
Exploiting User Feedback for Online Filtering in
Event-based Systems∗

Fabio Petroni
DIAG, Sapienza University of

Rome, Italy
petroni@dis.uniroma1.it

Leonardo Querzoni
DIAG, Sapienza University of

Rome, Italy
querzoni@dis.uniroma1.it

Roberto Beraldi
DIAG, Sapienza University of

Rome, Italy
beraldi@dis.uniroma1.it

Mario Paolucci
Institute of Cognitive Sciences
and Technologies, CNR, Italy

mario.paolucci@istc.cnr.it

ABSTRACT
Modern large-scale internet applications, like the ubiquitous
social networks, represent today a fundamental source of in-
formation for millions of users. The larger is the user base,
the more difficult it is to control the quality of data that is
spread from producers to consumers. This can easily hamper
the usability of such systems as the amount of low quality
data received by consumers grows uncontrolled. In this pa-
per we propose a novel solution to automatically filter new
data injected in event-based systems with the aim of deliv-
ering to consumers only content they are actually interested
in. Filtering is executed at run-time by first profiling both
producers and consumers, and then matching their profiles
as new data is produced.

CCS Concepts
•Software and its engineering → Publish-subscribe
/ event-based architectures; •Human-centered com-
puting → Collaborative filtering;

Keywords
Event-Based Systems; Publish/Subscribe; Event Filtering.

∗This work has been partially founded by the TENACE
PRIN Project (n. 20103P34XC) and by the RoMA Smart-
Cities project, both funded by the Italian Ministry of Edu-
cation, University and Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copy-
rights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permis-
sions@acm.org.
SAC 2016,April 04-08, 2016, Pisa, Italy
c©2016 ACM. ISBN 978-1-4503-3739-7/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2851613.2851763

1. INTRODUCTION
In the recent years the world of global information has been
dramatically changed by the widespread participation of peo-
ple to social networks, whose user base continues to grow
at an astonishing pace (e.g. Twitter’s monthly active users
have grown 19% during the last year peaking at 304M monthly
active users in Q2 2015 – Statista 2015). In such systems
users freely exchange data in several forms (status updates,
tweets, links, comments, etc.) and select data they are
willing to receive using coarse grained selection methods
(friend/follower lists, tag selection, free text searches). The
social network then provides each user with a personalized
data stream whose content takes into account user selection
criteria. Users are sometimes given the possibility to provide
feedback on data they receive (e.g. “I like” on Facebook or
re-tweets on Twitter), but this feedback is commonly taken
into account only to increase the amount of data injected
on the stream or to suggest new connections and selections
to users. This coarseness in the available selection criteria,
mixed with the current growth rate of data injected in these
systems, starts to limit their effectiveness in conveying useful
information to users: as user streams grow to unmanageable
sizes they tend to contain more and more information whose
perceived quality is low from the user standpoint.

By looking at the literature two main approaches can be
identified to attack this problem. The first is based on rep-
utation systems, that is online mechanisms that aggregate
feedback from users’ past experiences, to enable more in-
formed decisions of other users in the future. While these
systems have proven to be fundamental to profile users in
specific applications (e.g. sellers on the eBay platform), their
applicability in social networks where users can show differ-
ent behaviors depending on the data they produce is still
characterized by some open problems. The second approach
is represented by collaborative filtering solutions, where users
feedback expressed on a data set are leveraged to suggest
specific data items to other users. The limitation of the
latter approach is that it must work on a stable data set
making impractical its application to social networks where
new information is continuously injected and streamed in
quasi-real-time to its recipients.

In this paper we propose a novel online filtering solution for

http://dx.doi.org/10.1145/2851613.2851763

event-based systems (social networks can be considered as
complex, large-scale instances of this group). Our solution
leverages feedback expressed by users on received events to
profile data sources. Profiling is based on an reputation
metric calculated as a result of a collaborative process per-
formed by receivers for the same data source. The profiling
process takes into account that a source can produce events
with different quality levels on different topics. New events
injected in the system are filtered online depending both
on the profile associated with their sources and on profiles
built for characterizing the minimum quality thresholds of
each potential destination. We evaluated the performance of
our solution through a simulation-based study by applying
it in the context of publish/subscribe systems. Reported re-
sults show that our solution is able to effectively profile both
source and destination users and to automatically filter out
a large percentage of new events that would be negatively
evaluated by their recipients with a low percentage of false
positives.

The rest of this paper is organized as follows: Section 2
presents related works; Section 3 defines the system model
and states the problem; Section 4 presents our solution that
is then evaluated in Section 5; Section 6 concludes the paper.

2. RELATED WORK
The interest in reputation shown by economy and game the-
ory was quickly followed by a surge of attention in ICT.
As the number of online users and transaction increased,
transcending geographical limitations and personal acquain-
tance, traditional one-to-one word of mouth proved insuf-
ficient. Very soon, the first systems supporting reputation
appeared online, proving themselves essential for trust main-
tenance and partner selection, and at the same time showing
their vulnerabilities under specific attacks [4], pointing out
the best statistics for reputation estimation and using sim-
ulation to show the importance of cognitive aspects. More
recently, surveys on applications for reputation systems have
began to appear [7, 9]. Finally, as the field consolidates in
the most recent years, simplified recipes [5] have been pro-
posed. Reputation in large scale dynamic system has been
studied in EigenTrust [10].

Collaborative Filtering (CF) is a thriving subfield of ma-
chine learning, and several surveys expose the achievements
in this fields [12]. CF solutions in the literature are often
divided in two groups: memory-based and model-based [2].
Memory-based methods are used in a lot of real-world sys-
tems because of their simple design and implementation.
However, they impose several scalability limitations that
make their use impractical when dealing with large amounts
of data. Model-based approaches have been investigated
to overcome the shortcomings of memory-based algorithms.
The most successful Model-based techniques are by far those
based on low-dimensional factor models, as the Netflix Prize
(www.netflixprize.com) established, in particular those based
on matrix factorization (MF) [8]. The most popular MF so-
lutions are Alternating Least Squares (ALS) and Stochastic
Gradient Descent (SGD). None of the solutions in the lit-
erature, to the best of our knowledge, has been applied in a
event-based messaging scenario.

3. SYSTEM MODEL AND PROBLEM
We consider a system where a set of users can produce
or consume information. Users that exchange information
adopt an event-based publish/subscribe communication model
[1]. Without loss of generality, we assume that a user is ei-
ther a publisher, i.e. a producer of events, or a subscriber,
i.e. an event consumer. Following the publish/subscribe
paradigm, each event is constituted by a set of n values,
called content-based address (CBA), that characterize it as
a point in a n-dimensional event space, and a payload with-
out a precise structure. Each dimension of the event space is
an attribute characterized by a continuous or discrete type
(numbers, strings, enumerations, etc.) and a finite range of
admitted values. A publisher can publish events in the whole
event space. A subscriber can select the events he wants to
receive by issuing a subscription that defines a subset of the
event space, and thus restricts the CBAs accepted by the
subscriber. If an event is characterized by a CBA included
in the set defined by a subscription we say that the event
matches the subscription. Interactions between publishers
and subscribers are decoupled by an event notification ser-
vice (ENS) that receives events injected by publishers and
notifies them to all and only the subscribers whose subscrip-
tions are matched.

From an information quality point of view, here we assume
that a publisher is characterized by a different level of exper-
tise in different CBAs. This models the fact that a user can
be an expert on a specific topic and only have a superficial
knowledge on a different one. The expertise of a publisher on
each specific CBA has an impact on the quality of events he
publishes on that CBA. We also assume that the expertise
of a publisher does not change over time. This simplifying
assumption intuitively models the fact that we expect the
usage of our system to last for a timeframe smaller than
the time needed for a user to sensibly vary his expertise on
a topic. Each Subscriber is notified about events from the
ENS and can express a vote (OK/KO) on each event de-
pending on its personal evaluation of the event quality. As
for the publishers, we assume that a subscriber applies a
consistent judgment approach when voting for events (i.e. if
an event is voted OK by a subscriber, the same event can-
not be voted KO by the same subscriber at a different point
in time), and, furthermore, that this judgment approach is
the same regardless of the subscriber’s subscription. The
ENS doesn’t know the publishers’ expertise, nor it knows
the judgment approaches applied by subscribers, but we as-
sume it only receives votes expressed on notified events.

The problem we want to solve can be expressed as follows:
how can we minimize the number of notified events that are
voted KO by the receiving subscribers ?

An ideal solution to this problem consists in an ENS able
to notify to subscribers all and only the events that will
be voted as OK. Given the assumptions that characterize
our model, this goal can be reached by reasoning on com-
plete knowledge, i.e. letting the ENS collect votes for each
triple < publisher, CBA, subscriber > and then determin-
istically discard those notification characterized by a triple
that previously received a KO vote. However, this solution
is clearly poor from a scalability point of view as the number
of triples can quickly explode also in relatively small systems,

and consequently the amount of information that the ENS
should maintain would quickly become unmanageable. In
the next section we introduce a solution that is able to pro-
vide performance that approach those of the ideal solution
at a fraction of its cost (i.e. number of votes that it must
collect and amount of information it needs to maintain).

4. ONLINE FILTERING SOLUTION
Our filtering solution is constituted by an algorithm that
runs within the ENS throughout the whole system lifetime.
The algorithm is structured in two phases: a learning phase
(LP) and a working phase (WP). The aim of the learning
phase is to collect votes and combine them to build profiles.
Publisher and subscriber profiles are then used in the work-
ing phase to perform filtering on events that match subscrip-
tions. The publisher profiling process consists in assigning
to each of them a reputation score for each CBA where they
issued events. Subscribers are profiled using votes they ex-
press to find a reputation threshold (RT) for each of them.
Intuitively, reputation scores assigned to publishers should
capture their expertise, while reputation thresholds should
capture subscribers quality thresholds.

During the learning phase the algorithm gathers event votes
from multiple subscribers, and combines these feedback to
compute a publisher reputation score (REP) for the CBA.
The REP value for a specific < publisher, CBA > pair
changes over time due to votes coming from different sub-
scribers that at runtime decide to subscribe/unsubscribe
that CBA. As more and more votes are collected the REP
value approaches a asymptotic value that represents the rep-
utation score obtainable by collecting votes from all the sub-
scribers. Limiting the LP duration our system faces a trade
off between the quality of its estimation of the ideal REP
value and the amount of information (i.e. votes) it must
collect.

Every time a publisher publishes a new event in the system
the current estimation of its REP value for the target CBA,
together with an uncertainty measure called GAP, is piggy-
backed with the event. During the working phase, before
notifying the event to a target subscriber, the algorithm
checks if the REP value associated to the event is larger
than the RT value of the subscriber. In this case the event
is notified, otherwise the event is dropped. Whenever some
information is missing (e.g. an event without a REP value,
or a non profiled subscriber without a reputation threshold)
the event is notified.

Ideally, our solution should create publisher and subscriber
profiles such that the REP value associated to an event is
greater than the RT value of all and only the subscribers
that would vote OK for it.

4.1 Reputation Score
The Beta Reputation [6] provides a mathematical method
for computing reputation scores on the basis of binary eval-
uations (the OK/KO votes). It is based on the Beta distri-
bution, a continuous family of probability functions indexed
by two parameters α and β. Given a number of received
votes OK + KO, the unknown relative frequency of OK
votes a producer will receive in the future has a probability

distribution expressed by a Beta function with parameters
α and β set to the number of OK and KO incremented by
one respectively, as in the following:

α = OK + 1 and β = KO + 1 (1)

The expected value (mean) of the Beta distribution is the
most natural way to estimate the reputation score REP:

Rep(OK,KO) =
α

α+ β
=

OK + 1

OK +KO + 2
(2)

REP will then have values in the range (0, 1), where value
0.5 represents a neutral rating. We can interpret this ex-
pectation (reputation score) as the most likely value for the
relative frequency of OK votes that the publisher will obtain
in the future.

The standard error of the Beta distribution provides a mea-
sure of the inaccuracy of the reputation estimator:

se(OK,KO) =
1

OK + KO + 2

√
(OK + 1)(KO + 1)

(OK + KO)(OK + KO + 3)
(3)

This measure is inversely proportional to the number of
votes (OK + KO). Intuitively, the more representative is
the subset of voters, the more accurate will be the reputa-
tion estimation. The expected value of the Beta distribution
and his standard error form a basis for producer profiling,
and are the building blocks of our filtering algorithm.

4.2 Filtering algorithm
Producers Profiling — The algorithm associates to each
pair < publisher, CBA > two values: a reputation score
(REP) and an inaccuracy estimation of this score (GAP).
The idea behind this latter score is to define an uncertainty
range around the reputation estimation: the boundaries of
this interval are defined by adding and subtracting the GAP
value from the reputation score. REP is computed using
the expected value of the Beta distribution (Eq. 2) and his
standard error (Eq. 3) constitutes the GAP. The system
updates these values during the learning phase each time a
publisher publishes a new event on a CBA, and new votes
are collected.

Consumers Profiling — Subscribers are profiled using an
explorative mechanism. The goal of the algorithm is to
identify a RT value for each subscriber using the votes it
expresses. When a subscriber emits a new vote v on a no-
tified event with REP r and GAP g, the algorithm stores
a triple < v, r, g > associated to the subscriber. All triples
collected for a subscriber at runtime are sorted by placing
them on a [0, 1] scale according to a worst case estimation
approach: given a triple t =< v, r, g > if v = KO the po-
sition of the triple is r − g, otherwise it is r + g. The sub-
scriber’s RT value is then chosen by picking the smallest
value τ that minimizes the number of positive votes with a
position xOK ≤ τ on the scale and the number of negative
votes with position xKO > τ . The worst case estimation
approach prevents inaccurate reputation estimations from
corrupting the RT. Indeed, without this mechanism nega-
tive votes with over-estimate reputation scores would lead

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
q

u
ir
e

d
 v

o
te

s

relative frequency of positive votes

Beta std err, λ=0.044
Beta std err, λ=0.012
Beta std err, λ=0.005

Hyp std err, S=10, ε=0.005
Hyp std err, S=50, ε=0.005

Hyp std err, S=10000, ε=0.005

Figure 1: Number of votes required to obtain a specific stan-
dard error given a ratio of positive votes.

to over-strict RTs (positive votes with under-estimate repu-
tation would lead to over-permissive RTs respectively).

Profiles Match — The algorithm drops all notifications of
events whose attached REP value is lower or equal than the
RT value on the target subscribers. The initial values for
publishers REP and GAP is ∞ and 0 for subscribers RTs.
In this way the first event issued by a publisher on a specific
CBA is always delivered to all the subscribers subscribed to
that CBA. The filtering mechanism is active from the second
event on.

Learning Phase Stop Condition — During the learn-
ing phase votes are collected to improve the quality of pub-
lisher profiles. The more votes are collected for a pair <
publisher, CBA >, the more the REP value will converge
toward its final value and the GAP value will converge to
0. This convergence process is unlikely to be linear: the
first few votes will strongly drive REP toward its target
value strongly reducing the GAP, while further votes will
marginally refine this result. Obviously, the system incurs
some form of overhead for vote collection.For these reasons,
the stopping condition for the learning phase represents a
crucial point of our algorithm: the goal is to build high
quality profiles to provide highly performant filtering with a
small number of votes. When the learning phase stops for a
pair < publisher, CBA > the algorithm moves to the work-
ing phase where the REP value is kept constant (and set to
the last value it has during the LP) and the GAP value is
cleared and set to 0.

The adoption of naive conditions to decide when the LP
should be stopped could lead to low quality profiles (or a
large number of collected votes). Given that the GAP rep-
resents the inaccuracy of our REP estimation it make sense
to consider a condition on its value to stop the LP: when
the GAP is smaller than a given threshold the LP can be
stopped. Figure 1 depicts, with a solid curve, the amount
of votes that the algorithm should collect to have the Beta
distribution se smaller than a desired value λ (λ = 0.005 in
this specific case).

Our solution is to scale the Beta curve on the basis of the
expected population S such that the maximum of the Beta
se curve matches the maximum of the corresponding Hy-
pergeometric se curve (represented as dashed curves with

empty dots in Figure 1). After scaling the curve, the cor-
responding λ value can be computed (In the figure, for ex-
ample, ε = 0.005 and S = 50 for the Hypergeometric leads
to λ = 0.012), and this will constitute the threshold on the
GAP value that will decide the LP conclusion. This strategy
provides a practical solution to adapt the GAP threshold to
various populations and strongly reduces the possibility that
some LPs will never end.

5. EXPERIMENTAL EVALUATION
In this section we report on the experimental evaluation we
conducted on our solution. The goal of this evaluation was
to assess how much our solution is effective in filtering unde-
sired events and how sensitive it is to different characteristics
of the input load.

Performance Metrics — In general, by looking at the
final effect of our filtering solution applied to a specific no-
tification we can identify four possible cases: (i) an event
notified to a subscriber that votes OK represents a true
positive outcome (TP), (ii) an event notified to a subscriber
that votes KO represents a false positive outcome (FP),
(iii) an event that is filtered for a subscriber that would vote
OK on its notification represents a false negative outcome
(FN) and, finally, (iv) an event that is filtered for a sub-
scriber that would vote KO on its notification represents a
true negative outcome (TN). To measure the performance
of a binary classifier the concepts of sensitivity and speci-
ficity are often adopted. If we apply their definitions to
our system we have that sensitivity (or True Positive Rate
(TPR)) is the fraction of subscribers that are notified about
an event (TP) among all those that would express an OK
vote on its notification (TP + FN). It measures the propor-
tion of actual positives which are correctly identified as such.
Specificity (or True Negative Rate (TNR)) is the fractions
of subscribers that are not notified of an event (TN) among
all those that would express a KO vote on its notification
(TN + FP). It measures the proportion of negatives which
are correctly identified as such Furthermore, we consider the
Matthews correlation coefficient (MCC) that measures the
quality of binary classifications. It returns a value between
−1 and +1 where +1 represents a perfect prediction, 0 no
better than random prediction and −1 indicates total dis-
agreement between prediction and observation. Finally, we
also consider the knowledge size (K), i.e. the average ratio,
among all subscribers in the system, between the number
of pairs < publisher, CBA > for which a subscriber s ex-
pressed at least a vote and the global number of pairs for
which s received an event1. Therefore, a good filtering solu-
tion should work keeping K as small as possible.

Simulation Model — To perform our evaluation we inte-
grated our filtering solution within the SIENA event notifi-
cation service [3] and implemented it with the OMNeT++
discrete event simulation environment. We consider a sim-
plified data model where the event space is constituted by
a single integer attribute with values ranging from 1 to 30.
This simplifying assumption does not impact the general-
ity of the results reported in the remainder of this section

1The knowledge size K could be considered as an abstract
measure of the overhead generated by our solution.

(a) No filtering (b) LP = 1 (c) LP = 6

Figure 2: General filter behavior during the learning and working phases.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12

m
e
tr

ic
 v

a
lu

e

GAP

TPR
TNR
MCC

(a) LP=1, performance metrics

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12

m
e
tr

ic
 v

a
lu

e

GAP

TPR
TNR
MCC

(b) LP=3, performance metrics

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12

m
e
tr

ic
 v

a
lu

e

GAP

TPR
TNR
MCC

(c) LP=6, performance metrics

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12

m
e
tr

ic
 v

a
lu

e

GAP

0
1

2
3

4

5

6

7
8

9

10

11

12

13

1415

16
17

18

19

20
21

22

23

24
25

26

27

28 29

(d) LP=1, intersection points

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12

m
e
tr

ic
 v

a
lu

e

GAP

01
23
4 5 67

8
910

1112
13

1415

16171819

2021
22

23

24

25

26

27

28
29

(e) LP=3, intersection points

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12
m

e
tr

ic
 v

a
lu

e

GAP

0123
45

6
7 8 910

11
1213141516

17
1819

2021

2223

2425
26

27

2829

(f) LP=6, intersection points

Figure 3: Tradeoff between performance metrics varying LP and GAP.

as the considered metrics only depend on the distribution
and amount of events published on CBAs. The behavior of
publishers and subscribers was modeled taking into account
existing studies on the dynamics of publish/subscribe ap-
plications and of churn in peer-to-peer networks [11]. We
considered a fixed set of 200 subscribers. Every subscriber
expresses 3 subscriptions each targeting a single CBA. A
subscription lasts for a limited amount of time, defined by a
Weibull distribution (shape k = 0.5 and scale λ = 5), after
which it is replaced with a new one. Intuitively most of the
subscriptions will last for a short timeframe (minutes) while
some subscriptions will be characterized by a long duration
(days or weeks). Subscription allocation over CBAs follows
a Pareto distribution (scale xm = 1 and shape a = 1). The
popularity of CBAs decrease proportionally to the CBA id
(i.e., CBA with id 1 is the most popular, with id 30 the
least). Publishers publish events at a rate characterized by
a Poisson distribution (λ = 5) on CBAs that are chosen
uniformly at random in the event space. We considered
only 18 publishers in our tests as the metric of interests do
not depend from this parameter. Given that our tests are
driven by the injection of new events, we limited the dura-
tion of each test run to the 100.000th event injected in the
system. The publishers’ expertise on the available CBAs
was modeled using the Beta distribution, randomly varying

its parameters (α, β ∈ [2, 20]) to assign a different function
to every publisher. In this way it is possible to mimic an
application scenario where different publishers sport widely
different knowledge levels on different topics. Subscriber
quality thresholds were modeled as a Normal distribution
(mean µ = 0.6 and standard deviation σ = 0.15). In our
simulations we do the simplifying assumption that events
published by a publisher on a CBA are characterized by a
quality level that corresponds to the expertise level of that
publisher on that CBA. Every time a subscriber with qual-
ity threshold t is notified about an event with quality q such
that q ≤ t it votes KO, otherwise it votes OK.

Results: General filter behavior — Figure 2 shows the
evolution of the false positive FP metric as new events are
injected for three different settings: no filtering applied to
events (Figure 2a), filtering with LP limited to the first event
produced in each CBA by each publisher (LP = 1 in Figure
2b), and filtering with LP limited to the first 6 events (LP =
6 in Figure 2c). In the last two graphs the learning and
working phases can be easily recognized. Figure 2a shows
how the number of false positives is large if no filtering is
applied. Graphs in Figures 2b and 2c show a sharp decrease
of the number of false positives during the learning phase.
At steady-state (working phase) the FP metric is stable with

Figure 4: Online filtering solution.

a low number of occurrences. It is worth noting that the
introduction of the filter can create false negatives (reported
as red crosses in the graphs) whose amount can be controlled
by increasing the learning phase duration.

Results: Learning Phase Duration vs. Knowledge
— Figure 3 reports the behavior of the filter varying the
GAP size (0.00-0.12) and the learning phase duration (1,3
and 6 events). The graphs on the top show the evolution of
the TPR, TNR and MCC metrics varying the GAP size. The
curves clearly show how the GAP size controls the tradeoff
between TPR and TNR: when the GAP is set to 0 the fil-
ter is very effective in avoiding the notification of undesired
events, but this comes at the cost of a lot of events that are
discarded even if they would be rated OK by their target
subscribers. As the GAP grows more events fall in its un-
certainty window and are thus notified; as a consequence,
the TPR metric tends to 1 while the TNR quickly drops to
low values. The graphs on the bottom of the Figure depict
all the intersection points between TNR and TPR calcu-
lated separately for each CBA (the number attached to each
point is the CBA identifier), and show how the choice of the
“best” GAP size when LP = 1 is quite difficult as no size
fits all. This is a consequence of the complex dynamics that
link event production, publishers expertise, and subscription
distribution among the different available CBAs. The MCC
metric confirms this as its maximum is obtained with lower
values of GAP with respect to the intersection of the average
TPR and TNR curves. When we increase the learning phase
duration to 3 and 6 events the TPR and TNR curves both
tend to 1 and their intersection points moves left toward
lower values of the GAP.

These results clarify a fundamental point: given a learning
phase duration, the GAP should be sized independently and
differently for each CBA as their characteristics may vary,
especially when the learning phase is short. On the other
side, increasing the LP duration seems to improve perfor-
mance. This, however, comes at the cost of a larger knowl-
edge size. Keeping LP small while attaining good perfor-
mance is a desirable result as the knowledge K, needed by
the filter to build profiles, grows with it (plot omitted due
to space constraints).

Results: Full system evaluation — Figure 4 wraps up
all the results reported above by showing the evolution of
the FP and FN metrics as events are injected in the system.
By comparing this graph with those previously shown in

Figure 2b and 2c, the improved results brought by the GAP
adaptivity that drives the learning phase durations (separate
evaluation for this mechanism has been omitted due to space
constraints) are evident. The amount of FPs and FNs during
the working phase can be considered residual.

6. CONCLUSIONS
In this paper, we introduced a novel solution for online fil-
tering of information in event-based system. Our solution
targets applications where consumers express binary prefer-
ences (OK/KO votes) on data they receive to capture their
personal perception of the data quality. It collects these pref-
erences to create producer/consumer profiles that are then
used to filter out events that consumers would vote nega-
tively. Its effectiveness has been shown through an extensive
evaluation where the performance variability with respect to
different application load scenarios has been analyzed.

7. REFERENCES
[1] R. Baldoni, L. Querzoni, S. Tarkoma, and

A. Virgillito. Distributed Event Routing in
Publish/Subscribe Communication Systems. In
MiNEMA State-of-the-Art Book. Springer, 2009.

[2] J. S. Breese, D. Heckerman, and C. Kadie. Empirical
analysis of predictive algorithms for collaborative
filtering. In Proceedings of the Fourteenth conference
on Uncertainty in artificial intelligence, 1998.

[3] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and
evaluation of a wide-area notification service. ACM
Transactions on Computer Systems, 2001.

[4] C. Dellarocas. Immunizing online reputation reporting
systems against unfair ratings and discriminatory
behavior. In EC ’00: Proceedings of the 2nd ACM
conference on Electronic commerce, 2000.

[5] C. N. Dellarocas. Designing Reputation Systems for
the Social Web. Social Science Research Network
Working Paper Series, 2010.

[6] R. Ismail and A. Josang. The beta reputation system.
In Proceedings of the 15th Bled Conference on
Electronic Commerce, 2002.

[7] A. Jøsang, R. Ismail, and C. Boyd. A survey of trust
and reputation systems for online service provision.
Decision support systems, 43(2):618–644, 2007.

[8] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In
Proceedings of the 14th international conference on
Knowledge discovery and data mining, 2008.

[9] M. Paolucci, S. Picascia, and S. Marmo. Electronic
Reputation Systems. In Handbook of Research on Web
2.0, 3.0, and X.0. IGI Global, 2010.

[10] M. S. S. Kamvar and H. Garcia-Molina. The eigentrust
algorithm for reputation management in p2p
networks. In World Wide Web Conf. (WWW), 2003.

[11] D. Stutzbach and R. Rejaie. Understanding Churn in
Peer-to-Peer Networks. Proceedings of the 6th
conference on Internet measurement, 2006.

[12] X. Su and T. M. Khoshgoftaar. A survey of
collaborative filtering techniques. Advances in
Artificial Intelligence, 2009.

	Introduction
	Related Work
	System Model and Problem
	Online filtering solution
	Reputation Score
	Filtering algorithm

	Experimental Evaluation
	Conclusions
	References

