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Abstract

Nowadays, there are many protocols able to cope

with process crashes, but, unfortunately, a process

crash represents only a particular faulty behavior.

Handling tougher failures (e.g. sending omission fail-

ures, receive omission failures, arbitrary failures) is a

real practical challenge due to malicious attacks or

unexpected software errors. This paper proposes a

component-based methodology allowing to take a pro-

tocolA resilient to crash failures and to add software

components in order toadaptthe protocolA to be

resilient to more general failures than crash, without

changing the code ofA. On this basis, it introduces

the notions of liveness failure detector and safety fail-

ure detector, two independent software components to

be used by a protocol to increases its resilience re-

spectively to liveness and safety failures of processes

running the protocol. Then, the feasibility of this ap-

proach is shown, by providing an implementation of

liveness failure detectors and of safety failure detec-

tors for a protocol solving the problem of global data

computation.
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Systems, Arbitrary Failures, Liveness Failure Detec-
tor, Safety Failure Detector, Adaptive Fault Tolerance,
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1 Introduction

A common technique used to make distributed pro-
tocols resilient to process failures consists in the detec-
tion of such failures during run time, in order to elim-

inate the faulty processes. In the past, distributed pro-
tocols running on crash-prone system models merged
the aspect related to fulfill its goal and the aspect re-
lated to the detection of crashes. Chandra and Toueg
[4] were the first to propose an approach that encap-
sulates the task of detecting process crashes in a com-
ponent, external to the process, called failure detector.
A crash failure detector is a distributed oracle that can

be consulted by a process to have hints about the state
of another process. From an operational viewpoint, a
failure detector undertakes the burden of dealing with
the asynchrony of the underlying system, letting the
protocol designer concentrate on the essential part of
the development without worrying about the underly-
ing problems.

Formally, a failure detector component is defined
by two properties: completeness (a property on the
actual detection of process crashes), and accuracy (a
property that restricts the mistakes on erroneous suspi-
cions) which constraint the number of admissible mis-
takes done by a failure detector. Chandra and Toueg
have also shown that the usage of failure detectors al-

lows to solve the consensus problem in asynchronous
crash-prone systems, thus circumnavigating the FLP
impossibility result [10] stating that consensus prob-
lem has no deterministic solutions in such a system.

Designing solutions for distributed protocols in an
environment where processes can exhibit arbitrary be-
havior (e.g., omit to execute a statement or corrupt the
value of a local variable) is notably more difficult than
in a crash context [3]. As a consequence solutions
used in the crash model are inadequate as a malicious
process can exhibit failures more subtle than crashes
and these failures can lead to the violation of the cor-



rectness criteria of the protocol. In the literature there
have been examples of protocols resilient to crash fail-
ures which have been transformed into protocols re-
silient to arbitrary failures [1, 8, 14, 15, 16]. How-
ever, all these examples share a common factor: they
change the original code of the protocol. Doudou et
al. pointed out for the first time in [9] that, in the con-
text of consensus handling muteness failures, a pro-
tocol designed in a crash-stop model can be reused,
modulo a few change in its code, in the presence of a
weaker failure semantic (i.e., muteness failures) sim-

ply replacing the failure detector⋄S with the one used
by that semantic.

This paper makes a further advance in that direc-
tion by proposing a methodology based on software
components which allows a crash-resilient protocol to
adapt to weaker failure assumptions of the underlying
system model1. This adaptation is done by compos-
ing the protocol with well-specified software compo-
nents while completely reusing the code of the crash-
resilient protocol. These software components can be
systematically designed from the crash-resilient proto-
col code and the current system model assumptions.

More precisely, two main components are consid-
ered, dealing with liveness and safety issues respec-
tively: theliveness failure detector, and thesafety fail-

ure detector. This component-based structure is based
on a classification of arbitrary process failures into
liveness process failures and safety process failures,

proposed in this paper. Previous specifications of fail-
ure detectors considered only some kinds of liveness
failures (crashes [4], quietness [15], muteness [9, 14],
omissions [7], to cite a few), and did not consider
safety failures. Intuitively, given a protocolA, a pro-
cessp suffers a liveness failure if one or more pro-
cesses detect thatp does not progress w.r.t. specifica-
tion of A, andp suffers a safety process failure if one
or more processes detect thatp does not follow speci-
fication ofA.

Each of these failure detector components impose
restrictions on the protocol. To detect liveness fail-
ures,A has to include in its specification some mech-
anism that allows a given process to show its progress

1The implementation of a system is based on resources: proces-
sors, memories, buffers, network, etc., constituting the ”physical”
environment. Such an environment can change its properties. For
example, the reliable network can start lose messages; a buffer can
start to be unavailable (due to an overflow problem or to physical
crash) etc.

to other processes runningA. The detection of safety
failures, based on tools like signature, certification and
state machine modelling of processes, requiresA to
have some regularity in its structure (as, e.g., to be
round-based). Finally, as both components need to
make reference to properties of a given protocolA,
contrarily to crash failure detector, the design of these
components cannot be performed independently of the
protocol that will use them [9].

removeFinally, these two components allow to
reuse the code of a protocolA, which is correct with

respect to a system model prone to crash failures, in a
system model with tougher failures, without impacting
A’s correctness.

The proposed methodology is feasible, as shown
by its application to two case studies, namely a proto-
col solving the Consensus problem [13], and a proto-
col solving the Global Data Computation problem [6].
Due to space limitations, only the second case study is
included here. The interested reader will find the first
one in the full paper [2].

The paper is made of five sections. Section 2
presents the computation model and introduces the
concepts of liveness failures and of safety failures. The
principles underlying the design of liveness failure de-

tectors and of safety failure detectors are addressed
in Sections 3 and 4 respectively. Finally, Section 5
presents the case study.

2 The Model of Computation

2.1 Protocol

A protocol is composed ofn sequential programs.
Each program involves two kinds of statements: in-
ternal and communication. A protocol is specified
by safetyandlivenessproperties (hereafter correctness
criteria). A protocol is designed with respect to asys-

tem model. A system model describes the assumptions

on the environment able to support the executions of
this protocol. A protocol iscorrectly designed w.r.t. a

system modelif any execution of this protocol in an
environment satisfying the system model assumptions
satisfies the correctness criteria of the protocol.

2.2 System Model

System models considered in this paper share the
following characteristics:



• The execution of a sequential programPi is a pro-
cesspi, that produces a (possibly infinite) sequence of
events.

• Each process has its own local environment (lo-
cal memory, input-output buffers, etc) and runs on a
processor.

• Processes communicate together by exchang-
ing messages through channels connecting an output
buffer of the sender to an input buffer of the receiver.

Different system models are obtained according to
different additional assumptions. These assumptions
concern in particular:

• The time (synchronism/asynchronism):Syn-

chronousmodels are characterized by the three follow-
ing timing assumptions([11]):

1. There is a known upper bound on the time
required by any process to execute an action.

2. Every process has a local clock with known
bounded rate of drift with respect to real time.

3. There is a known upper bound on the time
taken to send, transport and receive a message over
any channel.

On the contrary, in completelyasynchronousmod-
els, none of these three timing assumptions hold.
Thus, asynchrony concerns processes as well as chan-
nels. Intermediate models, where some of these tim-
ing assumptions or weaker timing assumptions hold,
can be defined. They are referred to aspartially syn-

chronousmodels.

• The reliability : responsibility for faulty behavior
is assigned to the system’s components (i.e. commu-
nication channels and processes). Therefore, reliable
models assume reliability properties for both chan-
nels and processes. Unreliable models include mod-
els where some of those channels/process reliability
requirements are not assumed.

For example, anasynchronousdistributed system
prone toprocess crashfailures, is a distributed system
where no time assumption is made (asynchronous),
channels are assumed reliable, and processes fail only
by crashing.

2.3 Process Fault and Process Failures

In the rest of this paper, the following terminology
[17] will be used.

Process faultsare the underlying causes of pro-
cess failures. Examples of process faults are mistakes

in process designing, software bugs, statement omis-
sions, corruptions, hardware component failures used
by the process etc. Aprocess failureis the external
and visible manifestation of one or more process faults
(we denote a generic process failure asarbitrary pro-

cess failure). During the execution of a protocolA, the
manifestation of a failure of a processp passes through
the analysis of messages sent byp while runningA.
A crash failure ofp will imply that expected messages
never arrive to the intended destination while a corrup-
tion of a field of a message sent byp will imply a mes-

sage that does not follow the program specification de-
fined inA. Note that some faults can be undetectable,
as they do not exhibit an external manifestation (i.e.,
do not produce a failure). For example, if a process
corrupts the value of a local variable, this might not
produce a failure.

We classify arbitrary process failures in a run of a

protocolA into two categories: liveness failures and
safety failures. A processp suffers aliveness failurein
a run of a protocolA, if there exists a processq which
detects thatp does not progress w.r.t. evolution ofA.
Crash process failures and muteness process failures
(see next subsection) are example of liveness process
failures.

Definition 1 A processp is live (in a run of a protocol

A) if p never suffers any liveness failure during this

run.

A processp suffers asafety process failurein a run
of a protocolA, if there exists a processq which de-
tects thatp does not follow specification ofA. Corrup-
tion, transient omission, multiple statement execution,
predicate misevaluation are examples of faults that can
lead to safety failures.

Definition 2 A processp is safe(in a run of a protocol

A) if p never suffers any safety failure during this run.

Finally, note that a process fault could produce ei-
ther (i) no process failure, (ii) one or more liveness
process failures, (iii) one or more safety process fail-

ures, or, (iv) liveness and safety process failures.

Definition 3 A processp is correct(in a run of a pro-

tocolA) if p is live and safe in this run.



2.4 The Nature of Process Liveness

Failures

Liveness failures of a processp running a protocol
A include the situation where processp crashes, or,
more generally, is mute to another processq (i.e., p

stops sending messages toq) with respect toA. But
liveness failures are not limited to these situations. In

fact, p could be perceived byq as non mute, e.g.,q
continues to receive fromp messages of the protocol
A, but the content of received messages indicates that
p will not progress beyond an expected ”point” in its
execution. In this case we say thatp is stalled with
respect to processq (in this run ofA).

The following example shows a case wherep is
stalled with respect toq without being mute toq. Sup-
pose that the protocolA governingp includes a code
like the one shown in Figure 1 whereC is a condition
becomingtrue only after the receipt of some mes-
sages. Ifp fails by permanently omitting to receive
messages (it suffers a permanent receive omission fail-
ure) enablingC to become true, then it will never reach
statementk + 1, and thusp suffers a liveness failure.

However,p will continuously perform the sending of
m(k) to q and thus,p will not be mute toq.

Note, from Definition 1, that, in a given run ofA, a
processp is not live if and only if there exists at least
one processq such thatp is stalled w.r.t.q.

...

statement k. % relevant event step(p, q)k w.r.t. q %

while not C do

send m(k) to q ;

do something else ;

endwhile ;

statement k+1 % relevant event step(p, q)k+1 w.r.t. q %

...

Figure 1. Liveness process failures: an
example

2.5 The Nature of Process Safety Fail-

ures

Safety failures of a processp can only be revealed
by another processesq looking at the syntax and the
semantic of the messages sent byp and received byq.
If no message is sent byp in the protocol, no safety
failure ofp can be detected by other processes (in this

case, however, safety failures experienced byp have
no impact on the behavior of other processes running
the protocol).

Let us explain the nature of the safety failures by
showing that a processp could suffer, with respect toq,
a safety failure without being stalled. Supposep andq

exchange messages over a bidirectional, reliable asyn-
chronous FIFO channel.q sends, in a non-blocking
way, a sequence (possibly infinite) of messages with
an argumenta. p echoesa and includes a local se-
quence number. So the code of the protocol governing

p could be the one shown in Figure 2.
If p temporarily omits to receive some messages,

those messages do not echo their argument toq as pre-
vious code will not be executed byp. q can detect
this by comparing locally its expected echoed argu-
ment with the one contained in the incoming message.
If this comparison is negative,q concludes thatp omit-
ted to execute at least the send statement of the previ-
ous code, thus, suffering a safety failure. Note that, as
p increases its local sequence numberi at each receipt,
it actually shows a progress toq even in the presence of
temporary receive omissions and, thus,p is not stalled
with respect toq.

...

when a message m(a) arrives at p from q

i:= i+1;

send m(a,i) to q ;

endwhen

...

Figure 2. Safety process failures: an ex-
ample

3 Handling Liveness Process Failures

3.1 Specifications of a Liveness Failure

Detector

Intuitively, a liveness failure detector2 is a dis-
tributed oracle aiming at detecting stalled processes.
It is composed oflocal modules, one per process. The

local module of each processp maintains the list of
processesq that p suspects to be stalled w.r.tp. To
be more precise, we adopt the model patterned after

2In the rest of the paper, afailure detector componentwill be
more simply calledfailure detector.



the one in [4]. A liveness failure detector can make
mistakes by not suspecting a stalled process or by sus-
pecting a live one. It is thus specified with two proper-
ties: completeness (a property on the actual detection
of stalled processes) and accuracy (a property that re-
stricts the mistakes on erroneous suspicious). These
specifications are adapted in order to take into account
the type of failures considered, namely: a correct pro-
cess means a process that suffers neither liveness nor
safety failures and, as the role of a liveness failure de-
tector is to detect only stalled (i.e., non live) processes,

suspected processes are restricted tostalledprocesses.
With this informal discussion in mind, we get the fol-
lowing classification3.

Eventual CompletenessEventually, every process
that is stalled w.r.t. a correct processp is per-

manentlysuspected byp.

Eventual Weak Accuracy Eventually, there isat

least onelive process that will never be suspected
by any correct process.

Eventual Strong Accuracy Eventually, every live
process will never be suspected by other correct
processes.

Weak Accuracy There isat least onelive process
that will never be suspected by any correct pro-
cess.

Strong Accuracy Any live processq will never be
suspected by a correct processp.

Similarly with the notations introduced in [4] and
widely used in the case of crash failure or muteness
failure, we will denote by⋄ST SA the class of liveness
failure detectors satisfying Eventual Completeness
and Eventual Weak Accuracy for a protocolA
(Eventually Strongliveness failure detector). We will
denote by⋄ST PA the class of liveness failure detec-

tors satisfying Eventual Completeness and Eventual
Strong Accuracy. And we will denote byST PA the
class of liveness failure detectors satisfying Eventual
Completeness and Strong Accuracy (Perfect liveness
failure detector). The suffixA will be omitted when
no confusion is possible.

3It is possible, as in [4], to present a more formal specification
based on the notion of failure pattern. Although this presentation is
not adopted here, it would not be difficult to obtain.

3.2 Hints for Designing Liveness Fail-

ure Detectors

Implementations of crash failure detectors were
mainly based on the notion of “I-am-alive” messages
(heartbeats) exchanged between the instances of crash
failure detector associated with each process. If a fail-
ure detector of a processq stops receiving heartbeats
from the failure detector of processp then the failure
detector ofq suspectsp to be crashed. There is then a
sharp separation between the messages exchanged by
the protocol and the messages exchanged by the fail-

ure detectors. This makes crash process failure detec-
tor independent from the underlying protocol.

It has been shown in [9] that designing muteness
failure detectors cannot be independent from the pro-
tocol run by processes. In fact, the receipt of heart-
beats is no longer a guarantee thatp is correct:p could
indeed stop sending protocol messages, but continue to
send heartbeat messages. So, a muteness failure detec-
tor must be able to detect a process that is not crashed,
but stops sending protocol messages. Consequently,

the authors pointed out that a necessary condition to
design such a muteness failure detector is that each
process has to know the set of messages exchanged
by a protocolA.

When designing a liveness failure detector previ-
ous condition does not suffice to ensure detection of
stalled processes. As shown in Section 2.4,p could
continue to send protocol messages toq without doing
any progress with respect to the protocolA.

Therefore, a liveness failure detector has to be able
to capture

• the progress of a processp with respect toA, and

• the termination with success of the code ofp with
respect toA.

Thus, to design a liveness failure detector for pro-
tocol A associated with processp it is necessary to
recognize for each cooperating processq:

1. messages exchanged betweenq (sender) and
p(receiver) within runs of the protocolA;

2. a variablef , attached to each protocol mes-
sage exchanged betweenq andp, that manifests the
progress ofq with respect to runs ofA ;

3. the eventstop(q, p), denoting the termination
with success of the the code run byp, with respect to
q .

So if the liveness failure detector associated with a



processp receives protocol messages from a processq

while the variablef remains unchanged, then, in this
run ofA, it can suspectq to be stalled with respect to
p.

3.3 Requirements imposed on A

It results from the previous section that a protocolA

has to embed mechanisms that allow a liveness failure
detector to capture its progress in its runs. To this aim,
let us consider each process ”passes” over a sequence
of ”points”, such that passing over a point is attested
by a change in the value of a variable, transmitted by
messages. If, during a run, a processq receives a se-
quence of messages fromp, all with the same value
of that variable, this might indicate toq that p fails
to pass beyond the next updating point, i.e., thatp is
stalled with respect toq in this run.

More specifically, let consider any two pro-
cessesp and q running A. Any execution of
p includes a sequence of relevant events, namely
step(p, q)1, . . . , step(p, q)ℓ, . . ., with respect toq and,
possibly the eventstop(p, q), such that:

step(p, q)1 <l step(p, q)2 <l . . . <l step(p, q)ℓ <l step(p, q)ℓ+1 . . . <l stop(p, q)

where <l is the relation of local precedence on
events on processp (note that the set of relevant
events ofp is a subset of the history ofp). Be-
tween two consecutivestep(p, q) events, or between
the laststep(p, q) event preceding thestop(p, q) and
thestop(p, q) event, there is at least one send event of
a message fromp to q. After stop(p, q), no send event
of a message fromp to q exists.

If A imbeds such a structure, thenp is stalled w.r.t.
q if there existsk such thatstep(p, q)k occurred and

step(p, q)k+1 or stop(p, q) will never occur.
As an example, let us consider the code of Figure

1 when considering that the executions of statementk

and of statementk+1 produce two successive relevant
events with respect toq. In such a case, ifp suffers a
permanent receive omission fault thenp will be stalled
with respect toq 4. Let us remark, however, that ifp
suffers only transient omission fault, then after a while
p may executestatement k+1 (i.e., the statement
producingstep(p, q)k+1). In that case,p is not stalled

4In this particular case, the receive omission fault ofp is per-
ceived by an external process as a liveness failure.

w.r.t A andq. If q suspectedp to be stalled, then this
suspicion was wrong andq has to repent about it.

Let us also remark the importance of the event
stop(p, q). If the execution ofp produces this event
and if q becomes aware of it, thenq will never more
suspect processp to be stalled w.r.t.q, asp terminated
correctly to runA w.r.t. q.

4 Handling Safety Process Failures

4.1 Specifications of a Safety Failure

Detector

The discussion presented in the case of liveness
failure detectors can be applied to the case of safety
failure detectors as well, where the word ”stalled” be-
comes ”unsafe”, ”live” become ”safe”, and the abbre-
viation sfdm stands for ”safety failure detector mod-
ule”. In particular, the output of the local module as-
sociated withp is the set (suspected safetyp) of pro-
cesses it suspects to be unsafe w.r.t.p.

However, contrarily to the case of liveness failure
detectors, safety failure detectors are always perfect

(they do not do mistakes). In fact, detecting safety
failures rest on mechanisms (see the next section) that
do not rely on “time”, but on the very structure of the
protocol. Perfect safety failure detectors enjoy the fol-
lowing properties

Eventual Completeness.Eventually, every process
that is unsafe w.r.t. a correct processp is perma-

nentlysuspected byp’s sfdm.

Strong Accuracy. Any safe process will never be
suspected by a correct process’sfdm.

4.2 Hints for the Design of Safety Fail-

ure Detectors

As explained in Section 2.5, detection of failures
is closely related to the receipt of protocol messages.
Therefore, when one has to cope with detection of
safety failure, the key idea is:each process has to
check whether the right message has been sent by the
right process at the right time with the right arguments.
This leads to identify two kinds of “externally” visible
behaviors:

1. Wrong Messages (i.e., right time, but wrong
message or wrong content). This case includes mes-



sages sent after an alternative statement has been mi-
sevaluated (substituted messages), or messages whose
content is syntactically or semantically incorrect.

2. Unexpected Messages (i.e., wrong time). This
corresponds to an “outof order” message, revealing
either atransient sending omissionor a sending du-

plication. This case includes in particular the case of
messages that are not generated during fail-free execu-
tions of the protocol.

Detection of wrong or unexpected messages is
based, on the one hand, on certification mechanisms,
and, on the other hand, on state machines built from
the text of the protocol. Certificates can be analyzed
(at the recipient side) by a state machine to detect
wrong messages. As the state machine is built from
the text of the protocol, this machine can also detect

unexpected messages. It results from this discussion
that the task of designing safety failure detectors es-
sentially consists in the design of appropriate certifi-
cates and of a state machine that models the protocol.

Let us now present in detail each of these tools and
the structure of a safety failure detector local module,
attached to a processpi.

4.2.1 Certificates

A certificate is a piece of redundant information, ap-
pended to a message in order to detect wrong expected
messages. Its aim is to “witness” (i) the content of the
message and (ii) the fact that the decision to send the
message has properly been taken by the sender. A cer-
tificate includes a part of the process history. This his-

tory includes internal, send and receipt events. A cer-
tificate can be appended to a message upon its sending,
and is used by the receiver to check if the content of
the message is consistent with the senders history (no
semantically incorrect messages). It also allows the re-
ceiver to check that the decision to send this message
(and not another one, in case of choice) is the correct
one (no substituted messages).

Consider a messagem sent bypj to pi, containing
a valuev. This value has been updated bypj accord-
ing to its own history. Similarly, the sending event of
m is a consequence of the receipt of other messages,
and is enabled by a set of conditions involving local
variables ofpj. The certificate appended tom must
contain proper information able to witness: the value
v, the fact that the required receipt events have been

correctly taken into account, and the values ofpj ’s lo-
cal variables involved in the enabling condition.

Let us remark that we have to assume that cer-
tificates themselves cannot be corrupted, since a cor-
rupted certifying information could be consistent with
a corrupted information to certify. The concept ofre-

liable certification moduleencapsulates this assump-
tion. Technically, this assumption can be enforced by
the very structure of certificates: they are composed of
a set ofsigned messages, e.g.messages whose receipt
is the cause of the sending ofm, or whose content has
influenced the update of a local variable whose value
is involved inm. Reliability results from the fact that
no process can falsify the content of a signed message
without being detected as faulty by a correct receiver
[18], and, if necessary, from the cardinality of the set
of signed messages allowing to perform majority tests.
The correction of a certificate can thus be verified at
the recipient side, by acertificate analyzer.

Definition 4 A certificate attached to a messagem is

well-formed with respect to a valuev if it has been an-

alyzed as non-corrupted and if the receiver can extract

information consistent with the value ofv and with the

action to sendm.

Notation. Let m be a message sent by a process
pi, and certified with a certificatecert. The pair
(m, cert), signed with the unforgeable signature ofpi,
will be denoted by〈m, cert〉i. It means, in particular,
that no process can falsify the information contained

between〈 and〉 without being detected as faulty.

The design of certificates depends on the proto-
col to transform. The previous principles constitute

a ”guideline” for this design. If the protocol has been
proved correct in a failure model involving only live-
ness failures (e.g., in the crash model), it remains only
to prove that certificates are well-formed with respect
to (1) values carried by messages and (2) decisions en-
abling their send event.

4.2.2 State machines

Let us consider a state machine modelling the behavior
of processpi with respect topj . In this state machine,
transitions are triggered whenpi receives a message
from pj . In every state, a set of receipt events are



enabled. Unexpected messagesare those whose re-
ceipt events are not enabled.Syntactically incorrect

messagesare those whose receipt event is enabled, but
whose syntactic composition is not consistent with the
one of the corresponding expected message.Seman-

tically incorrect and substituted messagesare those
whose receipt event is enabled, but whose certificate is
not well formed with respect to either its arguments or
the action to send that particular message. When such
events occur, they trigger a transition to a particular
terminal state, calledfaulty state. The actual design of

a particular state machine has to be done in the partic-
ular context of the protocol to strengthen (just like the
design of particular syntactic analyzers has to be done
in the context of each grammar).

4.2.3 Structure of Safety Failure Detection Local
Modules

A safety failure detector module associated with a pro-
cesspi (hereafterSFDMi) is composed of three sub-
modules (called also modules, for simplicity) : (i) a
signaturemodule, (ii) averificationmodule, and (iii)
a certificationmodule. More precisely, the structure
of SFDMi is given in Figure 3. The same figure also
shows the path followed by a messagem (resp. m′)
received (resp. sent) bypi.

A safety failure detector module can observe the

state of the processpi to which it is associated. In
particular, it can read its variables.

The output of such a module is a set
(suspected safetyi) of processes it detected to
have sent a wrong or an unexpected message.

Signature module. Each signed message arriving at
pi is first processed by this module which verifies the
signature of the sender (by using its public key). If
the signature of the message is inconsistent with the
identity field contained in the message, the message
is discarded and its sender identity (known thanks to
the unforgeable signature), is added to the local output
suspected safetyi. Otherwise, the signed message is
passed to the verification module. Also, each message
sent bypi is signed by the signature module just before
going in the network. This module is generic, in the
sense that it can be implemented independently of the
protocols using it [18].

N
E
T
W
O
R
K

Verification Module

Signature
module

Certification

state machines

m

suspected safetyi

Figure 3. Structure of a local safety fail-
ure detector

Verification module. This module receives (certi-
fied and signed) messages from the signature mod-
ule. It implements thecertificate analyzermentioned
in the previous section. For each messagem, it first
checks whetherm is properly formed (syntax) and if
its certificate is well-formed w.r.t. values carried by
m (semantics). Then, it checks whether the receipt
of m follows the program specification of the sender.

To this aim, the verification module is composed of
a set of state machines, one for each possible sender.
If the checks are positive, it passes the (certified and
signed) message to the certification module. Other-
wise, it appends the identity of the sender ofm to the
setsuspected safetyi.

It is important to note that, if the certificates are
correctly designed and the messages are signed, then
this module is reliable, i.e., ifpi is correct andpj ∈

suspected safetyi, thenpj has experienced an incor-
rect behavior detected by the verification module of
pi. This is enforced by the fact that, if the content of
the signed message, and in particular the included cer-
tificate, had been corrupted, this would be detected by
the signature module in the previous stage. Thus, the
verification module can safely rely on the values con-
tained in a certified message to verify that the content
of the message and the decision to send this message
is consistent with its certificate (e.g., by “ replaying”



the code of the sender with the data contained in the
certificate).

Certification module. This module is responsible,
upon the receipt of a (certified and signed) message

from the verification module, for updating the cor-
responding certificate local variable. In particular, it
does not play any direct role in the detection of safety
failures of message senders. It is also in charge of ap-
pending properly formed certificates to the messages
that are sent bypi (as described in Section 4.2.1).

4.3 Requirements imposed on A

It results from the previous section that the design
of a safety failure detector (related to a given protocol
A) is possible if one is able to design a finite-sate ma-
chine that models the behavior of each process. Stat-
ing formal requirements on the structure of protocols
for which such designs are possible remains an open
problem and is out of the scope of this paper. How-

ever, for some regular protocol structures such as, e.g.,
round protocols, such a design is possible. In a round
protocol, each processp sequentially executes the fol-
lowing steps. (1) It sends the same round message to
each process. (2) It waits for a round message from
each other process (or from a given number of pro-
cesses). (3) It executes local computations.

Fortunately, the case study (Section 5) meet these
requirements: it is a round-based protocol, exchang-
ing a predefined and well-structured flow of messages
during each round.

5 Case Study: the Global Data Compu-
tation Problem

The Global Data Computation Problem (GDC) can
be defined as follows. LetGD[1..n] be a vector of data
with one entry per process (theith entry being associ-
ated withpi) and letvi denote the value provided by
pi to fill its entry of the global data.GDC consists in
building GD and providing each process with a copy
of it. Let GDi denote the local variable ofpi intended
to contain the local copy ofGD. The problem is for-
mally specified by the following set of four properties
(⊥ denotes a default value that will be used instead of
a proposed value when the corresponding process is
not correct.)

• Termination. Eventually, every correct process
pi decides a local vectorGDi.

• Validity. No spurious initial value:∀i: if pi de-
cidesGDi then(∀j : GDi[j] ∈ {vj ,⊥})).

• Agreement. No two processes decide different
global data:∀i, j : if pi decidesGDi andpj de-
cidesGDj then(∀k : (GDi[k] = GDj [k])).

• Obligation. If a process decides, its initial value
belongs to the global data:∀i: if pi decidesGDi

then(GDi[i] = vi).

In an asynchronous distributed system prone to pro-
cess crashes, theGDC problem has no deterministic
solution This is an immediate consequence of the well
known FLP impossibility result related to consensus
[10]. Hence, the system has to be enriched with ad-
ditional properties in order that the problem becomes
solvable in a deterministic way. It has been shown
that, when the system is equipped with a failure de-
tector that outputs lists of processes suspected to have

crashed [4], theGDC problem requires aperfectcrash
failure detector [12], i.e., a crash failure detector satis-
fying eventual completenessandstrong accuracy. In
particular, this problem is strictlyharderthan Consen-
sus, since it is not possible to obtain a solution to GDC
from a solution to Consensus (however, the converse
is obviously true).

In the literature, a few solutions have been proposed
in asynchronous distributed system prone to process
crashes, augmented with a perfect crash failure detec-
tor [11, 12, 6]. All these solutions rest on round-based
protocols. Ifn denotes the number of processes,t the
maximum number of processes that can crash andf

the number of actual crashes, the solution proposed in
[6] decides in at mostmin(n, t + 1, f + 2) rounds, a
result proved to be optimal in the number of rounds.
The case study presented here consists in making this
protocol resilient to arbitrary failures, by designing
ad-hoc liveness and safety failure detectors, without
changing its original code. The variablesuspected,
read by the protocol, is updated by the appropriate fail-
ure detectors: in the present case, this variable is the
union of the two variablessuspected liveness and
suspected safety updated respectively by the liveness
failure detector and the safety failure detector compo-
nents.



5.1 The Delporte-Fauconnier-Helary-

Raynal Protocol (DFHR)

This protocol proceeds in asynchronous rounds:
each process proceeds in a sequence of rounds, and
terminates as soon as it can decide by meeting adeci-

sion conditionat the end of a round, or by receiving
a decision message from another process having de-
cided. There is no restriction on the number of pro-
cesses that can fail. During each round, each process
(1) sends to each other anestimate message, piggy-
backing the dataGD andLP (see below) (2) waits to
have received anestimate message from each process
which it does not suspect, and (3) performs some local
computation updating its local variables. Each process
decides at the end of a round as soon as it meets any
of the four conditions denoted by(C1), (C2), (C3),

(C4) (lines 14, 15). In that case, it decides its vec-
tor GDi. Moreover, it can decide earlier, if it receives
a messagedecide sent by a process that has already
decided (line 17). In that case, it decides the vector
attached to the message.

The precise definition of the underlying computa-
tion model (asynchronous system + process crashes +
rounds [9]), the protocol principles and its proof are
described in [6].

Data structures Each processpi manages the fol-
lowing data structures:
• ri: pi’s round number. Initialized to0 (line 1) it is
incremented at the beginning of each round (line 3).
• GDi: vector that containspi’s current estimate of
the global data. Initially, withvi denoting the value
provided bypi to fill its entry of the global data,
GDi = [⊥, . . . , vi, . . .] (line 1). The protocol ensures

that, at any time,∀k : GDi[k] = vk or GDi[k] = ⊥.
TheGDi vector is updated after the waiting phase ac-
cording to the vectorsGDj received from the other
processes during this round (line 10), and appended to
the estimate messages sent bypi at the next round
(line 4. .
• LPi(r): set containing the processes thatpi “con-
siders” in roundr. At the beginning of each round,
this set is reset to empty (lines 1, 3). It is updated
after the waiting phase by including all the processes
that pi “takes into consideration” (line 9). Those are
the processes (1) from whichpi received a message
during the current round, and (2) that have been taken

into consideration in the previous round by all the pro-
cesses from whichpi has received anestimate mes-
sage in this round (line 8). To maintain this informa-
tion,LPi(r−1) is appended to the messagesestimate

sent bypi at roundr (line 4).
• reci: boolean vector such thatreci[j] is true iff pi

has received a message frompj in the current round.
This array, set bypi during each waiting phase (lines
6 and 7) is then used to updateLPi(r) (test of line 8).
• suspectedi: set of processes currently suspected by
pi (perfect failure detector).

• GD Fulli: number of the first round (if any) where
pi has got all values. Initially, its value is+∞.

Stop conditions
• (C1): ri = min(t + 1, n).
• (C2): LPi(ri − 3) = LPi(ri − 2).

• (C3):
(

(LPi(ri − 2) = LPi(ri − 1)) ∧ (∀j ∈

LPi(ri) : LPj(ri − 1) = LPi(ri − 1)
)

.
• (C4): (GD Fulli ≤ ri − 1) ∧ (∀j ∈

LPi(ri) : GDj = GDi).

Task T1
(1) ri := 0; GDi = [⊥, . . . , vi, . . . ,⊥]; LPi(0) := ∅; GD Fulli :=∞;
(2) loop % Sequence of asynchronous rounds %
(3) ri := ri + 1; LPi(ri) := ∅;

(4) send estimate(GDi, LPi(ri − 1), i, ri) to all;
(5) waituntil forall j: % Waiting phase %
(6) ( estimate(GDj , LPj(ri − 1), j, ri) receivedfrom j: reci[j] := true
(7) ∨j ∈ suspectedi: reci[j] := false)

% Processing phase %
(8) forall j s.t. reci[j] ∧ ((∀k : reci[k]⇒ j ∈ LPk(ri − 1)) ∨ (ri = 1)) do

% No process suspectedpj during the previous round %
% UpdateLPi and consider the contribution ofpj %

(9) LPi(ri) := LPi(ri) ∪ {j}% UpdateLPi: pi “considers”pj %
(10) forall k s.t. GDj [k] 6= ⊥ do GDi[k] := GDj [k] endforall
(11) endforall;
(12) if forall j : GDi[j] 6= ⊥) then % All values are known %
(13) GD Fulli := min(ri, GD Fulli) endif;
(14) if (C1 ∨ C2 ∨ C3 ∨ C4) then % Send the decision, decide and stop %
(15) send decide(GDi) to all; return GDi endif
(16) endloop

Task T2 % Upon the receipt of a decision: propagate it, decide and stop %
(17) wait until decide(GD) is received:send decide(GD) to all ; return GD

Figure 4. Early Deciding Global Data
Computation Protocol



5.2 Implementing a Liveness Process

Failure Detector

In order to make this protocol resilient to liveness
failures, a perfect liveness failure detector of class
ST PDFHR will be used.

In the case of crash failures, a perfect detector can
be implemented in a synchronous distributed system,
for which there exists a known boundδ on every com-
munication. Under the same assumption5 (hereafter
the synchronyassumption), a perfect liveness failure
detector for the DFHR protocol can be implemented.
The idea (that will be formally proved below) is the
following: if pi is correct, it has completed any round
r by its local timeδ ∗ r. Thus, if a processpj is not
stalled w.r.tpi, thenpi should have received the mes-
sageestimate(., ., j, r) by this time. The implemen-
tation of the perfect liveness failure detector is based

on these properties.

The program of the detector module for the process
pi is shown Figure 5. This module manages the vari-
ables∆i, ρi andarri, with the following signification:

• ∆i is a local timer, reset to 0 everyδ unit of local
times,

• ρi is an integer measuring the number of times
where∆i has been reset to 0,

• arri is an array of integer sets, such that
r ∈ arri[j] means thatpi has received a message
estimate(., ., j, r).

Proof of Eventual Completeness

Theorem 1 The liveness failure detector implemented

Figure 5 satisfies Eventual Completeness.

Proof Let pi be a correct process, andpj stalled
w.r.t pi. Let rj be the greatest integer such that
estimate(., ., j, rj) is received bypi. Such an inte-
ger exists becausepj is stalled w.r.tpi. Whenρi takes
the valuesrj + 1, eitherj ∈ suspectedi or else, as
estimate(., ., j, rj + 1) has not been received bypi,
we haverj + 1 6∈ arri[j]. Thus, from line 7,j is
included insuspectedi. 2

Proof of Strong Accuracy

5in fact the assumption can be limited, here, to theestimate

messages.

perfect livenessfailure detector(suspected liveness)

(1) ∆i ← 0; ρi ← 0 ;
for all j ∈ Π do arri[j]← ∅ enddo

(2) loop
(3) until a messagedecide is sent or received
(4) when∆i clicks δ do
(5) ρi ← ρi + 1 ; ∆i ← 0 ;
(6) for each j such that j 6∈ suspectedi ∧ ρi 6∈ arri[j]

(7) do suspectedi ← suspectedi ∪ {j} enddo
(8) enddo
(9) upon receipt ofestimate(., ., j, r) do
(10) if r 6∈ arri[j]

(11) then arri[j]← arri[j] ∪ {r}

(12) endif
(13) enddo
(14)endloop

Figure 5. A Perfect Liveness failure de-
tector for the DFHR Protocol

Lemma 1 Under the synchrony assumption, each

correct processpi completes any of its roundr by its

local timer ∗ δ.

Proof The proof is by induction onr. Let pi be a
correct process.

Base case. Whenpi completes its round1, for eachpj

it has either received a messageestimate(., ., j, 1) or
j ∈ suspectedi. If the first event occurs, it is not later
thanδ. Otherwise,j is included insuspectedi at time
δ (line 7).

Induction . Suppose the property is true up to round

r − 1. Any correct processpj starts its roundr not
later thanδ ∗ (r − 1). Thus, for everyj that does
not belong tosuspectedi at the beginning of roundr,
eitherpi receives the messageestimate(., ., j, r) be-
fore timeδ ∗ r, or j is included insuspectedi at time
δ ∗ (r − 1) + δ = δ ∗ r. 2

Theorem 2 Under the synchrony assumption, the

liveness failure detector implemented Figure 5 satis-

fies Strong Accuracy.

Proof Let pi be a correct process andpj be a pro-
cess not stalled w.r.tpi. ∀r ≥ 1, pj sends its message
estimate(., ., j, r) not later thanδ ∗ (r − 1) (Lemma
1). By the synchrony assumption, this message arrives
atpi not later thanpi’s local timeδ ∗ r, and thus, when
ρi = r, j is not included insuspectedi. 2



The previous implementation can be improved, if
we take into account the actions of the safety failure
detector described thereafter. In fact, this detector will
filter out the wrongestimate messages received by a
process. In particular, it will not allow a processpi

to receive two messagesestimate from a same pro-
cesspj with the same round numberr. So, the test
of line 10 will be useless. Moreover, the analysis of
the protocol shows that, while a processpi executes its
roundri, it can receiveestimate(., ., ., r) with r = ri

or r = ri + 1. So, the size of the setsarri[j] can be

bounded to two.

5.3 Implementing a Safety Process

Failure Detector

5.3.1 The Certification Module

Protocol messages are of two types :estimate and
decide. The fieldsGD andLP of a messageestimate

sent bypi at roundr (r ≥ 2) are the valuesGDi and
LPi at the end of roundr − 1. These values have
been updated from the values contained in messages

estimate received bypi in roundr − 1. So, they are
certified by the signed messages received bypi dur-
ing roundr − 1. Similarly, the fieldGD of a message
decide sent bypi at roundr (r ≥ 2) are either the val-
uesGDi andLPi at the end of roundr, or the value
contained in the messagedecide just received bypi.
So, in the first case, this value is certified by the signed
messagesestimate received bypi during roundr, in
the second case by the signed messagedecide just re-
ceived bypi. Also, in the first case, the decision to
send a messagedecide is based on the validity of one
of the stop conditions. This validity is certified by the
certificate of the messagedecide. In the first round,
the valuesGD andLP sent bypi are known to all

processes, except for theinitial valuevi proposed by
pi. Clearly, as each process if free to propose an ar-
bitrary value, these initial values cannot (and have not
to) be certified. The initial certificate ofGD is thus
empty.

Finally, as the verification module accepts, during a
roundr, estimate messages sent during roundr or r+
1, the certification module stores the “early” messages
in a buffer in order to process them in the next round.

The text of the certification module attached topi

is described in the Figure 6.

certification module

decidedi ← false;
certifi ← ∅ ;
when ri changes its value

previous certifi ← certifi ;
certifi ← ∅ ;
deliver messages stored in the buffer

whenestimate(GD, LP, i, ri) is sent
append the certificateprevious certifi to estimate(GD, LP, i, ri);
pass(estimate(GD, LP, i, ri),previous certifi) to the signature module

whendecide(GD) is sent
if decidedi

thenappendcert decidei to decide(GD);
pass(decide(GD),cert decidei) to the signature module

else appendcertifi to decide(GD);
pass(decide(GD), certifi) to the signature module

endif
when< estimate(GD, LP, j, r), cert >j is received
% from the verification module or from the buffer

if r = ri

thencertifi ← certifi∪ < estimate(GD, LP, j, r), cert >j ;
passestimate(GD, LP, j, r) to LFD module

elsestore< estimate(GD, LP, j, r), cert >j in the buffer
endif

when< decide(GD), cert >j is received
if not decidedi

thendecidedi ← true;
cert decidei ← cert;

endif;
passdecide(GD) to LFD module

Figure 6. Certification module for the
DFHR Protocol

5.3.2 The Verification Module

The automaton of processpi related to a processpj ,
hereafter denotedV M(i, j), monitors the messages
received bypi from pj, after being filtered out by the
signature module. From the analysis of the protocol
[6], the onlyestimate messages that a process can re-
ceive during its roundr are those sent during the round
r or r + 1 of their sender. Both messages are veri-
fied byV M(i, j) and, if they are correct, are passed to
the certification module. So, during a given roundri,
the valid sequences ofestimate messages received by
V M(i, j) are (round numbers fields) :[ri], [ri · ri+1],
[ri+1 · ri] and[ri+1]. The latter case means thatpj has

failed to send theestimate(., ., j, ri) message, but this
will be detected by the liveness failure detector.

The finite state automatonV M(i, j) is described
Figure 7. It is composed of six states:

• V M(i, j) is in sateq0 whenpi starts a new round.



final

faulty
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F0,final
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¬PF1,final
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PF2,3

PF0,final

PF1,final

PF2,final

PF1,3
PF0,1

PF3,final

¬PF3,final

q1

q2

q3q0

Figure 7. The verification module of pi

w.r.t. pj

• V M(i, j) is in stateq1 when, during the current
roundri, exactly oneestimate(., ., j, ri) message is
arrived atV M(i, j).

• V M(i, j) is in stateq2 when, during the current
roundri, exactly oneestimate(., ., j, ri + 1) message
is arrived atV M(i, j).

• V M(i, j) is in stateq3 when, during the current
roundri, twoestimate(., ., j, r) messages withr = ri

andr = ri + 1 have arrived atV M(i, j).

• V M(i, j) is in statefinal if a messagedecide has
arrived atV M(i, j). Note that this state is reached in
particular whenpi decides because it meets one of the
stop conditions (line 15 in Figure 4) since, in that case,
pi sends adecide message to itself.

• V M(i, j) is in statefaulty as soon as a transition
predicate has been evaluated tofalse.

The transitions and the associated predicates are the
following:

• Transition q0 → q1. It occurs when
an < estimate(., ., j, r), cert >j message arrives

(passed by the signature module). The predicate
PF0,1(estimatej) returnstrue if:

1. cert is well-formed w.r.tr, and certifies that
r = ri, and

2. cert is well-formed w.r.tGD, and

3. cert is well-formed w.r.tLP

• Transition q0 → q2. It occurs when
an < estimate(., ., j, r), cert >j message arrives
(passed by the signature module). The predicate
PF0,2(estimatej) returnstrue if:

1. cert is well-formed w.r.tr, and certifies that

r = ri+1, and

2. cert is well-formed w.r.tGD, and

3. cert is well-formed w.r.tLP .

• Transition q1 → q3. It occurs when
an < estimate(., ., j, r), cert >j message arrives
(passed by the signature module). The predicate
PF1,3(estimatej) is the same asPF0,2.

• Transition q2 → q3. It occurs when
an < estimate(., ., j, r), cert >j message arrives
(passed by the signature module). The predicate
PF2,3(estimatej) is the same asPF0,1.

• Transitionsqi → final (i = 0, 1, 2, 3). These
transitions occur as soon as a< decide(GD), cert >j

arrive (passed by the signature module). The predi-
catedPF

i,final
(decidej) (i = 0, 1, 2, 3) returntrue if

cert is well-formed w.r.tGD.

• Transitionsqi → faulty (i = 0, 1, 2, 3). These
transitions occur if one of the correspondingPF is
found to befalse.

• Transitionsqi → q0 (i = 1, 2, 3). They occur

whenV M(i, j) observes thatpi starts a new round.
V M(i, j) incrementsri.

6 Conclusion

A few solutions have been proposed in the literature
to increase the fault-tolerance of a protocol initially de-
signed to be resilient to crash failures. All these solu-

tions are based on the detection of faulty processes to
eliminate them. But detection tools change the orig-
inal code of the protocol. In this paper, we have
proposed a component-based methodology which al-
lows to completely reuse the code of a crash-failure re-
silient protocol while adapting its degree of fault toler-
ance by composing itself with well-designed software
components, namely liveness and safety failure detec-
tors. These components are designed from the system
model we want to cope with and the original protocol
resilient to crash-failures. The paper has presented one
case study (another one is presented in the full paper
[2]) that shows the feasibility of this approach.



This approach also raises several interesting open
problems, e.g. :

•Detecting changes in the system model at run time
in order to dynamically adapt the fault tolerance re-
siliency of a protocol.

• Studying the impact of the external components
on the performance of the protocols (e.g., in the case
study, the impact on the maximal number or rounds).

• Studying efficient (i.e., low complexity and fast)
certification mechanisms.

Beyond these questions, that deserve attention, we

believe that the ideas presented in this paper constitute
an important step towards the construction of compos-
able systems which are able to adapt their fault toler-
ance resilience to the environment.
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