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Abstract—Critical Infrastructures (CIs) are among the main
targets of activists, cyber terrorists and state sponsored attacks.
To protect itself, a CI needs to build and keep updated a
domestic knowledge base of cyber threats. It cannot indeed
completely rely on external service providers because informa-
tion on incidents can be so sensitive to impact national security.
In this paper, we propose an architecture for a malware analysis
framework to support CIs in such a challenging task. Given the
huge number of new malware produced daily, the architecture
is designed to automate the analysis to a large extent, leaving
to human analysts only a small and manageable part of the
whole effort. Such a non-automatic part of the analysis requires
a range of expertise, usually contributed by more analysts.
The architecture enables analysts to work collaboratively to
improve the understanding of samples that demand deeper
investigations (intra-CI collaboration). Furthermore, the archi-
tecture allows to share partial and configurable views of the
knowledge base with other interested ClIs, to collectively obtain
a more complete vision of the cyber threat landscape (inter-CI
collaboration).
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I. INTRODUCTION

Malware are evolving, new families are being continu-
ously developed, and the campaigns they use to spread are
getting more frequent and effective, leading to impressive
numbers of unknown samples being discovered every day
[1].

The most famous example of cyber attack to a CI is
Stuxnet [2], a malware designed specifically to damage
Iran’s nuclear facilities. This malware targeted the PLCs
that automated the electromechanical processes, with the
aim of gathering private information on the facility and
damaging fast-spinning centrifuges. One of the most recent
cyber attack against a CI was the so called BlackEnergy [3]:
“On December 23rd, 2015, around half of the homes in
the Ivano-Frankivsk region in Ukraine (population around
1.4 million) were left without electricity for a few hours”.
This attack was launched by using a malware that damaged
some critical components of Ukraine energy companies. The
number of attacks Cls face are on the average one every a
few seconds. Even though many of these attacks are blocked
and filtered out by automatic detection mechanisms, some
of them have to be brought to the attention of cyber analysts
because they could be new form of malware that have to be
carefully manually inspected.

Let us remark that a CI is a complex system deployed over
a (sometimes) large geographical territory that ensures a 24/7
service towards citizen. Thus it embeds a huge number of
vulnerabilities that can be exploited by attackers. Many of
them are known to the CI, however it is sometime impossible
to patch them due to service interruption or because the
removal of a vulnerability could take years (e.g. replacement
of millions of hackable smart meters already deployed).
Hence, vulnerabilities and successful attacks are probably
the most sensitive information of a CI that could severely
impact its reputation and national security. As a result, fully
relying on external ”security providers” such as antivirus and
intrusion detection systems companies is not a good option
for CIs because these companies would manage most of such
confidential information with risk of leakage.

Ideally, in case of a hack event, the targeted CI would
need to keep the story as much confidential as possible,
share the information with national authorities in charge,
carry out all the investigations required to shed light to what
happened, and finally decide what information to disclose
and how to communicate it to the public. The more external
actors are involved in such critical phase, the highest is the
risk of information leakage. As a consequence, CIs need to
establish internal processes to manage their cyber issues, and
a key element to achieve that consists in the capability of
examining the behavior of malware samples.

CIs would need to keep an always updated domestic
knowledge and awareness on novel malware samples. This
can be obtained through a proactive approach and by es-
tablishing collaborations with third parties. Given the huge
amount of samples to analyze, the analysis process should
be automated as much as possible. Where automation is
not possible, such as when an unknown form of malware
is detected, human intervention by some internal analysts is
required. To be even more effective, such manual analysis
should be done collaboratively by experts having skills
in diverse areas, so as to widen the coverage of the as-
pects to investigate and consequently enrich the domestic
knowledge. Finally to increase the domestic knowledge, a
controlled form of information sharing is necessary with na-
tional/international agencies and other Cls and organizations
facing similar cyber threats [4], [5].

In this paper we propose an architecture for a framework
for CIs dedicated to malware analysis, which takes into



account (i) the need of CIs for high confidentiality of their
cyber security concerns, (ii) the capability of analyzing very
large volumes of malware samples in a mostly automated
way, while still enabling analysts to contribute, (iii) the
possibility to account for intra-CI collaboration by allowing
different human operators to add results to a same sample
analysis, and (iv) the opportunity to open to inter-CI collab-
oration by sharing selected subsets of developed knowledge
with other CIs. Although the architecture we designed
is highly tailored to meet the confidentiality requirements
typical of a CI, its field of application can be broader. As
an example, also enterprises and corporations could surely
benefit of such a solution.

Section II reports on the state of the art about malware
analysis tools, with focus on automated gathering, elabora-
tion and reporting of samples. Section III defines precisely
the requirements of such a framework, and Section IV
describes an architecture able to meet them. Conclusions
are drawn and future works are presented in Section V.

II. RELATED WORK

Several works in literature addressed a number of facets
related to automatic malware analysis and detection. Most of
them focus on specific aspects and don’t engage in designing
a general architecture for automatic malware analysis.

As an example, the following two papers deal with
automatic static analysis and detection. In [6] a framework
is presented for automatic static malware analysis based
on control flow graphs and behavioral signature matching,
which obtains good results for real-time detection latency.
[7] proposes an automatic framework for detection based
on data mining, which uses instruction sequences extracted
from samples to generate malicious patterns to be used at
runtime to detect if a sample is a malware.

MALIL [8] is an intermediate language to express assembly
code so as to ease the detection of metamorphic malware.
Authors claim this is a valuable step towards the automation
of malware detection, so this work actually addresses a
specific piece of the overall problem we are tackling.

Other works explicitly focus on the automatic dynamic
analysis rather than on the detection, and thus again only
deepen a particular aspect. An architecture for automatic
malware analysis is presented in [9], where an emulator is
used to analyze samples taking advantage of dynamic and
taint analysis techniques. [10] carries out dynamic analyses
in sandboxes and employs machine learning techniques.

AMAL [11] is a more complex system for developing
malware knowledge based on dynamic analysis in virtual-
ized environments and machine learning techniques to learn
models to classify samples. Even though more similar to our
work compared to those briefly described so far, it doesn’t
dealt with automatic sample retrieval, interactive manual
analysis and sharing of developed knowledge base.

The works most similar to what we propose are [12], [13],
and both regard a framework for malware analysis for Tai-
wan campuses. The samples they analyze are automatically
retrieved using honeynet systems, so they don’t generalize
the means that can be used to collect samples from distinct
sources. They account for information sharing with external
entities, but related information are very limited and do not
allow a proper comparison with what we propose.

III. REQUIREMENTS

This section defines the main general requirements for the
malware analysis framework, which guide the design of its
architecture in next section.

Distinct sources for malware samples [R1]. Being able to
feed as many samples as possible is fundamental to get a
proper coverage of latest threats. The framework shall allow
to input samples coming from a variety of sources, including
known malware datasets, honeypots and malware crawlers.
Mostly automatic analysis [R2]. Expecting large amounts
of malware to inspect, the analysis of input samples shall be
carried out automatically, anyway allowing for intervention
by analysts to enhance the quality and the depth of the
examination. Samples deserving more thorough investigation
shall be pointed out by the framework, with an indication
about why such a deepening is advised and a rank on how
much worthy this sample is to be further examined.
Intra-CI collaboration [R3]. Manual malware analysis is
a required complement to automatic analysis in order to
cope with the expected multitude of variants and unknown
situation that are likely to be found. The framework shall
support the cooperation among malware analysts of a same
CI by allowing more authorized users to manually contribute
to the analysis of a single specific sample.

Continuous development of the knowledge base [R4].
Since one of the main goals is to generate and maintain
an updated knowledge base about cyber threats, a natural
requirement regards the capability to continuously increment
and refine all the models learned from malware analysis.
Private knowledge base [R5]. Due to high confidentiality
needs of CIs in the area of cyber security, the growth
of the knowledge base shall go on without relying on
any external security provider that would require possibly
sensitive information to leave CI’s borders.

Inter-CI collaboration [R6]. Even though the previous
requirement seems to call for CIs to evolve their knowledge
base in total isolation, collaboration among distinct organi-
zations through data sharing is known to be beneficial for
improving the cyber security awareness of all participating
organizations. The framework shall provide for a highly
controlled export of partial views of the knowledge base
to external ClIs, according to well defined policies, and in
turn enable these Cls to deliver their own data share.
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Staged view of the architecture of the malware analysis

IV. ARCHITECTURE

In this section we describe the architecture for the mal-
ware analysis framework. We first show how sample analysis
flow is arranged through a staged view of the architecture
(§ IV-A). Then a high-level layered view of the architecture
is presented (§ IV-B), to highlight main building blocks and
interactions of the framework within CI's borders and with
external CIs. The details about identified layers are then
explained in § IV-C. Finally, a mapping of this architecture
to the requirements to meet is presented (§ IV-D).

A. Staged View and Data Flows

We envision the flow of sample analysis as organized in
a series of stages, from sample retrieval to information shar-
ing. Figure 1 shows such a staged view of the architecture.
The first stage is the Loading Stage, where malware samples
are gathered from distinct sources such as known datasets,
malware crawlers and samples obtained thanks to honeypots.
Once loaded, samples are stacked in an Input Stage together
with a set of metadata related to both the samples themselves
and the way they have been retrieved. From the Input Stage,
malware can then be injected into the Analysis Stage, which
takes in charge all the kinds of automatic analyses to be
performed. At a very general level, we can structure the
Analysis Stage as:

o a set of Analysis Tools that examine in details both the
content and the sample behavior to produce compre-
hensive result datasets;

e a set of Classifiers in charge of performing advanced
elaborations, based on machine learning techniques, on
such datasets;

o a set of Clustering Tools responsible for grouping sam-
ples that share similar characteristics, such as behavior
or malware family;
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Figure 2.  High-level layered view of the architecture of the malware
analysis framework, where intra-CI (persons with different roles within the
CI) and inter-CI (information sharing among different Cls) interactions are
highlighted.

o a set of Correlators that retrieve from trusted external
sources fresh information about cyber threats, and try
to match them with available data resulting from the
analyses performed so far.

The results of the Analysis Stage are then pushed to the
Output Stage, at disposal of authorized analysts for further
analysis. More analysts can contribute to the same sample
by providing additional information (intra-CI collaboration).
Finally, a subset of the data contained in the Output Stage,
selected according to properly defined policies, can be
moved to the Sharing Stage. Data in this stage can be
retrieved by external CIs for their own analyses, and the
same CIs can also provide their own malware related data.
In this way, each participating CI can benefit because the
added value resulting from shared information exceeds the
value produced by each single CI (inter-CI collaboration).

B. Layered View

Figure 2 presents an high-level layered view of the
architecture.
Visual Analytics Layer. Allows authorized users to mon-
itor and control the running tasks within the framework



by means of several graphical user interfaces. Users with
different roles can access different information and specific
actions. Three roles have been identified: executives, security
administrators, and malware analysts. Executives can access
reporting functionalities to get an overall prospect about
framework operational state and knowledge base. Security
administrators can supervise and govern every kind of con-
figuration related to the framework, including policies that
control what information to share. Malware analysts can
manually intervene in the analysis process and view all the
data related to ongoing elaborations and related results. More
analysts can contribute additional results for a same malware
sample (intra-CI collaboration).

Analysis Layer. Contains all the components involved in the
automatic elaboration of malware samples performed in the
Analysis Stage. It includes an initial Dispatcher in charge of
sending samples to the right Tools for Analysis, depending
for example on the file type or on its source. The outputs of
these tools are then provided to Classifiers, Clustering Tools,
and Correlators by using the Storage Layer. The sequence of
elaboration steps that each sample has to pass through is not
static, it is instead defined according to the initial dispatching
and possibly to some intermediate analysis results. After
each elaboration step, the correspondent results are stored
in the Storage Layer.

Storage Layer. Includes all the partitions used for storing
data: (i) one for the Input Stage (Samples and metadata),
which collects new samples to analyze and related metadata,
(ii) one for maintaining intermediate data resulting from the
Analysis Stage (Intermediate analysis results), and (iii) one
for the Output Stage (Knowledge Base).

Collaboration Layer. A view of data contained in the
Storage Layer is extracted and used for information sharing
with other external Cls (infer-CI collaboration). Regardless
of the internal architecture used by other CI to produce their
own knowledge base, we envision this layer as a cross border
tier gluing together different Cls for the sake of controlled
sharing of cyber threat knowledge.

C. Layers Details

Each layer is described in more details, according to what
is shown in Figure 3.

1) Visual Analytics Layer: the three functionalities of this
layer (see § IV-B and Figure 2) are implemented through
four Monitor & Control (M&C) components.

Input Samples M&C. Allows analysts to load new samples
by means of the Loading Plugins, including the possibility
to manually inject new samples. It also provides access to
sample details contained in the Sample and metadata parti-
tion. Moreover, such layer implements part of the Analysis
functionality of the Visual Analytics Layer.

Analysis M&C. Enables malware analysts to interact with
components in the Analysis Layer and, hence, contribute to
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Figure 3. Detailed view of the architecture, where more particulars are
presented related to each layer and the way it interacts with other layers,
CTI’s authorized users, and the outside.

the analysis process. For example, an analyst could: (i) dis-
assemble a sample to bypass anti-disassembling techniques,
(ii) import external unstructured reports to add external
useful information, and (iii) enhance sample analysis results
by loading into the Storage layer reports and annotations
gathered from human analysis.

Knowledge Base M&C. Provides an interface for access-
ing results computed by the Analysis stage. This layer is
included in the Output stage and supports authorized users
by presenting them a reporting interface, which contains
accurate statistical information.

Export M&C. As part of the Sharing stage, this layer allows
security administrators and malware analysts to, respectively,
define and implement policies for exporting and sharing
partial views of the knowledge base to external CIs. Policy
implementations and definitions can be specified through
proper configuration interfaces.

2) Analysis Layer: consists of all the components in-
volved in sample analyses and comprises the Analysis Stage.
This layer is further organized in two sub-layers: the Sample
Analysis, with tools employing static, dynamic, hybrid anal-
yses, and Machine Learning, which contains components
able to leverage machine learning techniques to extract new
useful sample-related information. Such information are then



collected and stored in the Knowledge Base partition. The
components of these two sub-layers are, then, described in
the following.

Dispatcher. Automatically retrieves not analyzed samples
from the Samples and metadata partition and dispatches
them to the proper analysis tool, according to sample charac-
teristics (i.e., a 32-bit portable executable will be forwarded
to a dynamic analysis tool able to execute it).

Static, dynamic, and hybrid tools. Receive samples from
the dispatcher and perform different types of analyses. While
dynamic tools require execution of the input samples, static
tools only look at their content. Hybrid tools run analyses
based on multiple information, such as the behavior of the
samples and their disassembled code and, in addition, can
leverage available metadata. These tools can be commercial
products, open source software or directly developed by the
CI itself. Results are stored into the intermediate results
partition or further used as input to hybrid analysis tools.
Feature extractors and behavior normalizers. Features
extractors draw values of specific features from the results
produced by the analysis tools. The sets of features to extract
depend on the downstream classifiers and clustering tools to
feed. Behavior normalizers are meant to prepare the input
for the correlators by converting to a common format all
the data related to sample execution. These data come from
both dynamic and static analysis tools, and trusted external
sources. In general, extractors and normalizers can be also
fed with models and profiles stored in the Knowledge Base.
Classifiers and clustering tools. Classifiers assign samples
to predefined learned classes, also defined in the Knowledge
Base, on the base of features values. Clustering tools group
samples according to their similarity, which enables to iso-
late specific families of malware and link unknown samples
to such families. Each classification and clustering tool
leverages a different machine learning technique. Results
obtained by these tools are saved into the Knowledge Base
and made available for further investigations, including a
rank regarding whether samples are noteworthy and deserve
special attention by analysts. Such a rank depends on
classification confidence level (the lower the confidence, the
higher the attention it requires) and on the extent a sample
is marked as an outlier by clustering algorithms. Since the
Knowledge Base is continuously updated, classifiers need
either to be retrained periodically or to be designed so as to
enable online learning.

Correlators. Correlate normalized information related to
the behavior of analyzed samples with known malicious
behavioral patterns obtained from external sources. The
resulting degree of similarities is a valuable result for
understanding the nature of a sample. On the other hand, the
lack of correlation between information provided by external
sources and analyzed samples triggers the need for further
analysis by an analyst. Depending on detected correlation
degree, a rank is associated to each sample to quantify how

much worthy it is to be analyzed in more depth.

While there exist several commercial and open source
software that can be used for the tools of Sample Analysis
sub layer, this is not true for the Machine Learning sub layer,
also because of the greater complexity in the structure of
inputs to be provided. Thus such software are more likely
to be developed ad hoc, possibly by leveraging existing
Machine Learning algorithms implementations.

3) Storage Layer: As mentioned before, three distinct
storage partitions have been identified.

Samples and metadata partition Stores new samples com-
ing from the Loading plugins. Since samples are collected
from distinct sources, they could have different represen-
tation formats. Loading plugins handle the format normal-
ization of samples and their related metadata. For example,
relevant metadata are the MDS5 signature, the list of sources
the sample comes from, and its current status in the Analysis
stage.

Intermediate analysis results partition Each elaboration
step in the Analysis stage produces an intermediate result
that is saved into this partition. This latter stores also
additional information fetched from the Internet, such as
updated publicly known vulnerabilities and attack patterns.
In this way, further analyses may leverage intermediate
results, obtained in previous elaboration steps, and publicly
available security information.

Knowledge Base When the analysis of a sample completes,
all the related results and outputs are consolidated in this
partition. A partial view of such data is periodically exported
to an information sharing subsystem to enable inter-CI
collaboration.

4) Collaboration Layer: as discussed in § III, the pro-

posed framework aims to share, under well defined policies,
partial views of the Knowledge Base to support inter-CI
collaboration. This layer is composed by all the collaborative
environment participants’ sharing platforms.
Sharing platform Contains a subset of the information that
a CI wants to share with other critical infrastructures. The
platform should enforce the adoption of policies preventing
sensitive information disclosures. Indeed, export data related
to tailored malicious samples could represent a concern.

Instead of developing custom applications, Storage and
Collaboration Layers can be realized by using either com-
mercial products and open source software. Furthermore,
they are more likely to provide interoperability guarantees
that would allow to meet inter-CI collaboration requirement
more easily.

D. Requirements Satisfaction

Requirement R1 is satisfied by the plugin-based design
of the Loading Stage, which allows to include additional
sample sources over time by developing the related plugins.

The need for automation reported in requirement R2 is
satisfied by the design of the Analysis Stage, where all the



elaboration steps, from sample retrieval to results storage,
are executed in pipeline without human intervention. For
what concerns the other aspects highlighted by requirement
R2, Classifiers, Clustering Tools and Correlators provide
a rank to signal samples that require further investigation,
and the Analysis M&C component in the Visual Analytics
Layer enables malware analysts to manually contribute to
the analysis (intra-CI collaboration).

Such component also enables to meet requirement R3,
since it allows more analysts to collaborate among each other
by contributing analysis results for a same malware.

As more samples are analyzed, collected results leads
to a continuous enrichment of the knowledge base. Also
the models used in the Analysis Layer for classification
and clustering are kept updated by employing periodic
retraining and online learning techniques. This accounts for
requirement R4.

The need for keeping the knowledge base as much confi-
dential as possible (RS5) is satisfied by providing full control
on all the interfaces with the outside. Loading plugins can
be designed and implemented by embedding anonymization
techniques to hide the identity of who is collecting samples.
The retrieval of additional public data from the Internet,
such as known vulnerabilities, don’t pose any further issue.
What is shared with other CIs can be highly configured by
security administrator using the Export component in the
Visual Analytics Layer.

Finally, the need for inter-CI collaboration (R6) is fulfilled
by the Collaboration Layer.

V. CONCLUSION

Large organizations like critical infrastructures struggle to
find a good balance between full-time in-house expertise on
cyber security and outsourced services. Due to the particular
nature of Critical Infrastructures that can impact national
security, this paper advocates that CIs should be equipped
with a domestic knowledge base of cyber threats, supervised
by a full-time team of cyber analysts, all this included within
well defined internal processes.

The paper presented an architecture for semi-automatic
(analysts can intervene when required) collaborative (both
intra-CI and inter-CI) malware analysis that CIs can adopt to
design and implement their own framework for developing
internal cyber threat knowledge base. The contributions of
this work are (i) the identification and definition of the main
requirements for such a framework, (ii) the explanation of
the way malware analysis data flow across the proposed
architecture (staged view), (iii) the description of how each
layer of the architecture works and how they allow to meet
defined requirements (layered view), and some sketches on
the ongoing implementation of a framework prototype.

As a natural future work, we envision to complete proto-
type implementation and extensively test all its functionali-
ties, and take stock of the experience to review and refine the

proposed architecture, deepen implementation and testing
issues, and report comprehensive evaluation results related
to the actual capabilities of the framework to address the
needs of CIs in the field of cyber security.
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