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Abstract inate the faulty processes. In the past, distributed pro-
tocols running on crash-prone system models merged
Nowadays, there are many protocols able to cope the aspect related to fulfill its goal and the aspect re-
with process crashes, but, unfortunately, a process lated to the detection of crashes. Chandra and Toueg
crash represents only a particular faulty behavior. [4] were the first to propose an approach that encap-
Handling tougher failures (e.g. sending omission fail- sulates the task of detecting process crashes in a com-
ures, receive omission failures, arbitrary failures) is a ponent, external to the process, called failure detector.
real practical challenge due to malicious attacks or A crash failure detector is a distributed oracle that can
unexpected software errors. This paper proposes abe consulted by a process to have hints about the state
component-based methodology allowing to take a pro- of another process. From an operational viewpoint, a
tocol A resilient to crash failures and to add software failure detector undertakes the burden of dealing with
components in order tadaptthe protocol.A to be the asynchrony of the underlying system, letting the
resilient to more general failures than crash, without protocol designer concentrate on the essential part of
changing the code ofl. On this basis, it introduces the development without worrying about the underly-
the notions of liveness failure detector and safety fail- ing problems.

ure detector, two independent software components to Formally, a failure detector component is defined

be used by a protocol to increases its resilience re- by two properties: completeness (a property on the
spec.tlvely to liveness and safety fallyr.e.s of prgcessesactual detection of process crashes), and accuracy (a
runmng.the protocol. The.n,. the fea.15|b|llty of th|§ ap- property that restricts the mistakes on erroneous suspi-
proach is shown, by providing an implementation of cions) which constraint the number of admissible mis-

liveness failure detect(.)rs and of safety failure detec- .\ < 4one by a failure detector. Chandra and Toueg
tors for a protocol solving the problem of global data have also shown that the usage of failure detectors al-

computation. lows to solve the consensus problem in asynchronous

crash-prone systems, thus circumnavigating the FLP
impossibility result [10] stating that consensus prob-
lem has no deterministic solutions in such a system.

Keywords: Composable systems, Asynchronous
Systems, Arbitrary Failures, Liveness Failure Detec-
tor, Safety Failure Detector, Adaptive Fault Tolerance,

Global Data Computation Problem. Designing solutions for distributed protocols in an

environment where processes can exhibit arbitrary be-

havior .g, omit to execute a statement or corrupt the

value of a local variable) is notably more difficult than

in a crash context [3]. As a consequence solutions
A common technique used to make distributed pro- used in the crash model are inadequate as a malicious

tocols resilient to process failures consists in the detec-process can exhibit failures more subtle than crashes

tion of such failures during run time, in order to elim- and these failures can lead to the violation of the cor-

1 Introduction



rectness criteria of the protocol. In the literature there to other processes runniggy The detection of safety
have been examples of protocols resilient to crash fail- failures, based on tools like signature, certification and
ures which have been transformed into protocols re- state machine modelling of processes, requife®
silient to arbitrary failures [1, 8, 14, 15, 16]. How- have some regularity in its structure (as, e.g., to be
ever, all these examples share a common factor: theyround-based). Finally, as both components need to
change the original code of the protocol. Doudou et make reference to properties of a given protadol
al. pointed out for the first time in [9] that, in the con- contrarily to crash failure detector, the design of these
text of consensus handling muteness failures, a pro-components cannot be performed independently of the
tocol designed in a crash-stop model can be reusedprotocol that will use them [9].
modulo a few change in its codi@ the presence of a removeFinally, these two components allow to
weaker failure semantic (i.e., muteness failures) sim- reuse the code of a protocdl, which is correct with
ply replacing the failure detectoiS with the one used  respect to a system model prone to crash failures, in a
by that semantic. system model with tougher failures, without impacting
This paper makes a further advance in that direc- .A’s correctness.
tion by proposing a methodology based on software  The proposed methodology is feasible, as shown
components which allows a crash-resilient protocol to by its application to two case studies, namely a proto-
adapt to weaker failure assumptions of the underlying col solving the Consensus problem [13], and a proto-
system modél This adaptation is done by compos- col solving the Global Data Computation problem [6].
ing the protocol with well-specified software compo- Due to space limitations, only the second case study is
nents while completely reusing the code of the crash- included here. The interested reader will find the first
resilient protocol. These software components can beone in the full paper [2].
systematically designed from the crash-resilientproto- The paper is made of five sections. Section 2
col code and the current system model assumptions. presents the computation model and introduces the
More precisely, two main components are consid- concepts of liveness failures and of safety failures. The
ered, dealing with liveness and safety issues respecrinciples underlying the design of liveness failure de-
tively: theliveness failure detectpand thesafety fail- tectors and of safety failure detectors are addressed
ure detector This component-based structure is based in Sections 3 and 4 respectively. Finally, Section 5
on a classification of arbitrary process failures into presents the case study.
liveness process failures and safety process failures,
proposed in this paper. Previous specifications of fail- 2 The Model of Computation
ure detectors considered only some kinds of liveness
failures (crashes [4], quietness [15], muteness [9, 14], 2.1 Protocol
omissions [7], to cite a few), and did not consider
safety failures. Intuitively, given a protocgl, a pro-
cessp suffers a liveness failure if one or more pro-
cesses detect thatdoes not progress w.r.t. specifica-
tion of A, andp suffers a safety process failure if one
or more processes detect thadoes not follow speci-
fication of A.
Each of these failure detector components impose
restrictions on the protocol. To detect liveness fail- this protocol. A protocol izorrectly designed w.rt. a

ures, A has to include in its specification some mech- System modéif any execution of this protocol in an
anism that allows a given process to show its progress€nvironment satisfying the system model assumptions
satisfies the correctness criteria of the protocol.

A protocol is composed of sequential programs.
Each program involves two kinds of statements: in-
ternal and communication. A protocol is specified
by safetyandlivenesgroperties (hereafter correctness
criteria). A protocol is designed with respect tgys-
tem model A system model describes the assumptions
on the environment able to support the executions of

1The implementation of a system is based on resources: proces
sors, memories, buffers, network, etc., constituting thieysical” 2.2 System Model
environment. Such an environment can change its properfies
example, the reliable network can start lose messagesfer loah . . .
start to be unavailable (due to an overflow problem or to maysi System models considered in this paper share the

crash) etc. following characteristics:



e The execution of a sequential prograiis a pro-

in process designing, software bugs, statement omis-

cesy;, that produces a (possibly infinite) sequence of sions, corruptions, hardware component failures used

events.

e Each process has its own local environment (lo-

by the process etc. frocess failures the external
and visible manifestation of one or more process faults

cal memory, input-output buffers, etc) and runs on a (we denote a generic process failureaalsitrary pro-

processor.

cess failurg. During the execution of a protocdl, the

e Processes communicate together by exchang-manifestation of a failure of a procespasses through
ing messages through channels connecting an outputhe analysis of messages sentjbwhile running.A.

buffer of the sender to an input buffer of the receiver.

A crash failure ofp will imply that expected messages

Different system models are obtained according to never arrive to the intended destination while a corrup-
different additional assumptions. These assumptionstion of a field of a message sent pyvill imply a mes-

concern in particular:

e The time (synchronism/asynchronism)Syn-
chronousmodels are characterized by the three follow-
ing timing assumptionf11]):

1. There is a known upper bound on the time
required by any process to execute an action.

2. Every process has a local clock with known
bounded rate of drift with respect to real time.

3. There is a known upper bound on the time

sage that does not follow the program specification de-
fined in A. Note that some faults can be undetectable,
as they do not exhibit an external manifestation (i.e.,
do not produce a failure). For example, if a process
corrupts the value of a local variable, this might not
produce a failure.

We classify arbitrary process failures in a run of a
protocol A into two categories: liveness failures and
safety failures. A procegssuffers diveness failuren

taken to send, transport and receive a message ovea run of a protocold, if there exists a procegswhich

any channel.
On the contrary, in completelgsynchronousnod-

els, none of these three timing assumptions hold.

detects thap does not progress w.r.t. evolution df
Crash process failures and muteness process failures
(see next subsection) are example of liveness process

Thus, asynchrony concerns processes as well as charfailures.

nels. Intermediate models, where some of these tim-
ing assumptions or weaker timing assumptions hold,

can be defined. They are referred topastially syn-
chronousmodels.

e The reliability : responsibility for faulty behavior
is assigned to the system’s componeints commu-

nication channels and processes). Therefore, reliable
models assume reliability properties for both chan-
nels and processes. Unreliable models include mod-
els where some of those channels/process reliability

requirements are not assumed.
For example, arasynchronouslistributed system
prone toprocess craslfailures, is a distributed system

where no time assumption is made (asynchronous),

Definition 1 A proces is live (in a run of a protocol
A) if p never suffers any liveness failure during this
run.

A proces suffers asafety process failurim a run
of a protocol A4, if there exists a procegswhich de-
tects thap does not follow specification od. Corrup-
tion, transient omission, multiple statement execution,
predicate misevaluation are examples of faults that can
lead to safety failures.

Definition 2 A proces is safe(in a run of a protocol

channels are assumed reliable, and processes fail onIyA) if p never suffers any safety failure during this run.

by crashing.
2.3 Process Fault and Process Failures
In the rest of this paper, the following terminology

[17] will be used.
Process faultsare the underlying causes of pro-

Finally, note that a process fault could produce ei-
ther (i) no process failure, (i) one or more liveness
process failures, (iii) one or more safety process fail-
ures, or, (iv) liveness and safety process failures.

Definition 3 A proces is correct(in a run of a pro-

cess failures. Examples of process faults are mistakeg0ocol A) if p is live and safe in this run.



2.4 The Nature of Process Liveness case, however, safety failures experienceghthyave

Failures no impact on the behavior of other processes running
the protocol).
Liveness failures of a procepsrunning a protocol Let us explain the nature of the safety failures by
A include the situation where processcrashes, or,  showing that a procegscould suffer, with respect tg
more generally, is mute to another procesg.e., p a safety failure without being stalled. Suppesandg

stops sending messagesgjowith respect tad. But  exchange messages over a bidirectional, reliable asyn-
liveness failures are not limited to these situations. In chronous FIFO channelg sends, in a non-blocking
fact, p could be perceived by as non mute, e.gq way, a sequence (possibly infinite) of messages with
continues to receive from messages of the protocol an argument. p echoes: and includes a local se-

A, but the content of received messages indicates thalqguence number. So the code of the protocol governing
p will not progress beyond an expected "point” in its  p could be the one shown in Figure 2.

execution. In this case we say thais stalled with If p temporarily omits to receive some messages,

respect to process(in this run of.A). those messages do not echo their argumens®pre-
The following example shows a case wherés  vious code will not be executed by ¢ can detect

stalled with respect tg without being mute tg. Sup-  this by comparing locally its expected echoed argu-

pose that the protocod governingp includes a code  ment with the one contained in the incoming message.
like the one shown in Figure 1 whe€is a condition If this comparison is negative concludes that omit-
becomingt r ue only after the receipt of some mes- ted to execute at least the send statement of the previ-
sages. [fp fails by permanently omitting to receive  ous code, thus, suffering a safety failure. Note that, as
messages (it suffers a permanent receive omission fail- increases its local sequence numbatreach receipt,
ure) enablingCto become true, then it will never reach it actually shows a progressga@ven in the presence of
statement + 1, and thus suffers a liveness failure. temporary receive omissions and, thuss not stalled
However,p will continuously perform the sending of  with respect tay.
m(k) to ¢ and thusp will not be mute toy.

Note, from Definition 1, that, in a given run of, a ce
proces is not live if and only if there exists at least when a nessage m(a) arrives at p fromg
one processg such thap is stalled w.r.tg. =

send nm(a,i) to q ;
endwhen

statement k. %relevant event step(p,q)r W.r.t. g9

whil e not C do Fid
send mk) to q ; )
do sonet hing el se ;

endwhil e ;

statement k+1 % rel evant event step(p,q)g+1 W.r.t. q%

jure 2. Safety process failures: an ex-
ample

3 Handling Liveness Process Failures
Figure 1. Liveness process failures: an

example 3.1 Specifications of a Liveness Failure
Detector
2.5 The Nature of Process Safety Fail- Intuitively, a liveness failure detectoris a dis-
ures tributed oracle aiming at detecting stalled processes.

It is composed ofocal modules, one per process. The
Safety failures of a procegscan only be revealed local module of each procegsmaintains the list of
by another processeslooking at the syntax and the processeg that p suspects to be stalled w.pt To
semantic of the messages sentand received by. be more precise, we adopt the model patterned after

If no message is sent m’in the pl’OtOCOl, no Safety 2In the rest of the paper, failure detector componetill be
failure of p can be detected by other processes (in this more simply calledailure detector




the one in [4]. A liveness failure detector can make 3.2 Hints for Designing Liveness Fail-
mistakes by not suspecting a stalled process or by sus- ure Detectors

pecting a live one. Itis thus specified with two proper-

ties: completeness (a property on the actual detection Implementations of crash failure detectors were
of stalled processes) and accuracy (a property that re-mainly based on the notion of “I-am-alive” messages
stricts the mistakes on erroneous suspicious). Thesgheartbeats) exchanged between the instances of crash
specifications are adapted in order to take into accountfailure detector associated with each process. If a fail-
the type of failures considered, namely: a correct pro- ure detector of a procegsstops receiving heartbeats
cess means a process that suffers neither liveness nofrom the failure detector of procegsthen the failure
safety failures and, as the role of a liveness failure de- detector ofy suspect® to be crashed. There is then a
tector is to detect only stalled (i.e., non live) processes, sharp separation between the messages exchanged by
suspected processes are restrictestaiedprocesses.  the protocol and the messages exchanged by the fail-
With this informal discussion in mind, we get the fol- ure detectors. This makes crash process failure detec-
lowing classificatiod. tor independent from the underlying protocol.

It has been shown in [9] that designing muteness
failure detectors cannot be independent from the pro-
tocol run by processes. In fact, the receipt of heart-
beats is no longer a guarantee th& correct:p could

Eventual CompletenessEventually, every process
that is stalled w.r.t. a correct processs per-
manentlysuspected by.

Eventual Weak Accuracy Eventually, there isat indeed stop sending protocol messages, but continue to
least ondive process that will never be suspected Send heartbeat messages. So, a muteness failure detec-
by any correct process. tor must be able to detect a process that is not crashed,

but stops sending protocol messages. Consequently,
: the authors pointed out that a necessary condition to
process will never be suspected by other correct gesign such a muteness failure detector is that each

Eventual Strong Accuracy Eventually, every live

processes. process has to know the set of messages exchanged
Weak Accuracy There isat least onelive process ~ °Y @ protocol,_él. _ _ _ _

that will never be suspected by any correct pro- When designing a liveness failure detector previ-

cess. ous condition does not suffice to ensure detection of

stalled processes. As shown in Section 2.40uld
Strong Accuracy Any live processg will never be  continue to send protocol messages taithout doing

suspected by a correct process any progress with respect to the protogbl
- . . . . Therefore, a liveness failure detector has to be able
Similarly with the notations introduced in [4] and to capture

widely used in the case of crash failure or muteness
failure, we will denote by S7 S 4 the class of liveness
failure detectors satisfying Eventual Completeness
and Eventual Weak Accuracy for a protocol
(Eventually Strondiveness failure detector). We will
denote bywS7T P 4 the class of liveness failure detec-
tors satisfying Eventual Completeness and Eventual
Strong Accuracy. And we will denote h§y7 P4 the
class of liveness failure detectors satisfying Eventua
Completeness and Strong Accura®effectliveness
failure detector). The suffid will be omitted when
no confusion is possible.

e the progress of a procegwith respect ta4, and

e the termination with success of the codeafith
respect toA.

Thus, to design a liveness failure detector for pro-
tocol A associated with procegsit is necessary to
recognize for each cooperating process

1. messages exchanged betwee(sender) and
| p(receiver) within runs of the protocal;

2. a variablef, attached to each protocol mes-
sage exchanged betweerand p, that manifests the
progress of; with respect to runs ol ;

3. the eventstop(q,p), denoting the termination
with success of the the code run pywith respect to

3t is possible, as in [4], to present a more formal specifirati
based on the notion of failure pattern. Although this préstén is q-
not adopted here, it would not be difficult to obtain. So if the liveness failure detector associated with a



proces® receives protocol messages from a progess w.r.t A andq. If ¢ suspecteg to be stalled, then this
while the variablef remains unchanged, then, in this suspicion was wrong anghas to repent about it.

run of A, it can suspeat to be stalled with respect to Let us also remark the importance of the event

p. stop(p, q). If the execution ofp produces this event
and if ¢ becomes aware of it, thepwill never more

3.3 Requirements imposed on A suspect procegsto be stalled w.r.tg, asp terminated

correctly to rund w.r.t. q.
It results from the previous section that a protadol

has to embed mechanisms that allow a liveness failure4 Handling Safety Process Failures
detector to capture its progress in its runs. To this aim,

let us consider each process "passes” over a sequencg Specifications of a Safety Failure
of "points”, such that passing over a point is attested
by a change in the value of a variable, transmitted by
messages. If, during a run, a proceseceives a se-
guence of messages frop all with the same value
of that variable, this might indicate tg that p fails

to pass beyond the next updating point, i.e., fha

Detector

The discussion presented in the case of liveness
failure detectors can be applied to the case of safety
failure detectors as well, where the word "stalled” be-
comes "unsafe”, "live” become "safe”, and the abbre-
stalled with respect tg in this run. viation s fdm stands for "safety failure detector mod-

More specifically, let consider any two pro- yje» |y particular, the output of the local module as-
cessesp and ¢ running A.  Any execution of  gociated withy is the set fuspected_safety,) of pro-

p includes a sequence of relevant events, namely osqes it suspects to be unsafe w.t.
step(p, )1, - -, step(p, ), - ., with respect tg and, However, contrarily to the case of liveness failure
possibly the eventtop(p, ¢), such that: detectors, safety failure detectors are always perfect
(they do not do mistakes). In fact, detecting safety
step(p, q)1 <1 step(p, q)2 <i ... <1 step(p,q)e <i step(p,?yelf? srest %Qggtp p?,Q?”'SmS (see the next section) that
0 not rely on “time”, but on the very structure of the
where <; is the relation of local precedence on protocol. Perfect safety failure detectors enjoy the fol-
events on procesp (note that the set of relevant lowing properties
events ofp is a subset of the history of). Be-
tween two consecutivetep(p, ) events, or between
the laststep(p, q) event preceding thetop(p, ¢) and
the stop(p, ¢) event, there is at least one send event of

amessage fromto q. After stop(p, q), nosend event  gyrong Accuracy. Any safe process will never be
of a message fromto g exists. suspected by a correct procesgidm.

If A imbeds such a structure, thers stalled w.r.t.
q if there existsk such thatstep(p, ¢) occurred and 4.2 Hints for the Design of Safety Fail-

step(p, q)k+1 OF stop(p, q) Will never occur. ure Detectors
As an example, let us consider the code of Figure

1 when considering that the executions of statement As explained in Section 2.5, detection of failures
and of statemerk+1 produce two successive relevant s closely related to the receipt of protocol messages.
events with respect tg. In such a case, i suffersa  Therefore, when one has to cope with detection of
permanent receive omission fault thewill be stalled safety failure, the key idea iseach process has to
with respect toy #. Let us remark, however, that jif check whether the right message has been sent by the
suffers only transient omission fault, then after a while right process at the right time with the right arguments

p may executest at enent k+1 (i.e., the statement  This leads to identify two kinds of “externally” visible
producingstep(p, q)r+1). In that casep is not stalled behaviors:

4In this particular case, the receive omission faultpdt per- 1. Wrong Messages (|-e-* “ght time, but wrong
ceived by an external process as a liveness failure. message or wrong content). This case includes mes-

Eventual Completeness.Eventually, every process
that is unsafe w.r.t. a correct procests perma-
nentlysuspected by'’s sfdm.




sages sent after an alternative statement has been mieorrectly taken into account, and the valuep g$ lo-
sevaluated (substituted messages), or messages whosml variables involved in the enabling condition.
content is syntactically or semantically incorrect. Let us remark that we have to assume that cer-

2. Unexpected Messages (i.e., wrong time). This tificates themselves cannot be corrupted, since a cor-
corresponds to an “owdf_order” message, revealing rupted certifying information could be consistent with
either atransient sending omissioor a sending du-  a corrupted information to certify. The conceptref
plication. This case includes in particular the case of liable certification moduleencapsulates this assump-
messages that are not generated during fail-free execution. Technically, this assumption can be enforced by
tions of the protocol. the very structure of certificates: they are composed of

Detection of wrong or unexpected messages is a set ofsigned messages.g. messages whose receipt
based, on the one hand, on certification mechanismss the cause of the sendingf, or whose content has
and, on the other hand, on state machines built from influenced the update of a local variable whose value
the text of the protocol. Certificates can be analyzed is involved inm. Reliability results from the fact that
(at the recipient side) by a state machine to detect no process can falsify the content of a signed message
wrong messages. As the state machine is built from without being detected as faulty by a correct receiver
the text of the protocol, this machine can also detect [18], and, if necessary, from the cardinality of the set
unexpected messages. It results from this discussionof signed messages allowing to perform majority tests.
that the task of designing safety failure detectors es- The correction of a certificate can thus be verified at
sentially consists in the design of appropriate certifi- the recipient side, by eertificate analyzer
cates and of a state machine that models the protocol.

Let us now present in detail each of these tools and Definition 4 A certificate attached to a messageis

the structure of a safety failure detector local module, Well-formed with respect to a valueif it has been an-
attached to a process. alyzed as non-corrupted and if the receiver can extract

information consistent with the value@and with the

- action to sendn.
4.2.1 Certificates

A certificate is a piece of redundant information, ap- Notation. Let m be a message sent by a process

pended to a message in order to detect wrong expected,;, and certified with a certificateert. The pair

messages. Its aim is to “witness” (i) the content of the (m), cert), signed with the unforgeable signaturepgf

message and (i) the fact that the decision to send thewill be denoted by(m, cert);. It means, in particular,

message has properly been taken by the sender. A certhat no process can falsify the information contained

tificate includes a part of the process history. This his- between| and) without being detected as faulty.

tory includes internal, send and receipt events. A cer-

tificate can be appended to a message uponits sending, The design of certificates depends on the proto-

and is used by the receiver to check if the content of col to transform. The previous principles constitute

the message is consistent with the senders history (nog "guideline” for this design. If the protocol has been

semantically incorrect messages). It also allows the re-proved correct in a failure model involving only live-

ceiver to check that the decision to send this messageness failures (e.g., in the crash model), it remains only

(and not another one, in case of choice) is the correctto prove that certificates are well-formed with respect

one (no substituted messages). to (1) values carried by messages and (2) decisions en-
Consider a message sent byp; to p;, containing abling their send event.

a valuev. This value has been updated pyaccord-

|ng. to its own history. Similarly, t.he sending event of 429 State machines

m is a consequence of the receipt of other messages,

and is enabled by a set of conditions involving local Let us consider a state machine modelling the behavior

variables ofp;. The certificate appended to must of process; with respect tg;. In this state machine,

contain proper information able to witness: the value transitions are triggered when receives a message

v, the fact that the required receipt events have beenfrom p;. In every state, a set of receipt events are



enabled. Unexpected messagese those whose re-

ceipt events are not enable&yntactically incorrect T
messageare those whose receipt eventis enabled, but "\
whose syntactic composition is not consistent with the
one of the corresponding expected messdgeman- m
tically incorrect and substituted messaga® those
whose receipt eventis enabled, but whose certificate is

,,,,,,,,,,,,,,,,,,,,,,,,

not well formed with respect to either its arguments or
the action to send that particular message. When such
events occur, they trigger a transition to a particular
terminal state, callethulty state The actual design of

state machines

Verification Module

ATOs-mz

. . . . — -
a particular state machine has to be done in the partic-

ular context of the protocol to strengthen (just like the
design of particular syntactic analyzers has to be donev

Signature
module

in the context of each grammar).

4.2.3 Structure of Safety Failure Detection Local Figure 3. Structure of a local safety fail-
Modules ure detector

A safety failure detector module associated with a pro-

cess; (hereafterS F" D M;) is composed of three sub- - ) _ _
modules (called also modules, for simplicity) : (i) a \./er|f|cat|or1 module. This module recgwes (certi-
signaturemodule, (ii) averificationmodule, and (iii) fied an.d signed) messag?s from the S|gnat_ure mod-
a certificationmodule. More precisely, the structure ule. It implements theertificate analyzementioned

of SEDM; is given in Figure 3. The same figure also in the previous section. For each messageit first
shows the path followed by a message(resp. m’) checks whethem is properly formed (syntax) and if
received (resp. sent) by its certificate is well-formed w.r.t. values carried by

m (semantics). Then, it checks whether the receipt
of m follows the program specification of the sender.
To this aim, the verification module is composed of
a set of state machines, one for each possible sender.
If the checks are positive, it passes the (certified and
signed) message to the certification module. Other-
wise, it appends the identity of the sendemoto the
setsuspected_safety;.

A safety failure detector module can observe the
state of the process; to which it is associated. In
particular, it can read its variables.

The output of such a module is a set
(suspected_safety;) of processes it detected to
have sent a wrong or an unexpected message.

Signature module. Each signed message arriving at It is important to note that, if the certificates are
p; is first processed by this module which verifies the correctly designed and the messages are signed, then
signature of the sender (by using its public key). If this module is reliable, i.e., if; is correct andy; €

the signature of the message is inconsistent with the suspected_safety;, thenp; has experienced an incor-
identity field contained in the message, the messagerect behavior detected by the verification module of
is discarded and its sender identity (known thanks to p;. This is enforced by the fact that, if the content of
the unforgeable signature), is added to the local outputthe signed message, and in particular the included cer-
suspected_safety;. Otherwise, the signed message is tificate, had been corrupted, this would be detected by
passed to the verification module. Also, each messagethe signature module in the previous stage. Thus, the
sent byp; is signhed by the signature module just before verification module can safely rely on the values con-
going in the network. This module is generic, in the tained in a certified message to verify that the content
sense that it can be implemented independently of theof the message and the decision to send this message
protocols using it [18]. is consistent with its certificate (e.g., by “ replaying”



the code of the sender with the data contained in the e Termination. Eventually, every correct process
certificate). p; decides a local vectd@r D, .

e Validity. No spurious initial value¥i: if p; de-

Certification module. This module is responsible, _
cidesGD, then(Vj : GD;[j] € {v;,L})).

upon the receipt of a (certified and signed) message
from the verification module, for updating the cor-
responding certificate local variable. In particular, it
does not play any direct role in the detection of safety
failures of message senders. It is also in charge of ap-
pending properly formed certificates to the messages o Obligation. If a process decides, its initial value
that are sent by, (as described in Section 4.2.1). belongs to the global dat&: if p; decidesGD;
then(GDZ[z] = ’Ui).

e Agreement. No two processes decide different
global data:Vvi, j : if p;, decidesGD, andp; de-
cidesGD; then(Yk : (GD;[k] = GD;[k])).

4.3 Requirements imposed on A

In an asynchronous distributed system prone to pro-
It results from the previous section that the design cess crashes, the DC problem has no deterministic

of a safety failure detector (related to a given protocol gq|ution This is an immediate consequence of the well
A) is possible if one is able to design a finite-sate ma- nown FLP impossibility result related to consensus
chine that models the behavior of each process. Stat—[lo]_ Hence, the system has to be enriched with ad-
ing formal requirements on the structure of protocols {itional properties in order that the problem becomes
for which such designs are possible remains an openggjyable in a deterministic way. It has been shown
problem and is out of the scope of this paper. How- that, when the system is equipped with a failure de-
ever, for some regular protocol structures such as, e.9. tector that outputs lists of processes suspected to have
round protocols, such a design is possible. In a round crashed [4], th& DC problem requires perfectcrash
protocol, each procegssequentially executes the fol-  fajjyre detector [12], i.e., a crash failure detector satis
lowing steps. (1) It sends the same round message t%ying eventual completenessidstrong accuracy In
each process. (2) It waits for a round message from payticular, this problem is strictlyarderthan Consen-
each other process (or from a given number of pro- gyg since it is not possible to obtain a solution to GDC

cesses). (3) It executes local computations. from a solution to Consensus (however, the converse
Fortunately, the case study (Section 5) meet thesejs gpviously true).

requirements: it is a round-based protocol, exchang-

. ] In the literature, a few solutions have been proposed
ing _a predefined and well-structured flow of messages; asynchronous distributed system prone to process
during each round.

crashes, augmented with a perfect crash failure detec-
tor[11, 12, 6]. All these solutions rest on round-based
5 Case Study: the Global Data Compu-  protocols. Ifn denotes the number of processethe
tation Problem maximum number of processes that can crash fand
the number of actual crashes, the solution proposed in
The Global Data Computation ProbleDC') can [6] decides in at moshin(n,t + 1, f + 2) rounds, a
be defined as follows. L&t D[1..n] be avector ofdata  result proved to be optimal in the number of rounds.
with one entry per process (tli& entry being associ-  The case study presented here consists in making this
ated withp,;) and letv; denote the value provided by protocol resilient to arbitrary failures, by designing
p; to fill its entry of the global dataG DC' consists in ad-hoc liveness and safety failure detectors, without
building GD and providing each process with a copy changing its original code. The variabdaspected,
of it. Let GD, denote the local variable @f intended read by the protocol, is updated by the appropriate fail-
to contain the local copy offD. The problemis for-  ure detectors: in the present case, this variable is the
mally specified by the following set of four properties union of the two variablesuspected_liveness and
(L denotes a default value that will be used instead of suspected_safety updated respectively by the liveness
a proposed value when the corresponding process idailure detector and the safety failure detector compo-
not correct.) nents.



5.1 The Delporte-Fauconnier-Helary-
Raynal Protocol (DFHR)

into consideration in the previous round by all the pro-
cesses from which; has received anstimate mes-

sage in this round (line 8). To maintain this informa-
This protocol proceeds in asynchronous rounds: tion, LP;(r—1) is appended to the messagesimate
each process proceeds in a sequence of rounds, andent byp; at roundr (line 4).

terminates as soon as it can decide by meetidgc

e rec;: boolean vector such thatc;[j] is true iff p;

sion conditionat the end of a round, or by receiving has received a message fremin the current round.

a decision message from another process having deThis array, set by; during each waiting phase (lines
cided. There is no restriction on the number of pro- 6 and 7) is then used to update; (r) (test of line 8).
cesses that can fail. During each round, each proces® suspected;: set of processes currently suspected by

(1) sends to each other antimate message, piggy-
backing the daté’D and L P (see below) (2) waits to

p; (perfect failure detector).
e GD_Full;: number of the first round (if any) where

have received anstimate message from each process p; has got all values. Initially, its value #scc.

which it does not suspect, and (3) performs some local
computation updating its local variables. Each process

decides at the end of a round as soon as it meets any®
[}

of the four conditions denoted ky’'1), (C2), (C3),

Stop conditions
(C1): r; = min(t + 1,n).
(C2): LP;(r; — 3) = LP,(r; — 2).

(C4) (lines 14, 15). In that case, it decides its vec- ® (C3): (LPi(ri —2) = LP(ri = 1)) A (V) €
tor GD;. Moreover, it can decide earlier, if it receives LFi(ri) : LP;j(r; = 1) = LP;(r; —1)).

a message@ecide sent by a process that has already ®

(C4): (GD_Full; < r, — 1) A (V] €

decided (line 17). In that case, it decides the vector LFi(r;) : GDj = GD;).

attached to the message.
The precise definition of the underlying computa-

tion model (asynchronous system + process crashes
rounds [9]), the protocol principles and its proof are
described in [6].

Data structures Each procesg; manages the fol-
lowing data structures:

e 7;: p;'s round number. Initialized to (line 1) it is
incremented at the beginning of each round (line 3).

e GD;: vector that containg;’s current estimate of
the global data. Initially, withv; denoting the value
provided byp; to fill its entry of the global data,
GD; = [L,...,v;,...] (line 1). The protocol ensures
that, at any timeyk : GD;[k] = v, or GD;[k] = L.
TheGD; vector is updated after the waiting phase ac-
cording to the vector§7D; received from the other
processes during this round (line 10), and appended tg
the estimate messages sent ky at the next round
(line 4. .

e LP;(r): set containing the processes that‘con-

Task T1
1)r;:=0; GD; = [L,...,v;,...,L]; LP;(0) := 0; GD_Full; := o0;
(2)loop % Sequence of asynchronous rounds %
(3) 7i:=r;+1; LP;i(r;) := 0;
(4) send estimate(GD;, LP;(r; — 1),1,7r;) to all;
(5) waituntil forall j: % Waiting phase %
(6) (estimate(GDj, LPj(r; — 1), j,r;) receivedirom j: rec;[j] := true
) Vj € suspected;: rec;[j] := false)
% Processing phase %
forall j s.t.rec;[j] A ((Vk : recik] = j € LPy(r; — 1)) V (r; = 1)) do
% No process suspected during the previous round %
% UpdateL P; and consider the contribution pf; %
9) LP;(r;) := LP;(r;) U {j} % UpdateL P;: p; “considers™p; %
(10) forall k s.t. GD;[k] # L do GD;[k] := GD;[k] endforall
(11) endforall;
(12) ifforall j : GD;[j] # L) then % All values are known %
(13) GD_Full; := min(r;, GD_Full;) endif;
(14) if (C1 v C2 v C3 Vv C4)then % Send the decision, decide and stop %
(15) send decide(GD;) to all; return GD; endif
(16) endloop

®)

Task T2 % Upon the receipt of a decision: propagate it, decide to%
(17) wait until decide(GD) is received:send decide(GD) to all ; return GD

siders” in roundr. At the beginning of each round,
this set is reset to empty (lines 1, 3). It is updated
after the waiting phase by including all the processes
thatp; “takes into consideration” (line 9). Those are
the processes (1) from whigh received a message
during the current round, and (2) that have been taken

Figure 4. Early Deciding Global Data
Computation Protocol



5.2 Implementing a Liveness Process
Failure Detector

In order to make this protocol resilient to liveness
failures, a perfect liveness failure detector of class
STPprur Wil be used.

In the case of crash failures, a perfect detector can
be implemented in a synchronous distributed system,
for which there exists a known bouidn every com-
munication. Under the same assumptighereafter
the synchronyassumption), a perfect liveness failure
detector for the DFHR protocol can be implemented.
The idea (that will be formally proved below) is the
following: if p; is correct, it has completed any round
r by its local timeé = . Thus, if a procesg; is not
stalled w.r.tp;, thenp; should have received the mes-
sageestimate(., ., j,r) by this time. The implemen-
tation of the perfect liveness failure detector is based
on these properties.

The program of the detector module for the process
p; is shown Figure 5. This module manages the vari-
ablesA;, p; andarr;, with the following signification:

e A, is a local timer, reset to 0 evedyunit of local
times,

e p; is an integer measuring the number of times
whereA; has been reset to 0,

e arr; is an array of integer sets, such that
r € arr;[j] means thap; has received a message
estimate(., ., j,r).

Proof of Eventual Completeness

Theorem 1 The liveness failure detector implemented
Figure 5 satisfies Eventual Completeness.

Proof Let p; be a correct process, ang stalled
w.rt p;. Let r; be the greatest integer such that
estimate(., ., j,r;) is received byp;. Such an inte-
ger exists becaugs is stalled w.r.{p;. Whenp; takes
the values-; + 1, eitherj € suspected; or else, as
estimate(., ., j,r; + 1) has not been received by,
we haver; + 1 ¢ arr;[j]. Thus, from line 7,5 is
included insuspected;. O

Proof of Strong Accuracy

5in fact the assumption can be limited, here, to #éimate
messages.

perfect_livenessfailure _detector(suspected-liveness)

1)A; —0;p; < 0;
forall j € IT doarr;[j] < 0 enddo

(2) loop

(3) until a messagéecide is sent or received

(4) whenA,; clicks § do

(5) pi —pi +1,0; —0;

(6) for each j such thatj & suspected; A p; & arr;[j]
) do suspected; <« suspected; U {j} enddo
(8) enddo

(9) upon receipt of estimate(., ., 7,7) do

a0) if r & arr;[4j]

(11) then arr;[j] < arr;[j] U {r}

(12)  endif

(13) enddo

(14¥ndloop

Figure 5. A Perfect Liveness failure de-
tector for the DFHR Protocol

Lemma 1 Under the synchrony assumption, each
correct proces®; completes any of its roundby its
local timer « 4.

Proof The proof is by induction om. Let p; be a
correct process.

Base caseWhenp, completes its round, for eachp;

it has either received a messaggimate(., ., j,1) or

j € suspected;. If the first event occurs, it is not later
thand. Otherwise;j is included insuspected; at time

0 (line 7).

Induction. Suppose the property is true up to round
r — 1. Any correct procesp; starts its round- not
later thand = (r — 1). Thus, for everyj that does
not belong tosuspected; at the beginning of round,
eitherp; receives the messagetimate(., ., j,r) be-
fore timeod * r, or j is included insuspected; at time
dx(r—1)+0=20xr. O

Theorem 2 Under the synchrony assumption, the
liveness failure detector implemented Figure 5 satis-
fies Strong Accuracy.

Proof Let p; be a correct process and be a pro-
cess not stalled w.rt;. Vr > 1, p; sends its message
estimate(., ., j,r) not later thar = (r — 1) (Lemma

1). By the synchrony assumption, this message arrives
atp; not later tharp;’s local timeé  r, and thus, when

pi = r, jis notincluded insuspected;. |



The previous implementation can be improved, if
we take into account the actions of the safety failure
detector described thereafter. In fact, this detector will
filter out the wrongestimate messages received by a
process. In particular, it will not allow a procegs
to receive two messagestimate from a same pro-
cessp; with the same round number So, the test
of line 10 will be useless. Moreover, the analysis of
the protocol shows that, while a proces®xecutes its
roundr;, it can receive:stimate(., .,.,r) with r = r;
orr = r; + 1. So, the size of the setsr;[j] can be
bounded to two.

5.3 Implementing a Safety Process
Failure Detector

5.3.1 The Certification Module

Protocol messages are of two typesstimate and
decide. The fieldsG D andL P of a messagestimate
sent byp; at roundr (r > 2) are the value§:D; and
LP; at the end of round — 1. These values have
been updated from the values contained in message
estimate received byp; in roundr — 1. So, they are
certified by the signed messages receivedhpgur-

ing roundr — 1. Similarly, the fieldG D of a message
decide sent byp; at roundr (r > 2) are either the val-
uesGD; and LP; at the end of round, or the value
contained in the messaglecide just received byp;.

So, in the first case, this value is certified by the signed
messagesstimate received byp; during roundr, in

the second case by the signed messagéle just re-
ceived byp;. Also, in the first case, the decision to
send a messagicide is based on the validity of one
of the stop conditions. This validity is certified by the
certificate of the messagécide. In the first round,
the valuesG'D and LP sent byp; are known to all
processes, except for thmitial valuev; proposed by

p;. Clearly, as each process if free to propose an ar-

bitrary value, these initial values cannot (and have not
to) be certified. The initial certificate afD is thus
empty.
Finally, as the verification module accepts, during a
roundr, estimate messages sent during roundr r+
1, the certification module stores the “early” messages
in a buffer in order to process them in the next round.
The text of the certification module attachedpto
is described in the Figure 6.

certification module

decided; «— false;
certif; — 0;
whenr; changes its value
previous_certif; «— certif; ;
certif; «— 0;
deliver messages stored in the buffer
when estimate(GD, LP,i,r;) is sent
appendthe certificateprevious_certif; to estimate(GD, LP,i,71;);
pass(estimate(GD, LP, i, r;),previous_certif;) to the signature module
when decide(GD) is sent
if decided;
thenappendcert_decide; to decide(GD);
pass(decide(GD),cert_decide;) to the signature module
else appendcertif; to decide(GD);
pass(decide(GD), certif;) to the signature module
endif
when < estimate(GD, LP, j, ), cert > is received
% from the verification module or from the buffer
ifr=mr;
thencertif; « certif;U < estimate(GD, LP, j,r), cert >},
passestimate(GD, LP, j,r) to LFD module
elsestore< estimate(GD, LP, j,), cert > in the buffer
endif
when < decide(G D), cert > is received
if not decided;
thendecided; «— true;
cert_decide; < cert;
endif;
passdecide(GD) to LFD module

Figure 6. Certification module for the
DFHR Protocol

5.3.2 The Verification Module

The automaton of procegs related to a process;,
hereafter denoted M (4, j), monitors the messages
received byp; from p;, after being filtered out by the
signature module. From the analysis of the protocol
[6], the onlyestimate messages that a process can re-
ceive during its round are those sent during the round
r or r + 1 of their sender. Both messages are veri-
fied byV M (i, j) and, if they are correct, are passed to
the certification module. So, during a given roungd
the valid sequences eftimate messages received by
VM (i, ) are (round numbers fields)y;], [r; - ri+1],
[rit1 - ;] and[r;41]. The latter case means thathas
failed to send thestimate(., ., j, ;) message, but this
will be detected by the liveness failure detector.

The finite state automatoW M (4, j) is described
Figure 7. It is composed of six states:

e VM (1,7) is in sategy whenp; starts a new round.



)
0, final

PF3,fz‘?ZaF Tit+1,

3. cert is well-formed w.r.tL P

o\ Transition ¢q9 — go. It occurs when
an <\ estimate(.,.,j,r),cert >; message arrives
assed by the signature module). The predicate
@ (estimate;) returnstrueif:

\cert is well-formed w.r.tr, and certifies that

PF3,final

PFQ,final

PPy
_'PFQ,final

Figure 7. The verification module of  p;
W.rt. p;

e VM(i,7) is in stateq; when, during the current
roundr;, exactly oneestimate(., ., j,r;) message is
arrived atV’ M (i, 7).

e VM(i,7) is in stateg, when, during the current
roundr;, exactly onesstimate(., ., j,r; + 1) message
is arrived atV’ M (i, 7).

e VM(i,7) is in stategs when, during the current
roundr;, two estimate(., ., j, ) messages with = r;
andr = r; + 1 have arrived at M (i, j).

e VM (i, j) is in statefinal if a messag@ecide has
arrived atV’ M (i, j). Note that this state is reached in
particular wherp; decides because it meets one of the
stop conditions (line 15 in Figure 4) since, in that case,
p; sends alecide message to itself.

e VM (i, ) is in statefaulty as soon as a transition
predicate has been evaluateddtse

2= fiN8Well-formed w.r.tGD, and
3. cert is well-formed w.r.tL P.

e Transition ¢4 — g¢s. It occurs when
an estimate(., ., j,r),cert >, message arrives
assed by the signature module). The predicate
PF; 3(estimate;) is the same aB F} o.

e Transition ¢o — g3. It occurs when
an < estimate(.,.,j,r),cert >; message arrives
(passed by the signature module). The predicate
PF, 3(estimate;) is the same aB Fy ;.

e Transitionsq; — final (i = 0,1,2,3). These
transitions occur as soon asiadecide(GD), cert >
arrive (passed by the signature module). The predi-
catedPF, g, ., (decide;) (i = 0,1,2, 3) returntrue if
cert is well-formed w.r.tGD.

e Transitionsg; — faulty (i = 0,1,2,3). These
transitions occur if one of the correspondify” is
found to befalse

e Transitionsq; — ¢o (¢ = 1,2,3). They occur
whenV M (i, j) observes thap, starts a new round.

V M(i, 7) increments;.

6 Conclusion

A few solutions have been proposed in the literature
to increase the fault-tolerance of a protocol initially de-
signed to be resilient to crash failures. All these solu-
tions are based on the detection of faulty processes to
eliminate them. But detection tools change the orig-
inal code of the protocol.  In this paper, we have
proposed a component-based methodology which al-

The transitions and the associated predicates are théows to completely reuse the code of a crash-failure re-

following:

e Transition ¢9 — qi. It occurs when
an < estimate(.,.,j,7),cert >; message arrives
(passed by the signature module).
PFy. 1 (estimate;) returnstrue if:

1. cert is well-formed w.r.tr, and certifies that
r =r;, and
2. cert is well-formed w.r.tGD, and

silient protocol while adapting its degree of fault toler-
ance by composing itself with well-designed software
components, namely liveness and safety failure detec-

The predicatetors. These components are designed from the system

model we want to cope with and the original protocol
resilient to crash-failures. The paper has presented one
case study (another one is presented in the full paper
[2]) that shows the feasibility of this approach.



This approach also raises several interesting open
problems, e.g. :

e Detecting changes in the system model at run time
in order to dynamically adapt the fault tolerance re-
siliency of a protocol.

e Studying the impact of the external components
on the performance of the protocols (e.g., in the case
study, the impact on the maximal number or rounds).

e Studying efficient (i.e., low complexity and fast)
certification mechanisms.

Beyond these questions, that deserve attention, we
believe that the ideas presented in this paper constitute
an important step towards the construction of compos-
able systems which are able to adapt their fault toler-
ance resilience to the environment.
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