
Load-Aware Shedding in Stream Processing Systems

Nicoló Rivetti
LINA / Université de Nantes,

France
DIAG / Sapienza University of

Rome, Italy
rivetti@dis.uniroma1.it

Yann Busnel
Crest (Ensai) / Inria

Rennes, France
yann.busnel@ensai.fr

Leonardo Querzoni
DIAG / Sapienza University of

Rome, Italy
querzoni@dis.uniroma1.it

ABSTRACT
Load shedding is a technique employed by stream process-
ing systems to handle unpredictable spikes in the input load
whenever available computing resources are not adequately
provisioned. A load shedder drops tuples to keep the input
load below a critical threshold and thus avoid unbounded
queuing and system trashing. In this paper we propose
Load-Aware Shedding (LAS), a novel load shedding solu-
tion that, unlike previous works, does not rely neither on
a pre-defined cost model nor on any assumption on the tu-
ple execution duration. Leveraging sketches, LAS efficiently
builds and maintains at runtime a cost model to estimate the
execution duration of each tuple with small error bounds.
This estimation enables a proactive load shedding of the in-
put stream at any operator that aims at limiting queuing
latencies while dropping as few tuples as possible. We pro-
vide a theoretical analysis proving that LAS is an (ε, δ)-
approximation of the optimal online load shedder. Fur-
thermore, through an extensive practical evaluation based
on simulations and a prototype, we evaluate its impact on
stream processing applications, which validate the robust-
ness and accuracy of LAS.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed systems

Keywords
Stream Processing, Data Streaming, Load Shedding

1. INTRODUCTION
Distributed stream processing systems (DSPS) are today

considered as a mainstream technology to build architec-
tures for the real-time analysis of big data. An application
running in a DSPS is typically modeled as a directed acyclic
graph (a topology) where data operators, represented by
nodes, are interconnected by streams of tuples containing
data to be analyzed, the directed edges. The success of such

Copyright 2016 ACM – Submitted to the 10th ACM International Conference on Dis-
tributed and Event-based Systems (DEBS ’16)

systems can be traced back to their ability to run complex
applications at scale on clusters of commodity hardware.

Correctly provisioning computing resources for DSPS how-
ever is far from being a trivial task. System designers need
to take into account several factors: the computational com-
plexity of the operators, the overhead induced by the frame-
work, and the characteristics of the input streams. This lat-
ter aspect is often the most critical, as input data streams
may unpredictably change over time both in rate and in
content. Over-provisioning the DSPS is not economically
sensible, thus system designers are today moving toward
approaches based on elastic scalability [6], where an under-
lying infrastructure is able to tune at runtime the available
resources in response to changes in the workload character-
istics. This represents a desirable solution when coupled
with on-demand provisioning offered by many cloud plat-
forms, but still comes at a cost (in terms of overhead and
time for scale-up/down) and is limited to mid- to long-term
fluctuations in the input load.

Bursty input load represents a problem for DSPS as it may
create unpredictable bottlenecks within the system that lead
to an increase in queuing latencies, pushing the system in a
state where it cannot deliver the expected quality of service
(typically expressed in terms of tuple completion latency).
Load shedding is generally considered a practical approach
to handle bursty traffic. It consists in dropping a subset of
incoming tuples as soon as a bottleneck is detected in the
system. As such, load shedding is a solution that can live
in conjunction with resource shaping techniques (like elastic
scaling), rather than being an alternative.

Existing load shedding solution either randomly drop tu-
ples when bottlenecks are detected or apply a pre-defined
model of the application and its input that allows them to
deterministically take the best shedding decision. In any
case, all the existing solutions assume that incoming tuples
all impose the same computational load on the DSPS. How-
ever, such assumption (i.e., same execution duration for all
tuples of a stream) does not hold for many practical use
cases. The tuple execution duration, in fact, may depend on
the tuple content itself. This is often the case whenever the
receiving operator implements a logic with branches where
only a subset of the incoming tuples travels through each sin-
gle branch. If the computation associated with each branch
generates different loads, then the execution duration will
change from tuple to tuple. A tuple with a large execution
duration may delay the execution of subsequent tuples in
the same stream, thus increasing queuing latencies. If fur-

ther tuples are enqueues with large execution durations, this
may bring to the emergence of a bottleneck.

On the basis of this simple observation, we introduce Load-
Aware Shedding (LAS), a novel solution for load shedding in
DSPS. LAS gets rid of the aforementioned assumptions and
provides efficient shedding aimed at matching given queuing
latency targets, while dropping as few tuples as possible. To
reach this goal LAS leverages a smart combination of sketch
data structures to efficiently collect at runtime information
on the time needed to compute tuples. This information is
used to build and maintain, at runtime, a cost model that
is then exploited to take decisions on when load must be
shed. LAS has been designed as a flexible solution that can
be applied on a per-operator basis, thus allowing developers
to target specific critical stream paths in their applications.

In summary, the contributions provided by this paper are:

• the introduction of LAS, the first solution for load
shedding in DSPS that proactively drops tuples to
avoid bottlenecks without requiring a predefined cost
model and without any assumption on the distribution
of tuples;

• a theoretical analysis of LAS that points out how it is
an (ε, δ)-approximation of the optimal online shedding
algorithm;

• an experimental evaluation that illustrates how LAS
can provide predictable queuing latencies that approx-
imate a given threshold while dropping a small fraction
of the incoming tuples.

Below, the next section states the system model we con-
sider. Afterwards, Section 3 details LAS whose behavior is
then theoretically analyzed in Section 4. Section 5 reports
on our experimental evaluation and Section 6 analyzes the
related works. Finally Section 7 concludes the paper.

2. SYSTEM MODEL AND PROBLEM DEF-
INITION

We consider a distributed stream processing system (DSPS)
deployed on a cluster where several computing nodes ex-
change data through messages sent over a network. The
DSPS executes a stream processing application represented
by a topology : a directed acyclic graph interconnecting op-
erators, represented by vertices, with data streams (DS),
represented by edges. Each topology contains at least a
source, i.e., an operator connected only through outbound
DSs, and a sink, i.e., an operator connected only through
inbound DSs.

Data injected by the source is encapsulated in units called
tuples and each data stream is an unbounded sequence of tu-
ples. Without loss of generality, here we assume that each
tuple t is a finite set of key/value pairs that can be cus-
tomized to represent complex data structures. To simplify
the discussion, in the rest of this work we deal with streams
of unary tuples each representing a single non negative in-
teger value.

For the sake of clarity, and without loss of generality, here
we restrict our model to a topology with an operator LS
(load shedder) that decides which tuples of its outbound DS
σ consumed by operator O shall be dropped. Tuples in σ
are drawn from a large universe [n] = {1, . . . , n} and are
ordered, i.e., σ = 〈t1, . . . , tm〉. Therefore [m] = 1, . . . ,m is

the index sequence associated with the m tuples contained
in the stream σ. Both m and n are unknown. We denote
with ft the unknown frequency1 of tuple t, i.e., the number
of occurrences of t in σ.

We assume that the execution duration of tuple t on op-
erator O, denoted as w(t), depends on the content of the
tuple t. We simplify the model assuming that w depends
on a single, fixed and known attribute value of tuple t. The
probability distribution of such attribute values, as well as
the function w are unknown, may differ from operator to op-
erator and may change over time. However, we assume that
subsequent changes are interleaved by a large enough time
frame such that an algorithm may have a reasonable amount
of time to adapt. On the other hand, the input throughput
of the stream may vary, even with a large magnitude, at any
time.

Let q(i) be the queuing latency of the i-th tuple of the
stream, i.e., the time spent by the i-th tuple in the inbound
buffer of operator O before being processed. Let us denote
as D ⊆ [m], the set of dropped tuples in a stream of length
m, i.e., dropped tuples are thus represented in D by their
indices in the stream [m]. Moreover, let d ≤ m be the
number of dropped tuples in a stream of length m, i.e.,
d = |D|. Then we can define the average queuing latency
as: Q(j) =

∑
i∈[j]\D q(i)/(j − d) for all j ∈ [m].

The goal of the load shedder is to maintain at any point
in the stream the average queuing latency smaller than a
given threshold τ by dropping as less tuples as possible. The
quality of the shedder can be evaluated both by comparing
the resulting Q against τ and by measuring the number of
dropped tuples d. More formally, the load shedding problem
can be defined as follows2.

Problem 2.1 (Load Shedding). Given a data stream
σ = 〈t1, . . . , tm〉, find the smallest set D such that

∀j ∈ [m] \ D, Q(j) ≤ τ.

3. LOAD AWARE SHEDDING
This section introduces the Load-Aware Shedding algo-

rithm by first providing an overview, then detailing some
background knowledge, and finally describing the details of
its functioning.

3.1 Overview
Load-Aware Shedding (LAS) is based on a simple, yet

effective, idea: if we assume to know the execution duration
w(t) of each tuple t on the operator, then we can foresee the
queuing time for each tuple of the operator input stream
and then drop all tuples that will cause the queuing latency
threshold τ to be violated. However, the value of w(t) is
generally unknown. A possible solution to this problem is
to build a static cost model for tuple execution duration
and then use it to proactively shed load. However, building
an accurate cost model usually requires a large amount of
a priori knowledge on the system. Furthermore, once a
model has been built, it can be hard to handle changes in
the system or input stream characteristics at runtime.

1This definition of frequency is compliant with the data
streaming literature.
2This is not the only possible definition of the load shedding
problems. Other variants are briefly discussed in section 6.

LAS overcomes these issues by building and maintaining
at run-time a cost model for tuple execution durations. It

takes shedding decision based on the estimation Ĉ of the to-
tal execution duration of the operator: C =

∑
i∈[m]\D w(ti).

In order to do so, LAS computes an estimation ŵ(t) of the
execution duration w(t) of each tuple t. Then, it computes
the sum of the estimated execution durations of the tuples

assigned to the operator, i.e., Ĉ =
∑
i∈[m]\D ŵ(t). At the

arrival of the i-th tuple, subtracting from Ĉ the (physical)
time elapsed from the emission of the first tuple provides us
with an estimation q̂(i) of the queuing latency q(i) for the
current tuple.

To enable this approach, LAS builds a sketch on the op-
erator (i.e., a memory efficient data structure) that will
track the execution duration of the tuples it process. When
a change in the stream or operator characteristics affects
the tuples execution durations w(t), i.e., the sketch con-
tent changes, the operator will forward an updated version
to the load shedder, which will than be able to (again) cor-
rectly estimate the tuples execution durations. This solution
does not require any a priori knowledge on the stream or
system, and is designed to continuously adapt to changes in
the input stream or on the operator characteristics.

3.2 Background
2-Universal Hash Functions — Our algorithm uses hash
functions randomly picked from a 2-universal hash functions
family. A collection H of hash functions h : {1, . . . , n}
→ {0, . . . , c} is said to be 2-universal if for every two dif-
ferent items x, y ∈ [n], for any h ∈ H, P{h(x) = h(y)} ≤ 1

c
,

which is the probability of collision obtained if the hash func-
tion assigned truly random values to any x ∈ [n]. Carter
and Wegman [3] provide an efficient method to build large
families of hash functions approximating the 2-universality
property.

Count Min sketch algorithm — Cormode and Muthukr-
ishnan have introduced in [4] the Count Min sketch that pro-
vides, for each item t in the input stream an (ε, δ)-additive-

approximation f̂t of the frequency ft. The Count Min sketch
consists of a two dimensional matrix F of size r × c, where
r =

⌈
log 1

δ

⌉
and c =

⌈
e
ε

⌉
. Each row is associated with a

different 2-universal hash function hi : [n] → [c]. When the
Count Min algorithm reads sample t from the input stream,
it updates each row: ∀i ∈ [r],F [i, hi(t)] ← F [i, hi(t)] + 1.
Thus, the cell value is the sum of the frequencies of all the
items mapped to that cell. Upon request of ft estimation,
the algorithm returns the smallest cell value among the cells
associated with t: f̂t = mini∈[r]{F [i, hi(t)]}.

Fed with a stream of m items, the space complexity of
this algorithm is O(1

ε
log 1

δ
(logm + logn)) bits, while up-

date and query time complexities are O(log 1/δ). The Count

Min algorithm guarantees that the following bound holds on
the estimation accuracy for each item read from the input
stream: P{| f̂t − ft |≥ ε(m − ft)} ≤ δ, while ft ≤ f̂t is
always true.

This algorithm can be easily generalized to provide (ε, δ)-
additive-approximation of point queriesd on stream of up-
dates, i.e., a stream where each item t carries a positive
integer update value vt. When the Count Min algorithm
reads the pair 〈t, v〉 from the input stream, the update rou-

c
1 2 3 4

r
2

1

F

c
1 2 3 4

W

〈F ,W〉

O

LAS

Ĉ

〈F ,W〉

LS
〈tuple〉 | 〈tuple, Ĉ〉

〈F ,W〉

〈∆〉 A

B

C

D

E

Figure 1: Load-Aware Shedding design with r = 2
(δ = 0.25), c = 4 (ε = 0.70).

tine changes as follows: ∀i ∈ [r],F [i, hi(t)]← F [i, hi(t)] + v.

3.3 LAS design
The operator maintains two Count Min sketch matrices

(Figure 1.A): the first one, denoted as F , tracks the tuple fre-
quencies ft; the second one, denoted asW, tracks the tuples
cumulated execution durations Wt = w(t)× ft. Both Count

Min matrices share the same sizes and hash functions. The
latter is the generalized version of the Count Min presented
in Section 3.2 where the update value is the tuple execution
duration when processed by the instance (i.e., v = w(t)).
The operator will update (Listing 3.1 lines 27-30) both ma-
trices after each tuple execution.

Listing 3.1: Operator
1: init do
2: F ← 0r,c . zero matrices of size r × c
3: W ← 0r,c
4: S ← 0r,c
5: r hash functions h1, . . . , hr : [n] → [c] from a 2-universal

family.
6: m← 0
7: state← Start
8: end init
9: function update(tuple : t, execution time : l, request : Ĉ)

10: m← m+ 1
11: if Ĉ not null then
12: ∆← C − Ĉ
13: send 〈∆〉 to LS
14: end if
15: if state = Start ∧m mod N = 0 then . Figure 2.A
16: update S
17: state← Stabilizing
18: else if state = Stabilizing ∧m mod N = 0 then
19: if η ≤ µ (Eq. 1) then . Figure 2.C
20: send 〈F ,W〉 to LS
21: state← Start
22: reset F and W to 0r,c
23: else . Figure 2.B
24: update S
25: end if
26: end if
27: for i = 1 to r do
28: F [i, hi(t)]← F [i, hi(t)] + 1
29: W[i, hi(t)]←W[i, hi(t)] + l
30: end for
31: end function

The operator is modeled as a finite state machine (Fig-
ure 2) with two states: START and STABILIZING. The

start stabilizing

execute N tuples
create snapshot S

execute N tuples ∧ relative error η ≤ µ
send F and W to scheduler and reset them

execute N tuples ∧
relative error η > µ
update snapshot SA

B

C

Figure 2: Operator finite state machine.

START state lasts as long as the operator has executed N
tuples, where N is a user defined window size parameter.
The transition to the STABILIZING state (Figure 2.A)
triggers the creation of a new snapshot S. A snapshot is
a matrix of size r × c where ∀i ∈ [r], j ∈ [c] : S[i, j] =
W[i, j]/F [i, j] (Listing 3.1 lines 15-17). We say that the F
andW matrices are stable when the relative error η between
the previous snapshot and the current one is smaller than a
configurable parameter µ, i.e.,

η =

∑
∀i,j |S[i, j]− W[i,j]

F[i,j])
|∑

∀i,j S[i, j]
≤ µ (1)

is satisfied. Then, each time the operator has executed N tu-
ples (Listing 3.1 lines 18-25), it checks whether Equation 1 is
satisfied. (i) In the negative case S is updated (Figure 2.B).
(ii) In the positive case the operator sends the F andW ma-
trices to the load shedder (Figure 1.B), resets their content
and moves back to the START state (Figure 2.C).

There is a delay between any change in w(t) and when LS
receives the updated F and W matrices. This introduces a
skew in the cumulated execution duration estimated by LS.
In order to compensate this skew, we introduce a synchro-
nization mechanism that kicks in whenever the LS receives
a new pair of matrices from the operator.

Send RUN

NOP

synhcronization request
sent

received reply

resynchronize Ĉ

received F and W
update local F and W A

B

C

D

Figure 3: Load shedder LS finite state machine.

The LS (Figure 1.C) maintains the estimated cumulated

execution duration of the operator Ĉ and a pairs of initially
empty matrices 〈F ,W〉. LS is modeled as a finite state ma-
chine (Figure 3) with three states: NOP, SEND and RUN.
The LS executes the code reported in Listing 3.2. In partic-
ular, every time a new tuple t arrives at the LS, the function
shed is executed. The LS starts in the NOP state where
no action is performed (Listing 3.2 lines 15-17). Here we
assume that in this initial phase, i.e., when the topology

has just been deployed, no load shedding is required. When
LS receives the first pair 〈F ,W〉 of matrices (Figure 3.A),
it moves into the SEND state and updates its local pair of
matrices (Listing 3.2 lines 7-9). While being in the SEND
states, LS sends to O the current cumulated execution du-

ration estimation Ĉ (Figure 1.D) piggy backing it with the
first tuple t that is not dropped (Listing 3.2 lines 24-26) and
moves in the RUN state (Figure 3.B). This informations is
used to synchronize the LS with O and remove the skew
between O’s cumulated execution duration C and the esti-
mation Ĉ at LS. O replies to this request (Figure 1.E) with

the difference ∆ = C−Ĉ (Listing 3.1 lines 11-13). When the
load shedder receives the synchronization reply (Figure 3.C)

it updates its estimation Ĉ + ∆ (Listing 3.2 lines 11-13).
In the RUN state, the load shedder computes, for each

tuple t, the estimated queuing latency q̂(i) as the difference

between the operator estimated execution duration Ĉ and
the time elapsed from the emission of the first tuple (List-
ing 3.2 line 18). It then checks if the estimated queuing
latency for t satisfies the Check method (Listing 3.2 lines
19-21).

This method encapsulates the logic for checking if a de-
sired condition on queuing latencies is violated or not. In
this paper, as stated in Section 2, we aim at maintaining the
average queuing latency below a threshold τ . Then, Check
tries to add q̂ to the current average queuing latency (List-
ing 3.2 lines 31). If the result is larger than τ (i), it simply
returns true; otherwise (ii), it updates its local value for
the average queuing latency and returns false (Listing 3.2
lines 34-36). Note that different goals, based on the queu-
ing latency, can be defined and encapsulated within Check,
e.g., maintain the absolute per-tuple queuing latency below
τ , or maintain the average queuing latency calculated on a
sliding window below τ .

If Check(q̂) returns true, (i) the load shedder returns
true as well, i.e., tuple t must be dropped. Otherwise (ii),

the operator estimated execution duration Ĉ is updated with
the estimated tuple execution duration ŵ(t), increased by a
factor 1 + ε to mitigate potential under-estimations3, and
the load shedder returns false (Listing 3.2 line 28), i.e.,
the tuple must not be dropped. Finally, if the load shed-
der receives a new pair 〈F ,W〉 of matrices (Figure 3.D), it
will again update its local pair of matrices and move to the
SEND state (Listing 3.2 lines 7-9).

Now we will briefly discuss the complexity of LAS.

Theorem 3.1 (Time complexity of LAS).
For each tuple read from the input stream, the time complex-
ity of LAS for the operator and the load shedder is O(log 1/δ).

Proof. By Listing 3.1, for each tuple read from the input
stream, the algorithm increments an entry per row of both
the F and W matrices. Since each has log 1/δ rows, the re-
sulting update time complexity isO(log 1/δ). By Listing 3.2,
for each submitted tuple, the scheduler has to retrieve the
estimated execution duration for the submitted tuple. This
operation requires to read entry per row of both the F and
W matrices. Since each has log 1/δ rows, the resulting query
time complexity is O(log 1/δ).

3This correction factor derives from the fact that ŵ(t) is a
(ε, δ)-approximation of w(t) as shown in Section 4.

Listing 3.2: Load shedder
1: init do
2: Ĉ ← 0
3: 〈F ,W〉 ← 〈0r,c, 0r,c〉 . zero matrices pair of size r × c
4: Same hash functions h1 . . . hr of the operator
5: state← NOP
6: end init
7: upon 〈F ′,W ′〉 do . Figure 3.A and 3.D
8: state← Send
9: 〈F ,W〉 ← 〈F ′,W ′〉

10: end upon
11: upon 〈∆〉 do . Figure 3.C

12: Ĉ ← Ĉ + ∆
13: end upon
14: function shed(tuple : t)
15: if state = NOP then
16: return false
17: end if
18: q̂ ← Ĉ− elapsed time from first tuple
19: if Check(q̂) then
20: return true
21: end if
22: i← arg mini∈[r]{F [i, hi(t)]}
23: Ĉ ← Ĉ + (W[i, hi(t)]/F [i, hi(t)])× (1 + ε)
24: if state = Send then . Figure 3.B

25: piggy back Ĉ to operator on t
26: state← Run
27: end if
28: return false
29: end function
30: function Check(q)
31: if Q/` > τ then
32: return true
33: end if
34: Q← Q+ q
35: `← `+ 1
36: return false
37: end function

Theorem 3.2 (Space Complexity of LAS).
The space complexity of LAS for the operator and load shed-
der is O

(
1
ε

log 1
δ
(logm+ logn)

)
bits.

Proof. The operator stores two matrices of size log(1
δ
)×

e
ε

of counters of size logm. In addition, it also stores a hash
function with a domain of size n. Then the space com-
plexity of LAS on the operator is O

(
1
ε

log 1
δ
(logm+ logn)

)
bits. The load shedder stores the same matrices, as well as
a scalar. Then the space complexity of LAS on the load
shedder is also O

(
1
ε

log 1
δ
(logm+ logn)

)
bits.

Theorem 3.3 (Communication complexity of LAS).
The communication complexity of LAS is of O

(
m
N

)
messages

and O
(
m
N

(
1
ε

log 1
δ
(logm+ logn) + logm

))
bits.

Proof. After executing N tuples, the operator may send
the F andW matrices to the load shedder. This generates a
communication cost of O

(
m
N

1
ε

log 1
δ
(logm+ logn)

)
bits via

O
(
m
N

)
messages. When the load shedder receives these ma-

trices, the synchronization mechanism kicks in and triggers
a round trip communication (half of which is piggy backed
by the tuples) with the operator. The communication cost
of the synchronization mechanism is O

(
m
N

)
messages and

O
(
m
N

logm
)

bits.

Note that the communication cost is low with respect to
the stream size since the window size N should be chosen
such that N � 1 (e.g., in our tests we have N = 1024).

4. THEORETICAL ANALYSIS
Data streaming algorithms strongly rely on pseudo-random

functions that map elements of the stream to uniformly dis-
tributed image values to keep the essential information of the
input stream, regardless of the stream elements frequency
distribution.

This section provides the analysis of the quality of the
shedding performed by LAS in two steps. First we study
the correctness and optimality of the shedding algorithm,
under full knowledge assumption (i.e., the shedding strat-
egy is aware of the exact execution duration wt for each
tuple t). Then, in Section 4.2, we provide a probabilistic
analysis of the mechanism that LAS uses to estimate the
tuple execution durations. For the sake of clarity, and to
abide to space limits, some of the proofs are available in a
technical report paper [8].4

4.1 Correctness of LAS
We suppose that tuples cannot be preempted, that is they

must be processed in an uninterrupted fashion on the avail-
able operator instance. As mentioned before, in this analy-
sis we assume that the execution duration w(t) is known for
each tuple t. Finally, given our system model, we consider
the problem of minimizing d, the number of dropped tuples,
while guaranteeing that the average queuing latency Q(t)
will be upper-bounded by τ , ∀t ∈ σ. The solution must
work online, thus the decision of enqueueing or dropping
a tuple has to be made only resorting to knowledge about
tuples received so far in the stream.

Let OPT be the online algorithm that provides the opti-
mal solution to Problem 2.1. We denote with DσOPT (resp.
dσOPT) the set of dropped tuple indices (resp. the number
of dropped tuples) produced by the OPT algorithm fed by
stream σ (cf., Section 2). We also denote with dσLAS the
number of dropped tuples produced by LAS introduced in
Section 3.3 fed with the same stream σ.

Theorem 4.1 (Correctness and Optimality of LAS).
For any σ, we have dσLAS = dσOPT and ∀t ∈ σ,QσLAS(t) ≤ τ .

Proof. Given a stream σ, consider the sets of indices
of tuples dropped by respectively OPT and LAS, namely
DσOPT and DσLAS. Below, we prove by contradiction that
dσLAS = dσOPT .

Assume that dσLAS > dσOPT . Without loss of generality,
we denote i1, . . . , idσLAS

the ordered indices in DσLAS, and
j1, . . . , jdσ

OPT
the ordered indices in DσOPT . Let us define a

as the largest natural integer such that ∀` ≤ a, i` = j` (i.e.,
i1 = j1, . . . , ia = ja). Thus, we have ia+1 6= ja+1.

• Assume that ia+1 < ja+1. Then, according to Sec-
tion 3.3, the ia+1-th tuple of σ has been dropped by
LAS as the method Check returned true. Thus, as
ia+1 /∈ DσOPT , the OPT run has enqueued this tuple
violating the constraint τ . But this is in contradiction
with the definition of OPT.

• Assume now that ia+1 > ja+1. The fact that LAS does
not drop the ja+1 tuple means that Check returns
false, thus that tuple does not violate the constraint on

4This version of the technical report has been anonymized
to comply with the double-blind review process enforced by
this conference.

τ . However, as OPT is optimal, it may drop some tu-
ples for which Check is false, just because this allows
it to drop an overall lower number of tuples. There-
fore, if it drops this ja+1 tuple, it means that OPT
knows the future evolution of the stream and takes a
decision on this knowledge. But, by assumption, OPT
is an online algorithm, and the contradiction follows.

Then, we have that ia+1 = ja+1. By induction, we iterate
this reasoning for all the remaining indices from a + 1 to
dσOPT . We then obtain that DσOPT ⊆ DσLAS.

As by assumption dσOPT < dσLAS, we have that ∃` ∈ DσLAS\
DσOPT such that ` has been dropped by LAS. This means
that, with the same tuple index prefix shared by OPT and
LAS, the method Check returned true when evaluated on
`, and OPT would violate the condition on τ by enqueuing
it. That leads to a contradiction. Then, DσLAS \ DσOPT = ∅,
and dσOPT = dσLAS.

Furthermore, by construction, LAS never enqueues a tuple
that violates the condition on τ because Check would return
true. Consequently, ∀t ∈ σ,QσLAS(t) ≤ τ , which concludes
the proof.

4.2 Execution Duration Estimation
In this section, we analyze the approximation made on

execution duration w(t) for each tuple t when the assump-
tion of full knowledge is removed. LAS uses two matrices,
F and W, to estimate the execution time w(t) of each tuple
submitted to the operator. By the Count Min sketch algo-
rithm (cf., Section 3.2) and Listing 3.1, we have that for any
t ∈ [n] and for each row i ∈ [r],

F [i][hi(t)] = ft +

n∑
u=1,u6=t

fu1{hi(u)=hi(t)}.

and

W[i][hi(t)] = ftw(t) +

n∑
u=1,u6=t

fuw(u)1{hi(u)=hi(t)},

Let us denote respectively by wmin and wmax the minimum
and the maximum execution durations. We trivially have

wmin ≤
W[i][hi(t)]

F [i][hi(t)]
≤ wmax (2)

Let assume that all the frequencies are equal5, that is for
each t, we have ft = m/n. Let us define T =

∑n
t=1 w(t).

We then have

E

{
W[i][hi(t)]

F [i][hi(t)]

}
=
T − w(t)

n− 1
−
c(T − n× w(t))

n(n− 1)

(
1−

(
1−

1

c

)n)
From the Markov inequality we have, for every x > 0,

Pr

{
W[i][hi(t)]

F [i][hi(t)]
≥ x

}
≤
E
{

W[i][hi(t)]
F[i][hi(t)]

}
x

.

By the independence of the r hash functions, we obtain

Pr

{
min

i=1,...,r

W[i][hi(t)]

F [i][hi(t)]
≥ x

}
≤
(

Pr

{
W[i][hi(t)]

F [i][hi(t)]
≥ x

})r

≤

E
{

W[i][hi(t)]
F[i][hi(t)]

}
x

r .
5The experimental evaluation (cf., Section 5.2) points out
that uniform or lightly skewed distributions represent worst
cases for our solution.

The proofs of these equations as well as some numerical
applications to illustrate the accuracy are discussed in [8].
By finely tuning the parameter r to log(1/δ), under the as-
sumption of [8], we are then able to (ε, δ)-approximate w(t)
for any t ∈ [n]. Then, according to Theorem 4.1, LAS is
an (ε, δ)-optimal algorithm for load shedding, as defined in
Problem 2.1, over all possible data streams σ.

5. EXPERIMENTAL EVALUATION
In this section we evaluate the performance obtained by

using LAS to perform load shedding. We will first describe
the general setting used to run the tests and will then discuss
the results obtained through simulations (Section 5.2) and
with a prototype of LAS integrated within Apache Storm
(Section 5.3).

5.1 Setup
Datasets — In our tests we consider both synthetic and real
datasets. Synthetic datasets are built as streams of integer
values (items) representing the values of the tuple attribute
driving the execution duration when processed on the op-
erator. We consider streams of m = 32, 768 tuples, each
containing a value chosen among n = 4, 096 distinct items.
Streams have been generated using the Uniform and Zipfian
distributions with different values of α ∈ {0.5, 1.0, 1.5, 2.0,
2.5, 3.0}, denoted respectively as Zipf-0.5, Zipf-1.0, Zipf-1.5,
Zipf-2.0, Zipf-2.5, and Zipf-3.0. We define wn as the num-
ber of distinct execution duration values that the tuples
can have. These wn values are selected at constant dis-
tance in the interval [wmin, wmax]. We ran experiments with
wn{1, 2, · · · , 64}, however, due to space constraints, we only
report results for wn = 64, and with wmax ∈ {0.1, 0.2 · · · ,
51.2} milliseconds. Tests performed with different values
for wn did not show unexpected deviations from what is
reported in this section. Unless otherwise specified, the fre-
quency distribution is Zipf-1.0 and the stream parameters
are set to wn = 64, wmin = 0.1 ms and wmax = 6.4 ms; this
means that the wn = 64 execution durations are picked in
the set {0.1, 0.2, · · · , 6.4} milliseconds.

Let W be the average execution duration of the stream tu-
ples, then the stream maximum theoretical input through-
put sustainable by the setup is equal to 1/W . When fed
with an input throughput smaller than 1/W the system will
be over-provisioned (i.e., possible underutilization of com-
puting resources). Conversely, an input throughput larger
than 1/W will result in an underprovisioned system. We
refer to the ratio between the maximum theoretical input
throughput and the actual input throughput as the percent-
age of underprovisioning that, unless otherwise stated, was
set to 25%.

In order to generate 100 different streams, we randomize
the association between the wn execution duration values
and the n distinct items: for each of the wn execution du-
ration values we pick uniformly at random n/wn different
values in [n] that will be associated to that execution du-
ration value. This means that the 100 different streams we
use in our tests do not share the same association between
execution duration and item as well as the association be-
tween frequency and execution duration (thus each stream
has also a different average execution duration W). Each
of these permutations has been run with 50 different seeds
to randomize the stream ordering and the generation of the

 0.1

 1

 10

 100

 1000

90 80 70 60 50 40 30 20 10 0 -10

A
ve

ra
ge

 Q
ue

ui
ng

 L
at

en
cy

 (
m

s)

Percentage of Underprovisioning

Full Knowledge LAS Straw-Man Base Line

(a) Average queuing latency Q

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

90 80 70 60 50 40 30 20 10 0 -10

D
ro

pp
ed

 R
at

io

Percentage of Underprovisioning

Full Knowledge LAS Straw-Man Base Line

(b) Dropped ratio α

Figure 4: LAS performance varying the amount of underprovisioning.

hash functions used by LAS. This means that each single
experiment reports the mean outcome of 5, 000 independent
runs.

We considered two types of constraints defined on the
queuing latency:

ABS(τ): requires that the queuing latency for each tuple is
at most τ milliseconds: ∀i ∈ [m] \D, q(i) ≤ τ

AVG(τ): requires that the total average queuing latency does
not exceeds τ milliseconds: ∀i ∈ [m] \D,Q(i) ≤ τ
While not being a realistic requirement, the straightfor-

wardness of the ABS(τ) constraint allowed us to grasp a bet-
ter insight of the algorithms mechanisms. However, in this
section we only show results for the AVG(6.4) constraint as is
it a much more sensible requirement with respect to a real
setting.

The LAS operator window size parameter N , the toler-
ance parameter µ and the number of rows of the F and W
matrices δ are respectively set to N = 1024, µ = 0.05 and
δ = 0.1 (i.e., r = 4 rows). By default, the LAS precision
parameter (i.e., , the number of columns of the F and W
matrices) is set to ε = 0.05 (i.e., c = 54 columns), how-
ever in one of the test we evaluated LAS performance using
several values: ε ∈ [0.001, 1.0].

For the real data, we used a dataset containing a stream of
preprocessed tweets related to the 2014 European elections.
Among other information, the tweets are enriched with a
field mention containing the entities mentioned in the tweet.
These entities can be easily classified into politicians, media
and others. We consider the first 500, 000 tweets, mention-
ing roughly n = 35, 000 distinct entities and where the most
frequent entity has an empirical probability of occurrence
equal to 0.065.

Tested Algorithms —We compare LAS performance against
three other algorithms:

Base Line The Base Line algorithm takes as input the
percentage of under-provisioning and drops at random an
equivalent fraction of tuples from the stream.

Straw-Man The Straw-Man algorithm uses the same shed-
ding strategy of LAS, however it uses the average execution
duration W as the estimated execution duration ŵ(t) for
each tuple t.

Full Knowledge The Full Knowledge algorithm uses the
same shedding strategy of LAS, however it feeds it with
the exact execution duration wt for each tuple t.

Evaluation Metrics —The evaluation metrics we provide,
when applicable, are

• the dropped ratio α = d/m.

• the ratio of tuples dropped by algorithm alg with re-
spect to Base Line: λ = (dalg − dBase Line)/dBase Line.
In the following we refer this metric as shedding ratio.

• the average queuing latency Q =
∑
i∈[m]\D q(i)/(m −

d).

• the average completion latency, i.e., the average time
it takes for a tuple from the moment it is injected by
the source in the topology, till the moment operator O
concludes its processing.

Whenever applicable we provide the maximum, mean and
minimum figures over the 5, 000 runs.

5.2 Simulation Results
In this section we analyze, through a simulator built ad-

hoc for this study, the sensitivity of LAS while varying sev-
eral characteristics of the input load. The simulator faith-
fully simulates the execution of LAS and the other algo-
rithms and simulates the execution of each tuple t on O
doing busy waiting for w(t) milliseconds.

Input Throughput — Figure 4 shows the average queuing
latency Q (left) and dropped ratio α (right) as a function of
the percentage of under-provisioning ranging from 90% to -
10% (i.e., the system is 10% overprovisioned with respect to
the average input throughput). As expected, in this latter
case all algorithms perform at the same level as load shed-
ding is superfluous. In all the other cases both Base Line
and Straw-Man do not shed enough load and induce a huge
amount of exceeding queuing latency. On the other hand,
LAS average queuing latency is quite close to the required
value of τ = 6.4 milliseconds, even if this threshold is vio-
lated in some of the tests. Finally, Full Knowledge always
abide to the constraint and is even able to produce a much
lower average queuing latency while dropping no more tu-
ples that the competing solutions. Comparing the two plots
we can clearly see that the resulting average queuing latency
is strongly linked to which tuples are dropped. In particular,
Base Line and Straw-Man shed the same amount of tuples,
LAS slightly more and Full Knowledge is in the middle. This

 0.1

 1

 10

 100

 1000

0 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2

A
ve

ra
ge

 Q
ue

ui
ng

 L
at

en
cy

 (
m

s)

Threshold τ (ms)

Full Knowledge LAS Straw-Man Base Line

(a) Average queuing latency Q

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2

S
he

dd
in

g
R

at
io

Threshold τ (ms)

Full Knowledge LAS Straw-Man

(b) Shedding ratio λ

Figure 5: LAS performance varying the threshold τ .

 0.1

 1

 10

 100

 1000

 10000

0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2

A
ve

ra
ge

 Q
ue

ui
ng

 L
at

en
cy

 (
m

s)

Maximum execution time value wmax (ms)

Full Knowledge LAS Straw-Man Base Line

(a) Average queuing latency Q

-0.2

-0.1

 0

 0.1

 0.2

 0.3

0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2

S
he

dd
in

g
R

at
io

Maximum execution time value wmax (ms)

Full Knowledge LAS Straw-Man

(b) Shedding ratio λ

Figure 6: LAS performance varying the maximum execution duration value wmax.

result corroborates our initial claim that dropping tuples on
the basis of the load they impose allows to design more ef-
fective load shedding strategies.

Threshold τ — Figure 5 shows the average queuing la-
tency Q (left) and shedding ratio λ (right) as a function
of the τ threshold. Notice that with τ = 0 we do not al-
low any queuing, while with τ = 6.4 we allow at least a
queuing latency equal to the maximum execution duration
wmax. In other words, we believe that with τ < 6.4 the
constraint is strongly conservative, thus representing a dif-
ficult scenario for any load shedding solution. Since Base
Line does not take into account the latency constraint τ it
always drops the same amount of tuples and achieves a con-
stant average queueing latency. For this reason Figure 5b
reports the shedding ratio λ achieved by Full Knowledge,
LAS and Straw-Man with respect to Base Line. The hor-
izontal segments in Figure 5a represent the distinct values
for τ . As the graph shows Full Knowledge always perfectly
approaches the latency threshold, but for τ = 12.8 where
it is slightly smaller. Straw-Man performs reasonably well
when the threshold is very small, but this is a consequence
of the fact that it drops a large number of tuples when com-
pared with Base Line as can be seen by Figure 5b. However,
as τ becomes larger (i.e., τ ≥ 0.8) Straw-Man average queu-
ing latency quickly grows and approaches the one from Base
Line as it starts to drop the same amount of tuples. LAS,
in the same setting performs largely better, with the aver-
age queuing latency that for large values of τ approaches

the one provided by Full Knowledge. While delivering these
performance LAS drops a slightly larger amount of tuples
with respect to Full Knowledge, to account for the approxi-
mation in calculating tuple execution durations.

Maximum execution duration value wmax — Figure 6
shows the average queuing latencyQ (left) and dropped ratio
λ (right) as a function of the maximum execution duration
value wmax. Notice that in this test we varied the value for
τ setting it equal to wmax. Accordingly, Figure 6a shows
horizontal lines that mark the different thresholds τ . As the
two graphs show, the behavior for LAS is rather consistent
while varying wmax; this means that LAS can be employed
in widely different settings where the load imposed by tu-
ples in the operator is not easily predictable. The price paid
for this flexibility is in the shedding ratio that, as shown in
Figure 6b is always positive.

Frequency Probability Distributions — Figure 7 shows
the average queuing latency Q (left) and dropped ratio λ
(right) as a function of the input frequency distribution.
As Figure 7a shows Straw-Man and Base Line perform in-
variably bad with any distribution. The span between the
best and worst performance per run increases as we move
from a uniform distribution to more skewed distributions as
the latter may present extreme cases where tuple latencies
match their frequencies in a way that is particularly favor-
able or unfavorable for these two solutions. Conversely, LAS
performance improve the more the frequency distribution is

 0.1

 1

 10

 100

 1000

 10000

uniform zipf-0.5 zipf-1.0 zipf-1.5 zipf-2.0 zipf-2.5 zipf-3.0

A
ve

ra
ge

 Q
ue

ui
ng

 L
at

en
cy

 (
m

s)

Frequency Distribution

Full Knowledge LAS Straw Man Base Line

(a) Average queuing latency Q

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

uniform zipf-0.5 zipf-1.0 zipf-1.5 zipf-2.0 zipf-2.5 zipf-3.0

S
he

dd
in

g
R

at
io

Frequency Distribution

Full Knowledge LAS Straw Man

(b) Shedding ratio λ

Figure 7: LAS performance varying the frequency probability distributions.

 0.1

 1

 10

 100

1.
0

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0.
09

0.
08

0.
07

0.
06

0.
05

0.
04

0.
03

0.
02

0.
01

0.
00

9

0.
00

8

0.
00

7

0.
00

6

0.
00

5

0.
00

4

0.
00

3

0.
00

2

0.
00

1

A
ve

ra
ge

 Q
ue

ui
ng

 L
at

en
cy

 (
m

s)

Precision parameter ε

LAS

(a) Average queuing latency Q

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

1.
0

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0.
09

0.
08

0.
07

0.
06

0.
05

0.
04

0.
03

0.
02

0.
01

0.
00

9

0.
00

8

0.
00

7

0.
00

6

0.
00

5

0.
00

4

0.
00

3

0.
00

2

0.
00

1

D
ro

pp
ed

 R
at

io

Precision parameter ε

LAS

(b) Dropped ratio α

Figure 8: LAS performance varying the precision parameter ε.

skewed. This result stems from the fact that the sketch data
structures used to trace tuple execution durations perform
at their best on strongly skewed distribution, rather than
on uniform ones. This result is confirmed by looking at the
shedding ratio (Figure 7b) that decreases, on average, as the
value of α for the distribution increases.

Precision parameter ε — Figure 8 shows the average
queuing latency Q (left) and dropped ratio α (right) as a
function of the precision parameter ε. This parameter con-
trols the trade-off between the precision and the space com-
plexity of the sketches maintained by LAS. As a consequence
it has an impact on LAS performance. In particular, for
large values of ε (left side of the graph), the sketch data
structures are extremely small, thus the estimation ŵ(t) is
extremely unreliable. The corrective factor 1 + ε (see List-
ing 3.2 line 23) in this case is so large that it pushes LAS
to largely overestimate the execution duration of each tuple.
As a consequence LAS drops a large number of tuples while
delivering average queuing latencies that are close to 0. By
decreasing the value of ε (i.e., ε ≤ 0.1), sketches become
larger and their estimation more reliable. In this configu-
ration LAS performs at its best delivering average queuing
latencies that are always below or equal to the threshold
τ = 6.4 while dropping a smaller number of tuples. The
dotted lines in both graphs represent the performance of
Full Knowledge and are provided as a reference.

Time Series — Figure 9 shows the average queuing latency
Q (left) and dropped ratio α (right) as the stream unfolds
(x-axis). Both metrics are computed on a jumping window
of 4.000 tuples, i.e., each dot represent the mean queuing
latency Q or the dropped ratio α computed on the previous
4.000 tuples. Notice that the points for Straw-Man, LAS
and Full Knowledge related to a same value of the x-axis
are artificially shifted to improve readability. In this test
we set τ = 64 milliseconds. The input stream is made of
140.000 tuples and is divided in phases, from a A through
G, each lasting 20.000 tuples. At the beginning of each phase
we inject an abrupt change in the input stream throughput
and distribution, as well as in w(t) as follows:

phase A : the input throughput is set in accordance with
the provisioning (i.e., 0% underprovisioning);

phase B : the input throughput is increased to induce 50%
of underprovisioning;

phase C : same as phase A;
phase D : we swap the most frequent tuple 0 with a less

frequent tuple t such that w(t) = wmax, inducing an abrupt
change in the tuple values frequency distribution and in the
average execution duration W ;

phase E : the input throughput is reduced to induce 50%
of overprovisionig;

phase F : the input throughput is increased back to 0% un-
derprovisioning and we also double the execution duration
w(t) for each tuple, simulating a change in the operator
resource availability;

phase G : same as phase A.

 1

 10

 100

 1000

 10000

 100000

 1x106

20000

40000

60000

80000

100000

120000

140000

A B C D E F G

A
ve

ra
ge

 Q
ue

ui
ng

 L
at

en
cy

 (
m

s)

Number of Tuples m

Full Knowledge LAS Straw-Man

(a) Average queuing latency Q

 0

 0.2

 0.4

 0.6

 0.8

 1

20000

40000

60000

80000

100000

120000

140000

A B C D E F G

D
ro

pp
ed

 R
at

io

Number of Tuples m

Full Knowledge LAS Straw-Man

(b) Dropped ratio α

Figure 9: Simulator time-series.

 1

 10

 100

 1000

 10000

 100000

 1x106

20000

40000

60000

80000

100000

120000

140000

A B C D E F G

A
ve

ra
ge

 C
om

pl
et

io
n

La
te

nc
y

(m
s)

Number of Tuples m

Full Knowledge LAS Straw-Man

(a) Average completion latency

 0

 0.2

 0.4

 0.6

 0.8

 1

20000

40000

60000

80000

100000

120000

140000

A B C D E F G

D
ro

pp
ed

 R
at

io

Number of Tuples m

Full Knowledge LAS Straw-Man

(b) Dropped tuples d

Figure 10: Prototype time-series

As the graphs show, during phase A the queuing laten-
cies of LAS and Straw-Man diverge: while LAS quickly
approaches the performance provided by Full Knowledge,
Straw-Man average queuing latencies quickly grow. In the
same timespan, both Full Knowledge and LAS drop slightly
more tuples than Straw-Man. All the three solutions cor-
rectly manage phase B: their average queuing latencies see
slight changes, while, correctly, they start to drop larger
amounts of tuples to compensate for the increased input
throughput. The transition to phase C brings the system
back in the initial configuration, while in phase D the change
in the tuple frequency distribution is managed very differ-
ently by each solution: both Full Knowledge and LAS com-
pensate this change by starting to drop more tuples, but
still maintaining the average queuing latency close to the
desired threshold τ . Conversely, Straw-Man can’t handle
such change, and its performance incur a strong deteriora-
tion as it drops still the same amount of tuples. In phase
E the system is strongly overprovisioned, and, as it was ex-
pected, all three solution perform equally well as no tuple
needs to be dropped. The transition to phase F is extremely
abrupt as the input throughput is brought back to the equiv-
alent of 0% of underprovisioning, but the cost to handle each
tuple on the operator is doubled. At the beginning of this
phase both Straw-Man and LAS perform bad, with queu-
ing latencies that are largely above τ . However, while the
phase unfolds LAS quickly updates its data structures and
converges toward the given threshold, while Straw-Man di-
verges as tuples continue to be enqueued on the operator

worsening the bottleneck effect. Bringing back the tuple ex-
ecution durations to the initial values in phase G has little
effect on LAS, while the bottleneck created by Straw-Man
cannot be recovered as it continues to drop an insufficient
number of tuples.

5.3 Prototype
To evaluate the impact of LAS on real applications we im-

plemented it as a bolt within the Apache Storm [12] frame-
work. We have deployed our cluster on Microsoft Azure
cloud service, using a Standard Tier A4 VM (4 cores and
7 GB of RAM) for each worker node, each with a single
available slot.

The test topology is made of a source (spout) and two op-
erators (bolts) LS and O. The source generates (reads) the
synthetic (real) input stream and emits the tuples consumed
by bolt LS. Bolt LS uses either Straw-Man, LAS or Full
Knowledge to perform the load shedding on its outbound
data stream consumed by bolt O. Finally operator O im-
plements the logic.

Time Series — In this test we ran the simulator using
the same synthetic load used for the time series discussed in
the previous section. The goal of this test is to show how
our simulated tests capture the main characteristic of a real
run. Notice, however, that plots in Figure 10 report the
average completion latency per tuple instead of the queuing
latency. This is due to the difficulties in correctly measuring
queuing latencies in Storm. Furthermore, the completion la-

 1

 10

 100

 1000

 10000

 100000

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

A
ve

ra
ge

 C
om

pl
et

io
n

La
te

nc
y

(m
s)

Number of Tuples m

Full Knowledge LAS Straw-Man

(a) Average completion latency

 0

 0.05

 0.1

 0.15

 0.2

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

D
ro

pp
ed

 R
at

io

Number of Tuples m

Full Knowledge LAS Straw-Man

(b) Dropped tuples d

Figure 11: Prototype use case

tency is, from a practical point of view, a more significant
metric as it can be directly perceived on the output. From
this standpoint the results, depicted in Figure 10, report the
same qualitative behavior already discussed with Figure 9.
Two main differences are worth to be discussed: firstly, the
behaviors exposed by the shedding solution in response to
phase transitions in the input load are in general shifted
in time (with respect to the same effects reported in Fig-
ure 9) as a consequence of the general overhead induced by
the software stack. Secondly, several data points for Straw-
Man are missing in phases E and G. This is a consequence
of failed tuples that start to appear as soon as the number
of enqueued tuples is too large to be managed by Storm.
While this may appear as a sort of “implicit” load shedding
imposed by Storm, we decided not to consider these tuples
in the metric calculation as they have not been dropped as
a consequence of a decision taken by the Straw-Man load
shedder.

Simple Application with Real Dataset — In this test
we pretended to run a simple application on a real dataset:
for each tweet of the twitter dataset mentioned in Section 5.1
we want to gather some statistics and decorate the outgo-
ing tuples with some additional information. However the
statistics and additional informations differ depending on
the class the entities mentioned in each tweet belong. We
assumed that this leads to a long execution duration for me-
dia (e.g., possibly caused by an access to an external DB to
gather historical data), an average execution duration for
politicians and a fast execution duration for others (e.g.,
possibly because these tweets are not decorated). We mod-
eled execution durations with 25 milliseconds, 5 milliseconds
and 1 millisecond of busy waiting respectively. Each of the
500, 000 tweets may contain more than one mention, lead-
ing to wn = 110 different execution duration values from
wmin = 1 millisecond to wmax = 152 milliseconds, among
which the most frequent (36% of the stream) execution dura-
tion is 1 millisecond. The average execution time W is equal
to 9.7 millisecond, the threshold τ is set to 32 milliseconds
and the under-provisioning is set to 0%.

Figure 11 reports the average completion latency (left)
and dropped ratio λ (right) as the stream unfolds. As the
plots show, LAS provides completion latencies that are ex-
tremely close to Full Knowledge, dropping a similar amount
of tuples. Conversely, Straw-Man completion latencies are at
least one order of magnitude larger. This is a consequence

of the fact that in the given setting Straw-Man does not
drop tuples, while Full Knowledge and LAS drop on average
a steady amount of tuples ranging from 5% to 10% of the
stream. These results confirm the effectiveness of LAS in
keeping a close control on queuing latencies (and thus pro-
vide more predictable performance) at the cost of dropping
a fraction of the input load.

6. RELATED WORK
Aurora [1] is the first stream processing system where

shedding has been proposed as a technique to deal with
bursty input traffic. Aurora employs two different kinds of
shedding, the first and better detailed being random tuple
dropping at specific places in the application topology.

A large number of works has proposed solutions aimed
at reducing the impact of load shedding on the quality of
the system output. These solutions falls under the name of
semantic load shedding, as drop policies are linked to the
significance of each tuple with respect to the computation
results. Tatbul et al. first introduced in [11] the idea of
semantic load shedding. Het et al. in [5] specialized the
problem to the case of complex event processing. Babcock
et al. in [2] provided an approach tailored to aggregation
queries. Finally, Tatbul et al. in [10] ported the concept
of semantic load shedding in the realm of DSPS. All the
previous works are based on a same goal, i.e., to reduce
the impact of load shedding on the semantics of the queries
deployed in the stream processing system, while avoiding
overloads. We believe that avoiding an excessive degrada-
tion in the performance of the DSPS and in the semantics
of the deployed query output are two orthogonal facets of
the load shedding problem. In our work we did not consider
the latter and focused on the former. The integration of the
two approaches is left for future work.

To the best of our knowledge, all these works assume that
each tuple induces the same load in the system, indepen-
dently from their content.

A different approach has been proposed in [9], with a sys-
tem that build summaries of dropped tuples to later produce
approximate evaluations of queries. The idea is that such ap-
proximate results may provide users with useful information
about the contribution of dropped tuples.

A classical control theory approach based on a closed con-
trol loop with feedback has been considered in [7, 13, 14].
In all these works the focus is on the design of the loop con-

troller, while data is shed using a simple random selection
strategy. In all these cases the goal is to reactively feed the
stream processing engine system with a bounded tuple rate,
without proactively considering how much load these tuples
will generate.

7. CONCLUSIONS
In this paper we introduced Load-Aware Shedding (LAS),

a novel solution for load shedding in DSPS. LAS exploits a
characteristics of many stream-based applications, i.e., the
fact that load on operators depends both on the input rate
and on the content of tuples, to smartly drop tuples and
avoid the appearance of performance bottlenecks. In par-
ticular, LAS leverages sketch data structures to efficiently
collect at runtime information on the operator load charac-
teristics and then use this information to implement a load
shedding policy aimed at maintaining the average queuing
latencies close to a given threshold. Through a theoretical
analysis, we proved that LAS is an (ε, δ)-approximation of
the optimal algorithm. Furthermore, we extensively tested
LAS both in a simulated setting, studying its sensitivity to
changes of several characteristics of the input load, and with
a prototype implementation integrated within the Apache
Storm DSPS. Our tests confirm that by taking into ac-
count the specific load imposed by each tuples, LAS can
provide performance that closely approach a given target,
while dropping a limited number of tuples.

8. REFERENCES
[1] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack,

C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and
S. Zdonik. Aurora: a new model and architecture for
data stream management. The International Journal
on Very Large Data Bases (VLDB Journal),
12(2):120–139, 2003.

[2] B. Babcock, M. Datar, and R. Motwani. Load
shedding for aggregation queries over data streams. In
Proceedings of the 20th International Conference on
Data Engineering (ICDE ’04), pages 350–361. IEEE,
2004.

[3] J. L. Carter and M. N. Wegman. Universal classes of
hash functions. Journal of Computer and System
Sciences, 18, 1979.

[4] G. Cormode and S. Muthukrishnan. An improved
data stream summary: The count-min sketch and its
applications. Journal of Algorithms, 55, 2005.

[5] Y. He, S. Barman, and J. F. Naughton. On load
shedding in complex event processing. In Proceedings
of the 17th International Conference on Database
Theory (ICDT ’14), pages 213–224.
OpenProceedings.org, 2014.

[6] T. Heinze, L. Aniello, L. Querzoni, and Z. Jerzak.
Cloud-based data stream processing. In Proceedings of
the 8th ACM International Conference on Distributed
Event-Based Systems (DEBS ’14), pages 238–245.
ACM, 2014.

[7] E. Kalyvianaki, T. Charalambous, M. Fiscato, and
P. Pietzuch. Overload management in data stream
processing systems with latency guarantees. In 7th
IEEE International Workshop on Feedback Computing
(Feedback Computing’12), 2012.

[8] REDACTED. Proactive online scheduling for shuffle
grouping in distributed stream processing systems.
Technical report, REDACTED. Available at
https://goo.gl/4FUzUx, 2015.

[9] F. Reiss and J. M. Hellerstein. Data triage: An
adaptive architecture for load shedding in
TelegraphCQ. In Proceedings of the 21st International
Conference on Data Engineering (ICDE ’05), pages
155–156. IEEE, 2005.

[10] N. Tatbul, U. Çetintemel, and S. Zdonik. Staying fit:
Efficient load shedding techniques for distributed
stream processing. In Proceedings of the 33rd
international conference on Very large data bases,
pages 159–170. VLDB Endowment, 2007.

[11] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack,
and M. Stonebraker. Load shedding in a data stream
manager. In Proceedings of the 29th international
conference on Very large data bases (VLDB ’03),
pages 309–320. VLDB Endowment, 2003.

[12] The Apache Software Foundation. Apache Storm.
http://storm.apache.org.

[13] Y.-C. Tu, S. Liu, S. Prabhakar, and B. Yao. Load
shedding in stream databases: a control-based
approach. In Proceedings of the 32nd international
conference on Very large data bases (VLDB ’06),
pages 787–798. VLDB Endowment, 2006.

[14] Y. Zhang, C. Huang, and C. Huang. A novel adaptive
load shedding scheme for data stream processing. In
Future Generation Communication and Networking

(FGCN ’07), pages 378–384. IEEE, 2007.

https://goo.gl/4FUzUx
http://storm.apache.org

	Introduction
	System Model and Problem Definition
	Load Aware Shedding
	Overview
	Background
	LAS design

	Theoretical Analysis
	Correctness of LAS
	Execution Duration Estimation

	Experimental Evaluation
	Setup
	Simulation Results
	Prototype

	Related Work
	Conclusions
	References

