world

assumption, integrates various forms of contextual information, and

is extensible, i.e., additional contextual information can be inte-

grated when available. Our experimental study on a large real-world

dataset indicates that CORE has significantly better prediction per-

formance than state-of-the-art relation extraction approaches when

contextual information is available.
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CHAPTER 5

Conclusion and Outlook

Prediction is very difficult, especially about the future.

Niels Bohr

In this thesis, we addressed efficient solutions for large-scale matrix

completion problems based on latent factor models. We worked over

two lines, respectively tackling the scalability of such solutions and

their prediction quality.

To handle large-scale instances of the matrix completion problem,

asynchronous algorithms based on latent factor models have been

proposed. Such solutions distribute the input over a cluster of

computing nodes, that can communicate asynchronously, and then

perform the training procedure in a distributed fashion. In order

to achieve a fast execution time, a key challenge is to minimize

the communication between computing nodes while balancing the
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workload. With this aim, we proposed GASGD, a variant of the

asynchronous stochastic gradient descend algorithm that represents

the data matrix as a graph. This allows GASGD to make use of

graph partitioning algorithms for the distributed placement of the

input. As partitioning solution, we proposed HDRF, a novel vertex-

cut stream-based graph partitioning algorithm that exploits a com-

mon characteristic of real graphs to improve the performance, that is

their power-law degree distribution. The distributed matrix comple-

tion procedure is more scalable when using HDRF to partition the

input data, since it experiments less data overlap among the com-

puting nodes, hence the communication in the system is reduced. It

is also more efficient, since computing nodes receive almost perfectly

equal slices of the input to process. Our empirical studies on real

and synthetic datasets showed the effectiveness of this approach, in

that the distributed asynchronous stochastic gradient descent algo-

rithm proved to converge and run faster when using HDRF as input

partitioner. We also provided a theoretical study for the HDRF

algorithm and an analysis of its behavior when applied on general

graph computation algorithms.

Several studies have shown that feeding the algorithm with more

data might be beneficial for the overall prediction quality of the sys-

tem. To further improve the performance, it is necessary to some-

how incorporate contextual information inside the model, that helps

(even as humans) the refining of the input data. However incorpo-

rating such information in the model, especially when the system

detects only positive evidence in input, that is when the revealed

entries in the data matrix have all the same value, is a challenging
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task. We proposed a latent factor based matrix completion model

than can exploit contextual information even in the above case, using

as prototypical application scenario a popular natural language pro-

cessing task: relation extraction. In particular, we proposed CORE,

a novel context-aware matrix completion solution for open relation

extraction. Our model takes in input real-word facts from several

sources, such as natural language text and knowledge bases, together

with the context (e.g., the metadata of the newspaper article, the

entity types, the words in the sentence) in which such facts have

been extracted. We showed how to represent facts and relative con-

textual information employing an extended factorization machine

model, that, differently from the original version, also works with

positive only observations, under the open-world assumption. We

discussed an efficient and parallel method for parameter estimation

based on the Bayesian personalized ranking optimization criterion.

Our experimental study on a real-world dataset validated the useful-

ness of contextual data in open relation extraction tasks; our CORE

model provided higher prediction performance than state-of-the-art

solutions.

We believe that the contributions presented have the potential of

large practical applicability. The whole code used in the experi-

ments has been released under the GPLv3 open source license and

is available at https://github.com/fabiopetroni. Moreover, an

implementation of our HDRF partitioning algorithm has been inte-

grated inside GraphLab, a popular graph-based, high performance,

distributed computation framework.

https://github.com/fabiopetroni
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5.1 Future Work

We list some interesting directions for future research, dividing them

in improvements that can be made to our methods and open research

problems.

5.1.1 Improvements

We didn’t investigate efficient implementations for our HDRF algo-

rithm. Currently the algorithm, when processing an incoming edge,

computes a score associated with each partition and selects the one

with the largest value for it. We believe that some optimizations can

be made to speed up the partitioning. For instance, the algorithm

could check if the two vertices already share a partition before com-

puting all scores, and maintain an incrementally updated balance

factor in memory.

We conjecture that introducing a specific regularization term for

each variables group in the CORE model, automatically updated

during the learning procedure on a disjoint validation set, may in-

crease the overall prediction quality. In fact, the CORE model is

composed of several groups of variables, each with its peculiar pre-

dictive power. For instance, the group containing entity types might

carry more information than the group containing articles metadata

for the task of extracting new facts for a specific relation, and this

should be reflected in the associated regularization terms.
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5.1.2 Open research problems

An open research problem is how to distribute the training proce-

dure for context-aware matrix completion algorithms. For instance,

factorization machines are designed to work on a single core. We pro-

vided a lock-free solution to parallelize the training procedure among

multiple processing cores working on shared memory. Exploring the

feasibility of distributed solutions, able to work in a shared-nothing

environment, is an interesting line of research. One possible ap-

proach could be an asynchronous restyling of the algorithm, where

computing nodes work on a local copy of the data and synchronize

periodically. In this case, however, the input data placement is very

challenging, since the data can’t be represented anymore as a graph

but as an hypergraph. In fact, each training point (an hyperedge)

connects several objects (vertices), e.g., relations, tuples, entities

and several contextual information in the open relation extraction

application scenario.

Another interesting investigation, connected with the previous point,

is concerned with the adaptation of the HDRF graph partitioning

algorithm to hypergraphs. The goal should always be (1) to mini-

mize the vertex replication and (2) to balance the hyperedge load.

We suppose that, also in this case, high degree vertices play a crucial

role for the final quality of the partitioning.

A further line for future research might be the investigation of dis-

tributed solutions for the Bayesian personalized ranking optimiza-

tion criterion. We remark that in a distributed shared-nothing envi-

ronment each computing node has just a partial view on the entire
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input data. This setting is compliant, for instance, with the regular-

ized square loss optimization criterion, where each update depend on

a single training point included in the partial view. The Bayesian

personalized ranking criterion, instead, requires the sampling of a

negative counterpart for each given training point, that might not

be present in the partial view of a computing node. A straightfor-

ward solution might, for instance, force the sampling procedure to

draw only from the local portion of the dataset the current com-

puting node owns. Some interesting questions in this regard are:

does this affect the final quality of the algorithm? If yes, which

countermeasures can be put in place?

Finally, scalable version of factorization machines and the BPR cri-

terion might be composed to create a distributed matrix completion

algorithm able to handle those cases in which only positive evidence

exists in input.
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