
A Peer-to-Peer Membership Notification
Service?

Roberto Baldoni and Sara Tucci Piergiovanni

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”

Via Salaria 113, 00198 Rome, Italy {baldoni,tucci}@dis.uniroma1.it

Abstract. The problem of providing a peer with a good approxima-
tion of the current group membership in a peer-to-peer (p2p) setting is
a key factor to the successful usage of any application-level multicast
protocol (e.g. gossip based protocols). A p2p setting makes this problem
hard to be solved due to the its inherent dynamic and asynchronous na-
ture. This paper studies the problem of implementing a fully distributed,
also called p2p, Membership Notification Service (MNS) which is able
to handle any number of simultaneous join and leave while allowing reli-
able delivering of messages among peers which remain permanently alive
inside the group.

1 Introduction

We are interested in studying group membership in very large scale peer-to-peer
environments formed by processes sharing a common interest. In this setting,
hundreds of thousands of processes communicate through application-level mul-
ticast protocols over an overlay network formed by the peers themselves [10, 4].
This environment is inherently asynchronous and dynamic because peers con-
tinuously join and leave the system. This implies that the multicast protocol, to
be effective, has to rely on a group membership service 1 to individuate at each
point in time the set of intended peer receivers for each multicast message.

Group membership has been extensively studied in the literature in the con-
text of group communications. Traditionally, group membership [5] supports
process group communication [2] with the following two objectives [11]: (i) deter-
mining the set of processes that are currently up and (ii) ensuring that processes
agree on the successive values of this set. These group membership approaches
require “long enough” periods of time in which (i) no membership changes oc-
cur and (ii) the underlying system model shows a synchronous behavior [6]. The
scale and dynamic nature of a p2p environment make the requirement of a “long
enough” period of stability and synchrony problematic to discharge in practice.
? The work described in this paper was partially supported by the Italian Ministry of

Education, University, and Research (MIUR) under the IS-MANET project.
1 The multicast can also directly embed the membership management, but in the

following we maintain separated these two concerns: multicast communication of
application information and group membership management.

Recently, in the context of WAN, Anker et al. [1] proposed the notion of
Membership Notification Service (MNS) which provides each process with an
approximation of the current group membership, without being synchronized
with the message stream. This approach allows handling any number of simulta-
neous join/leave events concurrently and allows message reliability among those
members that remain permanently alive against on-going membership changes.
The authors proposed a client/server implementation of a MNS. More specifi-
cally, there is a set of servers and each server is in charge of (i) being the access
points for joining nodes, (ii) tracking the departures of processes (both failures
and voluntarily leaves) and (iii) providing views of the membership to whom
requested them.

The aim of this paper is to study what are problems which arise in imple-
menting a fully distributed (or p2p) MNS in a p2p setting and, then, to propose
a solution.

The contribution of the paper is twofold, the paper firstly presents two impos-
sibilities results that delimitate under which assumptions a p2p MSN implemen-
tation can be realized. Secondly, it introduces a p2p MNS solution that manages
concurrent leaves. The presented solution dynamically builds and maintains an
overlay topology in which processes are partially ordered by a rank which is
assigned to a process at join time. This weak order is taken into account at leave
time. The algorithm serializes any two concurrent leave operations executed by
neighbor processes in the overlay topology that could lead to a partition of the
topology itself. These departures are ordered by process rank. All the other
concurrent leave operations are not serialized.

The paper is organized as follows. Section 2 presents the system model in-
cluding the group membership management. Section 3 formally introduces the
MNS specification, the impossibility results and the circularity problem. Section
4 shows a p2p MNS implementation.

2 System Model

The system consists of an unbounded but finite set of processes Π2. Any process
may fail by crashing. A process that never fails is correct. The system is asyn-
chronous: there is no global clock and there is no timing assumption on process
scheduling and message transfer delays. Each pair of processes pi, pj may com-
municate along point-to-point reliable links. To simplify the description without
losing generality, we assume the existence of a fictional global clock, whose out-
put is the set of positive integers denoted by T .
Group Membership. Each process pi ∈ Π may become member of a group G.
Once member, it may decide to leave the group. To this aim pi may invoke the
following operations: join(G) to enter G and leave(G) to exit the group. The
set of processes constituting the group G at time t ∈ T is denoted as G(t).

2 Note that in the informal parts of the paper we use the term ”peer” as a synonym
of ”process”.

2

At any time t, G(t) is a subset of Π with size unbounded but finite. The rules
defining the membership of G are the following:
1. a process p ∈ Π becomes a member of G immediately after the completion of
join(G).
2. a process p ceases to be member of G immediately after the completion of
leave(G).
3. a process p may become member of G at most once 3.

A group member p ∈ G is stationary if it is correct and never invokes
leave(G). A group member p ∈ G is transient if it is correct and eventually
executes leave(G).

Note that, since G(t) is unbounded and finite at any point of time, the num-
ber of stationary processes is unbounded and finite, as well.

Membership Management. To abstract in a general manner the membership man-
agement we consider that each process can locally access a distributed oracle.
Each process pi invokes the join(G) and leave(G) operations through the MNS
local module MNSi that is in charge of the actual execution of these operations.
Each MNSi module provides pi with a local view of the group, i.e. a list of pro-
cesses representing the current membership of the group as perceived by MNSi.
We assume that MNSi crashes only when pi crashes.

Upon the invocation of join(G) by pi, MNSi generates an event denoted as
invi(join(G)), then MNSi is granted permission to access the group on behalf
of pi. After that, MNSi returns to pi with an upcall by generating the event
resi(join(G)), thus at this point pi ∈ G.

Upon the invocation of leave(G) by pi, denoted as invi(leave(G)), MNSi

obtains permission for pi to leave the group. After that, MNSi returns to pi

with an upcall resi(leave(G)), thus from this time on pi is no longer a member
of G.

Note that MNSi may provide pi with a local view even when pi is not a group
member. In this case we call the view access viewi. As long as pi belongs to the
group, the local view is called group viewi. Only between events resi(join(G))
and resi(leave(G)) we say that pi ∈ group viewi.

3 MNS specification

The view information for one group can be represented as a knows-about directed
graph K = (Π, E) [9]. For each pair of processes pi, pj , there will be an edge
(pi, pj) in the graph if pj ∈ group viewi, and an edge (pj , pi) if pi ∈ group viewj .
There exists an edge (pi, pi) for every process pi such that pi ∈ group viewi

4.
This graph actually represents the overlay network to be used as underlying
communication network by an application-level multicast protocol in a peer-to-
peer environment.
3 This is not a restriction because the process may join with another identifier.
4 Note that there exists an edge (pi, pi) even for each faulty member pi that crashes

before generating resi(leave(G)).

3

3.1 Specification

Safety. Since view information is propagated along edges of the knows-about
graph, once joins and leaves cease, every stationary member pi belonging to
the graph should have for each stationary member at least one path formed by
stationary members 5. This is necessary because even though leaves and joins
no longer occur, crashes are still possible. Such crashes could partition the set
of stationary members. Therefore, if this condition is satisfied, the view of each
stationary member eventually includes all stationary members. Formally,

Property 1 (Safety). Let K = (Π, E) denote the knows-about graph at time t
s.t. no edge (pi, pi) will be added or removed for each t′ > t (i.e., joins and leave
cease at time t). Let us consider the subgraph Ks = (S,Es) such that
(i) pi ∈ Π and pi is stationary ⇔ pi ∈ S
(ii) ∀ pi, pj ∈ S, (pi, pj) ∈ E ⇔ (pi, pj) ∈ Es.
Then, ∀pi, pj ∈ S there exists an edge (pi, pj) in the transitive closure of Es for
each t′ > t.

Liveness. A trivial group membership implementation may maintain safety by
blocking the completion of each join(G)/leave(G).

Then, to avoid static implementations the following property holds:

Property 2 (Liveness). The execution of the join(G) and leave(G) operations
requires finite time.

3.2 Impossibility results

The following impossibility results stem from the general assumption that access
viewi is a random set of processes belonging to Π, without any relation with
the current membership. Unfortunately, as we see later, to guarantee the MNS
specification even access viewi has to satisfy some property (stated in Corollary
1). While this property is very lightweight, it nonetheless necessarily introduces
a circularity problem.

Impossibility Result 1 If there exists a time t ∈ T s.t. G(t) ≡ ∅, the MNS
specification cannot be guaranteed.

Proof. (sketch) Let us suppose by contradiction that at some point of time t,
|G(t)| ≡ ∅.

Assume a process pi executing join(G) produces the invi(join(G)) event
while |G(t)| ≡ ∅. pi does not know whether the group is empty or not as
access view is neither complete nor accurate. pi can send a JOIN message to its
access view but cannot get any acknowledgement (like any concurrent joining
process) since G(t) is empty. To respect Liveness, pi has become a member after

5 Our Safety specification is partially inspired by the group membership specification
in [9].

4

a finite amount of time exploiting a time-out strategy 6. Then, at time t + T pi

concludes to be alone in G and includes in group viewi only itself. Because of the
asynchrony of the underlying system, another process pj with pj 6∈ access viewi

and pi 6∈ access viewj can decide to join. As pj does not ”see” pi, it uses the
same strategy and generates resi(join(G)) including in group viewj only itself
at time t + T . If both pi and pj are stationary no edge connects them at time
t′ ≥ t + T . If no other join and leave occur there is no way to add that edge at
a later moment. Hence, no edge will connect them for each t′ ≥ t + T violating
Safety.

Lemma 1. Let us suppose that |G| is never empty. Then, any process pi cannot
generate resi(join(G)) until there exist at least one edge (pi, pj) ∈ E and one
edge (pj , pi) ∈ E.

Proof. (sketch) Let us suppose that resi(join(G)) is generated at time t and
that G(t) contains a stationary member p. By the way of contradiction, let us
suppose that does not exist any edge (pi, pj) in E at time t. However, after
resi(join(G)) pi has an edge (pi, pi) ∈ E at time t. If pi is also stationary then
G(t) contains two stationary processes and no edge in the transitive closure of E.
If no other join and leave occur there is no way to add that edge in a successive
moment. No edge will connect them for each t′ ≥ t + T , violating Safety.

Impossibility Result 2 If there exists a time t ∈ T s.t. G(t) contains no sta-
tionary member, the MNS specification cannot be guaranteed.

Proof. (sketch) Let us suppose by contradiction that there exists a point of time
t ∈ T s.t. G(t) does not contain stationary members. From Lemma 1 every
joining process has to establish two edges with a process pj , before generating
resi(join(G)). From Liveness it has to establish those edges in a finite time.
Without loss of generality suppose that at time t, G(t) comprises k faulty mem-
bers and c transient processes. Taken any subset S(t) ⊆ G(t), of one process pj ,
that process is either faulty or transient. Let us assume that:

1. pj is transient and belongs to G between times tJj and tLj .
2. pi generates invi(join(G)) and sends at time t a JOIN message to each

member of G(t).

As the system is asynchronous, the delay experienced by JOIN on the fair lossy
link connecting pi to pj , could be greater than tLj −tJj and then the message of pi

would not reach pj . Moreover, pj does not yet know pi, so pj cannot communicate
with pi before the JOIN arrives to pj . Then, pi cannot establish any edge with
pj . pi cannot establish in a finite time any edge unless some other stationary
member will join the group. However, no stationary member can surely join in a
finite time for the same reason that blocks pi. Thus, pi waits for an infinite time
violating Liveness.
6 The strategy can encompass mechanisms such as setting a timeout T or retransmit-

ting the JOIN message k times.

5

From Impossibility Result 2, the following Corollary holds:

Corollary 1. If access viewi does not eventually contain at least one stationary
member, the MNS specification cannot be guaranteed.

This constraint on access view poses a circularity problem when the MNS is
implemented in a pure p2p fashion, i.e. it is implemented in a fully decentralized
manner by members themselves and no process plays a special role from the
beginning. In this case, to fill the access view in order to be compliant with
Corollary 1, a run time discovery has to be performed. This discovery cannot
be push-based (from the current members of the group to the newcomer): none
can indeed provide the newcomer with a view as no member of the group knows
the newcomer 7. Thus, to discover a current peer, the newcomer has to contact
someone (e.g. a special process) that knows some peer. Following a pure peer-
to-peer approach (where there is no special process), only a peer may have this
knowledge. Then, to know a peer, the newcomer must already know a peer: a
classic instance of the hen-and-egg problem.

Circularity, in these systems, may be avoided by assuming either that even-
tually the newcomer will somehow know someone inside the group or the ex-
istence of special processes constantly known by all other processes from the
beginning—at the cost, however, of losing a pure peer-to-peer approach.

4 A p2p MNS Implementation

In this section we provide a p2p MNS implementation. In particular, the MNS
is implemented by the peers themselves where each peer only has only a partial
view of the group[8, 7]. The interested readers are referred to [3] for a performance
analysis of the algorithm and its comparison with [8].

The proposed algorithm may concurrently handle join/leave operations gen-
erating, in a decentralized manner, knows-about graphs respecting Safety. The
resulting graphs show a particular structure in which each member has around
itself a clique of at least f + 1 members, where f is the number of tolerated
failures. The other important feature of the algorithm consists in imposing a
partial order on processes to manage concurrent leaves that may partition the
graph. The algorithm also exploits heartbeat messages to monitor node failures.
Data Structures. The variable group viewi is the union of two different vari-
ables: sponsorsi and sponsoredi. sponsorsi is a list of processes (identifiers)
which guarantee to pi the connection8 to the group, i.e. upon the join operation
the list contains all processes the grant pi the permission to enter the group,
then if some of these sponsors leaves the list will contain some other process
that replaces the left one. sponsoredi is a list of processes (identifiers) which pi

is responsible for in terms of connection. A variable ranki gives an indication
7 The number of potential newcomers is unbounded. As a consequence the identifiers

of potential newcomers cannot be available at design time.
8 The connection is intended here as the connection to the overlay in terms of knows-

about relation.

6

of the position of pi in the graph, inducing a partial order on nodes. A boolean
variable leaving is initialized to ⊥.
Initialization of the group. A set of processes {p1, ...pf+1} ⊆ Π totally intercon-
nected and defined in the initialization phase instantiates the group9. All these
processes have rank ranki = 0. They are special processes, they never leave the
group.

Join Management. Rules of the algorithm:

– MNSi sends a JOIN message to access viewi
10

– When MNSi receives a JOIN message from MNSj and pi ∈ group viewi:
(1) MNSi inserts pj in sponsoredi; (2) it sends an acknowledgement to pj

along with its own rank ranki.
– When MNSi receives f+1 acknowledgments: (1) MNSi includes in sponsorsi

all the senders and pi; (2) it sets ranki = max(rankk, ∀senderpk)+1 and (3)
returns to pi generating resi(join(G)). From this time on with an heartbeat
mechanism all sponsorsi are monitored. Each time a sponsor is suspected
to be faulty, MNSi tries to re-establish the missed connection searching
another sponsor pj with rankj < ranki.

Leave Management. Rules of the algorithm:

– MNSi (i) sets leavingi = > and (ii) sends a LEAVE message to sponsorsi,
so composed 〈LEAV E, sponsoredi, ranki〉;

– When MNSi receives a LEAVE message 〈LEAV E, sponsoredr, rankr〉 from
MNSj and rankj > ranki and leavingi = ⊥: (1) MNSi inserts sponsoredr

in sponsoredi; (2) it sends an acknowledgment to pj and (3) sends a message
〈NEWSPONSOR, oldsponsor = pj〉 to sponsoredr.

– When MNSi receives an acknowledgment from its sponsors: (1) discards pi

from sponsorsi and (2) returns to pi generating resi(LEAV E(G)).
– When MNSi receives 〈NEWSPONSOR, oldsponsorr〉 from MNSj and

oldsponsorr ∈ sponsorsi: MNSi includes pj in sponsorsi and discards
oldsponsorr from sponsorsi.

Thanks to ranks, it is possible to induce a partial order on the nodes. In
practice, when two nodes pi, pj with rank ranki < rankj want to concurrently
leave, a partition may occur if they actually leave at the same time. The algo-
rithm sequences the leaves, by allowing a leave of a process of rank rankj only
if none of its sponsor pi with rank ranki < rankj is concurrently leaving. Note
that pj remains blocked as long as new sponsors of pj are concurrently leaving.
Eventually, if all processes with rank lower than rankj leave, then pj will have
as sponsors processes with rank 0. Since by construction these processes never
leave (they are stationary), then also pj eventually will leave (Liveness).

9 Impossibility results are circumvented because of the presence of these processes.
10 The mechanism to fulfill access view, addressing Corollary 1, will be discussed in

the reminder of this Section.

7

Each process, if no failures occur, maintains at any time a knows-about graph
with connectivity at least equal to f + 1. If some failure occurs during over-
lay changes, a recovery mechanism restore the connectivity of graph. If overlay
changes (joins/leaves) subside, the resulting knows-about graph has connectivity
f + 1 and remains always connected until f failures occur. Safety is maintained
until these f failures occur. Anyway, a restoring mechanism will restore con-
nectivity until only stationary processes are in the overlay. From this time on
connectivity among stationary members is always guaranteed.

References

1. Tal Anker, Danny Dolev and Ilya Shnayderman: Ad Hoc Membership for Scal-
able Applications. Proceedings of 16th International Symposium on DIStributed
Computing, (2002)

2. Kenneth Birman and Robert van Renesse: Reliable Distributed Computing with
the Isis Toolkit. IEEE Computer Society Press (1994)

3. Roberto Baldoni, Adnan Noor Mian, Sirio Scipioni and Sara Tucci Piergiovanni:
Churn Resilience of Peer-to-Peer Group Membership: a Performance Analysis.
International Workshop on Ditributed Computing (2005), to appear.

4. Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Antony Rowstron:
Scribe: A Large-scale and Decentralized Application-level Multicast Infrastruc-
ture. IEEE Journal on Selected Areas in communications (2002)

5. Gregory Chockler, Idit Keidar, Roman Vitenberg: Group Communication Spec-
ifications: a Comprehensive Study. ACM Computing Surveys 33(4): 427-469
(2001)

6. Tushar Deepak Chandra, Vassos Hadzilacos, Sam Toueg, and Bernardette
Charron-Bost. On the Impossibility of Group Membership. In 15th Annual ACM
Symposium on Principles of Distributed Computing, (1996)

7. Patrick Th. Eugster, Rachid Guerraoui, Sidath B. Handurukande, Petr
Kouznetsov, Anne-Marie Kermarrec: Lightweight Probabilistic Broadcast. ACM
Transactions on Computuer Systems 21(4): 341-374 (2003)

8. Ayalvadi J. Ganesh, Anne-Marie Kermarrec, Laurent Massoulié: Peer-to-Peer
Membership Management for Gossip-Based Protocols. IEEE Transactions on
Computers 52(2): 139-149 (2003)

9. Richard A. Golding and Kim Taylor: Group Membership in the Epidemic Style.
Technical Report UCSC-CRL-92-13, University of California, Santa Cruz (1992).

10. John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans Kaashoek, James
W. O’Toole: Overcast: Reliable Multicasting with an Overlay Network. Proceed-
ings of the 4th Symposium on Operating System Design and Implementation,
San Diego (2000)

11. André Schiper and Sam Toueg: From Set Membership to Group Membership:
A Separation of Concerns, Technical Report, EPFL, Lausanne, (2003)

8

