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ABSTRACT
Shuffle grouping is a technique used by stream processing
frameworks to share input load among parallel instances of
stateless operators. With shuffle grouping each tuple of a
stream can be assigned to any available operator instance,
independently from any previous assignment. A common
approach to implement shuffle grouping is to adopt a Round-
Robin policy, a simple solution that fares well as long as
the tuple execution time is almost the same for all the tu-
ples. However, such an assumption rarely holds in real cases
where execution time strongly depends on tuple content.
As a consequence, parallel stateless operators within stream
processing applications may experience unpredictable unbal-
ance that, in the end, causes undesirable increase in tuple
completion times. In this paper we propose Online Shuf-
fle Grouping (OSG), a novel approach to shuffle grouping
aimed at reducing the overall tuple completion time. OSG
estimates the execution time of each tuple, enabling a proac-
tive and online scheduling of input load to the target oper-
ator instances. Sketches are used to efficiently store the
otherwise large amount of information required to schedule
incoming load. We provide a probabilistic analysis and il-
lustrate, through both simulations and a running prototype,
its impact on stream processing applications.

1. INTRODUCTION
Stream processing systems are today gaining momentum

as a tool to perform analytics on continuous data streams.
Their ability to produce results with sub-second latencies,
coupled with their scalability, makes them the preferred
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choice for many big data companies. A stream processing
application is commonly modeled as a direct acyclic graph
where data operators, represented by vertices, are intercon-
nected by streams of tuples containing data to be analyzed,
the directed edges. Scalability is usually attained at the de-
ployment phase where each data operator can be parallelized
using multiple instances, each of which will handle a subset
of the tuples conveyed by the operator’s ingoing stream. The
strategy used to route tuples in a stream toward available
instances of the receiving operator is embodied in a so-called
grouping function.

Operator parallelization is straightforward for stateless
operators, i.e., data operators whose output is only func-
tion of the current tuple in input. In this case, in fact, the
grouping function is free to assign the next tuple in the input
stream, to any available instance of the receiving operator
(contrarily to statefull operators, where tuple assignment is
constrained). Such grouping functions are often called shuf-
fle grouping and represent a fundamental element of a large
number of stream processing applications.

Shuffle grouping implementations are designed to balance
as much as possible the load on the receiving operator in-
stances as this increases the system efficiency in available re-
source usage. Notable implementations [16] leverage a sim-
ple Round-Robin scheduling strategy that guarantees each
operator instance will receive the same number of input tu-
ples. This approach is effective as long as the time taken by
each operator instance to process a single tuple (tuple execu-
tion time) is the same for any incoming tuple. In this case,
all parallel instances of the same operator will experience
over time, on average, the same load.

However, such assumption (i.e., same execution time for
all tuples of a stream) does not hold for many practical use
cases. The tuple execution time, in fact, may depend on
the tuple content itself. This is often the case whenever the
receiving operator implements a logic with branches where
only a subset of the incoming tuples travels through each sin-
gle branch. If the computation associated with each branch
generates different loads, then the execution time will change
from tuple to tuple. As a practical example consider an op-
erator that works on a stream of input tweets and that en-
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riches them with historical data extracted from a database,
where this historical data is added only to tweets that con-
tain specific hashtags: only tuples that get enriched require
an access to the database, an operation that typically in-
troduces non negligible latencies at execution time. In this
case shuffle grouping implemented with Round-Robin may
produce imbalance between the operator instances, and this
typically causes an increase in the time needed for a tuple
to be completely processed by the application (tuple com-
pletion time) as some tuple may end-up being queued on
some overloaded operator instances, while other instances
are available for immediate processing.

On the basis of the previous observation the tuple sched-
uling strategies for shuffle grouping must be re-thought: tu-
ples must be scheduled with the aim of balancing the overall
processing time on operators in order to reduce the average
tuple execution time. However, tuple processing times are
not known in the scheduling phase.

To the best of our knowledge this is the first paper intro-
ducing a solution for this problem. In particular, here we
introduce Online Shuffle Grouping (OSG) a novel approach
to shuffle grouping that aims at reducing tuple completion
times by carefully scheduling each incoming tuple. Schedul-
ing in OSG is performed by applying a join-shortest-queue
policy [7] on queues whose size is defined as the execution
time of all the elements of the queue. However, making such
idea works in practice in a streaming setting is not triv-
ial. In particular, OSG makes use of sketches to efficiently
keep track of tuple execution times at the available operator
instances and then applies a greedy online multiprocessor
scheduling algorithm to assign tuples to operator instances
at runtime. The status of each instance is monitored in
a smart way in order to detect possible changes in the in-
put load distribution and coherently adapt the scheduling.
As a result, OSG provides an important performance gain
in terms of tuple completion times with respect to Round-
Robin for all those settings where tuple processing times are
not similar, but rather depend on the tuple content.

In summary, we provide the following contributions:

• We introduce OSG the first solution for shuffle group-
ing that explicitly addresses the problem of parallel op-
erator (non-uniform) instances imbalance under loads
characterized by non-uniform tuple execution times;
OSG schedules tuple on target operator instances on-
line, with minimal resource usage; it works at runtime
and is able to continuously adapt to changes in the
input load;

• We study the two components of our solution: (i)
showing that the scheduling algorithm efficiently ap-
proximate the optimal one and (ii) providing some er-
ror bounds as well as a probabilistic analysis of the ac-
curacy of the tuple execution time tracking algorithm;

• We evaluate OSG’s sensibility to both the load charac-
teristic and its configuration parameters with an exten-
sive simulation-based evaluation that points the sce-
narios where OSG is expected to provide its best per-
formance;

• We evaluate OSG’s performance by integrating a pro-
totype implementation with the Apache Storm stream
processing framework on Microsoft Azure platform and

running it against a real Twitter trace and a synthetic
trace generated with the LDBC Social Network Bench-
mark [10].

After this introduction, the paper starts by defining a sys-
tem model and stating the problem we intend to address
(Section 2); it then introduces OSG (Section 3) and shows
the results of our probabilistic analysis (Section 4); results
from our experimental campaign are reported in Section 5
and are followed by a discussion of the related works (Section
6); finally, Section 7 concludes the paper.

2. SYSTEM MODEL
We consider a distributed stream processing system (SPS)

deployed on a cluster where several computing nodes ex-
change data through messages sent over a network. The
SPS executes a stream processing application represented
by a topology : a directed acyclic graph interconnecting op-
erators, represented by nodes, with data streams (DS), rep-
resented by edges. Each topology contains at least a source,
i.e., an operator connected only through outbound DSs, and
a sink, i.e., an operator connected only through inbound
DSs. Each operator O can be parallelized by creating k in-
dependent instances O1, · · · , Ok of it and by partitioning its
inbound stream Oin in k sub-streams Oin1 , · · · , Oink . Each
operator instance has a FIFO input queue where tuples are
buffered while the instance is busy processing previous tu-
ples. Tuples are assigned to sub-streams with a grouping
function. Several grouping strategies are available, but in
this work we restrict our analysis to shuffle grouping where
each incoming tuple can be assigned to any sub-stream.

Data injected by the source is encapsulated in units called
tuples and each data stream is a sequence of tuples whose
size (that is the number of tuples) m is unknown. Without
loss of generality, here we assume that each tuple t is a finite
set of key/value pairs that can be customized to represent
complex data structures. To simplify the discussion, in the
rest of this work we deal with streams of unary tuples with
a single non negative integer value.

For the sake of clarity, and without loss of generality1, we
consider a topology with an operator S (scheduler) which
schedules the tuples of a DS Oin consumed by the instances
O1, · · · , Ok of operator O.

We denote by wt,op the execution time of tuple t on oper-
ator instance Oop (in the following we will use Oop to indi-
cate a generic operator instance). The execution time wt,op
is modelled as an unknown function2 of the content of tuple
t and that may be different for each operator instance (i.e.,
we do not assume that the operator instances are uniform).
We simplify the model assuming that wt,op depends on a
single fixed and known attribute value of t. The probabil-
ity distribution of such attribute values, as well as wt,op are
unknown and may change over time. However, we assume
that subsequent changes are interleaved by a large enough
time frame such that an algorithm may have a reasonable
amount of time to adapt. Abusing the notation, we may
omit in wt,op the operator instance identifier subscript.

Let `(t) be the completion time of the t-th tuple of the
stream, i.e., the time it takes for the t-th tuple from the

1The case where operator S is parallelized is discussed in
Section 4.1.
2In the experimental evaluation we relax the model by tak-
ing into account the execution time variance



instant it is inserted in the buffering queue of its operator
instance Oop up to the instant is has been processed by Oop.
Then we can define the average completion time as

L =
1

m

m∑
j=1

`(j).

The general goal we target in this work is to minimize the
average tuple completion time L. Such metric is fundamen-
tally driven by three factors: (i) tuple execution times at
operator instances, (ii) network latencies and (iii) queuing
delays. More in detail, we aim at reducing queuing delays at
parallel operator instances that receive input tuples through
shuffle grouping.

Typical implementation of shuffle grouping are based on
Round-Robin scheduling. However, this tuple to DS sub-
streams assignment strategy may introduce additional queu-
ing delays when the execution time of input tuples is not
similar. For instance, let a0, b1, a2 be a stream with an in-
ter tuple arrival delay of 1s, where a and b are tuples with
the respective execution time: wa = 10s and wb = 1s.
Scheduling this stream with Round-Robin on k = 2 oper-
ator instances would assign a0 and a2 to instance 1 and b1
to instance 2, with a cumulated completion time equal to
`(a0) + `(b1) + `(a2) = 29s, where `(a0) = 10s, `(b1) = 1s
and `(a2) = (8+10)s, and L = 9.66s. Note the wasted queu-
ing delay of 8s for tuple a2. A better schedule would be to
assign a0 to instance 1, while b1 and a2 to instance 2, giving
a cumulated completion time equals to 10 + 1 + 10 = 21s
(i.e., no queuing delay), and L = 7s.

3. Online Shuffle Grouping
Online Shuffle Grouping is a shuffle grouping implemen-

tation based on a simple, yet effective idea: if we assume
to know the execution time wt,op of each tuple t on any of
the operator instances, we can schedule the execution of in-
coming tuples on such instances with the aim of minimizing
the average per tuple completion time at the operator in-
stances. However, the value of wt,op is generally unknown.
A common solution to this problem is to build a cost model
for the tuple execution time and then use it to proactively
schedule incoming load. However building an accurate cost
model usually requires a large amount of a priori knowledge
on the system. Furthermore, once a model has been built, it
can be hard to handle changes in the system or input stream
characteristics at runtime.

To overcome all these issues, OSG takes decisions based on

the estimation Ĉop of the execution time assigned to instance
Oop, that is Cop =

∑
t∈Oin

op
wt,op. In order to do so, OSG

computes an estimation ŵt,op of the execution time wt,op of
each tuple t on each operator instance Oop. Then, OSG can
also compute the sum of the estimated execution times of the

tuples assigned to an instance Oop, i.e., Ĉop =
∑
t∈Oin

op
ŵt,op,

which in turn is the estimation of Cop. A greedy scheduling
algorithm (Section 3.1) is then fed with estimations for all
the available operator instances.

To implement this approach, each operator instance builds
a sketch (i.e., a memory efficient data structure) that will
track the execution time of the tuples it processes. When
a change in the stream or instance(s) characteristics affects
the tuples execution times on some instances, the concerned
instance(s) will forward an updated sketch to the scheduler

which will then be able to (again) correctly estimate the
tuples execution times. This solution does not require any
a priori knowledge on the stream composition or the sys-
tem, and is designed to continuously adapt to changes in
the input distribution or on the instances load characteris-
tics. In addition, this solution is proactive, namely its goal
is to avoid unbalance through scheduling, rather than de-
tecting the unbalance and then attempting to correct it. A
reactive solution can hardly be applied to this problem, in
fact it would schedule input tuples on the basis of a pre-
vious, possibly stale, load state of the operator instances.
In addition, reactive scheduling typically imposes a periodic
overhead even if the load distribution imposed by input tu-
ples does not change over time.

For the sake of clarity, we consider a topology with a sin-
gle operator S (i.e., a scheduler) which schedules the tuples
of a DS Oin consumed by the k instances of operator O
(cf., Figure 1). To encompass topologies where the oper-
ator generating DS Oin is itself parallelized, we can easily
extend the model by taking into account parallel instances
of the scheduler S. More precisely, there are s schedulers
S1, · · · , Ss, where scheduler Si schedules the tuples belong-
ing to the sub-stream Oini,1, · · · , Oini,k. We show (cf., Sec-
tion 4.1) that also in this setting OSG performances are
better than Round-Robin scheduling policy. In other words
OSG can be deployed when the operator S is parallelized.
Notice that our approach is hop-by-hop, i.e., we consider a
single shuffle grouped edge in the topology at a time. How-
ever, OSG can be applied to any shuffle grouped stage of
the topology.

3.1 Background
Data Streaming model — We present the data stream
model [12], under which we analyze our algorithms and de-
rive bounds. A stream is an unbounded sequence of elements
σ = 〈t1, . . . , tm〉 called tuples or items, which are drawn from
a large universe [n] = {1, . . . , n}, with m the unknown size
(or length) of the stream. We denote by pt the unknown
probability of occurrence of item t in the stream and by ft
the unknown frequency3 of item t, i.e., the number of oc-
currences of t in the stream of size m.

2-Universal Hash Functions — Our algorithm uses hash
functions randomly picked from a 2-universal hash functions
family. A collection H of hash functions h : [n]→ [c] is said
to be 2-universal if for every two different items x, y ∈ [n],
for all h ∈ H, P{h(x) = h(y)} ≤ 1/c, which is the probabil-
ity of collision obtained if the hash function assigned truly
random values in [c]. Carter and Wegman [4] provide an
efficient method to build large families of hash functions ap-
proximating the 2-universality property.

Count Min sketch algorithm — Cormode and Muthukr-
ishnan have introduced in [5] the Count Min sketch that pro-
vides, for each item t in the input stream an (ε, δ)-additive-

approximation f̂t of the frequency ft. The Count Min sketch
consists of a two dimensional matrix F of size r × c, where
r = dlog(1/δ)e and c = de/εe, with e ' 2.71828. Each
row is associated with a different 2-universal hash func-
tion hi : [n] → [c]. When the Count Min algorithm reads
item t from the input stream, it updates each row: ∀i ∈
3This definition of frequency is compliant with the data
streaming literature.



Listing 3.1: Operator instance op: update Fop and Wop.
1: init do
2: Fop matrix of size r × c
3: Wop matrix of size r × c
4: r hash functions h1 . . . hr : [n] → [c] from a 2-universal

family (same for all instances).
5: end init
6: function Update(tuple : t, execution time : l)
7: for i = 1 to r do
8: Fop[i, hi(t)]← Fop[i, hi(t)] + 1
9: Wop[i, hi(t)]←Wop[i, hi(t)] + l

10: end for
11: end function

[r],F [i, hi(t)] ← F [i, hi(t)] + 1. Thus, the cell value is
the sum of the frequencies of all the items mapped to that
cell. Upon request of ft estimation, the algorithm returns
the smallest cell value among the cell associated with t:
f̂t = mini∈[r]{F [i, hi(t)]}.

Fed with a stream of m items, the space complexity of this
algorithm is O(log[(logm + logn)/δ]/ε) bits, while update
and query time complexities are O(log(1/δ)). The Count

Min algorithm guarantees that the following bound holds on
the estimation accuracy for each iteam read from the input
stream: P{| f̂t − ft |≥ ε(m − ft)} ≤ δ, while ft ≤ f̂t is
always true.

This algorithm can be easily generalized to provide (ε, δ)-
additive-approximation of point queries Qt on stream of ud-
pates, i.e., a stream where each item t carries a positive
integer update value vt. When the Count Min algorithm
reads the pair 〈t, vt〉 from the input stream, the update rou-
tine changes as follows: ∀i ∈ [r],F [i, hi(t)]← F [i, hi(t)]+vt.

Greedy Online Scheduler — A classical problem in the
load balancing literature is to schedule independent tasks
on identical machines minimizing the makespan, i.e., the
Multiprocessor Scheduling problem. In this paper we adapt
this problem to our setting, i.e., to schedule online inde-
pendent tuples on non-uniform operator instances in order
to minimize the average per tuple completion time L. Online
scheduling means that the scheduler does not know in ad-
vance the sequence of tasks it has to schedule. The Greedy
Online Scheduler algorithm assigns the currently submitted
tuples to the less loaded available operator instance. In Sec-
tion 4.1 we prove that this algorithm closely approximates
an optimal omniscient scheduling algorithm, that is an algo-
rithm that knows in advance all the tuples it will received.
Notice that this is a variant of the join-shortest-queue (JSQ)
policy [11, 7], where we measure the queue length as the
time needed to execute all the buffered tuples, instead of
the number of buffered tuples.

3.2 OSG design
Each operator instance op maintains two Count Min sketch

matrices (Figure 1.A): the first one, denoted by Fop, tracks
the tuple frequencies ft,op; the second, denoted by Wop,
tracks the tuples cumulated execution times Wt,op = wt,op×
ft,op. Both Count Min matrices have the same sizes and hash
functions. The latter is the generalized version of the Count

Min presented in Section 3.1 where the update value is the
tuple execution time when processed by the instance (i.e.,
vt = wt,op) . The operator instance will update (Listing 3.1)
both matrices after each tuple execution.
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e, Ĉ[O1]〉

〈FO2
,WO2

〉

〈∆O2 〉

A

B

C

D

E

Figure 1: Online Shuffle Grouping design with r = 2
(δ = 0.25), c = 4 (ε = 0.70) and k = 2.

start stabilizing

execute N tuples
create snapshot Sop

execute N tuples ∧ relative error ηop ≤ µ
send Fop and Wop to scheduler and reset them

execute N tuples ∧
relative error ηop > µ
update snapshot SopA

B

C

Figure 2: Operator instance finite state machine.

The operator instances are modelled as a finite state ma-
chine (Figure 2) with two states: START and STABILIZ-
ING. The START state lasts until instance op has executed
N tuples, where N is a user defined window size parame-
ter. The transition to the STABILIZING state (Figure 2.A)
triggers the creation of a new snapshot Sop. A snapshot is
a matrix of size r × c where ∀i ∈ [r], j ∈ [c] : Sop[i, j] =
Wop[i, j]/Fop[i, j]. We say that the Fop and Wop matrices
are stable when the relative error ηop between the previous
snapshot and the current one is smaller than µ, that is if

ηop =

∑r
i=1

∑c
j=1

∣∣∣Sop[i, j]− Wop[i,j]

Fop[i,j]

∣∣∣∑r
i=1

∑c
j=1 Sop[i, j]

≤ µ (1)

is satisfied. Then, each time instance op has executed N
tuples, it checks whether Equation 1 is satisfied. (i) If not,
then Sop is updated (Figure 2.B). (ii) Otherwise the opera-
tor instance sends the Fop andWop matrices to the scheduler
(Figure 1.B), resets them and moves back to the START
state (Figure 2.C).

There is a delay between any change in the stream or op-
erator instances characteristics and when the scheduler re-
ceives the updated Fop and Wop matrices from the affected
operator instance(s). This introduces a skew in the cumu-
lated execution times estimated by the scheduler. In order
to compensate for this skew, we introduce a synchronization
mechanism that springs whenever the scheduler receives a
new pair of matrices from any operator instance. Notice
also that there is an initial transient phase in which the
scheduler has not yet received any information from opera-
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Figure 3: Scheduler finite state machine.

tor instances. This means that in this first phase it has no
information on the tuples execution times and is forced to
use the Round-Robin policy. This mechanism is thus also
needed to initialize the estimated cumulated execution times
when the Round-Robin phase ends.

The scheduler (Figure 1.C) maintains the estimated cu-

mulated execution time for each instance, in a vector Ĉ of
size k, and the set of pairs of matrices: {〈Fop,Wop〉}, ini-
tially empty.

The scheduler is modelled as a finite state machine (Fig-
ure 3) with four states: Round Robin, Send All, Wait
All and Run.

The Round Robin state is the initial state in which sched-
uling is performed with the Round-Robin policy. In this
state, the scheduler collects the Fop and Wop matrices sent
by the operator instances (Figure 3.A). After receiving the
two matrices from each instance (Figure 3.B), the scheduler
is able to estimate the execution time for each submitted
tuple and moves into the Send All state. When in Send
All state, the scheduler sends the synchronization requests
towards the k instances. To reduce overhead, requests are
piggy backed (Figure 1.D) with outgoing tuples applying the
Round-Robin policy for the next k tuples: the i-th tuple is
assigned to operator instance i mod k. On the other hand,

the estimated cumulated execution time vector Ĉ is updated
with the tuple estimated execution time using the Update

Ĉ function (Listing 3.2). When all the requests have been
sent (Figure 3.C), the scheduler moves into the Wait All
state. This state collects the synchronization replies from
the operator instances (Figure 3.D). Operator instance op
reply (Figure 1.E) contains the difference ∆op between the
instance cumulated execution time Cop and the scheduler

estimation Ĉ[op].
In the Wait All state, scheduling is performed as in the

Run state, using both the Submit and the Update Ĉ func-
tions (Listing 3.2). When all the replies for the current
epoch have been collected, synchronization is performed and
the scheduler moves in the Run state (Figure 3.E). In the
Run state, the scheduler assigns the input tuple applying
the Greedy Online Scheduler algorithm, i.e., assigns the tu-
ple to the operator instance with the least estimated cumu-
lated execution time (Submit function, Listing 3.2). Then it

Listing 3.2: Scheduler: submit t and update Ĉ.
1: init do
2: vector Ĉ of size k
3: A set of 〈Fop,Wop} matrices pairs
4: Same hash functions h1 . . . hr of the operator instances
5: end init
6: function Submit(tuple : t)

7: return argminop∈[k]{Ĉ[op]}
8: end function
9: function UpdateĈ(tuple : t, operator : op)

10: i← argmini∈[r]{Fop[i, hi(t)]}
11: Ĉ[op]← Ĉ[op] + (Wop[i, hi(t)]/Fop[i, hi(t)])
12: end function

increments the target instance estimated cumulated execu-
tion time with the estimated tuple execution time (Update

Ĉ function, Listing 3.2). Finally, in any state except Round
Robin, receiving an updated pair of matrices Fop and Wop

moves the scheduler into the Send All state (Figure 3.F).

Theorem 3.1 (OSG Time Complexity).
For each tuple read from the input stream, the time com-
plexity of OSG for each instance is O(log(1/δ)). For each
tuple submitted to the scheduler, OSG time complexity is
O(k + log(1/δ)).

Proof. By Listing 3.1, for each tuple read from the input
stream, the algorithm increments an entry per row of both
the Fop and Wop matrices. Since each has log(1/δ) rows,
the resulting update time complexity is O(log(1/δ)). By
Listing 3.2, for each submitted tuple, the scheduler has to

retrieve the index with the smallest value in the vector Ĉ
of size k, and to retrieve the estimated execution time for
the submitted tuple. This operation requires to read entry
per row of both the Fop and Wop matrices. Since each has
log(1/δ) rows, the resulting update time complexity is O(k+
log(1/δ)).

Theorem 3.2 (OSG Space Complexity).
The space complexity of OSG for the operator instances is
O(log[(logm + logn)/δ]/ε), while the space complexity for
the scheduler is O((k log[(logm+ logn)/δ])/ε).

Proof. Each operator instance stores two matrices, each
one requiring log(1/δ) × (e/ε) × logm bits. In addition, it
also stores a hash function whose domain size is n. Then
the space complexity of OSG on each operator instance is
O(log[(logm + logn)/δ]/ε). The scheduler stores the same
matrices, one for each instance, as well as a vector of size
k. Then the space complexity of OSG on the scheduler is
O((k log[(logm+ logn)/δ])/ε).

Theorem 3.3 (OSG Communication Complexity).
The communication complexity of OSG is of O((km)/N)
messages and O(m(log[(logm + logn)/δ]/ε + k logm)/N)
bits.

Proof. After executing N tuples, an operator instance
may send the Fop,Wop matrices to the scheduler. This gen-
erates a communication cost of O(m/(kN)) messages and
O(m log[(logm + logn)/δ]/(kNε)) bits. When the sched-
uler receives these matrices, the synchronization mechanism
springs and triggers a round trip communication (half of
which is piggy backed by the tuples) with each instance.
The communication cost of the synchronization mechanism
O(m/N) messages andO((m logm)/N) bits. Since there are



k instances, the communication complexity is O((km)/N)
messages and O(m(log[(logm + logn)/δ]/ε + k logm)/N)
bits.

Note that the communication cost is negligible since the
window size N should be chosen such that N � k (e.g., in
our tests we have N = 1024 and k ≤ 20).

4. THEORETICAL ANALYSIS
This section provide the analysis of the quality of the

scheduling performed by OSG in two steps. First we study
the Greedy Online Scheduler algorithm approximation in
Section 4.1. Then, in Section 4.2 we provide a probabilistic
analysis of the mechanism that OSG uses to estimate the
tuple execution times.

4.1 Online Greedy Scheduler
We suppose that tuples cannot be preempted, that is tu-

ples must be processed in an uninterrupted fashion on the
operator instance it has been scheduled on. As mentioned,
we assume that the processing time wt is known for each
tuple t. Finally, given our system model, the problem of
minimizing the average completion time L can be reduced
to the following problem (in terms of makespan):

Problem 4.1. Given k identical operator instances, and
a sequence of tuples σ = 〈1, . . . ,m〉 that arrive online from
the input stream. Find an online scheduling algorithm that
minimizes the makespan of the schedule produced by the on-
line algorithm when fed with σ.

Let OPT be the schedule algorithm that minimizes the
makespan over all possible sequences σ, and CσOPT denote the
makespan of the schedule produced by the OPT algorithm
fed by sequence σ. Notice that finding CσOPT is an NP-hard
problem. We will show that the Greedy Online Scheduler
(GOS) algorithm defined in Section 3.1 builds a schedule
that is within some factor of the lower bound of the quality
of the optimal scheduling algorithm OPT. Let us denote by
CσGOS the makespan of the schedule produced by the greedy
algorithm fed with σ.

Theorem 4.2. For any σ, we have CσGOS ≤ (2−1/k)CσOPT .

Proof. Let Oop be the instance on which the last tuple t
is executed. By construction of the algorithm, when tuple t
starts its execution on instance Oop, all the other instances
are busy, otherwise t would have been executed on another
instance. Thus when tuple t starts its execution on instance
Oop, each of the k instances must have been allocated a load
at least equivalent to (

∑m
`=1 w` − wt)/k. Thus we have,

CσGOS − wt ≤
∑m
`=1 w` − wt

k

CσGOS ≤
∑m
`=1 w`

k
+ wt(1−

1

k
) (2)

Now, it is easy to see that

CσOPT ≥
∑m
`=1 w`

k
, (3)

otherwise the total load processed by all the operator in-
stances in the schedule produced by the OPT algorithm
would be strictly less than

∑m
`=1 w`, leading to a contra-

diction. We also trivially have

CσOPT ≥ max
`
w`. (4)

Thus combining relations (2), (3), and (4), we have

CσGOS ≤ CσOPT + CσOPT

(
1− 1

k

)
=

(
2− 1

k

)
CσOPT (5)

that concludes the proof.

This lower bound is tight, that is there are sequences of tu-
ples for which the Greedy Online Scheduler algorithm pro-
duces a schedule whose completion time is exactly equal to
(2− 1/k) times the completion time of the optimal schedul-
ing algorithm [8].

Consider the example of k(k− 1) tuples with all the same
processing time equal to w/k and one tuple with a process-
ing time equal to w. Suppose that the k(k − 1) tuples are
scheduled first and then the longest one. Then the greedy
algorithm will exhibit a makespan equal to w(k−1)/k+w =
w(2−1/k) while the OPT scheduling will lead to a makespan
equal to w.

If we now consider a parallelized scheduler, it is easy to
see that in the worst case the degradation of the makespan
obtained with Greedy Online Scheduler algorithm is linear
in the parallelization degree. Indeed, in absence of any ad-
ditional communication between these schedulers, each of
them cannot do better than providing a schedule in isolation
with respect to the other schedulers. The same degradation
applies to Round-Robin scheduling. Consequently our ap-
proach efficiently handles a moderate parallelization degree

4.2 Execution Time Estimation
OSG uses two matrices, F and W, to estimate the exe-

cution time wt of each tuple t submitted to the scheduler.
To simplify the discussion, we consider a single operator in-
stance.

From the count Min algorithm, and for any v ∈ [n], we
have for a given hash function hi,

Cv(m) =

n∑
u=1

fu1{hi(u)=hi(v)} = fv+

n∑
u=1,u6=v

fu1{hi(u)=hi(v)}.

and

Wv(m) = fvwv +

n∑
u=1,u6=v

fuwu1{hi(u)=hi(v)},

where Cv(m) = F [v, hv(m)] and Wv(m) = W[v, hv(m)].
Let us denote by min(w) and max(w) the respectively mini-
mum and maximum execution times of the tuples. We have
trivially

min(w) ≤ Wv(m)

Cv(m)
≤ max(w).

In the following we respectively write Cv and Wv instead
of Cv(m) and Wv(m), to simplify the writing. For any i =
0, . . . , n− 1, we denote by Ui(v) the set whose elements are
the subsets of {1, . . . , n} \ {v} whose size is equal to i, that
is

Ui(v) = {A ⊆ {1, . . . , n} \ {v} | |A| = i}.

We have U0(v) = {∅}.



For any v = 1, . . . , n, i = 0, . . . , n − 1 and A ∈ Ui(v), we
introduce the event B(v, i, A) defined by

B(v, i, A) = {hu = hv, ∀u ∈ A and

hu 6= hv, ∀u ∈ {1, . . . , n} \ (A ∪ {v})} .

From the independence of the hu, we have

Pr{B(v, i, A)} =

(
1

k

)i(
1− 1

k

)n−1−i

.

Let us consider the ratio Wv/Cv. For any i = 0, . . . , n, we
define

Ri(v) =

{
fvwv +

∑
u∈A fuwu

fv +
∑
u∈A fu

, A ∈ Ui(v)

}
.

We have R0(v) = {wv}. We introduce the set R(v) defined
by

R(v) =

n−1⋃
i=0

Ri(v).

Thus with probability 1, we have Wv/Cv ∈ R(v).

Let x ∈ R(v). We have

Pr{Wv/Cv = x}

=

n−1∑
i=0

∑
A∈Ui(v)

Pr{Wv/Cv = x | B(v, i, A)}Pr{B(v, i, A)}

=

n−1∑
i=0

(
1

k

)i (
1−

1

k

)n−1−i∑
A∈Ui(v)

Pr{Wv/Cv = x | B(v, i, A)}

=

n−1∑
i=0

(
1

k

)i(
1− 1

k

)n−1−i ∑
A∈Ui(v)

1{x=X(v,A)}.

where X(v,A) is the fraction:

X(v,A) =
fvwv +

∑
u∈A fuwu

fv +
∑
u∈A fu

.

Note that we have
∑
x∈R(v) 1{x=X(v,A)} = 1, thus

E{Wv/Cv}

=

n−1∑
i=0

(
1

k

)i(
1− 1

k

)n−1−i ∑
A∈Ui(v)

∑
x∈R(v)

x1{x=X(v,A)}

=

n−1∑
i=0

(
1

k

)i(
1− 1

k

)n−1−i ∑
A∈Ui(v)

fvwv +
∑
u∈A fuwu

fv +
∑
u∈A fu

.

Theorem 4.3. When all the fu are equal, we have

E{Wv/Cv} =
S − wv
n− 1

− k(S − nwv)

n(n− 1)

(
1−

(
1− 1

k

)n)
,

where S =
∑n
i=1 wi.

Proof. Since all the fu are equal, we have fu = m/n.
The proof then proceeds by replacing this value of fu in the
above expression of E{Wv/Cv}.

It important to note that this last result does not depend
onm. Simulations tend to show that the worst cases scenario
of input streams are exhibited when all the items show the
same number of occurrences in the input stream.

5. EXPERIMENTAL EVALUATION
In this section we evaluate the performance obtained by

using OSG to perform shuffle grouping. We will first de-
scribe the general setting used to run the tests and will
then discuss the results obtained through simulations (Sec-
tion 5.2) and with a prototype of OSG targeting Apache
Storm (Section 5.3).

5.1 Setup
Datasets — In our tests we consider both synthetic and
real datasets. For synthetic datasets we generate streams of
integer values (items) representing the values of the tuple at-
tribute driving the execution time when processed on an op-
erator instance. We consider streams of m = 100, 000 tuples,
each containing a value chosen among n = 4, 096 distinct
items. Synthetic streams have been generated using the
Uniform distribution and Zipfian distributions with differ-
ent values of α ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}, denoted respec-
tively as Zipf-0.5, Zipf-1.0, Zipf-1.5, Zipf-2.0, Zipf-2.5, and
Zipf-3.0. We define n(w) as the number of distinct execution
time values that the tuples can have. These n(w) values are
selected at constant distance in the interval [minw,maxw].
We have also run tests generating the execution time values
in the interval [minw,maxw] with geometric steps without
noticing unpredictable differences with respect to the results
reported in this section. The algorithm parameters are the
operator window size N , the tolerance parameter µ, and the
parameters of the matrices F and W: ε and δ.

Unless otherwise specified, the frequency distribution is
Zipf-1.0 and the stream parameters are set to n(w) = 64,
wmin = 1 ms and maxw = 64 ms, this means that the
execution times are picked in the set {1, 2, · · · , 64}. The al-
gorithm parameters are set to N = 1024, µ = 0.05, ε = 0.05
(i.e., c = 54 columns) and δ = 0.1 (i.e., r = 4 rows). If not
stated otherwise, the operator instances are uniform (i.e.,
a tuple has the same execution time on any instance) and
there are k = 5 instances. Let W be the average execution
time of the stream tuples, then the stream maximum the-
oretical input throughput sustainable by the setup is equal
to k/W . When fed with an input throughput smaller than
k/W the system will be over-provisioned (i.e., possible un-
derutilization of computing resources). Conversely, an input
throughput larger than k/W will result in an undersized
system. We refer to the ratio between the maximum the-
oretical input throughput and the actual input throughput
as the percentage of over-provisioning that, unless otherwise
stated, was set to 100%.

In order to generate 100 different streams, we randomize
the association between the n(w) execution time values and
the n distinct items: for each of the n(w) execution time
values we pick uniformly at random n/n(w) different values
in [n] that will be associated to that execution time value.
This means that the 100 different streams we use in our tests
do not share the same association between execution time
and item as well as the association between frequency and
execution time (thus each stream has also a different average
execution time W ). We have also build these associations
using other distributions, namely geometric and binomial,
without noticing unpredictable differences with respect to
the results reported in this section. Finally, we have run
each stream using 50 different seeds for the hash function
generation, yielding a total of 5, 000 executions.



For the two use case we provide in this experimental eval-
uation, we use two different datasets: mention and reach.
The former (mention) is a dataset containing a stream of
preprocessed tweets related to Italian politicians crawled
during the 2014 European elections. Among other informa-
tion, the tweets are enriched with a field mention contain-
ing the entities (i.e., Twitter users) mentioned in the tweet.
We consider the first 500, 000 tweets, mentioning roughly
n = 35, 000 distinct entities and where the most frequent
entity (“Beppe Grillo”) has an empirical probability of oc-
currence equal to 0.065.
The second dataset (reach) is generated using the LDBC
Social Network Benchmark [10]. Using the default param-
eters of this benchmark, we obtained a followers graph of
9, 960 nodes and 183, 005 edges (the maximum out degree
was 734) as well as a stream of 2, 114, 269 tweets where the
most frequent author has an empirical probability of occur-
rence equal to 0.0038.

Algorithms — We present the results for 3 algorithms:
Round-Robin, OSG and Full Knowledge. The former is the
implementation of the Round-Robin policy and OSG is the
implementation of our solution. Full Knowledge instead is
an variant of OSG where the estimation is exact, i.e., the
scheduling algorithm is fed with the exact execution times
for each tuple.

Evaluation Metrics — The evaluation metrics we provide
are

(i) the average per tuple completion time L
alg

(simply
average completion time in the following), where alg
is the algorithm used for scheduling

(ii) the average per tuple completion time speed up Λalg

(simply speed up in the following) achieved by OSG or
Full Knowledge with respect to Round-Robin

(iii) the throughput of the system expressed as tuples pro-
cessed per second.

Recall that `alg(t) is the completion time of the t-th tuple
of the stream when using the scheduling algorithm alg. To
take into account any overhead introduced by the tested
algorithm, we redefine the completion time `alg(t) as the
time it takes from the injection of the t-th tuple at the source
until it has been processed by the operator. Then we can

define the average completion time L
alg

and speed up Λalg

as follows:

L
alg

=

∑m
t=1 `

alg(t)

m
and Λalg =

∑m
t=1 `

Round-Robin(t)∑m
t=1 `

alg(t)

Whenever applicable we provide the maximum, mean and
minimum figures over the 5, 000 executions.

5.2 Simulation Results
Here we report the results obtained by simulating the

behavior of the considered algorithm on an ad-hoc multi-
threaded simulator. The simulator streams the input dataset
through the scheduler that enqueues it on the available tar-
get instances. Each target instance dequeues as-soon-as-
possible the first element in its queue and simulates process-
ing through busy-waiting for the corresponding execution
time. With this implementation the simulated processing
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Figure 5: Throughput with different frequency
probability distributions

times are characterized by only a slight variance mainly due
to the precision in estimating the busy-waiting time, which
depends on the operating system clock precision and sched-
uling.

Frequency Probability Distribution — Figure 4 shows
the average completion time L̄alg for OSG, Round-Robin
and Full Knowledge with different frequency probability dis-
tributions. The Full Knowledge algorithm represents an
ideal execution of the Online Greedy Scheduling algorithm
when fed with the exact execution time for each tuple. In-
creasing the skewness of the distribution reduces the number
of distinct tuples that, with high probability, will be fed for
scheduling, thus simplifying the scheduling process. This is
why all algorithms perform better with highly skewed dis-
tributions. On the other hand, uniform or lightly skewed
(i.e., Zipf-0.5) distributions seem to be worst cases, in par-
ticular for OSG and Round-Robin. With all distributions
the Full Knowledge algorithm outperforms OSG which, in
turn, always provide better performance than Round-Robin.
However, for uniform or lightly skewed distributions (i.e.,
Zipf-0.5), the gain introduced by OSG is limited (in average
4%). Starting with Zipf-1.0 the gain is much more sizeable
(20%) and with Zipf-1.5 we have that the maximum average
completion time of OSG is almost smaller than the minimum
average completion time of Round-Robin. Finally, with Zipf-
2 OSG matches the performance of Full Knowledge. This
behavior for OSG stems from the ability of its sketch data
structures (F and W matrices, see Section 3) to capture
more useful information for skewed input distributions.

Figure 5 shows the throughput for the same configura-
tions. Clearly, all the algorithm achieve the same through-
put. Each scheduling achieves different average completion
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Figure 6: Speed up ΛOSG as a function of the per-
centage of over-provisioning
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Figure 7: Speed up ΛOSG as a function of the maxi-
mum execution time value wmax.

times L
alg

since they affect the queuing time experienced by
the tuples. However the throughput results shows that for
all three algorithm the total load imposed on each operator
instance is balanced. Since this is a quite consistent behav-
ior for all simulation, we omitted the remaining throughput
plots.

Input Throughput — Figure 6 shows the speed up ΛOSG

as a function of the percentage of over-provisioning. When
the system is strongly undersized (95% to 98%), queuing
delays increase sharply, reducing the advantages offered by
OSG. Conversely, when the system is oversized (109% to
115%), queuing delays tend to 0, which in turns also re-
duces the improvement brought by our algorithm. However,
in a correctly sized system (i.e., from 100% to 108%), our
algorithm introduces a noticeable speed up ΛOSG, in aver-
age at least 1.14 with a peak of 1.29 at 105%. Finally, even
when the system is largely oversized (115%), we still provide
an average speed up of 1.06. We omitted Full Knowledge to
improve the readability of the plot. The general trend is the
same of OSG, achieving the same speed up when the system
is undersized. When the systems is oversized, Full Knowl-
edge hits a peak of 3.6 at 101% and provides a speed up
of 1.57 at 115%. In all configurations, all algorithm achieve
roughly the same output throughput. In particular it is max-
imum when the system is undersized (95% to 99%), and de-
creases accordingly with the percentage of over-provisioning
when the system is oversized (100% to 115%)

Maximum Execution Time Value — Figure 7 shows
the speed up ΛOSG as a function of the maximum execution
time maxw. With maxw = 0.1ms, all the tuples have the
same execution time wt = 0.1ms, thus all algorithm achieve
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Figure 9: Speed up ΛOSG as a function of the number
of operator instances k.

the same result. Increasing the value of maxw increases the
gap between the 64 possible execution times, allowing more
room to improve the scheduling, then OSG speed up ΛOSG

grows for maxw ≥ 0.2. However notice that OSG seems to
hit an asymptote at 1.25 for maxw ≥ 102.4. We omitted
Full Knowledge to improve the readability of the plot. The
general trend is the same of OSG, however starting with
maxw ≥ 0.4 Full Knowledge achieves a larger speed up and
hits an asymptote at 3.4 for maxw ≥ 102.4.

Number of Execution Time Values — Figure 8 shows
the average completion time L̄alg for OSG, Round-Robin
and Full Knowledge as a function of the number of exe-
cution time values n(w). We can notice that for growing
values of n(w) both the average completion time values and
variance decrease, with only slight changes for n(w) ≥ 16.
Recall that n(w) is the number of completion time values in
the interval [minw,maxw] that we assign to the n distinct
attribute values. For instance, with n(w) = 2, all the tu-
ples have a completion time equal to either 0.1 or 6.4 ms.
Then, assigning either of the two values to the most frequent
item strongly affects the average completion time. Increas-
ing n(w) reduces the impact that each single execution time
has on the average completion time, leading to more stable
results. The gain between the maximum, mean and max-
imum average completion times of OSG and Round-Robin
(in average 19%) is mostly unaffected by the value of n(w).

Number of operator instances k — Figure 9 shows the
speed up ΛOSG as a function of the number of parallel op-
erator instances k. From k = 2 to k = 5 the speed up ΛOSG

grows, starting with an average value of 1.14 and reaching an
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Figure 10: Speed up ΛOSG as a function of the preci-
sion parameter ε (i.e., number of columns c = de/εe).

average peak of 1.23. Then the speed up ΛOSG decreases to
1.09 (k = 12) and reaches what seems to be an asymptote at
1.06 (k = 20). In other words, for moderate values of k (i.e.,
k ≤ 12), OSG introduces a sizeable improvement in the av-
erage completion latency with respect to Round-Robin. On
the other hand, for large value of k (i.e., k > 12), the impact
of OSG is mitigated. As the number of available instances
increases, Round-Robin is able to better balance the load,
thus limiting OSG effectiveness. We omitted Full Knowl-
edge to improve the readability of the plot. The general
trend is the same of OSG, hitting a peak of 4.0 at k = 11
and the decreasing toward an asymptote at 2.7 for k = 20.

Precision parameter ε — Figure 10 shows the speed up
ΛOSG as a function of the precision parameter ε value that
controls the number of columns in the F and W matrices.
With smaller values of ε OSG is more precise but also uses
more memory, i.e., for ε = 1.0 there is a single entry per row,
while for ε = 0.001 there are 2781 entries per row. As ex-
pected, decreasing ε improves OSG performance: in average
a 10 time decrease in ε (thus a 10 time increase in memory)
results in a 25% increase in the speed up. Large values of
ε do not provide good performance; however, starting with
ε ≤ 0.09 the minimum average completion time speed up is
always larger than 1.

Time Series — Figure 11 shows the completion time as the
stream unfolds (the x axis is the number of tuples read from
the stream) for both OSG and Round-Robin for a single ex-
ecution. Each point on the plot is the maximum, mean and
minimum completion time over the previous 2000 tuples.
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Figure 11: Simulator per tuple completion time
time-series.

The plot for Round-Robin has been artificially shifted by
1000 tuples to improve readability. In this test the stream
is of size m = 150, 000 split into two periods: the tuple
execution times for operator instances 1, 2, 3, 4 and 5 are
multiplied by 1.05, 1.025, 1.0, 0.975 and 0.95 respectively for
the first 75, 000 tuples, and for the remaining 75, 000 tuples
by 0.90, 0.95, 1.0, 1.05 and 1.10 respectively. This setup
mimics an abrupt change in the load characteristic of target
operator instances (possibly due to exogenous factors).

With the prototype we could not achieve the same mea-
surement precision as with the simulator. Then, to be able
to compare the simulator and prototype time series, we in-
creased by a factor of 10 the execution times.

In the leftmost part of the plot, we can see OSG and
Round-Robin provide the same exact results up to m =
10, 690, where OSG starts to diverge by decreasing the com-
pletion time as well as the completion time variance. This
behaviour is the result of OSG moving into the Run state
at m = 10, 690. After this point it starts to schedule us-
ing the F and W matrices and the Greedy Online Sched-
uler algorithm, improving its performance with respect to
Round-Robin, also reducing the completion time variance.

At m = 75, 000 we inject the load characteristic change
described above. Immediately OSG performance degrades
as the content of F and W matrices is outdated. At m =
84, 912 the scheduler receives the updated F andW matrices
and recovers. This demonstrates OSG ability to adapt at
runtime with respect to changes in the load distributions.

5.3 Prototype
To evaluate the impact of OSG on real applications we

implemented it as a custom grouping function within the
Apache Storm [16] framework. We have deployed our cluster
on Microsoft Azure cloud service, using a Standard Tier A4
VM (4 cores and 7 GB of RAM) for each worker node, each
with a single available slot. This choice helped us ruling out
from tests possible side-effects caused by co-sharing of CPU
cores among processes that are not part of the Storm frame-
work. The prototype was first tested with the synthetic
dataset and application, as for the previous simulations, and
then on two realistic stream processing applications.

Time Series — In this first test the topology was made of
a source (spout) and operators (bolts) S and O. The source
generates (reads) the synthetic (real) input stream. Bolt
S uses either OSG or the Apache Storm standard shuffle
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time-series.
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grouping implementation (ASSG in the following) to route
the tuples toward the k instances (tasks) of bolt O.

Figure 12 provides results for the prototype with the same
settings of the test whose results were reported in Figure 11.
We can notice the same general behavior both in the simula-
tor and in the prototype. In the right part of the plot OSG
diverges from ASSG at m = 20, 978 and decreases the com-
pletion time as well as the completion time variance. On
the right part of the plot, after m = 75, 000 OSG perfor-
mance degrade due to the change in the load distributions.
Finally, at m = 82, 311 the scheduler receives the updated
F and W matrices and starts to recover. Notice also that
during the execution with ASSG, 1, 600 tuples timed out
(and where not recovered as the topology was configured
disabling Storm fault tolerance mechanisms). This clearly
shows how the shuffle grouping scheduling policy can have
a large impact on the system performances.

Use Case Mentions — In this test we run a simple ap-
plication using the mention (Section 5.1) dataset as input:
for each tweet of the stream we want to extract mentions it
contains and accordingly decorate the outgoing tuple with
additional information on them. In particular, for each men-
tion carried by a tweet the bolt performs a sets of queries
(based on the mention itself) on an external database; The
larger is the number of mentions contained in the tweet, the
more processing time it will take for the bolt to complete
the queries and decorate the outgoing tuple. The mention
execution times belong to the interval [0.1, 23] ms, each men-
tion adds in average 1 ms to the processing time to execute
the corresponding query. The number of mentions is only
limited by the number of users registered on Twitter and
summed up to a total of 35, 000 unique identities in the
mention dataset. Globally, the tuple execution times be-
long to the interval [1.8, 36] ms, while the average per tuple
execution time is 7 ms.

Figure 13 shows the mean, maximum and minimum aver-

age completion time L
alg

for both OSG and ASSG as a func-
tion of the number of instances k over 10 executions. For all
values of k OSG provides lower or equal average completion
times than ASSG, with a mean, minimum and maximum
speed up ΛOSG of 1.27, 1.0 and 2.16. For k = 5 and k = 6,
we can notice an unanticipated behavior of ASSG: adding
one more instance increases the completion times. On the
other hand, OSG average completion time always decreases
with growing values of k. Notice also that, to provide this
improvement, OSG exchanged only a few hundred additional
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Figure 14: Prototype average per tuple completion

time L
alg

as a function of the number of operators
k.

messages against a stream of size m = 500, 000.

Use Case Reach — In this test we want to compute the
reach of twitted terms using the reach (Section 5.1) dataset
as input. The reach of a term is the total number of esti-
mated unique Twitter users to which were delivered tweets
about the search term. Usually, this metric is calculated
through a periodic batch process using the followers graph,
where edges are enriched with re-tweet probabilities. We
propose instead to compute this value in a streaming fash-
ion, for each tweet, restricting the computation to a depth
of 3 in the followers graph of 9, 960 nodes. Globally, the
tuple execution times belong to the interval [0.01, 70] ms,
the most frequent tuple execution time is in average 65 ms,
while the average per tuple execution time is 20 ms.

Figure 14 shows the mean, maximum and minimum av-

erage completion time L
alg

for both OSG and ASSG as a
function of the number of instances k over 10 executions.
Except for the unanticipated spike of ASSG for k = 5, the
completion latency decreases as k increases. For all k OSG
has a smaller mean average completion latency than ASSG.
In addition, for most values of k, the maximum average com-
pletion latency of OSG is smaller or equal to the minimum
average completion latency of ASSG. Finally, the average
speed up ΛOSG of OSG with respect to ASSG is at least
1.05, at most 3.4 and in average 1.5. To achieve these re-
sults, OSG exchanges only a few thousand additional mes-
sages, against a stream size of m = 2, 114, 269

6. RELATED WORK
Load balancing in distributed computing is a well known

problem that has been extensively studied since the 80s [17,
3]. Distributed stream processing systems have been de-
signed, since the beginning, by taking into account the fact
that load balancing is a critical issue to attain the best per-
formance.

Hirzel et al. [9] recently provided an extensive overview of
possible optimization strategies for stream processing sys-
tems, including load balancing. They identify two ways to
perform load balancing in stream processing systems: ei-
ther when placing the operators on the available machines
or when assigning load to operator instances. In this lat-
ter case, the load balancing mechanism can be either pull
based, i.e., it is the consumers responsibility to acquire the
load from the producers, or push based, i.e., the converse.



In the last few years there has been new interest on im-
proving load balancing with key grouping [6, 13, 14]. How-
ever, key grouping imposes some strict limitations for assign-
ing tuples to operator instances; as such, solutions available
for key grouping would underperform if applied with shuffle
grouping. In addition, the mentioned works assume that all
tuples of a stream have the same execution time.

Sharaf et al. [15] propose a comprehensive solution to
schedule multiple continuous queries minimizing the response
time. Considering shuffle grouping, Arapaci et al. [2] as well
as Amini et al. [1], among other contributions, provide solu-
tions to maximize the system efficiency when the execution
times of the operator instances are non-uniform, either be-
cause the hardware is heterogeneous or due to the fact that
each instance carries out different computations. On the
other hand, at the best of our knowledge, there is no prior
work directly addressing load balancing with shuffle group-
ing on non-uniform operator instances considering that the
tuples execution time depend on the tuple themselves.

7. CONCLUSIONS
In this paper we have introduced Online Shuffle Group-

ing, a novel approach to shuffle grouping aiming at reducing
the overall tuple completion time by scheduling tuples on
operator instances on the basis of their estimated execution
time. OSG makes use of sketch data structures to keep track
of tuple execution time on operator instances in a compact
and scalable way. This information is then fed to Greedy
Online Scheduler algorithm to assign incoming load.

The analysis of OSG validates the results of the experi-
mental evaluation, proving that the Greedy Online Sched-
uler algorithm is a (2 − 1/k)-approximation of the optimal
one (the optimal scheduling algorithm has the full knowl-
edge of all the set of tuples submitted to the system) as well
as providing bounds and insights on the accuracy of the esti-
mation of the execution time wt. Furthermore, we have ex-
tensively tested OSG performance both through simulations
and with a prototype implementation integrated within the
Apache Storm framework. The results show how OSG pro-
vides important speedups in tuple completion time when the
workload is characterized by skewed distributions. Further
research will be needed to explore how much the load model
affect performance. For example it would be interesting to
include other metrics in the load model, e.g. network la-
tencies, to check how much these may improve the overall
performance. In addition, this work may be applied to [14],
lifting the assumption on the tuple execution time.
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