
Oblivious Assignment with m Slots

G. ATENIESE‡, R. BALDONI†, S.BONOMI†, G. A. DI LUNA†

† Dipartimento di Ingegneria Informatica, Automatica e Gestionale Antonio Ruberti
Universitá degli Studi di Roma La Sapienza

Via Ariosto, 25
I-00185 Roma, Italy

{baldoni, bonomi, diluna}@dis.uniroma1.it

‡ Dipartimento di Informatica
Universitá degli Studi di Roma La Sapienza

Via Salaria, 113
I-00198 Roma, Italy

ateniese@di.uniroma1.it

MIDLAB TECHNICAL REPORT 2/12 2012

Abstract

Preserving anonymity and privacy of customer actions within a complex software system, such as
a cloud computing system, is one of the main issues to be solved in order to boost private computation
outsourcing. In this paper, we propose a coordination paradigm, namely oblivious assignment with m
slots of a resource R (with m ≥ 1), allowing processes to compete in order to get a slot of R, while
ensuring at the same time both fairness in the resource slots assignment and that no process knows
which slot of R is assigned to a process. We study oblivious assignment with m slots solvability issues
related to the message pattern of the algorithm. We also present a distributed algorithm solving oblivious
assignment with m slots within a distributed systems, assuming the existence of at least two honest
processes and m ≤ n (where n is the number of processes). The algorithm is based on a rotating token
paradigm and employs an adaptation of the ElGamal encryption scheme to work with multiple parties and
ensuring obliviousness of the assignment. Finally, the correctness of the algorithm is formally proved.

Keywords: distributed coordination abstractions, secure computations, mutual exclusion, distributed
systems.



1 Introduction

In this paper, we investigate the problem of oblivious assignment with m slots. Informally, we consider n
non-anonymous processes competing for accessing one of the m slots of a resource R. Each slot can be
assigned to at most one process at a time. When the process does not need the resource anymore, it releases
the slot it owns and the latter can be thus assigned to another requesting process. Note that, processes are
utterly identifiable but we strive to protect the allocations of resource slots to processes. Thus, processes are
oblivious and in particular they are unaware of assignments between processes and resource slots.

This problem is particularly interesting because it crystallizes the difficulty in coordinating processes
that wish to interact with a resource without being noticed by anyone else. Resource sharing environments,
channel assignments in telco systems are examples of domains where this problem can be relevant. As an
example, an oblivious assignment scheme can help a group of clients of a cloud provider to hide and protect
their allocation of resources within a virtualized environment or across distinct domains. Resources can thus
be obliviously allocated to clients. Not even the cloud provider is aware of these various assignments.

We target organizations moving to the cloud, or outsourcing their services, that wish to access or allocate
virtual resources anonymously. Cryptographic systems, such as fully homomorphic encryption [11], do not
solve the oblivious assignment problem. Homomorphic encryption allows clients to perform computation
over encrypted data ensuring that sensitive information remain inaccessible to the cloud provider. Neverthe-
less, the provider can derive which resources are allocated to which clients. This constitutes a side-channel
leak we aspire to prevent. We stress that this type of side-channel has not been considered before in the
context of cloud computing.

The paper firstly defines the oblivious assignment with m slots (O-mA) problem. More precisely, if
an honest process pi get a slot rj , then no other process is aware of this assignment. We also provide a
stronger form of this problem, namely strong oblivious assignment with m slots (SO-mA). In this case,
given a process pi, no other process can tell whether any slot was assigned to pi or not. That is, it is not
possible to infer whether a specific process is using a resource slot or not. We study solvability issues of
O-mA and SO-mA problems related to the message pattern generated by distributed algorithms. This points
out that token-based algorithms could implement SO-mA and O-mA. We also show that a trivial perpetual
circulating algorithm solves our problem only in the presence of n − 1 honest processes (where n is the
number of processes). Thus, we introduce a rotating token distributed algorithm solving O-mA and we
assume the existence of at least two honest processes and m ≤ n. The algorithm employs an adaptation
of ElGamal encryption scheme to ensure obliviousness of the assignment. Finally, the correctness of the
algorithm is formally proved. Let us remark that each non-honest process is able to detect bounds on
transmission delays and when they holds. Non-honest process can use this knowledge to infer information
about current slot assignments of correct processes.

The rest of the paper is organized as follows: related work is in Section 2 and the system model is
defined in Section 3. Section 4 formalizes the oblivious assignment withm slots problem and provides some
solvability conditions, while Section 5 presents a distributed algorithm solving the oblivious assignment
problem. Finally, Section 6 concludes the paper. The proofs omitted in the text and can be found in Appendix
A.

2 Related Work

Defining distributed algorithms for accessing resources in mutual exclusion has been a mainstream field of
research in the eighties [18] and several efficient algorithms have been devised (e.g., [19], [21], [16] just

1



to cite a few). To facilitate fault tolerance without assuming failure detection, the general mutual exclusion
problem has been extended to the k-mutual exclusion one [17], where at most k different processes can
concurrently access the same resource; general strategies working in a failure-free environment have been
adapted to solve this more general problem in an asynchronous message passing system (e.g. [14], [8]).
A different generalization of the mutual exclusion problem, namely k-assignment, has been presented in [9].
In k-assignment there are k < n identical, named resources that may be requested by n processes and the
authors shown that the problem can be solved in an asynchronous distributed system, as long as at most k/2
processes can fail.

Similarly, in the renaming problem [3], each participating process is initially associated to a unique
identifier from a large name space and the final objective is to select unique identifiers from a smaller name
space. Combining together renaming and k-exclusion, a more general specification, called k-assignment
with m slots can be defined [4]. Informally, such a problem requires that at most k processes access con-
currently one of the m distinct available slots. All these existing algorithms do not mask the assignment
between slots and competing processes. On the contrary, they exploit their knowledge about assignments to
minimize the number of exchanged messages.

Generally, the oblivious assignment problem can be solved using multiparty computation [22]. This is a
paradigm that allows several parties to evaluate a function f(x1, . . . , xn), or multiple functions, without re-
vealing the inputs x1, . . . , xn. That is, every party pi contributes xi but at the end of the protocol it will only
learn f(x1, . . . xn) and nothing else. Unfortunately, these generic techniques are notoriously very expensive
and call for an exorbitant number of messages to be exchanged. However, there exist more efficient alterna-
tives for many functionalities. The one that is more closely related to the oblivious assignment functionality
is referred to as mental poker. Mental poker algorithms [20] allow people to play card games over networks
without any trusted dealer. The basic idea is to assign cards to players such that cards stay private and can
be safely shuffled. In addition, it is possible to detect cheaters. While the original scheme [20] represented
each card with a large number of bits, more recent work [6] makes card sizes smaller and independent of
the number of players.

The oblivious assignment problem does not fit completely within the mental poker framework. In our
model, we must avoid starvation and ensure liveness and thus allow a process to pick a specific slot of a
resource within a fixed amount of time (while this is not possible in mental poker). The release of a resource
is also significantly simpler than discarding a card from hand. Indeed, we do not have to preserve the value
of the slot (or card) and thus we can just set obliviously a boolean flag.

3 System Model

The distributed system is composed of a set of n processes Π = {p1, p2 . . . , pn}, each one having a unique
identifier, that compete for m distinct slots {r1, . . . , rm} of a resource R, where m ≤ n. Each process pi
competes to get exclusive access to a slot ofR. At any time, each slot can be assigned to at most one process
and allocated slots must be released within a finite period of time. Specifically, when process pi needs to
acquire one of the m slots of R, it invokes a request() operation and waits until a grantResource() event
occurs returning the id of the slot rj assigned to pi. To release the slot rj , pi invokes a release() operation.
Processes do not crash.

We assume the existence of a coalition C (with 1 ≤ |C| ≤ n − 2) of honest-but-curious processes [12].
Such processes act according to their algorithm but they can collaborate to acquire and share information
about others processes. Processes not belonging to the coalition C are said to be honest, that is, they are
correct and behave according to the algorithm and they do not attempt to infer other information, except the

2



ones obtained during the algorithm execution.
Processes coordinate their access to slots ofR by exchanging messages. We assume that for any pair of

processes pi, pj ∈ Π, there exists a reliable FIFO point-to-point communication channel connecting them.
Messages are delivered ”most of the time” within δ time units, that is the underlying communication system
is synchronous most of the time. However, there could be finite periods of time where the systems behaves
as asynchronous. We assume that processes belonging to the coalition C are powerful enough to know both
the communication bound δ and if the system is in a synchronus period or not. Such processes can use this
knowledge to infer information about other honest processes.

4 Oblivious Assignment with m Slots

Given a generic resource R, it can be used concurrently by different processes; however, any of its m slot
can be used in an exclusive way. Let us remark that every process can always get at most one slot of R,
that is, the assignment of multiple slots to a single process is not allowed. At the same time, it must be
guaranteed that competing processes will eventually obtain a slot of R. In addition, resource assignment
must be kept private.

4.1 Problem Definition

The Oblivious assignment with m Slots (O-mA) problem is specified by the following properties:

1. UniqueAssignment : If pi and pj access concurrently the resource R, then the slot rx assigned to pi
and the slot ry assigned to pj are distinct.

2. LockoutAvoidance : any process pi that requests access to resource R, eventually is assigned a slot
rj ofR.

3. ObliviousAssignment : if a slot rj is assigned to an honest process pi, then no other process is deter-
ministically aware of this assignment.

As an example, consider a distributed system composed by two honest processes, p1 and p2, and n− 2
honest-but-curious processes. Let r1 and r2 be two slots of a resource. Suppose that, after a run of the
oblivious assignment scheme both processes obtain a slot and only two assignments are possible: (i) 〈p1, r1〉,
〈p2, r2〉 or (ii) 〈p1, r2〉, 〈p2, r1〉. The ObliviousAssignment property will ensure that the coalition of n − 2
honest-but-curious processes won’t be able to determine what was the actual assignment (i.e., whether (i) or
(ii) above).

4.2 Strong Oblivious Assignment with m Slots (SO-mA)

We consider a stronger variant of the O-mA problem, which is referred to as SO-mA, where it is not possible
to determine whether resources are allocated to a specific process. The SO-mA problem can be defined as
O-mA by replacing the ObliviousAssignment property with the following one:

StrongObliviousAssignment : Fixed a process pi, no other process can deterministically determine whether
pi owns or not any slot of a resource.

In the previous example, the n− 2 honest-but-curious processes may not know what was the actual assign-
ment but they can collectively determine that certain slots were assigned to p1 and p2. This violates the
Strong Oblivious Assignment property.

3



4.3 Solvability Issues for O-mA and SO-mA problems

In the following, we will show a necessary condition for an algorithm to solve O-mA and SO-mA. In
particular, we will show that there exists constraints on the message pattern that any algorithm must satisfy
to solve our problem.

Lemma 1 Let A be an assignment algorithm, ensuring properties 1 and 2, executed by processes in Π. If
the message pattern of A expects a process pi ∈ Π to send a request message m to another process pj to
acquire a slot and |C| ≥ 1, then A cannot solve O-mA.

Proof Let’s consider the following run where pc is a corrupted process: if a process pi sends a message
requesting a slot rj to pc, then pc will learn that pi is about to access the slot rj . From this time on pc
declares the assignment 〈pi, rj〉. Due to the fact that A satisfies properties 1 and 2, eventually pi will access
the slot and this violates property 3. 2Lemma 1

Thus, assignment algorithms that are based on explicit permissions for resource allocation cannot solve
O-mA and SO-mA. Examples of such algorithms in the context of distributed mutual exclusion are ([14],[16],[17],[18]).
A class of algorithms that satisfies the necessary condition of Lemma 1 is the one based on a rotating coor-
dinator approach (also called perpetual circulating token [5],[15]) as shown in the next section.

5 A Rotating Token Algorithm for Solving O-mA

5.1 Ruling out trivial perpetual circulating token algorithms

Let us consider a trivial token circulating algorithm, namely trivial-A.The token owner can access a slot as
soon as it receives the token, without sending out any notification. Once the token owner releases the slot,
the token is passed to the next process in the logical ring. This algorithm satisfies property 1 and 2 and
Lemma 1

The following Lemmas show that this simple algorithm implements O-mA and SO-mA only if there is
at most one honest-but-curious process..

Lemma 2 Consider an algorithm trivial-A running on the top of the distributed systems described in Sec-
tion 3 and satisfying properties 1 and 2. If |C| ≥ 2, trivial-A cannot ensure SO-mA property.

Proof Let’s consider the following run where two honest-but-curious processes are respectively the prede-
cessor and the successor of an honest process pi in the ring and the communication delay is bounded by δ
(see Section 3). When the token reaches pi sent by pi−1 and pi decides to access the slot rj , if pi keeps the
slot for an interval of time greater than 2δ then pi−1 and pi+1 will infer deterministically that pi has acquired
a slot. This can be accomplished by looking at the timestamps of token messages sent from pi−1 to pi and
from pi to pi+1. This violates the SO-mA property. 2Lemma 2

The next Lemma follows directly from the previous one:

Lemma 3 Consider a distributed system with a bound δ on message transfer delay and an algorithm trivial-
A running on top of it. If m = 1 and |C| ≥ 2, trivial-A cannot ensure O-mA property.

4



5.2 A rotating token algorithm resilient to |C| ≤ n− 2 honest-but-curious processes

Our algorithm is token-based and works in rounds. Each round is led by a coordinator pc that takes care
of the token creation, encoding, and dissemination for that specific round. The token circulates on the top
of a logical ring formed by the processes (i.e. each process pi passes the token to its neighbor pi+1modn).
Each round is characterized by two phases, allocation phase (corresponding to the management of request()
operations), where resource slots are allocated to processes, and release phase, where each process frees its
assigned slot once it has done with it. A round ends when all allocated slots are released. The next round is
coordinated by the process that follows pc in the logical ring. In the following, we will use the term ticket to
indicate a numeric representation of a slot. The coordinator will create n tickets (that is, a ticket per process
in the system) regardless of the number of actual slots.

Allocation Phase: The coordinator of the current round creates a token, request token, containing a set of
tickets {tk1, tk2, . . . , tkn}, each one identifying a resource slot. Only m ouf of n tickets will univocally be
associated to actual slots of the resource (i.e. valid tickets) while the remaining n −m tickets (i.e. invalid
ticket) represent dummy slots. Invalid tickets help prevent leakage of information on actual assignments.

At the beginning of each round, the coordinator picks one ticket, encrypts the request token via ElGa-
mal encryption [10], and forwards the token to the next process in the ring. Upon the receipt of the token,
a process pi picks a ticket, re-encrypts the token to make it indistinguishable, and forwards it to the next
process in the ring. After getting the ticket, pi will decrypt it by asking other processes for their ephemeral
keys: if the ticket is valid and pi requested a slot ofR, then it will trigger the grantResource event.

Release Phase: The release phase starts only when the request token returns to the coordinator. The
coordinator creates a release token, used to identify the released tickets, and starts to circulate it in the
logical ring. A ticket is released by a process pi in two cases: (i) pi did not request a slot of R or, (ii) pi
finished with the slot (i.e., when invoking the release() operation). Every time the release token is passed
to the next process, it is re-encrypted to avoid information leakage.

The token release token circulates continuously till the coordinator verifies that the number of released
tickets is equal to n. At this point, the round is completed and the next process in the ring becomes the new
coordinator for a new round.

5.3 ElGamal Encryption with Multiple Parties

Notation and Assumptions. In the following, we use y ← f(x) to indicate the assignment to y of the
value obtained evaluating a function f over the input x, while we will use y u←−S to indicate that y is a ran-
dom element uniformly selected from a set S. In the following, we will assume to have a cyclic subgroup
G of prime order q and generator g where the Decisional Diffie-Hellman (DDH) assumption [7] holds. In-
formally, the DDH assumption states that given a triple (gx, gy, gxy) with x, y u←−Zq it can be distinguished
from a triple in the form (gx, gy, gz), with z u←−Zq, by using a probabilistic polynomial time algorithm, with
negligible probability.
For a concrete instantiation, we consider G to be the set of quadratic residues of Z∗p where p is a safe prime,
i.e., p = 2q+ 1 with prime q. A generator g of the group G is simply found by selecting ḡ u←−Z∗p and setting
g = ḡ2 mod p whenever ḡ 6= 1.

ElGamal Encryption. The idea behind ElGamal scheme is to use gxy as a shared secret between sender
and recipient. The private key is y u←−Zq while the public key is the value gy ∈ G.
To encrypt an element e ∈ G, it is enough to randomly select an element r u←−Zq and compute the ciphertext

5



as a pair (c1, c2) = (gr,mgry) ∈ G×G. The recipient of the ciphertext (c1, c2) recovers m by computing
c2/c

y
1 ∈ G.

Note that, under the DDH assumption, ElGamal encryption is semantically secure [7]. Intuitively, a se-
mantically secure scheme does not leak any information about the encrypted message. In particular, given
a ciphertext (c1, c2) of one of two messages m0 and m1, an adversary cannot tell which message was en-
crypted. This holds even if the adversary chooses both messages, as long as they are both in G.

Adaptation We adapt the ElGamal crypto-system to work with multiple parties. Each process pi has a
private key Pr keyi

u←−Zq, and the corresponding public key is calculated as gPr keyi . In addition, pi also
maintains the group public key as the value gY = g

∑
pi∈Π Pr keyi .

We use the ElGamal crypto-system to encrypt tickets whose values contain relevant information about slots
of the resourceR (e.g. such as network address, memory location, printer ID, etc...). Thus, generic numeri-
cal tickets must be mapped into elements of the subgroup G of quadratic residues in Z∗p.
The standard mapping-then-encrypt procedure works as follows: (i) Consider the ticket t as an element of
Zq, (ii) set t̄ = t + 1, and (iii) encrypt the value t̄2 mod p. The decryption phase is more involved: (i)
decrypt and recover the plaintext m̄ = t̄2 mod p, (ii) compute a square root of m̄ as m = m̄(p+1)/4 mod p,
and return the ticket m− 1 if m ≤ q, or p− (m− 1) when m > q. In the rest of the paper we assume that
tickets or any arbitrary messages are in G, either directly or through the mapping described above.

A ticket t is encrypted for the group of precesses as (gr, tgrY ). Each process must contribute to the
decryption phase in order to recover the ticket by computing the partial value grPr keyi . The product modulo
p of these partial values from all processes is equal to grY which is used to recover t as in standard ElGamal.
We define a function removeLayer that receives as input a valid ciphertext and removes the component
grPr keyi from it, effectively allowing other processes to decrypt the message. This function is executed
locally by the process pi.

Notice that, ElGamal ciphertexts can easily be randomized, i.e., given a ciphertext (c1, c2) anyone can
produce a new ciphertext (c′1, c

′
2) on the same message without knowing any secret key or learning the

message itself. Indeed, given (gr, tgrY ), it is enough to select r∗ u←−Zq and compute a new and unlinkable
ciphertext (gr+r∗ , tg(r+r∗)Y ). The security of this randomized ElGamal encryption still holds as shown in
[13].

5.4 The Algorithm

In this section, we provide the details of the oblivious assignment scheme for our system model. In particular,
we first describe the data structures maintained locally by each process pi, then we provide the details about
the coordinator selection and the round phases, i.e., the assignment phase and the release phase.
Data structures. Each process pi maintains locally the following data structures:
• roundi: is an integer representing the round pi is participating in;
• coordinatori: is a boolean variable set to true when pi is the coordinator for the current round, false

otherwise;
• statei: is a variable that can be set to {NCS,waiting, CS} and it represents the state of pi;
• ticketi: is a pair < rd, tk > where tk is an encrypted ticket associated to a slot (whether real or not)

and rd essentially reveals the slot identifier;
• Pr keyi/Pb keyi: ElGamal private/public keys used to decrypt/encrypt tickets;
• keysi: is a set variable, used in the assignment phase, to store all the temporary keys (i.e. ephemeral

keys) needed to decrypt the selected ticket.

6



Init:
(01) roundi ← 1; coordinatori ← false; statei ← NCS; releasingi ← true;
(02) Pr keyi ← init private key(pi); Pb keyi ← init public key();
(03) keysi ← ∅; ticketi ← ⊥; resourcei ← ⊥ ;

————————————————————————————————————————
(04) when Init or roundi changes
(05) reset variables();
(06) if (i = roundi mod(n))
(07) then coordinatori ← true
(08) endif

————————————————————————————————————————
(09) when coordinatori becomes true
(10) if (statei = waiting)
(11) then resourcei ← select valid slot({r1, r2, .., rn})
(12) statei ← CS
(13) releasingi ← false
(14) trigger grantResource (resourcei)
(15) else resourcei ← select notValid slot({r1, r2, .., rn})
(16) endIf
(17) request token← create request token({r1, r2, .., rn} \ resourcei)
(18) send REQUEST (request token) to p(i+1)modn

Figure 1: The rotating leader protocol (code for pi)

• resourcei: is an integer representing the slot id obtained by pi;
• releasingi: is a boolean flag. It is set to true when pi has no assigned slot ofR, false otherwise.
In addition, the algorithm also employes two tokens, namely request token and release token. A

token is essentially a set containing encrypted tickets and each ticket refers to real or dummy slots.

Round and Coordinator Change. The pseudo-code for the round and coordinator change is shown in
Figure 1. We defined the following functions to simplify the code:

• init private key(pi)/init public key(): initialize pi’s private and public keys.
• reset variables(): reset all variables, except roundi, as declared into the Init statement.
• select valid slot({r1, r2, .., rn}): given the set of (real and dummy) resource slots {r1, r2, .., rn}, se-

lect a real slot.
• select notValid slot({r1, r2, .., rn}): given the set of (real and dummy) resource slots {r1, r2, .., rn},

select a dummy slot.
• create request token(r1, r2, . . . , rn−1): given the set of (real and dummy) resource slots {r1, r2, .., rn−1},

creates a set of tickets and the corresponding request token.

A new round starts as soon as roundi is updated (line 04 Figure 1, line 19 Figure 3) and this causes all
local variable, except roundi, to be reset (line 05). Each process pi checks whether it is a coordinator of
the current round. If so, it sets the local coordinatori variable to true (lines 06 - 08). This triggers a new
assignment phase lead by pi (line 09). The new coordinator checks if it is in the waiting state (line 10) (that
is, it is waiting for a slot) and, in that case, it selects a real slot of the resource (lines 11). Otherwise, the
coordinator selects a dummy slot (line 12). After the selection, pi creates and encrypts the request token
(line 14) and sends it to its “neighbor” pi+1mod (n) (line 15).

The request() operation and the assignment phase. The pseudo-code of the request() operation and the
assignment phase is shown in Figure 2. The functions in the pseudo-code are defined as follows:

7



upon event request()
(01) statei ← waiting

————————————————————————————————————————
(02) when REQUEST (request token) is delivered
(03) if (¬coordinatori)
(04) then request token← shuffle(request token)
(05) request token← randomize token(request token)
(06) ticketi ← select ticket(request token)
(07) send REQUEST (request token) to p(i+1)modn

(08) for each pj ∈ Π do
(09) send GET EPHEMERAL KEY (i, ticketi) to pj
(10) endfor
(11) else release token← create release token()
(12) release token← release resource(release token, releasingi, resourcei)
(13) send TOKEN RELEASE (release token) to p(i+1)modn

(14) endif
————————————————————————————————————————

(15) when GET EPHEMERAL KEY(j, tk) is delivered:
(16) ep keyi ← generate ephemeral key(Pr keyi, tk);
(17) send EPHEMERAL KEY (ep keyi, i) to pj

————————————————————————————————————————
(18) when EPHEMERAL KEY(ep key, j) is delivered:
(19) keysi ← keysi ∪ {< ep key, j >};

————————————————————————————————————————
(20) when (|keysi| = n)
(21) resourcei ← decodeElement(ticketi, (keysi ∪ {< Pr keyi, i >}));
(22) if ((resourcei ∈ valid) ∧ (statei = waiting))
(23) then statei ← CS
(24) releasingi ← false
(25) trigger grantResource (resourcei)
(26) endif

Figure 2: The request() protocol (code for pi)

• shuffle(T ): given a token T , randomly permute the sequence of tickets
• randomize token(T ): given token T , re-encrypt each ticket in T
• select ticket(T ): return a ticket tk randomly selected and removed from the token T .
• generate ephemeral key(tk): given a ticket tk =< rd, r̂j >, generate a temporary key (also called

ephemeral) starting from the number rd included in tk, that can be used to decrypt the slot id r̂j .
• decodeElement(tk, {k1, k2 . . . kj}): given a set of keys {k1, k2 . . . kj} and a ticket tk, decrypt tk and

return its cleartext value
• create release token(): create the release token to collect released tickets.
• release resource(T, b, rj): given a token T , a boolean value b, and a slot rj , process the token T

according to the boolean value b. In particular, if b is true then the slot rj is released otherwise the function
does nothing.

When a process pi needs a slot ofR, it invokes the request() operation. The variable statei is thus set to
waiting (line 01). When the request token is delivered to pi, it checks if it is the coordinator for this round
(line 02). If pi is not the coordinator, then it means that the assignment phase for this round is still running
and a ticket can be chosen from the token. The selection consists of three steps: token shuffling (line 04) ,
token re-randomization (line 05) and finally ticket selection (line 06). Once a ticket has been selected, it has
to be decrypted to recover the slot id. For this purpose, pi sends a GET EPHEMERAL KEY message to other
processes (lines 08 - 10).
If pi is the coordinator, then all slots have been assigned for the current round and a release phase should

8



start (line 11 - 14). Hence, pi creates the release token (line 11), and embeds its encrypted releasingi flag
into the token (line 12). Finally, the token is passed to pi+1mod n (line 13).

When a process pi receives a GET EPHEMERAL KEY(j, tk) message, it generates a temporary key that
can only be used to decrypt the ticket tk (line 16) and returns it to pjWhen all ephemeral keys are available
(line 20), then pi decrypts the ticket, recovers the slot id 21, and use the slot in case is a real one (lines 22 -
25).

The release() operation and the release phase. The pseudo-code of the request() operation and the
assignment phase is shown in Figure 3.

upon event release():
(01) statei ← NCS
(02) releasingi ← true

————————————————————————————————————————
(03) when TOKEN RELEASE (release token) is delivered
(04) if (¬coordinatori)
(05) then release token← release resource(release token, releasingi, resourcei);
(06) release token← randomize token(release token)
(07) release token← remove layer(release token)
(08) send TOKEN RELEASE (release token) to p(i+1)modn

(09) else if (isFree(release token))
(10) then coordinatori ← false
(11) roundi ← roundi + 1;
(12) send NEW ROUND (roundi) to p(i+1)modn

(13) else release token← create release token()
(14) release token← release resource(release token, releasingi, resourcei);
(15) send TOKEN RELEASE (release token) to p(i+1)modn

(16) endif
(17) endif

————————————————————————————————————————
(18) when NEW ROUND(rd) is delivered
(19) if (rd > roundi)
(20) then roundi ← rd;
(21) endif
(22) send NEW ROUND (rd) to p(i+1)modn

Figure 3: The release() protocol (code for pi)

In the pseudo-code, we used release resource(T, b) and randomize token(T ) defined earlier and we use
the following new functions:

• remove layer(T ): given an encrypted release token T , removes the encrypted layer of pi
• isFree(T ): given a token T , check if each slot in the release token T has been released.

A slot is released by calling the release() operation. In this case, the variable statei is set to NCS and
the flag releasingi is set to true (lines 01 - 02). When pi receives release token, it checks whether it is
the coordinator for the current round. If pi is not the coordinator, according to its state, it releases or keeps
the assigned slot (line 05), it re-randomizes the token (line 06), removes its encryption layer (line 07), and
finally passes the token to its neighbor in the logical ring (line 08). If pi is the coordinator for the current
round, then it checks whether all other processes released their assigned slots (lines 09 - 16). If all slots
were released, then pi sends a NEW ROUND message to its neighbor so that a new round can be started
(line 12). Otherwise, the current token is discarded and a new turn of the release phase is started (lines 13
- 16). Finally, when a process pi receives a NEW ROUND message, it updates the local variable roundi and

9



forwards the NEW ROUND message to its neighbor (lines 19 - 22).

Correctness Proofs. Due to lack of space, we provide here only the statements of the main Lemmas.
Proof of lemma 6 can be found in Appendix A while the other proofs can be found in [1].

Lemma 4 Let Π = {p1, p2, . . . , pn} be the set of processes of the distributed system and let {r1, r2, . . . , rm}
be the set of slots of the resource R. Given the algorithm shown in Figures 1 - 3 and given two processes
pi, pj ∈ Π, if pi and pj access concurrently the resource R, then the slot rx assigned to pi and the slot ry
assigned to pj are distinct.

Lemma 5 Let Π = {p1, p2, . . . , pn} be the set of processes of the distributed system and let {r1, r2, . . . , rm}
be the slots of the resourceR. Given the algorithm shown in Figures 1 - 3, then any process pi that invokes
the request() operation will eventually obtain a slot rj ofR.

Lemma 6 Let Π = {p1, p2 . . . pn} be the set of processes of the distributed system and let {r1, r2, . . . rm}
be the slots of the resource R. Given the algorithm shown in Figures 1 - 3, if |C| ≤ n − 2 then the O-mA
property is satisfied.

5.5 Discussion

Improving resource utilization: The algorithm might suffer in some runs from poor resource utilization,
that is, a competing process (apart from the coordinator) may not obtain a valid slot even if there are several
available. This impossibility leads to some utilization waste due to the non-deterministic behavior. Suppose
the first competing process pi is m hops away from the coordinator. It may happen that all m slots are
assigned to the intermediate processes, i.e., those between the coordinator and pi. However, intermediate
processes may not necessarily compete for slots but they still get valid tickets. To avoid such a waste and
improve resource utilization, we envision executing concurrent rounds with multiple coordinators. The idea
is to let coordinators start new rounds as soon as slots become available. There could be up to m concurrent
rounds in which each slot is managed by a distinct coordinator.

Comparison with an algorithm based on a Trusted Third Party: In Appendix A we considered an
algorithm based on a fair Trusted Third Party (TTP) that regulates access to the slots. Each process sends a
request to access a slot ofR to the TTP. The TTP assigns one of them slots, if available, and sends a reply to
the process. We proved a bound on the maximum number of honest-but-curious processes (i.e., |C| ≤ n−2)
that can be tolerated by the TTP algorithm to solve O-mA. Intuitively, the communication bound δ creates
an information leakage that can be exploited by a coalition C with |C| = n − 1 processes. Processes in C
may collude and issue requests at exactly the same time to the TTP. If the resource is not allocated by the
TTP to a honest-but-curious process within the time bound, then it’s possible to infer that the honest process
has received one slot. Such a slot can also be uniquely identified which implies that O-mA is violated.

This bound matches the one found in Lemma 6. Thus our algorithms has the same resiliency to honest-
but-curious processes as the one based on a TTP.

Adapting the algorithm to satisfy SO-mA: Our basic scheme does not provide the SO-mA property.
Indeed, if the round leader belongs to C, it will figure out the number of processes that are using any slots
of the resource. This is enough to violate, in some runs, the SO-mA property. It is possible to avoid this
leakage by modifying the release phase implementing a secure − or of the internal states of the processes.
In particular, secure-or will return 1 if there is at least one process in CS (critical section) state, false

10



otherwise. But the number of processes in CS state is kept private. The secure-or can be implemented by
simply exploiting the homomorphic property of ElGamal encryption. We will investigate further this idea
in future work.

Towards Byzantine Adversaries: Our protocol assumes honest but curious adversaries, i.e., processes will
faithfully follow the specifications of the protocol but are tempted to learn anything outside their domain.
On the other hand, malicious or byzantine adversaries can actively and arbitrarily disrupt the protocol. For
example, a byzantine adversary could inject, modify, or corrupt messages. In addition, the adversary can be
adaptive in the sense that while disrupting the protocol it will adapt its attack strategy to render countermea-
sures ineffective. Designing an oblivious assignment scheme resilient against such a powerful attacker is
still an open problem. However, we believe there exist technical tools that can be used to convert our basic
scheme for honest-but-curious adversaries into a scheme resilient against byzantine adversaries. Inevitably,
these tools will make our scheme substantially more expensive. In particular, it’s possible to prevent injec-
tion of spurious messages via insubvertible encryption [2], that is, ciphertexts can still be randomized as
in our scheme but no adversary can inject ciphertexts not produced by the round leader. At the same time,
no existing ciphertext can be corrupted unless it is a legitimate re-randomization. The correctness of other
operations such as partial decryption or release of tickets can be performed via standard zero-knowledge
proofs. Such proofs are reasonably efficient in our setting. We leave the details of this approach to future
work.

6 Conclusion

This paper introduced the oblivious assignment problem, i.e., a coordination problem, where n processes
compete to get exclusive access to one of the m available slots of a resource R, while still maintaining the
obliviousness of the assignment. A rotating token algorithm solving the oblivious assignment problem has
been introduced. This algorithm has been proven correct as long as at least two honest processes are in the
distributed system. This bound matches the one proved considering a centralized TTP assigning slots. All
these results consider that honest-but-curious processes know both when the communication delay is within
a certain bound and the value of the bound. This knowledge can be exploited to break the algorithm (i.e.
discover assignments of correct processes).

References

[1] G. Ateniese, R. Baldoni, S. Bonomi, and G. A. Di Luna. Oblivious Assignment with m Slots. Tech-
nical report, MIDLAB 2/12 - University of Rome “La Sapienza” - http://www.dis.uniroma1.it/ mid-
lab/publications.php, 2012.

[2] G. Ateniese, J. Camenisch, and B. de Medeiros. Untraceable rfid tags via insubvertible encryption. In
Proceedings of the 12th ACM conference on Computer and communications security, CCS ’05, pages
92–101, New York, NY, USA, 2005. ACM.

[3] H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and R. Reischuk. Renaming in an asynchronous environ-
ment. Journal of the ACM, 37:524–548, July 1990.

[4] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations and Advanced Topics
(2nd edition). John Wiley Interscience, March 2004.

11



[5] R. Baldoni, A. Virgillito, and R. Petrassi. A distributed mutual exclusion algorithm for mobile ad-hoc
networks. IEEE Symposium on Computers and Communications, page 539, 2002.

[6] A Barnett and N. P. Smart. Mental Poker Revisited. In Kenneth G. Paterson, editor, Cryptography
and Coding, Proceedings of the 9th IMA International Conference, volume 2898 of Lecture Notes in
Computer Science, pages 370–383. Springer Verlag, 2003.

[7] D. Boneh. The decision diffie-hellman problem. 1423:48–63, 1998. 10.1007/BFb0054851.

[8] S. Bulgannawar and N. H. Vaidya. A distributed k-mutual exclusion algorithm. In International
Conference on Distributed Computer Systems, pages 153–160, 1995.

[9] J. E. Burns and G. L. Peterson. The ambiguity of choosing. In Proceedings of the eighth annual ACM
Symposium on Principles of distributed computing, Priciple of Distributed Computing ’89, pages 145–
157, New York, NY, USA, 1989. ACM.

[10] T. El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In
Proceedings of CRYPTO 84 on Advances in cryptology, pages 10–18, New York, NY, USA, 1985.
Springer-Verlag New York, Inc.

[11] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st annual ACM
symposium on Theory of computing, pages 169–178. ACM, 2009.

[12] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University
Press, New York, NY, USA, 2004.

[13] P. Golle, M. Jakobsson, A. Juels, and P. Syverson. Universal re-encryption for mixnets. In In Proceed-
ings of the 2004 RSA conference, pages 163–178. Springer-Verlag, 2002.

[14] H. Kakugawa, S. Fujita, M. Yamashita, and T. Ae. A distributed k-mutual exclusion algorithm using
k-coterie. Information Processing Letters, 49(4):213 – 218, 1994.

[15] G. Le Lann. Distributed systems - towards a formal approach. In Congress of International Federation
for Information Processing, pages 155–160, 1977.

[16] M. Maekawa. A square root n algorithm for mutual exclusion in decentralized systems. ACM Trans-
action on Computer System, 3(2):145–159, 1985.

[17] K. Raymond. A distributed algorithm for multiple entries to a critical section. Information Processing
Letters, 30(4):189–193, 1989.

[18] M. Raynal. Algorithms for mutual exclusion. MIT Press, Cambridge, MA, USA, 1986.

[19] G. Ricart and A. K. Agrawala. An optimal algorithm for mutual exclusion in computer networks.
Communincations of the ACM, 24(1):9–17, 1981.

[20] A. Shamir, R. L. Rivest, and L. M. Adleman. Mental Poker. Technical Report MIT-LCS-TM-125,
Massachusetts Institute of Technology, 1979.

[21] I. Suzuki and T. Kasami. A distributed mutual exclusion algorithm. ACM Transaction on Computer
System, 3(4):344–349, 1985.

12



[22] A. C. Yao. Protocols for secure computations. In 23st Annual IEEE Symposium on Foundations of
Computer Science, pages 160–164. IEEE Computer Society, 1982.

13



Appendix A - Third Party Impossibilities and Proof Omitted in the text

6.1 Third Party Impossibilities

To state and prove solvability results, we introduce a Trusted Third Party (TTP ) that manages the assign-
ment. Each process sends a request to access a slot of R to the TTP . The TTP assigns one of the m
resource, if available, and sends the reply to the process. To ensure SO-mA, the number of resources m has
to be greater than the number of processes in C. To see this, consider the case where the TTP assigns all
slots to processes in C. Clearly, in this case, processes in C can collectively determine that honest processes
do not own any slot. For this reason, whenever we refer to the SO-mA problem, we implicitly assume that
m > |C|.

Lemma 7 Consider an asynchronous system, with a trusted third party TTP , composed of n processes
and m slot of a resource R, where m < n. Assume TTP is running an assignment algorithm that ensures
properties 1 and 2.
If |C| < n, then TTP solves both the O-mA and SO-mA problems.

Proof To violate the StrongObliviousAssignment property, processes in C must deterministically determine
whether honest processes own slots or not. The only information leakage, however, is the acknowledgment
from the TTP when a slot is requested. Due to the communication asynchrony, a process in C waiting for
an acknowledgement message from the TTP cannot establish whether all slots have been assigned or there
is an unpredictable message delay. 2Lemma 7

Lemma 8 Consider a distributed system, with a trusted third party TTP , composed of n processes with a
bound δ on message transfer delay and m slots of a resourceR, where m < n. Assume TTP is running an
assignment algorithm that ensures properties 1 and 2 and whose response time for each TTP assignment
operation is bounded by δ′.
If |C| ≥ n− 1, then TTP cannot solve the O-mA problem.

Proof In the synchronous system model, a process is able to compute a bound on the time elapsed between
a slot request to the TTP and the time the reply is received. This bound is 2δ + δ′. Consider an adversary A
that coordinates the processes in C. A instructs the processes in C to issue m requests to the TTP . If any of
them does not obtain a slot rj within 2δ + δ′, it means that rj has been assigned to an honest process, say
pi. Thus, A infers the assignment 〈pi, rj〉, violating the ObliviousAssignment property. 2Lemma 8

Lemma 9 Consider a distributed system, with a trusted third party TTP , composed of n processes with a
bound δ on message transfer delay and m slots of a resourceR, where m < n. Assume TTP is running an
assignment algorithm that ensures properties 1 and 2 and whose response time for each TTP assignment
operation is bounded by δ′.
Finally, let w be an integer (with 1 ≤ w ≤ m) representing the maximum number of slots ofR concurrently
assigned by TTP .
If w ≥ n− |C| and w is fixed, then TTP cannot solve the SO-mA problem.

Proof Assume that w ≥ |Π \ C|. We show that there exists an execution of the protocol that violates the
StrongObliviousAssignment property. Let us define d = w− (n−|C|). This is the number of available slots
when all honest processes have already obtained a slot. Since w ≤ m and m ≤ n − 1, we have that d is at

14



most |C| − 1. Consider an adversary A that coordinates the processes in C. A instructs d+ 1 processes in C
to issue requests to the TTP at time t0 (note that d+ 1 ≤ |C|). In the synchronous system model, a process
is able to compute a bound on the time elapsed between a slot request to the TTP and the time the reply is
received. This bound is 2δ + δ′. Thus, at time t0 + 2δ + δ′, the adversary learns how many slots have been
assigned to d + 1 processes of C. If any of the d + 1 processes did not obtained a slot, then the adversary
infers that all honest processes have obtained a slot. 2Lemma 9

6.2 Proofs omitted in the text

Lemma 4 Let Π = {p1, p2 . . . pn} be the set of processes of the distributed system and let {r1, r2, . . . rm}
be the set of slots of the resource R. Given the algorithm shown in Figures 1 - 3 and given two processes
pi, pj ∈ Π, if pi and pj access concurrently the resource R, then the slot rx assigned to pi and the slot ry
assigned to pj are distinct.

Proof We prove this lemma by contradiction. Assume that rx = ry. Thus, pi and pj executed line 26,
Figure 2 and resourcei is equal to resourcej . The latter implies that there exist two tickets ticketi and
ticketj that store the same encrypted value. But this is a contradiction.
Note that, processes obtain tickets by selecting them from the request token (line 10, Figure 2) and the
request token is created by the coordinator of the current round at the beginning of the assignment phase
(line 14, Figure1). But the request token does not contain duplicates and resource slots are distinct, thus
there can be only one ticket associated to rx (or ry). 2Lemma 4

Lemma 10 Give the algorithm shown in Figures 1 - 3, then every round eventually terminates.

Proof The proof is done by induction. Let us first prove that from round 1, eventually all the processes will
move to round 2 and then we will show that the same happens also in a generic round i.
Basic step: round 1. Round 1 starts with the Init statement where all local variables are initialized to their
default values (lines 01 - 02, Figure 1) and the coordinator for the current round is selected (line 07). Note
that, since process identifiers are unique, in each round, a unique coordinator is selected by using the deter-
ministic function modn (where n is the number of processes of the distributed system). In particular, when
executing this procedure at round 1, p1 will set its coordinator1 to true ((line 07)), and the assignment
phase starts with the send of the REQUEST message (line 18), containing the token to p2.
Delivering such message, p2 will forward it to p3 and so on, until the REQUEST message come back to p1.
Note that, since processes communicate through reliable FIFO point-to-point channels and a failure free
scenario is assumed, then eventually the request token come back to p1 and the release phase starts.
In particular, p1 will create a release token and will send it to p2 trough a TOKEN RELEASE message (line
13).
Delivering the TOKEN RELEASE message, p2 will execute line 08 forwarding the release token to p3 and so
on, until also the release token come back to p1. Delivering the TOKEN RELEASE message, p1 will check if
all the slots have been released (line 09, Figure 3).
If it is so, then p1 will set its local variable coordinator1 to false (line 10, Figure 3), it will increments its
round counter to 2, i.e. it will goes to round 2 (line 11, Figure 3) and it will send a new round message to
p2 that delivering it will execute lines 19 - 22, Figure 3 going to the second round as well. In addition, p2

will also execute lines 04 - 08, Figure 3 and will become the new coordinator.

15



On the contrary, if there exists some process that still own a slot of the resource R, then p1 will circulate
again a new release token in the ring (lines 13 - 16, Figure 3). Note that, since all the processes follows the
protocol, eventually all of them will release the assigned slot and then eventually the condition in line 09
will become true and a new round will be triggered.

Induction step: round i. Note that, moving from a generic round i−1 to the current round i, the coordinator
of the round i − 1 send a new round message that will circulate in the logical ring. As a consequence,
every process pj delivering such a message will execute lines 18 - 22, Figure 3 updating their roundj local
variable. As a consequence, every pj will execute lines 04 - 08, Figure 1 re-initializing its local variables,
coming back to the scenario described in the basic step and the claim follows.

2Lemma 10

Corollary 1 Give the algorithm shown in Figures 1 - 3, then every process pi ∈ Π will become coordinator
infinitely often.

Proof Due to Lemma 10, every round eventually terminates and the round counter is incremented. Con-
sidering that (i) the number of processes n is finite and (ii) the coordinator is the process pj such that
j = roundmod n, it means that every process pi will become coordinator once every n rounds. 2Corollary 1

Lemma 5 Let Π = {p1, p2 . . . pn} be the set of processes of the distributed system and let {r1, r2, . . . rm}
be the slots of the resourceR. Given the algorithm shown in Figures 1 - 3, then any process pi that invokes
the request() operation, eventually obtains a slot rj ofR.

Proof Suppose by contradiction that there exists a process pi ∈ Π that invokes the request() operation at
some time t and it never obtains a slot of R. In this case, pi never executes line 14, Figure 1 or line 26,
Figure 2.

When pi invokes the request() operation, it executes line 01, Figure 2 and sets the variable statei to
waiting. Due to Corollary 1, pi will become coordinator at some time t′ after t and its coordinatori
variable will be set to true. Thus, the procedure in lines 09 - 18, Figure 1 is executed and, in particular, the
condition in line 10 pi will be satisfied. But this implies that a valid slot will be assigned to pi by executing
line 11.

2Lemma 5

Lemma 6 Let Π = {p1, p2 . . . pn} be the set of processes of the distributed system and let {r1, r2, . . . rm}
be the slots of the resource R. Given the algorithm shown in Figures 1 - 3, if |C| ≤ n − 2 then the O-mA
property is satisfied.

We divide the proof of Lemma 6 in two subproofs.

Lemma 7 If |C| ≤ n− 2, then the O-mA property is satisfied during the assignment phase.

We consider the worst case scenario in which a non-adaptive adversaryA compromises n−2 processes.
Let pi and pj be the two honest processes. We will show that if A is able to guess the correct assignment of
pi and pj with probability better than 1

2 + negl(n), where negl(n) is a negligible function 1 in the security

1A function f : N→ R is negligible if ∀p polynomial function p : N→ R ∃n0 s.t ∀n > n0 |f(n)| ≤ 1
|p(n)|

16



parameter k = |p|, than there exists a probabilistic polynomial-time algorithm that can solve DDH in G
(breaking the semantic security of ElGamal encryption).

To formalize our proof, we define the Correct Assignment Indistinguishability Experiment (CAIE):

• The adversary A outputs the set of processes C to be compromised.

• An assignment phase is run. At the end of it, the adversary A is provided with a transcript L of all
messages exchanged and, in addition, the memory content of all processes in C.

• The adversary A outputs a guess a =< pi, rk >,< pj , rt >.

• The output of the experiment is defined to be 1 if a is the correct assignment of slots for pi, pj , 0
otherwise.

Recall that A embodies honest-but-curious processes, and thus cannot inject or manipulate messages
but must faithfully follow the algorithm specifications. We want to show that the probability that A outputs
the correct guess is 1/2 plus a negligible function in the security parameter.

Lemma 8 Under the DDH assumption in G, the probability that A wins in CAIE is ≤ 1/2 + negl(k).

Proof We fix an adversary A and set |Pr[CAIEA(k) = 1] − 1/2| = ε(k). We build an adversary A′

that uses A to violate the semantic security of ElGamal encryption. The adversary A′ obtains a public key
gyi and plays the CPA-security game [12]. In this game, A′ generates two challenge messages of the same
length and receives the encryption of one of them. A′ must guess which message was encrypted.

We build A′ as follows:

• A′ starts A and obtains C.

• A′ sets gyi as public key of pi. We assume w.l.o.g. that 1 < i < j and that the leader is p1. A′

simulates an assignment phase for A and generates a transcript L. It is easy to see that, even though
A′ does not know the secret key of pi, the simulation is perfect and the transcript L is correct. Indeed,
A′ knows the actual content of encrypted tickets and can respond to decryption queries (via ephemeral
keys).

A′ picks two encrypted tickets t0 = (gr, r0g
rY ), t1 = (gr

′
, r1g

r′Y ) uniformly at random from the
token entering pi. It then sets (r0, r1) as the challenge messages in the CPA-game. A′ receives the
response to the challenge (gr, rbg

ryi), and embeds the ticket t′ = (gr, rbg
ryig

r
∏
∀pk∈Π\{pi}

yk) into the
token exiting from pi. A

′
cannot respond to decryption query of t′. If in the transcript L a process in

C selects t′, A′ stops the execution of A, it aborts, and restarts the simulation.

• A outputs its guess a. If pi is paired with t0, A′ outputs 0, otherwise A′ outputs 1.

A′ runs in polynomial time and wins whenever A wins in the CAIE experiment. Since ElGamal is
semantically secure, it must be that ε(k) = negl(k) and this proves the Lemma.

2Lemma 8

The lemma 7 follows directly from lemma 8, the experiment CAIE is well defined for more than two
honest parties. The adversary A′ can use an adversary A that breaks CAIE with more than two honest
processes to break the ElGamal encryption with multiple messages. A creates two possible assignments of
tickets to the k honest processes a0 = (r0, r1, .., rk−1), a1 = (r′0, r

′
1, .., r

′
k−1) and use A to distinguish the

encryption of one of these two assignments under an unknown private key.

17



Lemma 9 If |C| ≤ n− 2, then the O-mA property is satisfied during the release phase.

The security proof for the release phase is a simple adaptation of the proof for the assignment phase and
it is omitted.

Appendix B - Cryptographic Details

This appendix provide the details on the implementation of the cryptographic functions used in the algorithm
shown in Figures 1 - 3.

(01) randomize((c1, c2))

(02) r
u←− Zq

(03) gY r := (gY )r

(04) (c′1, c
′
2) := (c1g

r, c2g
Y r)

(05) return (c′1, c
′
2)

(01) decipher((c1, c2))
(02) k[] := ⊥
(03) ∀pj ∈ Π{
(04) send(c1) to pj
(05) k[j] := rcv from pj()
(06) }
(07) gY :=

∏
∀pj∈Π k[j]

(08) m := c2g
−Y

(09) return m

Figure 4: Crypto Operations A

(01) cipher(m)

(02) gY :=
∏
∀pi∈Π gPr keyi

(03) r
u←− Zq

(04) (c1, c2) := (gr,mgrY )
(05) return (c1, c2)

(01) removelayer((c1, c2))

(02) K := cPr keyi
1

(03) return (c1, c2K
−1)

Figure 5: Crypto Operations B

Ticket Assignment The round leader p1 encodes the set of tickets, encrypts them, and sends them to all
processes positioned logically as a ring structure. In particular, the set of tickets are first encoded as elements
of G, T : {t1, t2, . . . , tx}, then encrypted, obtaining T

′
: {(gr1 , t1g

r1Y ), (gr2 , t2g
r2Y ), . . . , (grx , txg

rxY )},
and sent through the ring structure. Each process in the ring can perform several actions on the incoming
set of encrypted tickets. It can permute the set, re-randomize each element, or remove its encryption layer.
Thus, the basic idea is to let each process pick uniformly at random an encrypted ticket from T ′ which
will have to be opened in cooperation with all other processes in the ring. The remaining tickets are then
re-randomized and the new set is shuffled and sent to the next process. The assignment ends when the set of
encrypted tickets reaches again the leader.

Ticket Release The release of tickets is handled by the round leader p1. The basic idea is to collect used
tickets by querying each process. To make the release oblivious, processes will still use ElGamal encryption
to encode a boolean flag True/False. If a process wants to release a ticket tj , it will alter the j-th ciphertext to

18



indicate a True value and hence that the j-th ticket is now released. Before altering any encryption though,
the process pi must remove its key component grPr keyi from all ciphertexts and re-randomize the results.

This is accomplished as follows: The round leader p1 prepares a vector V := [(gr1 , gr1Y ), (gr2 , gr2Y ),
. . . , (grn , grnY )] and sends it through the ring of processes. V [j] is essentially an ElGamal encryption of ‘1’
that corresponds to the j-th ticket. To release a ticket tj , it is enough to alter the ciphertext (grj , grjY ) into
(grj , DgrjY ), for some dummy value D 6= 1. Before forwarding V to the next process, each process pi will
have to re-randomize every ciphertexts in V and, at the same time, remove its key component grPr keyi .

Functions We define a series of functions to capture the cryptographic operations described above. The
functions are: decode element, randomize token, release resource and remove layer. The function decode element
takes as input a ticket from the assignment token, and returns the element decrypted, this function needs to
communicate with all processes . The function randomize token takes as input a token, randomizes all
the elements. The function release resource takes as input a release token and a boolean value and adds
the value to the token. The function remove layer takes as input a release token and removes the layer of
encryption of the local process.

(01)randomize token(T )

(02) T
′

:= ⊥
(03) ∀t ∈ T{
(04) t

′
:= randomize(t)

(05) T
′

:= T
′
∪ {t

′
}

(06) }
(07)return T

′

(01)remove layer(T )

(02) T
′

:= ⊥
(03) ∀t ∈ T{
(04) t

′
:= removelayer(t)

(05) T
′

:= T
′
∪ {t

′
}

(06) }
(07)return T

′

Figure 6: Functions A

(01)decode element((c1, c2))
(02) k[] := ⊥
(03) ∀(pj ∈ Π{
(04) send(c1) to pj
(05) k[j] := rcv from pj()
(06) }
(07) D :=

∏
∀pj∈Π k[j]

(08) m := c2D
−1

(09)return m

(01)release resource(T, v)
(02) (c1, c2) := (gr, vgrY )
(03) T := T ∪ {(c1, c2)}
(04) T := shuffle(T )
(05) T := randomizeToken(T )
(06) T := removeLayer(T )
(07)return T

Figure 7: Functions B

19


