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Abstract. Counting is a fundamental problem of every distributed system as it represents a basic building block
to implement high level abstractions. In anonymous dynamic networks, counting is far from being trivial as nodes
have no identity and the knowledge about the network is limited to the local perception of the process itself. More-
over, nodes have to cope with continuous changes of the topology imposed by an external adversary. A relevant
example of such kind of networks is represented by wireless sensor networks characterized by the dynamicity of
the communication links due to possible collisions or to the presence of duty-cycles aimed at battery preservation.
In a companion paper [14], two leader-based algorithms, namely ANoK and ALCO , to count the number of pro-
cesses in an anonymous dynamic network have been proposed. Such algorithms employ the notion of energy trans-
fer to count the exact number of nodes by (i) having no knowledge on the network or (ii) having access to a local
counting oracle reporting the exact number of neighbors at the beginning of a communication round. Let us notice
that, while ALCO has a well defined terminating condition, ANoK only ensures that eventually the leader is able to
count the exact number of processes but it is not able to identify when this happens. In this paper, we define a new
algorithm A∗NoK by augmenting ANoK with a termination heuristics that allows the leader to guess when it should
output the current count and we provide an experimental evaluation on different types of dynamic graphs for both
ANoK and A∗NoK . In addition, we also extended ALCO by defining a new algorithm, namely A∗LCO , that is the
basic ALCO augmented with a symmetry breaking condition that helps to speed up the convergence time.

1 Introduction

Networks of tiny artifacts will play a fundamental role in the computational environments and applications
of tomorrow. Networked embedded sensors and mobile devices will produce a constant flow of data be-
tween the real world and modern and traditional networks such as information, communication and social
networks. Such hyperconnected dynamic environments create very challenging system models where what
was trivially solvable in a static system, is now far from being trivial. What is becoming apparent is that in
such environments, theory and models for static distributed systems do not capture anymore the new kind of
applications that are emerging. As a result, over the last years, dynamic distributed systems have attracted a
lot of interest from the relevant research community (see e.g., [7,8,23]).

A critical issue in designing such hyperconnected dynamic infrastructures is security and trust, especially
when artifacts exchange crucial information that needs to be protected [10]. It is evident that contemporary
networks have significant difficulties dealing with third-party tracking and monitoring online, much of it
spurred by data aggregation, profiling, and selective targeting. Terms like information security, data con-
fidentiality and integrity, entity authentication and identification need to be considered [25]. A promising
approach for addressing these problems is to incorporate privacy in the design and models of such future
systems by guaranteeing the anonymity of the artifacts.



In this paper, we consider the problem of counting the number of nodes in a network without reveal-
ing any information on the identity of nodes or providing information about the network state. Counting is
among the most fundamental problems of distributed computation and it is a key function for network man-
agement and control, and the vast number of papers appearing in the relevant literature is a clear indication
of its importance. A large part of these studies deals with causes of dynamicity such as failures and changes
in the topology that eventually stabilize [15]. However, the low rate of topological changes that is usually
assumed is unsuitable for reasoning about truly dynamic networks. We envision future networks with highly
dynamic changes: connected artifacts may become immediately unreachable after they have been received
a message from them. We consider recent theoretical models for dynamic networks in which the topology
may change arbitrarily from round to round. In some models (e.g.,[17]), edges - representing communication
among hyperconnected artifacts - are changed at each round by an adversary, that is constricted to modify
edges in such a way that the network is always connected. In other models (e.g., [12,5]), edges appear by
following a random distribution where certain properties of the dynamic network hold with high probabil-
ity. Under these assumptions taken for granted, theoretical results indicate that we can design protocols for
distributed tasks that are robust, scalable and that terminate.

In this work we remove fundamental assumptions made by previous theoretical models: (a) we avoid
any assumption on the network knowledge: we look into cases where nodes do not know the size (or an
upper bound) n of the network, or any other metric; (b) we also avoid any assumption on providing unique
identities (ids) to the artifacts: nodes execute identical programs and in symmetric networks it is impossible
to count the nodes unless a leader is not introduced; (c) we do not require the network to be connected at
each time instance, or connected with high probability. We believe that the resulting mode of operation is
more suitable for future hyperconnected environments, where privacy is incorporated in the model. Under
this mode of operation, we propose a new distributed algorithm, namely A∗NoK , that employs a termination
heuristic in order to provide estimates on the size of the anonymous network. A∗NoK builds upon the no-
knowledge algorithm (i.e. ANoK) introduced in a companion paper [14]. Both of them exploits an energy-
transfer technique to count the exact number of nodes.

We follow a detailed experimental approach and investigate the performance of both ANoK and A∗NoK

(Sections 4.1 and 4.2). We also consider an algorithm, namely ALCO, studied in [14] in order to compare
its performance with A∗NoK . To do so we suitably modify it into a new algorithm A∗LCO in order to operate
under the new, more generic, mode of operation (Section 4.5). We look into different random evolving
graph models in order to identify the error rate of the algorithm as well as the efficiency for terminating
the computation. We also look into networks that are periodically disconnected as the artifacts duty-cycle
(Section 4.4).

For the case of densely connected anonymous networks, A∗NoK terminates always correctly. In cases
where the network experiences regular partitions, A∗NoK provides estimates on the size whose accuracy
varies according to the degree of disconnection of the network (see Section 4.2). Longer periods of network
disconnections bring to lower accuracy in counting. Let us finally remark that A∗NoK is able to answer to
predicates such as “does the network contain more than T nodes?” (i.e., |V | ≥ T )in a number of rounds
lesser than the one needed by the base ANoK algorithm presented in [14] as shown in Section 4.3.

2 Preliminaries

System Model. A dynamic network is a network whose topology changes along time due to possible fail-
ures of nodes or communication links. We consider computations executed in discrete synchronous rounds,
controlled by a fictional global clock accessible to all the nodes. Thus, all nodes have access to the current
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round number via a local variable that we usually denote by r. A dynamic network is modeled by a dy-
namic graph G(r) = (V,E(r)), where V is a set of n nodes (or processors) and E : IN → P(E′), where
E′ = {{u, v} : u, v ∈ V }, is a function mapping a round number r ∈ IN to a set E(r) of bidirectional
links drawn from E′ [17]. Intuitively, a dynamic graph G is an infinite sequence G(1), G(2), . . . of instan-
taneous graphs, whose edge sets are subsets of E′ chosen by a worst-case adversary. The set V is assumed
throughout this work to be static, that is it remains the same throughout the execution.

Nodes in V are anonymous, i.e. they have no identifier. At each round r, the local view of a node v,
denoted as lv(r), is defined by the multi set containing all the states of processes that are neighbors of v at
round r (i.e. all the local variables maintained by the neighbors of v at round r).

Nodes in the network communicate by sending and receiving messages via anonymous broadcast; in
every round r, each node u generates a single message mu(r) to be delivered to all its current neighbors in
Nu(r) = {v | {u, v} ∈ E(r)}.

Dynamic Graph Models. In order to model the dynamicity of the topology graph, we consider the following
four models:

1. G(n,p) graph [11]: at the beginning of each round r the set of edges is emptied and then for any pair
of processes u, v ∈ V , the edge uv is created according to a given probability p. Let us recall that in the
G(n, p) graph model, there exist a connectivity threshold t, depending on the number of nodes n, such
that if probability p is above the threshold, then G(n, p) is connected with very high probability.

2. Edge-Markovian (EM) graph [12] : at each round r, edges are modified according to the following
rules:
(a) For each edge uv ∈ E(r−1), uv is removed fromE(r) with a probability pd (i.e., death probability).
(b) For each edge uv /∈ E(r − 1), uv is created and inserted in E(r) with a probability pb (i.e., birth

probability).
Clearly, connectivity of the graph at each round depends on pd and pb.

3. Random Connected graph: at each round we sample a pair of nodes (u, v) ∈ V , and we create an edge
obtaining the graph G(V,E′), we iterate the procedure until we obtain a connected graph. This model
constructs evolving graphs that are the sparsest possible, still guaranteeing connectivity.

4. Duty-cycle based graph: at round r0 the dynamic graph has a fixed, connected, topology. Each node
follows a duty cycling phase during which, if at a given round ri the node is awake it can receive and
send messages according the topology of r0 to any neighboring node that is also awake. While when
at round rj it is in sleep mode, all adjacent edges are removed from the graph. The presence of the
duty cycle essentially brings some dynamicity in the graph since not all edges will be set at each round.
This model constructs evolving graphs that reflect realistic deployments of resource constraint devices.
Remark that this model does not guarantee that the graph will be connected at each round.

Energy-Transfer Technique. In [14], a new technique for counting the size of the network is introduced that
overcomes the lack of identities and the constantly dynamic environment by a new and surprisingly simple
concept of energy-transfer. Each node is assigned a fixed energy charge, and during each round it discharges
itself by disseminating it around to its neighbors. The leader acts as a sink collecting energy (i.e., energy is
not transferred by the leader to neighbors). The technique enforces, at each round, an invariant on the sum of
energy among networks’ nodes: energy is not created or destroyed. Considering the behavior of the nodes,
the energy is eventually transferred to the leader and stored there. The leader measures the energy received to
count the size of the network. Interestingly, this technique is very simple to implement and depends on very
limited information about the attributes of a given network. The paper introduced a series of algorithms that
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apply the energy-transfer technique that either assume knowledge on certain aspects of the network (e.g.,
an upper bound on node degree) in order to terminate the computation (i.e. ALCO algorithm), or do not
make any additional assumption but do not terminate as the ANoK algorithm (essentially the computation
converges to the correct input, but the nodes are not able to detect when to terminate). The performance of
the algorithms is rigorously studied and correctness and termination is formally proved.

We remark that the results in [14], especially those concerning the absence of any knowledge assump-
tion, represent an interesting feasibility point, even if they cannot be used in practice since the leader is not
able to verify any terminating condition and thus it is not able to provide an answer to the counting problem.
In this paper, we present an algorithm, namely A∗NoK , obtained by the basic ANoK one, in which we define
a terminating condition based on the definition of an heuristic and we show that it enables an accurate count.

Related Work. The question concerning which problems can be solved by a distributed system when all
processors use the same algorithm and start from the same state has a long story with its roots dating
back to the seminal work of Angluin [3], who investigated the problem of establishing a “center”. She
was the first to realize the connection with the theory of graph coverings, which was going to provide, in
particular with the work of Yamashita and Kameda [24], several characterizations for problems that are
solvable under certain topological constraints. Other well-known studies on unknown networks have dealt
with the problems of robot-exploration and map-drawing of an unknown graph [2,13,21] and on information
dissemination [6]. Sakamoto [22] studied the “usefulness” of initial conditions for distributed algorithms
(e.g. leader or knowing n) on anonymous networks by presenting a transformation algorithm from one
initial condition to another. Fraigniaud et al. [16] assumed a unique leader in order to break symmetry and
assign short labels as fast as possible. Recently, Chalopin et al. [9] have studied the problem of naming
anonymous networks in the context of snapshot computation. Finally, Aspnes et al. [4] studied the relative
powers of reliable anonymous distributed systems with different communication mechanisms: anonymous
broadcast, read-write registers, or read-write registers plus additional shared-memory objects.

Distributed systems with worst-case dynamicity were first studied in [20] by introducing the 1-interval
connectivity model. They studied flooding and routing problems in asynchronous communication and al-
lowed nodes detect local neighborhood changes. Under the same model, [17] studied the problem of count-
ing for networks where nodes have unique IDs and provided an algorithm that requires O(n2) rounds using
O(log n) bits per message. In [18] studied the problem of anonymous counting in this worst-case dynamicity
model and provided an algorithm where given that the nodes know an upper bound on the maximum degree
that will ever appear, the nodes obtain an upper bound on the size of the network. In [19] the 1-interval
connectivity assumption is replaced by other less restrictive temporal connectivity conditions that only re-
quire that another causal influence occurs within every time-window of some given length. They introduce
several novel metrics for capturing the speed of information spreading in a dynamic network and provide
terminating algorithms for fast propagation of information under continuous disconnectivity.

To the best of our knowledge, this is the first experimental study for distributed counting algorithms
in anonymous dynamic networks that are possibly disconnected. We believe that our results provide strong
evidence that efficient computation can be designed for such future networks.

3 Counting Algorithms for Anonymous Dynamic Networks

3.1 The No-Knowledge Algorithm ANoK

The No-Knowledge Algorithm (ANoK) presented in [14] works in the following way: each non-leader node
v starts, at round r0, with energy quantity ev = 1 and it transfers half of its current energy to the neighbors.
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However, v has no knowledge about the network and thus it cannot know the exact number of neighbors in
r before receiving messages, but it can only guess such number. Thus, v supposes to have d neighbors and
it broadcasts a quantity of energy 1

2d (as if there are really d neighbors). Then v starts to collect messages
transmitted by its neighbors at the beginning of the round and it stores such messages in a local variable
Smsg. At the end of the round, v updates its energy ev to 1

2 + (d− |Smsg|) 1
2d +

∑
∀m∈Smsg

m to preserver
the quantity of energy over all the network.

Notice that, if the real number of neighbors at round r is lower than the estimation (i.e., |Nv(r)| ≤ d)
then the global energy conserved among all the processes is still constant (this is due to the compensation
done by v at the end of the round based on the effective number of received messages). On the contrary, if
the number of neighbors is greater than the estimation (i.e., |Nv(r)| > d) then, there is the release of a local
surplus of energy. As an example, consider the case where v has energy ev the estimation of neighbors is
d = 2 and the real number of neighbors is Nv(r) = 8. When v sends ev

4 to each neighbors, the total amount
of energy transferred is twice the energy stored by v (i.e., the energy transferred is 8× ev

4 = 2ev while node
v had only ev residual energy). However, since v adjusts its local residual energy considering the number of
received messages, it follows that its residual energy will become negative and globally the energy is still
preserved.

The local surplus of positive/negative energy could create, in the leader, a temporary value of energy
e that is greater than |V | or negative. Moreover, the adversary could change, at each round, the degree of
nodes in order to avoid the convergence of the leader. To overcome these issues each processes stores locally
the highest number of neighbors it has ever seen and it uses such number as estimation of its degree d. In
this way the surplus of local negative/positive energy that the adversary can create is upper bounded by a
function f(|V |): each node v can increase d at most |V | − 1 times, from 1 to |V |. This implies that worst
case adversary cannot create an infinite surplus of local energy. Since the conservation of energy is not
violated and the local surplus of energy is finite, it is straightforward to prove that the leader has to converge
to the value |V | and the adversary could delay this convergence only a finite number of times. Intuitively,
the adversary cannot delay too much its moves, because when the energy stored in V \ {vl} is less than a
certain value, the local surplus of energy that it could create, even in worst case, it is not enough to change
the leader count. So, if at each round r the leader counts devle, it is possible to prove that there exists a round
r∗ after which the leader will always count the correct value despite the move of the adversary [14].

Unfortunately, looking to the number of consecutive rounds in which the leader outputs always the same
count is not sufficient to provide a terminating condition as such number can always be influenced by the
adversary. As a consequence, the leader cannot detect convergence. In fact, let us suppose that the leader
stops when the increment of energy at round r is below a threshold t. It is always possible to have a network
of size t + 1 where each node have a residual charge of t. So each increment on the leader energy is below
the termination threshold but the residual energy on the network is greater than 1, so if the leader terminates
it will miss one node.

3.2 The The No-Knowledge Algorithm with Termination Heuristic A∗
NoK

In this section, we will present the heuristic added to the basic ANoK to obtain the new algorithm A∗NoK

working in an anonymous network with No Knowledge assumption and having a termination condition. The
heuristic is used by the leader to decide at which time the current count can be considered as the final one.
The heuristic is based on the assumption that the dynamicity of the graph is governed by a random process
(i.e., a graph where links change according to a uniform probability distribution) and it considers the notion
of flow observed by the leader.
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At each round r, the leader vl will receive a fraction of energy from all its neighbors. So the flow of
energy to the leader at round r can be expressed as:

Φr(vl) =
∑

∀v∈Nvl
(r)

ev(r)

2dmax
v (r)

where ev(r) is the energy of v at round r and dmax
v (r) is the maximum number of neighbors that node v has

so far. After a sufficient number of rounds, the estimation of the flow observed by the leader is

Φr(vl) =
∑

∀v∈Nvl
(r)

ev(r)

2dmax
v (r)

' |Nvl(r)|
2d

max(r)
avg

ev(r)

where 2dmax
avg (r) is the average of the maximum degrees seen by nodes in G at round r and ev(r) is the

average of the energy kept by all non-leader nodes at round r.
Let us remark that, in the absence of the leader, the energy is always balanced among nodes in the network
and let us recall that the leader is the only node absorbing energy. As a consequence, nodes being neighbors
of the leader could have less energy than others as they transferred part of their energy to the leader without
receiving nothing from it. Due to the assumption about the probabilistic nature of the edges creation process
and considering the functioning of ANoK , those non-leader nodes will tend to have a similar quantity of
energy as they will balance energy surplus. Thus, the leader can estimate ev(r) ' |V |−evl (r−1)|V | .

Due to the assumption about the probabilistic nature of the edges creation process, the leader will see
almost the same maximum number of neighbors as the other nodes. Thus, 2dmax

vl
(r) ' 2dmax

avg (r). Thus,
substituting we have

Φr(vl) '
|Nvl(r)|
2dmax

vl
(r)

|V | − evl(r − 1)

|V |
from which we obtain

|V̄ (r)| ' ρ(r)evl(r − 1)

ρ(r)− Φr(vl)

where |V̄ (r)| is estimation of the number of processes in the network done by the leader at round r and
ρ(r) =

|Nvl
(r)|

2dmax
vl

(r) .

Let k = devl(r)e be the number representing the count done by the leader at round r, and let ∆(r) =
|V̄ (r)| − evl(r) be difference between the network size estimated with the energy flow and the energy
currently stored at the leader. We can finally define a termination condition as follows: as long as devl(r)e
remains stable, the leader computes the average ∆ of ∆(r) over the last k rounds and if after k consecutive
rounds the quantity devl(r + k) + he is equal to k and devl(r + k)e = k the counting procedure terminates
and the leader outputs k.

3.3 The Local Counting Oracle-based Algorithm ALCO

To overcome the issue of the terminating condition, in [14] the notion of a local counting oracle (LCO) is
introduced that reports, at each round r, the current number of neighbors. Assuming the existence of such
an oracle, a counting algorithm, namely ALCO, has been presented that is able to count the exact number
of processes in a finite number of rounds. In this paper, we first propose a new algorithm called A∗LCO and
obtained trough a simple modification of ALCO in order to let it work in a practical context and then we
compared its performances with respect to A∗NoK .
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The basic idea ofALCO is to color every node in the graph and to count how many processes are colored
with a specific color. The computation is done in synchronous round. At round r0, the leader colors itself
with color c0 while each other node has no color, or simply its color is ⊥. At any round r a new color cr
is used and each node with color ⊥ can be colored with cr if and only if it has at least one neighbor with a
color different from ⊥. In addition, in any round r, every non-leader colored process propagates 1 energy
unit together with its color cr, with the multiset containing the information it has about its neighbors and
the current round r. When the counting algorithm starts at round r0, the leader knows exactly how many
processes are colored with color c0 as they are its neighbors, they are colored by the leader itself and their
number is provided by the LCO. For any following round, the leader initializes a local variable acting as
container to collect the energy propagated by colored nodes; such energy is transferred to the leader by using
the same mechanism of ANoK and the access to LCO ensures that negative energy can not be created.

The leader starts collecting energy from nodes with color c0 and it waits until it collects energy form all
of them. When the leader collected all the energy from nodes with color c0, it can compute, using the multi
sets of local view gathered by nodes with color c0, a boundB1 on the set of nodes with color c1. Such bound
is given by the number of ⊥ multiplied for the multiplicity of the multi set (multiplicity obtained using the
energy). The bound B1 is used by the leader to check when it has collected enough energy to obtain the
correct count C1 of process with color c1.

Each node w with color c1 at round 2 will create an unitary quantity of energy that will be transferred to
the leader, this energy is marked with the local view lw(1), the color c1 and the round 1.

Collecting this energy, the leader can compute, for each node w, the multiplicity of neighbors with id 0.
Using this information it can lower the bound B1 till it obtains the correct count C1 of nodes with id 1, this
condition is reached when the energy collected from nodes with color c1 is equal to the adjusted bound B1.
The leader uses the sum C≤1 = C0 + C1 to obtain the multi sets of neighbors of nodes with ids {0, 1}, if
this multi set is empty the leader terminates otherwise it uses the same procedure to obtain nodes with color
c2 and so on.

3.4 The Local Counting Oracle-based Algorithm with Symmetry Breaking A∗
LCO

ALCO in [14] is able to provide an exact count in a finite time. However, it may take a large amount of
time since the leader may not be able to count two nodes with the same color until it collects more than one
unit of energy from them. Let us assume for example that there are y nodes that at round r have the same
color and the same multi set lv of neighbors. The leader has to collect at least y − 1 + ε energy to count the
correct multiciplity y of lv, this process could be extremely slow. However, in practice such two nodes may
be identified if we consider the history of their local views, i.e., the union of all the multi-sets they saw from
round r0 until the current round.

Based on this intuition, we defined a new algorithm, namely A∗LCO, by breaking some symmetry in
ALCO. Symmetry breaking is achieved by introducing an additional parameter obtained considering all
the local views history and it is used to break the symmetry and to disambiguate processes having the
same color. Essentially, each non-leader process with color ci 6= ⊥ computes, at each round r, a round id
ridr = ridr−1 + lv(r−1); in this way, two nodes v, u that at round r′ have a different multi set of neighbors
will always have for each round r > r′ a different ridr. Such ridr will be attached together with the other
information to the energy created at round r.

With this modification the algorithm logically uses the concept of energy to count when the symmetry
has not been broken by the dynamic topology, i.e., two nodes that at each rounds have the same neighbor-
hood. Otherwise it can count fast, let us suppose that at round r all nodes with cid 6= ⊥ have a different ridr
the leader could collect information from all necessary nodes in at most V rounds. Considering the previous
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example if y
2 nodes have different ridr the leader have to wait till it collects y

2 − 1 + ε of energy that is in
general faster.

4 Performance Evaluation

Simulator. In order to run our experiments, we developed a JAVA simulator using the Jung library [1] to
keep track of the graph data structure. Each process v is seen as a node in the graph and it exposes an
interface composed of two methods: the first one allowing to send a message for round r and the second
one allowing to deliver messages for the round r. Moreover, each node has associated a queue qv storing the
messages that it has to receive. The simulation is done trough a set of threads; a thread Tj takes a node from
a list lm containing all of nodes to be examined in this round, removes it from the list and invokes the method
send message. Tj also takes the message m generated by v, and adds it to the queues of Nv(r). When lm is
empty, a different set of threads is activated to deliver messages. Tj takes a node v from a list ld and manage
the delivery of all messages in qv that v received during the current round. When all the messages in the
queues are delivered to all the processes, the round terminates and the topology can be modified according
to the dynamicity model considered and a new round can start.
Metrics and parameters. We investigate three key performance metrics:

– Convergence Time Distribution: the convergence time is defined by the first round at which the algo-
rithm outputs the correct value. In the following, we studied the probability distribution of the conver-
gence time to show the average latency of the algorithms before reaching a correct count.

– Flow Based Gain ∆: such metrics represents the difference measured by the leader between the size
estimated through the flow and the the size estimated trough the energy stored inside the leader (i.e.,
∆(r) = |V̄ (r)| − evl(r)).

– Error frequency ρ: we measured the percentage of uncorrect termination obtained while adopting the
heuristics-based termination condition defined in Section 3.2.

The above metrics have been evaluated by varying the following parameters:

– Dynamicity model: we considered different types of dynamic graphs to evaluate the factors impacting
every metrics (see Sec. 2 for a formal description).

– Edges creation probability p: such probability governs the graph dynamicity according to the specific
model considered (G(n,p) or edge-Markovian).

We have evaluated the performance of the algorithms under different metrics in networks comprised of
{10, 100, 1000} nodes. When not explicitly stated, tests are the results of 1000 independent runs.

4.1 Evaluation of ANoK

Concerning the ANoK algorithm, we implemented and tested it on both Gn,p, edge-Markovian and Duty-
cycle-based graphs. Let us first consider the case of G(n,p) graphs and let us recall that the connectivity

threshold t is defined according to the number of nodes in the graph (i.e., t = ln(|V |)
|V | ). We evaluate our algo-

rithm for several probability p. In particular, for any probability greater than 2t, we consider only connected
graph instances, i.e., at each step, we check the connectivity and in case of disconnected graph we sample a
new random graph. For probabilities smaller than 2t we allow disconnected graph instances.

Figure 1 shows the convergence time distribution of the ANoK algorithm running on G(n,p) graphs. As
expected the convergence time becomes worse when we consider disconnected instances. However, it is
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Fig. 1: ANoK Convergence time distribution for G(n,p) graphs with different edge creation probabilities p.

worth notice that the algorithm is able to converge to the correct count even in presence of disconnected in-
stances. Moreover, the increment of convergence time is inversely proportional to p and there is an increment
of the distribution variance due to the presence of disconnected instances.

When considering edge-Markovian graph, we set the probability of creating an edge as in the G(n,p)

graphs and we fixed the probability of deleting an edge to 0.25 (i.e., pd = 0.25 and pb = f(t)).
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Fig. 2: ANoK Convergence time distribution for edge-Markovian graphs with different edge creation prob-
abilities pb and |V | = 100.

Figure 2 shows the ANoK convergence time distribution and we can see that it is comparable to the
G(n,p) graph one. In addition, the persistence of edges across rounds (due to pd ≤ 1) mitigates the low
values of edge creation probability. As a consequence, the convergence is faster than the pure G(n,p).

4.2 Evaluation of A∗
NoK

In the following tables we evaluate the A∗NoK algorithm on both G(n,p) and Edge-Markovian graphs. In
Figure 3 we show several measures related to the heuristic correctness. In particular, in addition to the error
frequency ρ, we measured also the average error and maximum error done, by the heuristic, in terms of
number of nodes missed with respect to the real number of nodes in the graph. We omit from the Figure
some probabilities since they always terminate correctly (p ≥ t

2 in case of G(n,p) graphs andpb ≥ t
4 for the

Edge-Markovian). In case of disconnected topologies, i.e., p ≤ t
4 for the G(n,p) or pb ≤ t

8 for the Edge-
Markovian, we have that the percentage of counting instances terminating correctly is smaller that 100% and
it becomes proportionally worse with the decrease of p. Moreover, it is possible to see a bimodal behavior of
the heuristic when it fails: two cases are frequent in the experiments (i) the heuristic forces the termination
in the first rounds of the counting process with the consequence of having the leader outputting a count
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much smaller than the real number of processes and (ii) the heuristic fails when the energy accumulated by
the leader is close to the current network size. In all our experiments we have not found a case in which
the heuristics forces the termination in a case different from this two. Moreover in the table we indicate
the Convergence Detection Time, that is the number of rounds after the first convergence that the heuristics
employs to correctly terminate the count. It is possible to see that in the majority of experiments, even on
disconnected instances the heuristic converges in a time that is equal to the size of the network.

Model G(n,p) Edge-Markovian pd = 0.25

p t
4

t
8

t
16

t
32

t
8

t
16

t
32

|V | 10 100 1000 100 100 100 100 100 100
ρ 22% 3% 2% 19% 25% 84% 30% 68% 76%

Average Error 2,02 8,96 1 9 44,5 41,4 1 3,12 11,8
Max Error in Nodes 8 96 1 99 99 99 1 99 99

σ of Error 2,1166 27,4 0 27,4 48,3 48,8 1 14,23 29,73
Convergence Detection Time Average 10,2 100 1000 100 100 100 100 100 100

Convergence Detection Time Max 40 100 1000 100 100 100 100 100 100
Convergence Detection Time Min 10 100 1000 100 100 100 100 100 100

Fig. 3: Evaluation of the Termination Correctness ρ. The results are the outcome of 500 experiments

4.3 Comparison between ANoK and A∗
NoK

The flow could be used to estimate the size of |V | obtaining a faster count. Figure 4 shows the evolution
of ∆, i.e., difference measured by the leader between the size estimated through the flow and the the size
estimated trough the energy stored inside the leader, both from a temporal perspective 4(a) and from the
energy perspective 4(b).
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(b) Energy view

Fig. 4: Difference between the size estimated with the flow (A∗NoK) and the size estimated by looking to the
energy stored at the leader (ANoK) in a Gn,p network of |V |=100.

The value ∆ reaches the maximum when the energy at the leader is approximately half of the network
size; in this case, when the network is connected (i.e., p ≥ t), the use of the heuristic allows the leader to
predict, correctly, the presence of at least others 17 nodes.
So, on connected instances our approach could be useful to answer faster to predicates likes |V | ≥ t.
In addiction, the flow-based estimation continues to perform well on non-connected instances only until
a certain threshold, then the gain obtained with the flow drops to one or two nodes more than the ones
estimated by the energy.
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Fig. 5: Difference between the size estimated with the flow (A∗NoK) and the size estimated by looking to the
energy stored at the leader (ANoK) for Edge Markovian network with pd = 0.25 of |V |=100.

Moreover the figures show why the termination heuristics works bad on instances where p ≤ t
4 , we can see

that ∆ falls behind the threshold of 1, both when the energy in the leader is low, and when the energy in the
leader is approaching the value |V | this could lead to two possible misbehavior, terminating after few rounds
from the start, so with a value that could be sensibly distant from the value of |V | or it could terminate near
|V |, when ∆ falls again behind 1.

Figure 4(a) shows the behavior of ∆ along time. In particular,

– when the network is connected (i.e., p ≥ t), the counting done by the leader fast approaches half of the
network size (i.e., the maximum value for ∆). The energy-based count approaches the actual size with
an exponential time; this is visible from the exponential decay of ∆. This behavior is present also when
p < t, even tough there is a slower decay of ∆ that obviously reflects a slower approach to the actual
size.

– for values of p ≤ t the curves show a high variance. This is due to the presence of disconnected topolo-
gies that introduce a variance in the convergence time for which the magnitude is proportional to the
inverse of p. This high variance in convergence is due to the high variance of the flow that the leader will
see during the execution.

The same behavior can be observed in Edge-Markovian graphs (cfr. Figure 5). The presence of more
edges in the edge-markovian graph affects positively the ∆ measures since it is less prone to the value of p.
It is possible to notice a slightly low maximum value for the edge-markovian process, 17 against 17.3 of the
G(n,p) graph.

We run also tests with larger graphs (|V | = 1000) but we omit them here since curves exhibit the same
behavior of those shown in Figures 4 and 5, notably in this case the maximum delta is about 170 nodes.

4.4 Duty Cycle

In order to test the adaptiveness of our heuristic, we runA∗NoK on regular topologies: rings and chains. Over
those topologies, we simulate a duty-cyle of 80%. Each node independently sleeps for 20% of the time and
during this period links of sleeping nodes are deleted. Considering a ring topology with |V | = 100, the
average convergence time is around 26986 rounds for 100 experiments, for the chain the convergence time
is on average 70000 rounds . We also tested random G(n,p) topologies where p = 2t, in this case the average
over 200 experiments shows a convergence time of 1059 rounds. The most noticeable phenomenon is that
on graphs with duty-cyle both the termination heuristic and the size estimation perform really bad, on ring
and chain the termination heuristic always fails, on the random graphs fails on the 23% of the instances.
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Fig. 6: Difference between the size estimated with the flow (A∗NoK) and the size estimated by looking to the
energy stored at the leader (ANoK) of 200 runs for duty cycle and random graph with |V |=100.

4.5 Evaluation of A∗
LCO

We evaluate the termination time of A∗LCO over G(n,p), edge-markovian and Random Connected graphs.
Let us recall that this algorithm only works on instances that are 1-interval connected. The basic ALCO

algorithm employs, on average, 15 round for |V | = 10, 393 for |V | = 100 and 7753 for |V | = 1000,
in Table 2 we can see the performance for the symmetry breaking version (i.e., A∗LCO). As expected the
symmetry breaking extension allows the algorithm to terminate faster, the termination time is close to the
size of the network. Moreover we can see that the additional knowledge offered by the LCO allows the
counting algorithm to count faster then the ANoK or the A∗NoK one.

Model G(n,p) p = 2t Edge-Markovian pb = 2t Random Connected Graph
|V | 10 100 1000 10 100 1000 10 100 1000

Average Termination 7,6 107,6 1690,6 9,9 113,4 15543,2 10,14 113,8 1559
Max Termination 17 187 2117 19 222 2684 23 220 1899
Min Termination 5 96 1175 5 99 807 6 13 1263

Fig. 7: Termination performance of A∗LCO on 1-interval connected instances.

5 Conclusion and Future Works

In this work, we presented two new practical algorithms, A∗NoK and A∗LCO based on the notion of energy
transfer by enhancing the original ones ANoK ,ALCO presented in [14]. Such algorithms have been im-
plemented, tested and compared among them. The experiments show that A∗NoK terminates correctly on
dense graphs and it has acceptable performances on disconnected instances; however, its error rate became
high when we consider sparse and extremely disconnected instances or regular ones where the dynamicity
is due to duty-cyclying. An interesting point revealed by the analysis is that the when the heuristic fails, it
exhibits a bimodal behavior. This interesting feature has to be further investigated to understand if and how
it is possible to design better heuristics. Thanks to the concept of energy-flow, A∗NoK could answer faster to
predicates like |V | ≥ T , pushing towards a practical use of energy-transfer based algorithms. Moreover, the
expected and somehow regular behavior of ANoK slow convergence on sparse and disconnected instances
could be exploited to design algorithms that want to estimate, in a distributed-way, the edge-density and the
connectivity of dynamic anonymous graph with size knowledge. As a matter of fact, the convergence time
seems to strictly depend from the probability threshold of edge creation p. As last contribution, we presented
A∗LCO that terminates fast on dynamic graphs where the dynamicity model is a random adversary, showing
an interesting trade-off between the knowledge of the network (the use of LCO) and the counting time.
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