
An Algorithm for implementing BFT Registers in

Distributed Systems with Bounded Churn

Roberto Baldoni, Silvia Bonomi, Amir Soltani Nezhad
Università degli Studi di Roma “La Sapienza”,

Via Ariosto 25, 00185 Roma, Italy
{baldoni,bonomi}@dis.uniroma1.it
amir.soltaninezhad@gmail.com

July 21, 2011

MIDLAB TECHNICAL REPORT 5/11 - 2011

Abstract

Distributed storage service is one of the main abstractions provided to the developers of
distributed applications due to its capability to hide the complexity generated by the messages
exchanged between processes. Many protocols have been proposed to build byzantine-fault-
tolerant storage services on top of a message-passing system, but they do not consider the
possibility to have servers joining and leaving the computation (churn phenomenon). This
phenomenon, if not properly mastered, can either block protocols or violate the safety of the
storage. In this paper, we address the problem of building of a safe register storage resilient to
byzantine failures in a distributed system affected from churn. A protocol implementing a safe
register in an eventually synchronous system is proposed and some feasibility constraints on the
arrival and departure of the processes are given. The protocol is proved to be correct under the
assumption that the constraint on the churn is satisfied.

Keywords: Bounded Churn, Safe Register, Byzantine Failures, Eventually Synchronous Sys-
tem.

1 Introduction

Dependable storage is a pillar of many complex modern software systems (from avionics to cloud
computing environments) and byzantine-fault-tolerance (BFT) is one of the main techniques em-
ployed to ensure both storage correctness and highly available accesses. Such properties have to
be guaranteed despite any types of failures, including malicious ones. Availability is achieved by
keeping aligned a fixed number of replicas each one hosted at a separate server.

Looking at large-scale distributed systems such as peer-to-peer systems, interconnected data
centers etc., storage implementations have to withstand various types, patterns, degrees and rates
of arrival to and departure of processes from the system (i.e. they have to deal with churn. As an
example, in the context of cloud computing, a storage system is an unmanaged service (e.g. Elastic
Block Store of Amazon1) ensuring high availability. The storage is implemented through a specific
replication pattern where servers hosting replicas are selected autonomically from the server cloud.
From time to time a cloud provider executes maintanance operations on the server cloud, e.g., roll-
out of security patch operations, that generates a continuous and unpredictable restarts of servers
that can take hours [1]. Therefore, a rollout operation translates into servers that join and leave
the storage service (i.e., server churn). As a consequence, a correct and highly available storage
has to be ready to autonomously tolerate servers churn as well as byzantine server behavior.
Note that, the autonomous behavior of servers, characterizing the churn action, cannot be consid-
ered as a byzantine behavior. Byzantine servers, in fact, try to make the storage service deviate
from its correct behavior either maliciously or accidentally. On the contrary, server behavior in
case of join and leave are well defined: processes are correct, but are temporarily unavailable; as
soon as they come back to be available, they start again to work correctly. It is easy to see that
if the number of servers leaving the storage service is above a given threshold, data can be lost or
compromised, or storage operations cannot terminate.

In this paper, we consider a distributed system that withot churn is composed of n servers
implementing a storage service, then due to the effect of churn up to J servers can be joining or
leaving the service, however such number of serves is guaranteed never be below n−J and eventually
tends to come back to n. In this environment, we present a BFT implementation of a safe register,
which is able to resist f byzantine failures and a churn of at most J servers (with J ≤ bn−5f

3 c).
The protocol is based on quorums of size n − f − J , and works on top of a very general system
model where churn is non-quiescent (i.e., the system model alternates infinitely often periods of no
churn and periods of churn), and there is an unknown time t after which communication becomes
synchronous for a period long enough to allow the BFT protocol to progress (eventually synchronous
system). The algorithm presented in this paper can be also seen as an extension of quorum-based
BFT algorithms [14] to ensure tolerance to servers churn.
Let us finally remark that the model of service implementation presented in this paper reflects
quite well the structure of service implementaed in a cloud environment. In such environment a
storage service is configured, by the cloud provider, to work in a normal working situation with
a set of replicas n, defined at the beginning of the computation. However, such replicas can be
affected by bounded churn due to unpredictable leaves (i.e. crash failures, maintenance operations
etc.) and later on, new replicas can be set up by the provider to substitute the old ones with the
aim to resume normal working situation. This is the kind of environment that this paper wants to
investigate when considering the presence of byzantine proceses.

1http://aws.amazon.com/ebs/

The rest of the paper is contributed as follows: in Section 3, we define the system model.
Section 4 provides the safe register specification while in Section 5, we detail the algorithm and the
correctness proofs. Section 2 presents the related works, and finally Section 7 concludes the paper.

2 Related Work

To the best of our knowledge, this is the first work that addresses the contruction of a register
resisting byzantine failures and churn in a non-synchronous system based on quorums. In the prior
works, we studied the same problem from a structural point of view [7] and in an environment with
crash failures [6].
Byzantine fault tolerant systems based on quorums. Traditional solutions to build byzantine
storage can be divided into two categories: replicated state machines [17] and byzantine quorum
systems [8], [14], [15]. Replicated state machines uses 2f + 1 server replicas and require that every
non-faulty replica agrees to process requests in the same order [17]. Quorum systems, introduced
by Malkhi-Reiter in [14], do not rely on any form of agreement they need just a sub-sets of the
replicas (i.e. quorums) to be involved simultaneously. The authors provide a simple wait-freedom
implementation of a safe register using 5f servers. [4] proposes a protocol for implementing a
single-writer and multiple-reader atomic register that holds wait-freedom property with using just
3f+1 servers. This is achieved at the cost of longer (two phases) read and write operations. In this
paper, our objective has been to design an algorithm that follows the Malkhi-Reiter’s approach (i.e.,
single-phase operations), and that is able to tolerate both f failures and concurrent running join of
at most J servers at any time, using less than 5(f +J) servers. This number of replicas would have
been indeed necessary if we consider churning servers as byzantine processes. Leveraging from the
difference between the behavior of a byzantine server and a churning one, the algorithm presented
in this paper needs just 5f + 3J server replicas.
Registers under quiescent churn. In [13], [10] and [9], a Reconfigurable Atomic Memory for
Basic Object (RAMBO) is presented. RAMBO works on the top of a distributed system where
processes can join and fail by crashing. To guarantee the reliability of data, in spite of network
changes, RAMBO replicates data at several network locations and defines configurations to manage
small and transient changes. For large changes in the set of participant processes, RAMBO defines
a reconfiguration procedure whose aim is to move the system from an existing configuration to
a new one by changing the membership of the read quorums and of the write quorums. Such a
reconfiguration is implemented by a distributed consensus algorithm. Thus, the notion of churn is
abstracted by a sequence of configurations.

In [2] Aguilera et al. show that a crash resilient atomic register can be realized without consensus
and, thus, on a fully asynchronous distributed system provided that the number of reconfigurations
is finite and thus the churn is quiescent. Configurations are managed by taking into account all
the changes (i.e. join and failure of processes) suggested by the participants and the quorums are
represented by any majority of processes. To ensure liveness of read and write operations, the
authors assume that the number of reconfigurations is finite and that there is a majority of correct
processes in each reconfiguration.
Relationship between the churn model and the crash-recovery one In crash-recovery model
processes may recover after a crash and each process is usually augmented with stable storage and,
as in the crash failure model, the set of processes that will be part of the system is known in
advance [3]. At a first glance, our churn model could resemble crash-recovery one (i.e., a server

that leaves and re-joins the regular register computation could be seen as a crash and a recovery
of a process), they differ in several fundamental aspects. In the model presented in this paper: (1)
there is no assumption of initial knowledge about the set of processes, which will be part of the
computation, (2) processes may join the application at any time, (3) processes may crash and later
restart with another identifier an infinite number of times without relying on stable storage, which
is an extremely important point when considering servers are virtual machines that can migrate
from one physical machine to another one, and then the stable storage of the former machine could
not be available anymore. Therefore the model presented in this paper is more general than crash
recovery one. Let us finally remark that we are not aware of any BFT protocol working in a
crash-recovery environment.

3 System Model

The distributed system is composed of a universe of clients Uc (i.e. the clients system) and of
a disjoint universe of servers Us (i.e. the servers system). The clients system is composed of a
finite arbitrary number of processes (i.e. Uc = {c1, c2, . . . cm}) while the servers system is dynamic,
i.e. processes may join and leave the system at their will. A server enters the servers system
by executing the connect() procedure. Such an operation aims at connecting the new process to
both clients and servers that already belong to the system. A server leaves the distributed system
by means of the disconnect() operation. In the following, we will assume that the disconnect()
operation is a passive operation i.e., processes do not take any specific actions, and they just stop
to execute algorithms. In order to model processes continuously arriving to and departing from
the servers system, we assume the infinite arrival model (as defined in [16]). The set of processes
that can participate in the servers system (also called server-system population) is composed of
a potentially infinite set of processes Us = {. . . si, sj , sk . . . }, each one having a unique identifier
(i.e. its index). However, the servers system is composed, at each time, of a finite subset of the
server-system population. Initially, every server si ∈ Us is in the down state as soon as si invokes
the connect() operation, it changes its state from down to up. When the server si disconnects itself
from the servers system, it changes again its state coming back to down.

Clients and servers can communicate only by exchanging messages through reliable and authen-
ticated FIFO channels. As we did in [5], in the following, we assume the existence of a protocol
managing the arrival and the departure of servers from the distributed system, such a protocol is
also responsible for the connectivity maintenance among the processes belonging to the distributed
system. As in [14], [15], we assume that clients are correct and servers can suffer arbitrary failures.
To simplify the presentation, let us assume the existence of a global fictional clock not accessible
from processes.

Distributed Computation. Several distributed computations run on top of the distributed
system, involve the participation of a subset of the servers set of the servers system. To simplify
the presentation, let us assume that there exists only one distributed computation run in our
system. We identify as Cs(t) the subset of processes belonging to the servers system Us that are
participating in the distributed computation at time t (i.e. the server-computation set). At time
t0, when the server-computation set is set up, n servers belong to the servers computation (i.e.
|Cs(t0)| = n). A server si, belonging to the servers system that wants to join the distributed
computation has to execute the join Server() operation. Such an operation invoked at some time t

is not instantaneous and takes time to be executed; how much this time is, depends on the specific
implementation provided for the join Server() operation. However, from time t, when the server si
joins the server-computation set, it can receive and process messages sent by any other processes,
which are participating in the computation, and it changes its state from up to joining.
When a server sj participating in the distributed computation wishes to leave the computation, it
stops to execute the server protocols (i.e. the leave Server operation is passive) and comes back to
the up state. Without loss of generality, we assume that if a server leaves the computation and
later wishes to re-join, it executes again the join Server() operation with a new identity.

It is important to notice that (i) there may exist processes belonging to the servers system that
never join the distributed computation (i.e. they execute the connect() procedure, but they never
invoke the join Server() operation) and (ii) there may exist processes, which even after leaving the
servers computation, still remain inside the servers system (i.e. they are correct, but they stop to
process messages related to the computation). To this aim, it is important to identify the subset
of processes that are actively participating in the distributed computation and the ones that are
joining.

Definition 1 (Joining Servers Set) A server is joining from the time it invokes the join Server()
operation until the time it terminates such operation. J(t) denotes the set of servers that are
execution the join Server() operation at time t.

In the following, we refer as J the maximum value of J(t) for any t.

Definition 2 (Active Servers Set) A server is active in the distributed computation from the
time it returns from the join Server() operation until the time it leaves. A(t) denotes the set of
servers that are active at time t, while A([t, t′]) denotes the set of servers that are active during the
whole interval [t, t′] (i.e. si ∈ A([t, t′]) iff si ∈ A(τ) for each τ ∈ [t, t′]).

A server si changes its state from joining into active as soon as it gets the join Confirmation
event, and remains in such a state until it decides to leave the server-computation set (thus, coming
back to the up state).
Note that, at each time t the set of servers participation in the distributed computation is partitioned
into active processes and joining processes. i.e.

Cs(t) = A(t) ∪ J(t)

Servers that obey their specification are said to be correct. On the contrary, a faulty server can
deviate arbitrarily from its specification. We assume at most f servers can be faulty at any time
during the whole computation2. It is important to note that servers know the values f and J , but
they are not able to know the subset of Cs representing the faulty processes. In Figure 1 it is shown
the state-transition diagram of a correct server.

2Note that, f is an upper bound on the number of faulty processes. As a consequence, during the computation,
there may exists periods where less than f byzantine servers participate in the computation. Moreover, our assumption
does not implies that the set of faulty servers is static but we admit it can change during the whole computation.

Up

Down

JoiningActive Join_Confirmation

leave()

connect() disconnect()

leave()join()

Servers System Us

Servers Computation Cs

Figure 1: State-transition diagram of a Correct Server

Non-Quiescent Bounded Churn. The servers computation alternates periods of churn and
periods of stability. More specifically, there exist some periods Tchurn in which servers join and
leave the computation, then there exist some periods Tstability where the computation becomes
stable, and no join or leave operations are triggered. However, no assumption is made about how
long Tchurn and Tstability are.

We assume that at time t0 all the servers participating in the server computation are active (i.e.
|A(t0)| = n). Moreover, we assume that the churn affecting the servers computation is bounded
by an integer value J ≥ 0 and the number of servers participating in the servers computation can
change in the interval [(n − J), n] (i.e. ∀t, |Cs(t)| ∈ [(n − J), n]). Finally, we assume that in the
distributed computation there are always at least n− J active servers (i.e.∀t, |A(t)| ≥ n− J). The
above equality implies that the servers computation is configured to work with n servers event
though it tolerates that up to J servers can leave and later on they can be replaced by up to J new
joining servers. Thus the value J represents the upper bound on the churn.

Let us finally remark that in this churn model, there is no guarantee that a server remains
permanently in the computation and additionally, this model is general enough to encompass both
(i) a distributed computation prone to non-quiescent churn i.e., there exists a time t (with t = t0)
after which churn holds forever, and (ii) a distributed system prone to quiescent churn i.e., there
exists a time t after which stability holds forever.

4 Register Specification

A register is a shared variable accessed by a set of processes, i.e. clients, through two operations,
namely read() and write(). Informally, the write() operation updates the value stored in the shared
variable while the read() obtains the value contained in the variable (i.e. the last written value).
Every operation issued on a register is, generally, not instantaneous and it can be characterized by
two events occurring at its boundary: an invocation event and a reply event. These events occur
at two time instants (invocation time and reply time respectively) according to the fictional global
time.
An operation op is complete if both the invocation event and the reply event occur (i.e. the process
executing the operation does not crash between the invocation and the reply).
Given two operations op and op′, their invocation times (tB(op) and tB(op′)) and return times
(tE(op) and tE(op′)), we say that op precedes op′ (op ≺ op′) iff tE(op) < tB(op′). If op does not

precede op′, and op′ does not precede op, then op and op′ are concurrent (op||op′). Given a write(v)
operation, the value v is said to be written when the operation is complete. In case of concurrency
while accessing the shared variable, the meaning of last written value becomes ambiguous. In this
paper, we will consider a single-writer/multiple-reader safe register which is specified as follows
[12]3:

• Termination: If a correct process (either a client or a server) participating in the computation
invokes an operation and does not leave the system, it eventually returns from that operation.

• Validity: a read() not concurrent with any write() returns the last written value before its
invocation. In the case of concurrency, a read() may return any value.

As a specialization of the generic model of the computation presented in the previous Section,
we consider in this paper a safe register computation, i.e. the join Server() operation, executed
by servers, has the aim to provide new servers with the state of the register. Concerning the
departures from the computation, we consider the leave operation as an implicit operation; when a
server si leaves the computation, it just stops to send and process messages related to the register
computation. To simplify the notation, whenever not strictly necessary, we use the term join()
instead of join Server().

5 Safe Register Implementation

A register is maintained by the set of active servers. No agreement abstraction is assumed to
be available at a server. Clients do not maintain any register information; they can just trigger
operations and interact with servers through message exchanges. Moreover, we assume that each
server has the same role in the distributed computation (i.e. no server acts as a coordinator) and
when it issues a join() operation at some time t, the server does not leave the computation before
time t+ 3δ.

Eventually synchronous communication model. Due to the impossibility of implementing a
register in a fully asynchronous system prone to non-quiescent churn [5], in this paper we will assume
a partial synchronous system, i.e. there exists a time t after which a synchrony period holds long
enough to ensure the correct progress of protocol implementation. In particular, eventual synchrony
implies that each message sent at some time t′ after t, by a process p, is delivered within δ time
units by every process belonging to the distributed system in the interval [t′, t′ + δ].

Quorums. The basic idea of the algorithm is to extend the opaque masking quorums mechanism,
defined by Malkhi and Reiter [14], to implement a safe register in a dynamic distributed system
with byzantine failures. In particular, both join(), read() and write() operations are executed on
quorums of servers participating in the distributed computation of size n− f − J .

3Interestingly, safe registers have the same computational power as regular registers and atomic registers. This
means that it is possible to implement a multi-writer/multi-reader atomic register from single-writer/single-reader
safe registers as shown in [11].

5.1 A protocol for eventually synchronous dynamic system

Each reader client ci maintains the following variables:

• one integer variable, denoted read sni, representing the sequence number to associate to each
read() operation. Initially the variable is set to 0.

• a set variable, denoted as cl repliesi, used to collect answers sent by servers and initially
empty.

Moreover, the writer client cw also maintains:

• two integer variables snw and counti, representing respectively the sequence number to asso-
ciate to each write() operation and the number of tentative write() operations. Initially both
the variables are set to 0.

• an array of sets variable, denoted as write acki[], used to collect the servers that have ac-
knowledged its last write.

• an array of sets variable, denoted as confirmationi[], used to collect the servers that have
confirmed its last write.

Each server si has the following local variables.

• A set Wi that stores the writers identifiers.

• Two variables denoted registeri and sni; registeri contains the local copy of the safe register,
while sni is the associated sequence number.

• A boolean activei, initialized to false, that is switched to true just after si has joined the
system.

• Two set variables, denoted repliesi and reply toi, that are used in the period during which si
is joining the system. The local variable repliesi contains the 4-tuple < id, value, sn, r sn >
that si has received from other servers during its join period, while reply toi contains the IDs
of servers, which are joining the system concurrently with si (as far as si knows).

• dl previ is a set where (while it is joining the system) pi records the processes that have
acknowledged its inquiry message, while they were not yet active (so, these processes were
joining the system too). When it terminates its join operation, pi has to send them a reply
to prevent them to be blocked forever.

In order to simplify the pseudo-code notation, let us consider the function most frequent(replies).
Such a function is used by both clients and servers to select the most frequent pair < val, sn >
occurred in the set repliesi. In the case that more than one pair with the same frequency exist,
the function returns the pair having the highest sn.

operation join(i):
(01) registeri ← ⊥; sni ← −1; activei ← false; repliesi ← ∅;
(02) reply toi ← ∅; dl previ ← ∅; read sni ← 0;
(03) broadcast inquiry(i, 0);
(04) wait until

`
|repliesi| ≥ (n− f − J)

´
;

(05) let < val, sn >← most frequent(repliesi);
(06) if (sn > sni) then sni ← sn; registeri ← val end if
(07) activei ← true;
(08) for each < j, r sn >∈ reply toi ∪ dl previ do
(09) do send reply (< i, registeri, sni >, r sn) to pj

(10) end for;
(11) return(ok).

———————————————————————————————————————
(12) when inquiry(j, r sn) is delivered:
(13) if (activei) then send reply (< i, registeri, sni >, r sn) to pj

(14) else reply toi ← reply toi ∪ {< j, r sn >};
(15) send dl prev (i, r sn) to pj

(16) end if.

(17) when reply(< j, value, sn >, r sn) is received:
(18) if (read sni = r sn) then
(19) if (∃ < j,−,−, r sn >∈ repliesi) then
(20) repliesi ← repliesi/{< j,−,−, r sn >};
(21) endif
(22) repliesi ← repliesi ∪ {< j, val, sn, r sn >};
(23) endif

(24) when dl prev(j, r sn) is received: dl previ ← dl previ ∪ {< j, r sn >}.

Figure 2: The join() protocol for an eventually synchronous system (code for si)

The join() operation (Figure 2). The server si broadcasts an inquiry ()) message to inform
the other servers, which it is entering the distributed computation set, and wants to obtain the
value of the safe register (line 03).

Then, after it has received “enough” replies (line 04), si selects among the set of received values,
the one occurred with the highest frequency (line 05). Moreover, si updates its local copy of the
register (line 06), it becomes active (line 07), and sends a reply to the processes in the set reply toi
(line 08-10). It also sends such a reply message to the servers in its dl previ set, in order to prevent
them from waiting forever. In addition to the term < i, registeri, sni >, a reply message sent
to a server sj , from a server si, carries also the read sequence number r sn that identifies the
corresponding request issued by sj .

When si delivers an inquiry(j, r sn), it always sends back a message to pj . It sends a reply()
message if it is active (line 13), and a dl prev() if it not active yet (line 15). Moreover, in case si
is not active, it stores the inquiry received from sj in the reply toj variable, to remember to answer
later, as soon as it becomes active (line 14).

When si receives a reply(< j, value, sn >, r sn) message from a server sj , if the reply message
is the first answer to its inquiry(i, read sn) message si adds < j, value, sn, 0 > to the set of replies
that it has received so (line 22). On the contrary, si updates the information already received from
sj with the new value (line 20 - 22).

Finally, when si receives a message dl prev(j, r sn), it adds its content to the set dl previ (line
24), in order to remember that it has to send a reply to sj when it becomes active (lines 08-10).

operation read(i):
(01) read sni ← read sni + 1;
(02) cl repliesi ← ∅;
(03) repeat
(04) broadcast read(i, read sni);
(05) until

`
(|cl repliesi| ≥ n− f − J)

(06) let < val, sn >← most frequent(cl repliesi);
(07) if (sn > sni)
(08) then sni ← sn;
(09) valuei ← val
(10) end if;
(11) return(val).

————————————————————————-
when reply(< j, val, sn >, r sn) is delivered:
(12) if (read sni = r sn) then
(13) if (∃ < j,−,−, r sn >∈ cl repliesi) then
(14) cl repliesi ← cl repliesi/{< j,−,−, r sn >};
(15) endif
(16) cl repliesi ← cl repliesi ∪ {< j, val, sn, r sn >};
(17) endif

(a) Client Protocol

when read(j, r sn) is delivered:
(01) if (activei)
(02) then send reply (< i, valuei, sni >, r sn) to pj ;
(03) else reply toi ← reply toi ∪ {< j, r sn >};
(04) end if.

(b) Server Protocol

Figure 3: The read() protocol for an eventually synchronous system

The read() operation (Figure 3). The algorithm for the read() operation is a simplified version
of the join() algorithm. The main difference between the two algorithms is the “stubborn” re-
transmission mechanism used by the read() (lines 03-05). This mechanism is necessary because (i)
a read() broadcast message could not be received both by a leaving server and by a joining one
and (ii) a reply message sent by a leaving server could not reach the client. This might block the
client read protocol that could not reach the expected number of replies (n− f − J) 4. Resending
the read message periodically will ensure that the message eventually reaches enough servers due
to the arrival of either a stability period or a synchrony period.

Note that, the same problem does no happen during the join() execution thanks to the dl prev
mechanism. When a servers si joins, in fact, its inquiry is delivered to all the servers belonging to
the distributed computation and if new processes arrive, they become aware about the join of si
due to the dl prev message.

The write() operation (Figure 4). Similarly to the read() operation, also the write() is imple-
mented by repeating the value dissemination until the writer gets acknowledgements from a quorum
of n − f − J processes (lines 06 - 08). In addition, in order to terminate the write(), the client

4Let us recall that the communication primitives work in a best-effort fashion on top of FIFO channels. Thus,
there is no guarantee that a message m sent at some time t by a process p is delivered to other processes in case p
leaves the computation.

must also need to receive a confirmation that the acknowledgement are effectively sent by a quorum
of processes that belongs to the distributed computation for a sufficient long time to disseminate
correctly the new value (lines 09 - 12)

operation write(v):

(01) sni ← sni + 1; counti ← 0;
(02) ∀k : write acki[k]← ∅;
(03) ∀k : confirmationi[k]← ∅;
(04) repeat every (∆) time units
(05) counti ← counti + 1;
(06) while (|write acki[counti]| < n− f − J)) do
(07) broadcast write(i, < v, sni, counti >);
(08) endWhile;
(09) for each (pj ∈ write acki[counti]) do
(10) send confirm (i, sn, counti) to pj .
(11) endFor
(12) until (∃x : |confirmationi[x]| ≥ n− f − J);
(13) return(ok).
——————————————————–
when ack(j, sn, num) is received:
(14) if (sn = sni) then
(15) write acki[num]← write acki[num] ∪ {j};
(16) end if.
——————————————————–
when confirm ack (j, sn, num) is received:
(17) if (sn = sni) then
(18) confirmationi[num]← confirmationi[num] ∪ {j};
(19) end if.

(a) Client Protocol

when write(j,< val, sn, num >) is delivered:
(01) if (j ∈Wi ∧ (sn > sni))
(02) then sni ← sn;
(03) valuei ← val;
(04) endif;
(05) if (activei)
(06) then send ack (i, sn, num) to pj .
(07) endif
——————————————————–
when confirm (j, sn, num) is received:
(08) then send confirm ack (i, sn, num) to pj .

(b) Server Protocol

Figure 4: write() protocol for an eventually synchronous system

When a message write(j,< val, sn, num >) is delivered to a server si, it takes into account
the pair (val, sn) if it is more up-to-date than its current pair and only if the message came from
an authenticated channel of one writer (line 01). Then, if si is active, it sends back an ack (i, sn)
message to the writer (line 06).

When the client receives an ack (j, sn) message from the server sj , it adds sj to its set write acki
if this message is an answer to its last write operation(line 09).

Finally, when the client receives a confirm ack (j, sn, num), it just takes into account the
confirmation received by server sj .

Correctness Proofs.

Definition 3 A quorum system Q ⊆ 2|Cs| is a non-empty set of subsets of Cs, every pair of which
intersect. Each Q ∈ Q is called a quorum.

Definition 4 (Opaque Masking Quorum) Let B ⊂ Cs be the subset of faulty processes partic-
ipating in the distributed computation. A quorum system Q is an opaque masking quorum system
if:

• (P1) ∀ Qw, Qr ∈ Q : |(Qw ∩Qr)/B| ≥ |(Qr ∩B) ∪ (Qr/Qw)|

• (P2) ∀ Qw, Qr ∈ Q : |(Qw ∩Qr)/B| > |(Qr ∩B)|

• (P3) ∃ Q ∈ Q : Q ∩B = ∅.

Lemma 1 Let n be the number of processes participating in the distributed computation at any
time t and let f be the maximum number of byzantine processes participating in the computation.
If n ≥ 5f + 3J then Q = {|Qi| = n − f − J} is an opaque masking quorum for the safe register
computation.

Proof Note that, considering a quorum Qi composed of n−f−J processes, property P3 is always
guaranteed. Moreover, P1 implies P2 and thus in the following we will show only P1.

Let Qw and Qr be respectively two quorums associated to a write(v) operation op and a
read()/join() operation op′.

Let X = (Qr/Qw) be the set of processes belonging to the computation and not affected from
op; the number of this processes is |X| = n− |Qw|.
The quorum Qr can be represented as Qr = X ∪ (Qr ∩ Qw) and considering that X and Qr ∩ Qw
are disjoint sets, we can deduce the following: |Qr| = |X|+ |Qr ∩Qw| ⇒ |Qr ∩Qw| = |Qr| − |X| =
|Qr| − n+ |Qw|.
Considering that |Qr| = |Qr| = n− f − J , we get |Qr ∩ Qw| = ((n− f − J)− n+ (n− f − J)) =
n− 2f − 2J .

Note that, in the worst case, (Qr ∩B) = B and it is a disjoint set from (Qr/Qw).
As a consequence, |(Qr ∩B) ∪ (Qr/Qw)| = f + n− (n− f − J) = 2f + J .
Therefore, |(Qw ∩Qr)/B| ≥ |(Qr ∩B) ∪ (Qr/Qw)| ⇒

(n− 2f − 2J)− f ≥ 2f + J ⇒ n ≥ 5f + 3J .
2Lemma 1

Theorem 1 Safety. Let us assume that n ≥ 5f + 3J . Given the algorithm in Figures 2 - 4, then
a read() operation that is not concurrent with any write(), returns the last value written before the
read() invocation.

Proof (Sketch) Let writeα(v) be the α-th write operation invoked on the register, and Wα(t) the
set of processes that, at time t, have the corresponding value v in their local copy of the safe register
(to simplify the reasoning, and without loss of generality, we assume that no two write operations
write the same value).

Let t0 be the starting time of the computation. From the initialization statement, it follows that
n servers initially defining the system are active and store the initial value of the safe register (say
v0). Consequently, we have |A(t0)| = |W0(t0)| = n > n− f − J . Let ty = t0 + y (the time instant
that is y time units after t0). Let us consider the worst case scenario where from time t1 a churn
periods starts. At time t1, c1 servers leave the system and c1 servers invoke the join() operation. All
the servers that leave were active at time t0 and their local copy of the register contained v0. Since
n ≥ 5f + 3J , it follows that J ≤ bn−5f

3 c. As a consequence, in the worst case, c1 = J = bn−5f
3 c

and |A(t1)| ≥ n − J . If follows, at most one correct server in A(t1) (and then also in W0(t1)) can
leave before any server entering the computation terminates its join operation.

Let si be the first servers that terminates its join() operation. Then two cases can happen: (i)
no write() operation is concurrent with the join of si or (ii) there is at least a write() operation
concurrent with the join of si.
Case 1: no concurrency with write() operations. If no write() operation is concurrent with
the join of si, then all of the replies received by si, except at most f , come from correct servers in

W0(t1). Each of these servers (in the worse case n− J − 2f) stores the last value written (namely,
the initial value v0) in its local copy of the register together with the sequence number 0. Thus,
when si executes the lines 05-06 of the join() operation (Figure 2), it updates its local variable with
the value v0 (i.e. the last value written).
Case 2: There exists at least one write() operation concurrent with the join. In this case,
the join() operation is allowed to return any value.

The same reasoning can be applied for the subsequent write operations and we have that at
the end of the join operation, each servers got a valid value. Moreover, considering that a read()
operation is just a simplified version of the join, the same reasoning can be applied and the claim
follows. 2Theorem 1

Lemma 2 Let us assume that (1) n ≥ 5f + 3J , and (2) a server that invokes the join() operation
remains in the system for at least 4δ time units. If a server process si invokes the join() operation,
and does not leave the computation, this join operation terminates.

Proof Let us observe that, in order to terminate its join() operation, a server process si has to
wait until its set repliesi contains n− f − J elements (line 04, Figure 2). Empty at the beginning
of the join operation (line 01, Figure 2), this set is filled in by si when it receives the corresponding
reply() messages (line 22 of Figure 2).

A server sj sends a reply() message to si if (i) either it is active and has received an inquiry
message from si, (line 13, Figure 2), or (ii) it terminates its join() operation and < i,− >∈
reply toj ∪ dl prevj (lines 08-10, Figure 2).

Let us suppose by contradiction that |repliesi| remains smaller than n−f−J and let us consider
the worst case scenario where there is no stability periods before the synchrony assumptions hold.
This means that si does not receive enough reply() carrying the appropriate sequence number.
Let t be the time at which the system becomes synchronous and let us consider a time t′ > t at
which a new server process sj invokes the join operation. At time t′, sj broadcasts an inquiry
message (line 03, Figure 2). As the system is synchronous from time t, every process present in
the system during [t′, t′ + δ] receives such inquiry message by time t′ + δ. As it is not active yet,
when it receives sj ’s inquiry message, the process si executes line 14 of Figure 2 and sends back
a dl prev message to sj .

Due to the assumption that every process that joins the system remains inside for at least 3δ
time units, sj receives si’s dl prev and executes consequently line 24 (Figure 2) adding < i,− >

to dl prevj . Due to the assumption that there are always less equal than bn−5f
3 c joining servers in

the computation, we have that at time t′ + δ at least n − (bn−5f
3 c) = n − J processes receive the

inquiry message of sj . Note that, each active and correct server will execute line 13 (Figure 2)
and sends a reply message to sj . As a consequence, at least n− f − J servers will answer to sj ’s
inquiry. Due to the synchrony of the system, sj receives these messages by time t′ + 2δ and then
stops waiting and becomes active (line 07, Figure 2). Consequently (lines 08-10) sj sends a reply
to si as i ∈ reply toj ∪ dl prevj . In δ time units, si receives that reply message and executes line
22, Figure 2.

Note that, due to the broadcast property, each process, participating in the computation (either
it is active or joining) at time tB(joini) when si issued the join operation, is guaranteed to receive
eventually the message if it remains in the computation. Moreover, due to dl prev messages, all
the processes joining after si will be notified about the joining state of si (i.e. they will receive a

dl prev messages from a server whose state is joining).
Considering that (i) active processes participating in the computation at time tB(joini) can be
replaced along time by processes joining after tB(joini), (ii) all these servers are aware of si and
(iii) there always exist at least n− J active processes participating in the computation and that at
most f of them can be faulty, then there always exist enough processes along time able to reply to
the inquiry of si. Thus, si will eventually receive a reply from any of them so it will fill in its set
repliesi, terminating its join operation. 2Lemma 2

Lemma 3 Let us assume that (1) n ≥ 5f + 3J , and (2) a server that invokes the join() operation
remains in the system for at least 4δ time units. If a client ci invokes a read() operation and does
not leave the system, this read operation terminates.

Proof The proof of the read termination is the same as that of Lemma 2. The read operation, in
fact, is a simplified case of the join algorithm where the operation is initiated from a client and the
chain of messages inquiry(), dl prev(), reply() is replaced by a read() message retransmission
mechanism.

2Lemma 3

Lemma 4 Let us assume that (1) n ≥ 5f + 3J , and (2) a server that invokes the join() operation
remains in the system for at least 4δ time units. If a client process ci invokes write() and does not
leave, this write operation terminates.

Proof (Sketch) Before terminating the write of a value v with a sequence number sn a client
process ci has to wait until there exists at least one entry of the array confiramationi containing
at least n− f − J elements.
Empty at the beginning of the write operation, this set is filled in when the confirm ack(−, sn))
messages are delivered to ci. Such a message is sent by every active server process sj such that sj
receives the corresponding confirm message from ci.

Suppose by contradiction that ci never fills in confiramationi. This means that there note
exist any count such that all the servers that have acknowledge the write have also sent the confirm
message to ci.
Let us consider the time t at which the system becomes synchronous, i.e., every message sent by
any process pj at time t′ > t is delivered by time t′ + δ (either if pj is a client or a server).

Since, after t the system is synchronous and considering that the client ci continuously retrans-
mits the write() message, then any active server sj receives such a message in at most δ time
units. As a consequence, at least n− f − J servers will execute line 06 of Figure 2 sending back an
ack(−, snb) message to ci. Such a messages will be delivered by ci latest at time t + 2δ and thus
ci will exit from the loop in lines 06-08. At the same time, ci will also send a confirm message
to all the servers from which it has received the ack and suck messages will be delivered by time
t+ 3δ triggering the send of the corresponding confirm ack.

As (1) by assumption a process that joins the system does not leave for at least 4δ time units and
(2) the system is now synchronous, the chain of messages write, ack, confirm, confirm ack
will lead ci to execute line 18 and adds sj to the set confirmationi. 2Lemma 4

From Lemma 2, Lemma 3 and Lemma 4 we have:

Theorem 2 Termination. Let us assume that n ≥ 5f + 3J . Given the algorithm in Figures 2 -
4, if a process invokes join(), read() or write (), and does not leave the system, it terminates its
operation.

operation read(i):
(01) read sni ← read sni + 1;
(02) cl repliesi ← ∅;
(03) repeat
(04) broadcast read(i, read sni);
(05) until

`
(|cl repliesi| ≥ 2f + 1)

(06) let < val, sn >← most frequent(cl repliesi);
(07) return(val).

————————————————————————————
when cl reply(< j, val, sn >, r sn) is delivered:
(08) if (read sni = r sn) then
(09) if (∃ < j,−,−, r sn >∈ cl repliesi) then
(10) cl repliesi ← cl repliesi/{< j,−,−, r sn >};
(11) endif
(12) cl repliesi ← cl repliesi ∪ {< j, val, sn, r sn >};
(13) endif

(a) Client Protocol

when read(j, r sn) is delivered:
(01) if (¬reading[j])
(02) then reading[j]← true;
(03) read repliesi[j]← ∅;
(04) else if (last read[j] < r sn)
(05) then read repliesi[j]← ∅;
(06) end if.
(07) if (activei)
(08) then if (last read[j] ≤ r sn)
(09) then last read[j]← r sn :
(10) broadcast reply (< i, valuei, sni >, r sn);
(11) read repliesi[j]← read repliesi[j] ∪ valuei

(12) end if.
(13) else reply toi ← reply toi ∪ {< j, r sn >};
(14) end if.

————————————————————————————

when reply(< j, val, sn >, r sn) is delivered:
(15) if (last read[j] < r sn)
(16) then read repliesi[j]← read repliesi[j] ∪ valuei

————————————————————————————

when (∃ j : |read repliesi[j]| ≥ n− f − J):
(17) let < val, sn >← most frequent(read repliesi[j]);
(18) send cl reply (< i, val, sn >, last read[j]) to cj ;
(19) reading[j]← false;

(b) Server Protocol

Figure 5: The read() protocol for an eventually synchronous system

operation write(v):
(01) sni ← sni + 1;
(02) write acki ← ∅;
(03) while (|write acki| < 2f + 1)) do
(04) broadcast write(i, < v, sni >);
(05) endWhile;
(06) return(ok).
——————————————————–
when write ack(j, sn) is received:
(07) if (sn = sni) then
(08) write acki ← write acki ∪ {j};
(09) end if.

(a) Client Protocol

when write(j,< val, sn >) is delivered:
(01) if (j ∈Wi ∧ (sn > sni))
(02) then sni ← sn;
(03) valuei ← val;
(04) acki ← ∅;
(05) confirmationi ← ∅;
(06) end if
(07) broadcast server ack (i, sn);
(08) if (activei)
(09) then acki ← acki ∪ {i};
(10) end if
——————————————————–
when server ack (j, sn) is received:
(11) acki ← acki ∪ {i};
——————————————————–
when confirmation (j, sn) is received:
(12) if (sn = sni) then
(13) confirmationi ← confirmationi ∪ {j};
(14) end if.
——————————————————–
when (|acki| ≥ n− f − J)
(15) for each (j ∈ acki)
(16) send confirmation (i, sni) to pj

(17) end for
——————————————————–
when (|confirmationi ∩ acki| ≥ n− f − J):
(18) send write ack (i, sn) to pj .

(b) Server Protocol

Figure 6: write() protocol for an eventually synchronous system

6 Weakening Clients Knowledge Assumptions

The protocol proposed in Figures 2-4 assumes that all the processes (both clients and servers)
participating in the distributed computation know (i) the maximum number of byzantine servers
f , (ii) the number n of servers participating in the distributed computation and (iii) the maximum
number of non-active servers J .
However, the latter two points can be weakened by assuming that only servers to know such a
values. These values are, in fact, two configuration parameters of the servers computation, defining
the robustness of the service. As a consequence, assuming that only servers know such values is
not a strong assumption.

In this section, we will show how it is possible to modify the read() and the write() implemen-
tations to let servers dynamic behavior be transparent to clients. The basic idea of the algorithms
proposed in this section is to let servers act on behalf of the clients. In particular, before answering
to the client, each servers must be sure that the current operation has been acknowledged/executed
by a quorum of servers. As a consequence, the client needs only to know the maximum number
of byzantine replicas f and it waits until it receives at least 2f + 1 answers. Note that, this mod-
ification does not impact the relation about n, f and J , even though it increased the algorithms
complexity in terms of messages and latency.

The read() operation (Figure 5). In addition to the data structure used in the previous read()
algorithm, each server si needs also to maintain the following local variables:

• an array of boolean readingi[], initialized to false, where the j-th entry is set to true when si
receives a new read request from client cj .

• an array of integer last readi[] where the j-th entry corresponds to the last read request
issued by client cj .

• a set variable read repliesi where si stores values forwarded by other servers.

The client behaves like in the previous algorithm but it waits only 2f + 1 answers. Servers
works as follows: when a server si receives a read() message from a client cj , it starts to read
the value of the variable from the other active servers. In particular, it first checks if the message
corresponds to a new read request and in case it resets its local variables (lines 01-06). Then it
forwards its local value trough a reply() message (line 10) and consider its contribution (line 11).
When a server si receives a reply() message from a server sj , it checks if the message is related to
the current read it is considering and if it so, it consider the contribution sent by sj .

As soon as a servers has received at least n− f −J values from other servers, it select the most
frequent one and answers to the client.

The write() operation (Figure 6). As for the read() operation, we have modified the write
algorithm by letting first the servers execute the operation and only after they got acknowledgement
from a quorum of n− f − J other servers, they send back an ack to the client.

7 Conclusion

In this paper, we have provided an implementation of a distributed storage in the presence of both
servers churn and byzantine servers. In a computation composed of a constant number of n servers,
the protocol is able to tolerate at most J joining servers if J ≤ bn−5f

3 c, where f is the maximum
number of byzantine servers. The protocol works in an eventually synchronous environment, so it
keeps the safety during arbitrarily long (but finite) periods of asynchrony and churn, while it is
able to quickly terminate as soon as the system gets into synchrony bounds.

We decided to extend Malki-Reiter’s protocol for its simplicity and because operations are short
in time. Other algorithms (e.g. [15]) reduce indeed the number of servers needed for handling f
byzantine failures, however, this is done at the cost of multistep read and write operations. When
facing a dynamic system, such length matter as the leaving of processes during read and write
operations can impact their safety and liveness. We plan to investigate this tradeoff in the future
work.

Acknowledgement

This work is partially supported by the European projects SOFIA, GreenerBuildings and SM4All.

References

[1] Adya A., Dunagan J., Wolman A. Centrifuge: integrated lease management and partitioning for cloud
services. In Proceedings of the 7th USENIX conference on Networked systems design and implementation
(NSDI), 2010.

[2] Aguilera M. K., Keidar I., Malkhi D., Shraer A., Dynamic atomic storage without consensus, in Pro-
ceedings of 28th Annual ACM Symposium on Principles of Distributed Computing (PODC) 2009.

[3] Aguilera M., Chen W.,Toueg S. Failure Detection and Consensus in the Crash-recovery Model. Dis-
tributed Computing, 13(2), 99-125, 2000.

[4] Aiyer A. S., Alvisi L., Bazzi R. A. Bounded Wait-Free Implementation of Optimally resilient Byzantine
Storage without (Unproven) Cryptographic assumptions in Proceedings of 21th International Symposium
on Distributed Computing (DISC), 2007.

[5] Baldoni R., Bonomi S., Kermarrec A.M., Raynal M., Implementing a Register in a Dynamic Distributed
System, in Proceedings of the 29th IEEE International Conference on Distributed Computing Systems
(ICDCS), 2009.

[6] Baldoni R., Bonomi S., Raynal M., Implementing a Regular Register in an Eventually Synchronous
Distributed System prone to Continuous Churn IEEE Transactions on Parallel and Distributed Systems
(TPDS), 2011 http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.97

[7] Baldoni R., Bonomi S., Soltani Nezhad A. Regular Registers in Dynamic Distributed Systems with
Byzantine Processes: Bounds and Performance Analysis Technical report - MIDLAB 3/11 - 2011. A
short version of this paper will appear in PODC 2011.

[8] Bazzi R. A., Synchronous Byzantine Quorum Systems, Distributed Computing 13(1), 45-52, 2000.

[9] Chockler G., Gilbert S., Gramoli V., Musial P. M. and Shvartsman A., Reconfigurable distributed storage
for dynamic networks Journal Parallel Distributed Computing, 69(1), 100-116, 2009.

[10] Gilbert S., Lynch N., and Shvartsman A., RAMBO II: Rapidly Reconfigurable Atomic Memory for
Dynamic Networks, in Proceedings of International Conference on Dependable Systems and Networks
(DSN), 2003.

[11] Haldar S. and Vidyasankar K., Constructing 1-writer Multireader Multivalued Atomic Variables from
Regular Variables. JACM, 42(1), 186-203, 1995.

[12] Lamport. L., On Interprocess Communication, Part 1: Models, Part 2: Algorirhms, Distributed Com-
puting, 1(2):77-101, 1986.

[13] Lynch, N. and Shvartsman A., RAMBO: A Reconfigurable Atomic Memory Service for Dynamic Net-
works, in Proceedings of the 16th International Symposium on Distributed Computing (DISC), 2002.

[14] Malkhi D., Reiter M. K. Byzantine Quorum Systems, Distributed Computing 11(4), 203-213, 1998.

[15] Martin J., Alvisi L., Dahlin M.. Minimal Byzantine Storage, in Proceedings of the 16th International
Symposium on Distributed Computing (DISC), 2002.

[16] Merritt M. and Taubenfeld G., Computing with Infinitely Many Processes, in Proceedings of the 14th
Int’l Symposium on Distributed Computing (DISC), 2000.

[17] Schneider Fred B. , Implementing Fault-Tolerant Services Using the State Machine Approach, ACM
Computing Surveys, 22(4), 299-319, 1990

