
A Model for Continuous Query
Latencies in Data Streams

Roberto Baldoni, Giuseppe Antonio Di Luna, Donatella Firmani and Giorgia Lodi
Dipartimento di Informatica e Sistemistica "Antonio Ruberti"

Universitá degli Studi di Roma "La Sapienza"
baldoni,firmani,lodi@dis.uniroma1.it, g.a.diluna@gmail.com

ABSTRACT
In this paper we propose a formal model for characterizing
latencies affecting the computation of a continuous query ei-
ther in a Data Stream Management System (DSMS) or in a
Complex Event Processing (CEP) system. In the model, a
query can be thought of as constructed out of basic Event
Processing Units (EPUs) interconnected among themselves.
EPUs are modeled considering just few parameters, used to
define the EPU processing logic. In order to model the con-
tinuous query we use an acyclic directed (data-flow) graph
whose nodes are the EPUs and edges represent the flow of
information (events) processed by the EPUs themselves.
The outcome of this model is to associate with each data-
flow graph a set of latency metrics, namely reactivity, activ-
ity, and output latencies, and a complexity measure - that
we call data-flow graph complexity - representing the input
dimension required to produce an output event.
The proposed model can be used to compare and contrast
different data-flow graphs in order to assess their latency
metrics. This is a crucial step in selecting one of such graphs
that meets at best the latency requirements imposed by the
programmer before its actual submission to a DSMS or to
a CEP system. Furthermore, the model can be considered
an effective mean through which formally comparing data-
flow graphs and predicting their behavior before an actual
experimental validation phase.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures, product metrics; C.4 [Computer
Systems Organization]: Performance of Systems—Mod-
eling techniques

General Terms
Algorithms, Theory, Performance, Measurement

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

In recent years we have witnessed an increased adoption of
Complex Event Processing (CEP) and Data Stream Man-
agement Systems (DSMS) in several heterogeneous appli-
cation domains such as anomaly detection, environmental
monitoring, and stock prices analysis, just to name a few.
This is due to the increasing need of processing on-the-fly
information generated by on-line information sources rather
than use the typical database management system process-
ing style that first stores and then processes the information.

In such systems a programmer defines a set of functions,
i.e., the algorithm, which describes how incoming flows of in-
formation have to be processed to timely produce new flows
as outputs (in the literature such data-flows are also referred
to as data-streams). Therefore, given a specific problem
(expressed in a form of the query) that takes several data
streams as inputs, programmers could derive several set of
functions and several distinct data-flow graphs that solve
the problem equivalently, thus generating the same output.

The aim of this paper is to assess which could be the
best data-flow graph according to some QoS requirements
expressed by the programmer. The assessment should be
done independently from the system in which it will be im-
plemented and from the physical infrastructure in which it
will be executed.

Our approach is to model the behavior of this set of func-
tions, under the assumption that the processing time is shorter
than the length in time of the input. This is motivated by
several factors: (i) our analysis is independent of the specific
computing platform; (ii) many streaming applications are
built to work practically under this assumption (e.g., com-
mand and control application, collaborative security etc.)
(iii) experiments show that existing complex event process-
ing systems (e.g., Esper [1]) are able to cope with very high
input event rate without showing significant performance
degradation.

Specifically, we model the functions that solve the query
through what we call a query data-flow graph, i.e., a directed
graph G whose nodes are basic queries, i.e., EPUs, incom-
ing edges to a node represent input streams and outcoming
edges are output streams from a node.

Over the data-flow graph we define several latency met-
rics, namely the output latency, reactivity latency and ac-
tivity latency as well as a complexity measure that defines
the input dimension necessary to produce an event as out-
put. As depicted in Figure 1, the activity latency takes into
account the distance in time between the first event in input
to G and the last event output by G. The output latency is
the distance in time between the first event input to G and

the first event output by G while the reactivity latency takes
into account the distance in time between the last event in-
put to G that is necessary to produce an output and the first
event output by G. The different latencies represent differ-
ent QoS aspects of G that a programmer could be interested
in exploiting when specifying the processing.

We provide a formal model to evaluate such latencies and
the input complexity on G. The model has a noteworthy
practical impact: it could be an effective instrument in order
to compare different query graphs designed by a program-
mer solving the same problem; furthermore, this comparison
process can be automatized, i.e., it can be implemented in
a software tool that, given a query specified in some high-
level language and some specific latency requirements (e.g.,
minimum reactivity latency) provided by the programmer,
it is able to firstly produce several query graphs solving the
same high-level query and then rank such graphs according
to user requirements. The selected data-flow graph could
be submitted to either a specific Data Stream Management
System (DSMS) (e.g., [3]) or a CEP system (e.g., [2, 1]).

The rest of this paper is structured as follows. Section 2
discusses related work. Section 3 introduces the system
model we propose. Section 4 presents the four metrics of
interest obtained using the model. Section 5 discusses the
analysis of the four metrics and an example of applicability
of the model, finally, Section 6 concludes the paper.

2. RELATED WORK
All Data Stream Management Systems (DSMSs) include

several techniques to allow each stream query to meet its
QoS requirements such as tuple latency, memory usage, through-
put. Such requirements can be specified with each query
submitted to the DSMS. They generate conflicts inside the
DSMS that are handled by specific components (e.g., sched-
uler, run-time optimizer, load shedding etc.) that cooperate
to optimize and balance each metric of each query so that
anyone can meet target QoS requirements. Noteworthy ex-
amples of such systems are AURORA [3] and STREAM [4].
Our model associates different latency metrics with a single
query graph based on its structure, only. In doing so, we can
select the best query graph solving a problem with respect
to specific latency metrics and then submit it to the DSMS.
Our model then complements at design time the work done
by a DSMS to optimize QoS metrics.

The idea of using data-flow graph to model a continuous
streaming computation has been explored by several systems
(e.g., AURORA [3], System S [2], Esper [1]). As an example,
in AURORA a continuous query is represented by a directed
acyclic graph whose nodes are boxes. Each box represents
a processing operation and directed edges represent input
tuple streams to box (resp. output tuple stream from a
box). Boxes are combined and reordered by the scheduler
during a query optimization phase in order to obtain the
best performances.

In [9] and [10] the authors analyze the problem of comput-
ing performance metrics of relational operators in a stream-
ing query and provide optimization frameworks for query
evaluation planners. The problem of avoiding overload of
operators in distributed environments and selecting a re-
silient operator placement plan, is studied in [11] and [12],
whereas a particular cost estimation technique applicable to
both the above mentioned problems, is studied in [6].

Our approach is to propose a cost estimation technique of

an algorithm solving a problem expressed in terms of con-
tinuous query computation, that is independent from the
effective implementation on a DSMS. The algorithm, after
its design, optimized by the model discussed in this paper,
can be implemented in a DSMS and then (i) it may be con-
verted in a data-flow plan of operators; (ii) the operators
may themselves be distributed amongst the available nodes
(machines) in different ways.

As a matter of fact, the previously mentioned works ap-
pear to be very useful when modeling the plan selection and
the distributed operator placement inside a DSMS, in order
to access streaming data efficiently and to balance load and
manage resources of operators effectively.

3. SYSTEM MODEL

Event Processing Unit.
An Event Processing Unit (EPU) is a function that takes

streams as input, performs a computation and originates a
single stream as output for downstream consumption. An
EPU can be an algebra operator (e.g., Aurora [3]) or a rela-
tional operator (e.g., [5]) or any user-defined operator as in
[8].

If the EPU consumes more than a stream to produce the
output stream, depending on the way it process the different
streams, it may assume two different behaviors:

• All-Streams Batch Processing (ASB): the ASB EPU
computes a function that needs the existence of events
on all input streams to be computed; for instance, the
function can be the logical and.

• All-Streams Online Processing (ASO): the ASO EPU
computes a function that needs the existence of events
on at least one input streams to be computed; for in-
stance, the function can be the logical or.

If the EPU consumes at least a stream to produce the
output stream, depending on the domain of the function it
computes, it may assume two different behaviors, indepen-
dently of the previous categorization:

• Event Based (EB): the EB EPU computes a function
defined - for each input stream - on an n-dimensional
domain, where n is the number of consumed events;
for instance, the function can be the algebraic sum on
n-dimensional vectors.

• Time Based (TB): the TB EPU computes a function
defined on an temporal domain; the function is com-
puted over a set of events happened in a given time
interval; as an example, the function can be the rela-
tional count on the last 2 seconds.

An EPU is called producer when it does not consume any
input stream in order to produce the output stream. In
contrast, an EPU is called consumer if there are no other
EPUs consuming its output stream.

Data-Flow Graph.
Given a query expressed in natural language, where inputs

are streams of events, the query can be solved by defining a
set of EPUs and their connection relationships.

To this end, we define data-flow graph a directed acyclic
graph G = (V,E) where V contains all the EPU nodes and

t

Output Latency

Activity Latency

Reactivity Latency
stream #1 cons.

stream #2 consumption

output production

(a)

t

Output Latency

Activity Latency

Reactivity Latency
stream #1 cons.

stream #2 consumption

output production

(b)

Figure 1: Output Latency, Activity Latency and Re-
activity Latency: (a) ASB processing; (b) ASO pro-
cessing. In relation to the time/event based defini-
tion of an EPU, the consumed sets of events can de-
pend on either the time or the number of the events
that they contain.

Process a raw market data feed: report through-
put statistics and detect when the data rate of
a feed falls off unexpectedly. A rate fall-off may
mean that the data is stale and we want to alert
when there is a possible problem with the feed.

Figure 2: An example of query expressed in natural
language, MarketDataFeedMonitor [1].

in E there exists an edge (v, u) if and only if there exists an
EPU v ∈ V that produces an event stream which is in turn
consumed by an EPU u ∈ V .

We define I(u) = {v1, v2 . . . } as the set of head endpoints
adjacent to node u; hence, |I(u)| is equal to the indegree
of u. Each EPU is modeled as a node with wu = |I(u)|
incoming edges and wo outcoming edges, representing the
wu EPUs that produce the event streams consumed by u,
and the wo EPUs that consume the event stream produced
by u.

Fig. 3 shows an example of data flow graph for the query
described in Fig. 2.

EPU Parameters.
Each EPU node is characterized by a set of parameters

that describe how u transforms the event streams and that
represent the domain on which the metrics represented in
Fig. 1 are defined.

Given the EPU u, the parameters are the following.
The constant tu(v), where v ∈ I(u), is defined as the time
interval length in which u, if it is time-based, consumes
events in order to produce a single event. In particular
we define two constants t̂u(v) and ťu(v) such that tu(v) ∈
[t̂u(v), ťu(v)].
The constant n(u) is defined as the dimension of codomain
of the function computed by the EPU, i.e., the number of
events produced by the EPU by evaluating the function.

producer

u1

market data stream

time based

u2

ticks per sec

event based

consumer

u3

detect fall-off

(a)
EPU operation

u1

String symbol;

FeedEnum feed;

double bidPrice;

double askPrice;

u2

insert into TicksPerSecond

select feed, count(∗) as cnt

from MarketDataEvent.win:time_batch(1 second)

group by feed

u3

select feed, avg(cnt) as avgCnt, cnt as feedCnt

from TicksPerSecond.win:time(10 seconds)

group by feed

having cnt < avg(cnt) ∗ 0.75

(b)

Figure 3: An example of solution for the query Mar-

ketDataFeedMonitor (Fig. 2): (a) data-flow graph; (b)
description of the three EPUs. The functions com-
puted by the EPUs are described using the Event
Processing Language (EPL) [1].

The variable nu(v), where v ∈ I(u), is defined as the average
number of events that u, if it is event-based, consumes in
order to produce a single event. In particular, we define two
constants1 n̂u(v) and ňu(v) such that nu(v) ∈ [n̂u(v), ňu(v)],
i.e., that represent the minimum and the maximum value
that nu(v) can have. Depending on the value of the constant
n̂u(v), u may assume two different behaviors, independently
of the previously discussed categorizations:

• Per-Stream Batch Processing (PSB): the PSB EPU
cannot produce an event without waiting for the con-
sumption of more than one event, i.e.:

n̂u(v) > 1 or
1

n(u)
< n̂u(v) < 1 (1)

• Per-Stream Online Processing (PSO): the PSO EPU
can produce an event after having consumed even a
single event, i.e.:

n̂u(v) = 1 or n̂u(v) <
1

n(u)
(2)

The variable p(u) is defined as the average time required by
the EPU to evaluate the function.

4. EPU METRICS

Evaluating EPU metrics.
In order to evaluate the latency metrics we need to com-

pute for the EPU u, and for each EPU v ∈ I(u), some basic
quantities that describe the elementary aspects of how the
EPU transforms the input streams in the output stream.
These quantities are the input rate ρu(v), output rate ρ(u),

1The value of the constants is supposed to be an input of
our model.

input silence period σu(v) and output silence period σ(u),
each described in the following.
If the EPU u is time-based, the input rate ρu(v) is defined
with respect to each input channel and it represents the
average frequency at which the input set is produced by v.

ρu(v) =
nu(v)

nu(v)
CHR

+ σ(v)(nu(v)
n(v)

− 1)
(3)

CHR is a constant representing the maximum rate allowed
by the channel bandwidth connecting an EPU v to an EPU

u, and (nu(v)
n(v)

−1) is the number of function evaluations that

v must perform in order to have a single function evaluation
of u.

With the term function evaluation of an EPU, we refer to
a single execution of the process that the EPU iteratively
runs in order to continuously process the input stream. In-
deed a function evaluation of an EPU u corresponds to the
production of n(v) events (see definition of EPU parameters,
in Sec. 3).
The output rate ρ(u) is defined with respect to the output
channel, and it represents the average frequency at which
the output set is produced by v.

ρ(u) =
n(u)

CHR
(4)

Once the function is correctly evaluated, by the EPU u,
in a time period that is represented by p(u), it is assumed
that each of the n(u) output events is produced in 1

CHR
time units and that the n(u) output events are produced
sequentially without any interruption.
The input silence period σu(v) is defined with respect to each
input channel, and it represents the time interval between
two input sets produced by v. The two input sets correspond
to two consecutive evaluations of the function computed by
u.

σu(v) =

σ(v) if u is EB ∧ nu(v) mod n(v) = 0

p(v) if u is EB ∧ nu(v) mod n(v) > 0

0 otherwise, i.e., u is TB

(5)

The output silence period σ(u) is defined with respect to the
output channel, and it represents the time interval between
two output sets produced by u. The two output sets corre-
spond to two evaluations of the function computed by u, as
illustrated in Fig. 4.

σ(u) =

OL(u) + σu(ṽ)− (AL(u)− nu(ṽ)

ρu(ṽ)
) if u is EB

OL(u) otherwise

(6)

Where ṽ ∈ I(u) is an EPU such that:

ṽ = argmin
v

nu(v)

ρu(v)
+ σu(v) (7)

Moreover, OL(u) is the output latency of the EPU and
AL(u) is its activity latency, as discussed below.

Output Latency.
The output latency of an EPU, denoted with OL(u), is

defined as the time elapsed between the beginning of the
input event streams production and the beginning of the
output event stream production. More in detail, if u is event
based the beginning time is the production of the first input

u v w

input
set

input
set

output
set

output
set

silence outsilence in

(a)

u

v

input
set

input
set

output
set

output
set

σu(v)

AL(v) OL(v)

AL(v)− n(u)
ρ(u)

(b)

Figure 4: An example of evaluation of EPU v’s out-
put silence period starting from the input silence
period of an EPU u.

event; in contrast, if u is time based, the beginning time is
the starting time of the time interval. Formally:

τu(v) =

{
nu(v)
ρu(v)

· n(u) if u EB

tu(v) otherwise
(8)

OL(u) =

{
maxv∈I(u) τu(v) + p(u) if u ASB

minv∈I(u) τu(v) + p(u) otherwise
(9)

The value of OL(u) when I(u) = ∅ is p(u) by convention.
Note that in the OL(u) definition we do not consider that

the beginning time may differ with respect to the |I(u)| dif-
ferent input streams. This is due to the fact that in our
model this quantity represents the analysis of the entire
data-flow graph and not that of the single EPU. As dis-
cussed in Sec. 5, the role that defines how to sum the EPU
output latencies through the data-flow graph takes this time
interval implicitly into account.

Activity Latency.
The activity latency of an EPU, denoted with AL(u), is

defined as the time elapsed between the beginning of the
input event streams production and the end of the output
event stream production. Therefore the activity latency is
equal to the output latency to which adding the time taken
to produce the output event stream. Formally:

AL(u) = OL(u) +
n(u)

ρ(u)
(10)

Reactivity Latency.
The reactivity latency of an EPU, denoted with RL(u), is

defined as the time elapsed between the end of the input
event streams production and the beginning of the output
event stream production. It represents the time required to
trigger the production of the output event stream under the
assumption that the last event necessary to produce it has

1 y2 1

RL
OL
AL

x3+(y2+1)(x3-1) y3 1

RL
OL
AL

u1

u2

u3

tu2(u1)

Figure 5: Timing diagram of the EPUs of the data-
flow graph illustrated in Fig. 3 for the query Market-

DataFeedMonitor (Fig. 2).

just been consumed. Formally:

RL(u) =

{
OL(u)−maxv∈I(u) τu(v) if u ASB

OL(u)−minv∈I(u) τu(v) otherwise
(11)

= p(u) (12)

Note that, by definition, the reactivity latency of an EPU u
is always equal to p(u), whereas the definition of reactivity
latency for a data-flow graph is something more complex
than a sum of p(∗) terms, as discussed in Section 5. The
definition of τu(v) is the same as in the definition of OL(u).

EPU Complexity.
The complexity of an EPU u, denoted with C(u), is de-

fined as the average number of events that u, if it is event-
based, consumes in order to produce the n(u) events of its
output set, with respect to the EPU v ∈ I(u) that represents
the worst case, i.e., that maximizes this quantity. Formally:

C(u) =

{
maxv∈I(u) nu(v) · n(u) if u EB

0 otherwise
(13)

The value of C(u) when I(u) = ∅ is 1 by convention2.
Fig. 5 and Tab. 1 show, respectively, the timing properties

and the evaluation of the metrics of the EPUs of the data-
flow graph of Fig. 3, for the query MarketDataFeedMonitor

(Fig. 2).

5. DATA-FLOW GRAPH METRICS

Evaluating data-flow graph metrics.
The quantities introduced so far model the latencies of a

single EPU. In this Section we describe how to use this infor-
mation in order to compute the same metrics with respect to
the whole data-flow graph. Specifically, in order to compute
the metrics of a data-flow graph G(V,E), it is necessary to
evaluate the basic properties and metrics of each EPU of the
graph. Since the quantities introduced so far are dependent
on the value of the other, it is required to evaluate them
following any topological sort of the graph G [7]. Moreover,
for each EPU u in the topological sort it is necessary to
evaluate the basic properties and metrics in any order that

2according to the convention for an empty product

Algorithm 1 output latency(DFgraph G(V,E))

1: for all u in V do
2: // Initialization.
3: if u.isASB() then
4: outputlat to[u]= 0;
5: else
6: outputlat to[u]= ∞;
7: end if
8: end for
9: for all v in topological sort(G) do

10: for all u s.t. v ∈ I(u) do
11: // Weight of the edge.
12: weight vu =OL(v);
13: // Does v belong to the OL-critical path?
14: if (u.isASB() ∧ outputlat to[u] ≤ outputlat to[v] +

weight vu) ∨ (u.isASO() ∧ outputlat to[u] ≥ out-
putlat to[v] + weight vu) then

15: // Edge contribution.
16: outputlat to[u] = outputlat to[v] + weight vu;
17: end if
18: end for
19: end for
20: return outputlat to[c] + OL(c);

satisfies the following partial ordering property: σu(∗) be-
fore ρu(∗) and ρ(u), ρu(∗) before OL(u), OL(u) before σ(u)
and AL(u), AL(u) before RL(u).

Graph Output Latency.
The overall data-flow graph output latency, denoted with

OL(G), represents the time elapsed between the beginning
of the input event streams production by the producers and
the beginning of the output event stream production by
the consumer c.

As described in Algorithm 1, the data-flow graph output
latency is determined by a set S of EPUs, S ⊆ V , belonging
to what we call OL-critical path. More in detail, for each
EPU v the above algorithm computes, as in line 12, the
contribution of OL(v) to the overall OL(G): if v belongs to
the OL-critical path, the contribution is taken into account
(line 16). To decide whereas v belongs to the path, the rule
in line 14 is applied.

Graph Activity Latency.
The overall data-flow graph activity latency, denoted with

AL(G), represents the time elapsed between the beginning
of the input event streams production by the producers and
the end of the output event stream production by the con-
sumer c. Algorithm 2 illustrates how to compute the data-
flow graph activity latency.

As described in Algorithm 2, the data-flow graph activity
latency is determined by a set S′ of EPUs, S′ ⊆ V , belonging
to what we call AL-critical path. Similarly to the Algorithm
1, for each EPU v the above algorithm computes, as in lines
8–12, the contribution of v to the overall AL(G): if v be-
longs to the AL-critical path, the contribution is taken into
account (line 16). To decide whereas v belongs to the path,
the rule in line 14 is applied.

Graph Reactivity Latency.
The overall data-flow graph reactivity latency, denoted

(a) parameters and evaluation of basic properties

I(u) nu(∗) tu(∗)3 n(u) p(u) ρu(∗) ρ(u)4 σu(∗) σ(u)
u1 {} {} {} 1 y1 {} 1 {} y1
u2 {u1} - {1} 1 y2 - 1 {0} y2 + 1

u3 {u2} {x3}
x3∈[1,∞)

- 1 y3 { x3
x3+(y2+1)(x3−1)

} 1 {y2 + 1} x3 + (y2 + 1)(x3 − 1) + y2

(b) metrics evaluation

C(u) OL(u) AL(u) RL(u)
u1 1 y1 y1 + 1 y1
u2 0 y2 + 1 y2 + 2 y2
u3 x3 y3 + x3 + (y2 + 1)(x3 − 1) y3 + x3 + (y2 + 1)(x3 − 1) + 1 y3

Table 1: EPU metrics evaluation of the data-flow graph depicted in Fig. 3 for the query MarketDataFeedMonitor

(Fig. 2).

Algorithm 2 activity latency(DFgraph G(V,E))

1: for all u in V do
2: // Initialization.
3: outputlenght to[u]= n(u);
4: end for
5: for all v in topological sort(G) do
6: for all u s.t. v ∈ I(u) do
7: // Weight of the edge.
8: if u.isEB() then
9: weight vu =n(v) 1

nv(u)
· n(u);

10: else
11: weight vu =n(v) ρv(u)

tv(u)
· n(u);

12: end if
13: // Does v belong to the AL-critical path?
14: if (u.isASB() ∧ outputlenght to[u] ≥ output-

lenght to[v] · weight vu) ∨ (u.isASO() ∧ out-
putlenght to[u] ≤ outputlenght to[v] · weight vu)
then

15: // Edge contribution.
16: outputlenght to[u] = outputlenght to[v] ·

weight vu;
17: end if
18: end for
19: end for
20: return outputlenght to[c]

ρ(c)
+ OL(c);

with RL(G), represents the time elapsed between the end
of the input event streams production by the producers and
the beginning of the output event stream production by
the consumer c (see Equation 14).

RL(G) = OL(G)− C(G) ∗ CHR (14)

Graph Complexity.
The overall data-flow graph complexity, denoted with C(G),

represents the average number of events that are to be pro-
duced by the producers in order to make the consumer c
produce at least n(c) events, with respect to the producer
v that represents the worst case, i.e., that maximizes this
quantity. Algorithm 3 illustrates how to compute the data-
flow graph complexity.

As described in Algorithm 3, the data-flow graph activ-
ity latency is determined by a set S′′ of EPUs, S′′ ⊆ V ,
belonging to what we call C-critical path. Similarly to the

Algorithm 3 complexity(DFgraph G(V,E))

1: for all u in V do
2: // Initialization.
3: complexity to[u]= 0;
4: end for
5: for all v in topological sort(G) do
6: for all u s.t. v ∈ I(u) do
7: // Weight of the edge.

8: weight vu = C(u)
n(v)

;

9: // Does v belong to the C-critical path?
10: if complexity to[u] ≤ complexity to[v] · weight vu

then
11: // Edge Contribution.
12: complexity to[u] = complexity to[v] · weight vu;
13: end if
14: end for
15: end for
16: return complexity to[c];

Algorithms 1 and 2, for each EPU v the above algorithm
computes, as in lines 8, the contribution of v to the overall
C(G): if v belongs to the C-critical path, the contribution
is taken into account (line 12). To decide whereas v belongs
to the path, the rule in line 10 is applied.

Fig. 6 and Tab. 2 show, respectively, the timing properties
and the evaluation of the metrics of the data-flow graph of
Fig. 3, for the query MarketDataFeedMonitor (Fig. 2).

6. CONCLUSION
The paper presents a formal model to evaluate some cost

metrics of a continuous streaming computation, represented
as a data-flow query graph where each node is a basic query
- namely EPU event processing unit - incoming edges to
a node represent input streams and outcoming edges are
output streams from a node. Each EPU is a generic unit
that performs a computation on input streams. The model
is able to associate several latencies metrics with a data-
flow graph as well as compute the complexity of the input
necessary to produce an event as output (data flow graph
complexity).

The model can be used during the process of designing a
solution of a problem expressed in terms of continuous query
computation, in order to evaluate off-line the data flow graph
that better fits the QoS requirements of a programmer in

C(u) OL(u) AL(u) RL(u)
0 y1 + y3 + (2 + y2)x3 y1 + y3 + (2 + y2)x3 + 1 y1 + y3 + (2 + y2)x3

Table 2: Metrics evaluation of the data-flow graph of Fig. 3 for the query MarketDataFeedMonitor (Fig. 2).

1 y2 1

u1

u2

u3

x3+(y2+1)(x3-1) y3 1

RL
OL
AL

tu2(u1)

Figure 6: Timing diagram of the data-flow graph of
Fig. 3 for the query MarketDataFeedMonitor (Fig. 2).
See 1 for EPU details.

terms of latency and data flow graph complexity. The model
works under the assumption that the processing time at a
node is much shorter than the waiting time for input data.
This is an assumption that is practically verified in many
specific applicative context such as command and control
application, collaborative security etc. where systems are
built in order to have low resource contention.

Our plans to enhance the work focus on different aspects.
From the model point of view, we are extending it in or-
der to represent EPU parameters as a function of time and
model the dynamic behavior of the query data-flow graph.
Moreover we are introducing in the model constraints on the
available resources.

On the practical side, we have recently implemented a pre-
liminary version of a software tool that is able to compute
the metrics introduced in this paper starting from a descrip-
tion of the query data-flow graph. The current version of the
tool is implemented in Python and works as follows. The
programmer specifies through XML files a data-flow graph
that may resolve a specific query expressed in natural lan-
guage. The XML files include for each EPU of the processing
system: (i) the EPU parameters we introduced; (ii) the dif-
ferent input of the EPU; (iii) the processing behavior of the
EPU, that is, all-stream batch or all-stream online process-
ing, and time-based or event-based processing. The tool is
able to visualize the data-flow graph and compute - with re-
spect to both each graph node and entire data-flow graph -
our metrics of interest. This allows the programmer to select
the best data-flow graph that can be submitted to a CEP
or DBMS according to the Quality of Service requirements
to be met.

7. ACKNOWLEDGEMENTS
This work has been partially supported by the EU project

CoMiFin on the protection of the Financial Infrastructure
from Cyber Attacks.

8. REFERENCES

[1] Where Complex Event Processing meets Open Source:
Esper and NEsper. http://esper.codehaus.org/, 2009.

[2] System S. http://domino.research.ibm.com/comm/
research_projects.nsf/pages/esps.index.html, 2010.

[3] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack,
C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and
S. Zdonik. Aurora: a new model and architecture for data
stream management. The VLDB Journal, 12:120–139,
August 2003.

[4] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar,
K. Ito, R. Motwani, U. Srivastava, and J. Widom.
STREAM: The Stanford Data Stream Management
System. Technical Report 2004-20, 2004.

[5] A. Arasu, S. Babu, and J. Widom. Cql: A language for
continuous queries over streams and relations. In
Proceedings of the 9th international workshop on Data
Bases Programming Languages (DBPL ’03), Lecture Notes
in Computer Science, pages 1–19, 2003.

[6] B. Chandramouli, J. Goldstein, R. Barga, M. Riedewald,
and I. Santos. Accurate latency estimation in a distributed
event processing system. In Proceedings of the 27st IEEE
International Conference on Data Engineering, ICDE ’05,
pages 255 –266, 2011.

[7] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson.
Introduction to Algorithms. McGraw-Hill Higher
Education, 2nd edition, 2001.

[8] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo.
Spade: the system s declarative stream processing engine.
In Proceedings of the 2008 ACM SIGMOD international
conference on Management of Data, SIGMOD ’08, pages
1123–1134, 2008.

[9] Q. Jiang and S. Chakravarthy. Queueing analysis of
relational operators for continuous data streams. In
Proceedings of the 25th international Conference on
Information and Knowledge Management, CIKM ’03,
pages 271–278, 2003.

[10] S. D. Viglas and J. F. Naughton. Rate-based query
optimization for streaming information sources. In
Proceedings of the 2002 ACM SIGMOD international
conference on Management of Data, SIGMOD ’02, pages
37–48, 2002.

[11] Y. Xing. Dynamic load distribution in the borealis stream
processor. In Proceedings of the 21st IEEE International
Conference on Data Engineering, ICDE ’05, pages 791–802,
2005.

[12] Y. Xing, J.-H. Hwang, U. Çetintemel, and S. Zdonik.
Providing resiliency to load variations in distributed stream
processing. In Proceedings of the 32nd International
conference on Very Large Data Bases, VLDB ’06, pages
775–786, 2006.

