
Tight Self-Stabilizing Mobile Byzantine-Tolerant Atomic Register

Silvia Bonomi?, Antonella Del Pozzo?†, Maria Potop-Butucaru†

?Sapienza Università di Roma,Via Ariosto 25, 00185 Roma, Italy
{bonomi, delpozzo}@dis.uniroma1.it

†Université Pierre & Marie Curie (UPMC) – Paris 6, France
{maria.potop-butucaru, antonella.del-pozzo}@lip6.fr

October 23, 2015

Abstract
This paper proposes the first implementation of a self- stabilizing atomic register that is tolerant to

both Mobile Byzantine Agents and transient failures. The register is maintained by n servers and our
algorithm tolerates (i) any number of transient failures and (ii) up to f Mobile Byzantine Failures. In the
Mobile Byzantine Failure model, faulty agents move from one server to another and when they are af-
fecting a server, it behaves arbitrarily. Our implementation is designed for the round-based synchronous
model where agents are moved from round to round. The paper considers four Mobile Byzantine Failure
models differing for the diagnosis capabilities at server side i.e., when servers can diagnose their failure
state (that is, be aware that the mobile Byzantine agent has left the server), and when servers cannot
self-diagnose. We first prove lower bounds on the number of servers n necessary to construct a register
tolerant to the presence of f Mobile Byzantine Failures for each of the Mobile Byzantine Failure mod-
els considered and then we propose a parametric algorithm working in all the models and matching the
lower bounds.

keywords: Self-stabilizing Atomic Storage, Byzantine mobile agents, Round-based Synchronous Com-
putation.

1 Introduction

To ensure high availability, storage services are usually implemented by replicating data at multiple loca-
tions and maintaining such data consistent. Thus, replicated servers represent today an attractive target for
attackers that may try to compromise replicas correctness for different purposes. Some example are: to
gain access to protected data, to interfere with the service provisioning (e.g. by delaying operations or by
compromising the integrity of the service), to reduce service availability with the final aim to damage the
service provider (reducing its reputation or letting it pay for the violation of service level agreements) etc.
In addition, another emerging issue in the design of replicated services is the possibility of having transient
failures as consequence of possible corruption in replicas state due to errors in the communication or in the
computation.

A compromised replica is usually modeled trough an arbitrary failure (i.e. a Byzantine failure) that is
made transparent to clients by employing Byzantine Fault Tolerance (BFT) techniques.

As pointed out in [20], in addition to classical Byzantine behaviors, it is worth to consider mobile
adversaries. Mobile adversaries have been primarily introduced in the context of multi-party computation

1

and they try to model an attacker that is able to progressively compromise computational entities but only
for a limited period of time. Therefore, tolerating Mobile Byzantine Failures is, in some sense, like having
a bounded number of compromised entities at any given time but such set changes from time to time. Such
model captures phenomenon like virus injection (where viruses start to infect the network but then they
are detected and progressively deleted from a set of machines), programmed maintenance with the aim of
restoring potentially infected machines or self-repairing systems. From a theoretical point of view, mobile
adversaries have been formalized in different Mobile Byzantine Failures models [10], [7], [17], [3].

In the context of distributed storage implementations (e.g. register abstraction), common approaches to
BFT are based on the deployment of a sufficient large number of replicas to tolerate an estimated number f
of compromised servers (i.e. BFT replication). However, few efforts have been spent in addressing multi-
failures scenarios i.e., how to cope with both Byzantine and transient failures. In addition, to the best of our
knowledge, no storage abstraction has been investigated so far assuming mobile adversaries.

Contribution. In this paper, we address the problem of building a self-stabilizing Multi-Writer/Multi-
Reader (ss-MW MR) atomic register in the presence of both Byzantine Mobile Failures and transient fail-
ures. Concerning Mobile Byzantine Failures, we considered the four theoretical models introduced by
Garay, [10], Buhrman et al. [7], Sasaki et al. [17] and Bonnet et al. [3].

The paper provides two main contributions: (i) it proves a set of lower bounds (one for each of the four
considered model) on the number of servers n necessary to implement an atomic register in presence of both
transient failures and mobile Byzantine failures (i.e., under multi-failure assumption) and (ii) a parametric
algorithm implementing a self-stabilizing atomic register in a synchronous round-based message passing
system under multi-failure assumption, working in all the four models.

Let us note that the complexity of the proposed algorithm matches the computed lower bounds. As a
consequence, the computed bounds are tight in the considered model and the proposed algorithm is optimal.
As far as we know, our construction is the first that builds a distributed self-stabilizing MWMR atomic
register in the considered environment.

More in details, we proved that the cost, in terms of minimum number of servers n, of implementing a
MWMR atomic register under multi-failure assumption (i.e., f mobile Byzantine Failures and an arbitrary
number of transient failures) are: n ≥ 3f + 1 in the Garay’s model, n ≥ 4f + 1 in the Sasaki et al.’s model
and Bonnet et al.’s model and n ≥ 2f + 1 Buhrman et al.’s model.
Roadmap. The paper is organized as follows. Section 2 discusses Related Works and Section 3 presents the
system model the problem specification. Section 4 shows lower bounds on the number of server necessary
to implement self-stabilizing safe register in the following Mobile Byzantine Failiure models: Garay [10],
Buhrman et al. [7], Sasaki et al. [17] and Bonnet et al. [3]. In Section 5 we present a generic tight algorithm
that implements self-stabilizing MWMR atomic register parametrized function on the considered mobile
Byzantine model. The correctness of the generic algorithm is proved in Section 5.2. Finally, Section 6
concludes the paper and discusses some open research directions.

2 Related Work

Computations under Mobile Byzantine Failure Models. Concerning Mobile Byzantine Failures models,
there are two main research directions: (i) Byzantines with constrained mobility and (ii) Byzantines with
unconstrained mobility. Byzantines with constraint mobility were studied by Buhrman et al. [7]. They con-
sider that Byzantine agents move from one node to another only when protocol messages are sent (similar to
how viruses would propagate). In [7], Buhrman et al. studied the problem of Mobile Byzantine Agreement.

2

They proved a tight bound for its solvability (i.e., n > 3t, where t is the maximal number of simultaneously
faulty processes) and proposed a time optimal protocol that matches this bound.

In the case of unconstrained mobility the motion of Byzantine agents is not tied to message exchange.
Several authors investigated the agreement problem in variants of this model: [1, 3, 10, 15, 16, 17]. Reischuk
[16] investigate the stability/stationarity of malicious agents for a given period of time. Ostrovsky and Yung
[15] introduced the notion of mobile virus and investigate an adversary that can inject and distribute faults.
However, none of these works consider the implementation of the shared memories (e.g. register).

Garay [10] and, more recently, Banu et al. [1] and Sasaki et al. [17] or Bonnet et al. [3] consider, in
their models, that processes execute synchronous rounds composed of three phases: send, receive, compute.
Between two consecutive rounds, Byzantine agents can move from one host to another, hence the set of
faulty processes has a bounded size although its membership can change from one round to the next. The
main difference between the unconstrained models presented so far is in the knowledge that processes have
to have been affected from a Byzantine agent. In the Garay’s model a process has the ability to detect its
own infection after the Byzantine agent left it. More precisely, during the first round following the leave
of the Byzantine agent, a process enters a state, called cured, during which it can take preventive actions to
avoid sending messages that are based on a corrupted state. Garay [10] proposes in this model an algorithm
that solves Mobile Byzantine Agreement provided that n > 6t (dropped later to n > 4f in [1]). Bonnet
et al. [3] investigated the same problem in a model where processes do not have the ability to detect when
Byzantine agents move. However, differently from Sasaki et al. [17], cured processes have control on the
messages they send. This subtle difference on the power of Byzantine agents has an impact on the bounds
for solving the agreement. If in the Sasaki’s model the bound on solving agreement is n > 6f in Bonnet’s
model it is n > 5f and this bound is proven tight.

BFT and self-stabilizing registers. Traditional solutions to build a Byzantine tolerant storage service can
be divided into two categories: replicated state machines [18] and Byzantine quorum systems [2, 12, 14, 13].
Both the approaches are based on the idea that the state of the storage is replicated among processes and the
main difference is in the number of replicas involved simultaneously in the state maintenance protocol.

Recently, few efforts have been spent in the design of self-stabilizing BFT register implementations [4],
[5]. In these works, the authors considered the problem of emulating a register on top of an asynchronous
message passing system prone to both Byzantine and transient failures. However, Byzantine failures are
assumed to be static.

To the best of our knowledge, this paper is the fist considering both Mobile Byzantine failures and
transient failure. The closest work, thus, is represented by the design of a proactive-reactive recovery
mechanism done by Sousa et al. [19]. The basic idea is to periodically reconfigure the set of replicas to
rejuvenate servers that may be under attack (proactive mode) and/or when a failure is detected (reactive
mode). The rejuvenation is done according to a prefixed schedule (in TDMA fashion), independently of the
effective compromising of a server. This approach seems to be effective in long executions but requires a fine
tuning of the parameters (upper bound f on the number of possible compromised replicas in a given period,
rejuvenation window, time required by the state transfer, etc...) and the presence of secure components in
the system.However, it does not consider transient failures and does not exploit the awareness that servers
may have about their cured state to avoid to spread bad information.

3

3 Model and Problem Definition

3.1 System Model

We consider a distributed system composed of an arbitrary large set of clients C (including both readers or
writers) and of a set of n servers S = {s1, s2 . . . sn}. Each process in the distributed system (i.e., both
servers and clients) is identified through a unique integer identifier. Servers run a distributed protocol im-
plementing a shared memory abstraction.

Communication model and timing assumptions. Processes communicate through message passing. It
is assumed that processes in the distributed system may access a built-in communication abstraction, de-
noted ss-broadcast (i.e., a self-stabilizing extension of the broadcast primitive), that provides clients with an
operation denoted ss broadcast(), used to disseminate messages to servers, and each server with a match-
ing operation denoted ss deliver() that delivers the message sent by the client to servers. When the reader
or the writer (resp., server) access this broadcast abstraction, we consequently say that it “ss-broadcasts”
(resp.,“ss-delivers”) a message. This communication abstraction is formally defined and implemented in
[4, 9].

More in detail, we assume that (i) each client ci ∈ C can communicate with every server by using
the ss− broadcast primitive (defined below), (ii) servers can communicate among themselves through a
ss− broadcast primitive and (iii) servers can communicate with clients through point-to-point channels.
We assume that communications are authenticated (i.e., given a message m, the identity of its sender cannot
be forged) and reliable (i.e. messages are not created, lost or duplicated).

The system is synchronous and evolves in sequential synchronous rounds r0, r1, . . . ri Every round
is divided in three phases: (i) send where processes send all the messages for the current round, (ii) receive
where processes receive all the messages sent at the beginning of the current round1 and (iii) computation
where processes process received messages and prepare those that will be sent in the next round.

Failure model. We assume that an arbitrary number of clients may crash while servers are affected by
mobile Byzantine failures (MBF) [3, 10, 7, 17]. Informally, in the mobile Byzantine failure model, faults are
represented by powerful computationally unbounded agents that move arbitrarily from a server to another.
When the agent is on the server, it can corrupt its local variables, forces it to send arbitrary messages
(potentially different from process to process) etc... However, the agent cannot corrupt the identity of the
server. We assume that, in each round ri, at most f servers can be affected by a mobile Byzantine failure.
When an agent occupies a server si we will say that si is faulty. If a server has been occupied by a Byzantine
agent in the previous round then the server is said to be cured. If a server is neither faulty nor cured then it
is said to be correct. We assume, similar to [3, 10, 17], that each server has a tamper-proof memory where
it safely stores the correct algorithm code. When the agent leaves a server si, the server becomes cured and
then can recover the correct algorithm code from the tamper-proof memory. Concerning the assumptions
on agent movements and the server awareness on its cured state, different models have been defined. In this
paper we will consider all the variants of mobile Byzantine failures [3, 10, 7, 17]:

• (M1) Garay’s model [10]. In this model, agents can move arbitrarily from a server to another at the
beginning of each round (i.e. before the send phase starts). When a server is in the cured state it is
aware of its condition and thus can remain silent for a round to prevent the dissemination of wrong
information.

1Let us note that, in round-based computations, all ss deliver() events happen during the receive phase.

4

• (M2) Bonnet et al.’s model [3] and (M3) Sasaki et al.’s model [17]. As in the previous model, agents
can move arbitrarily from a server to another at the beginning of each round (i.e. before the send phase
starts). Differently from the Garay’s model, in both models it is assumed that servers do not know if
they are correct or cured when the Byzantine agent moved. The main difference between these two
models is that in the [17] model a cured process still acts as a Byzantine one extra round.

• (M4) Buhrman’s model [7]. Differently from the previous models, agents move together with the
message (i.e., with the send or broadcast operation). However, when a server is in the cured state it is
aware of that.

In addition to the possibility of mobile Byzantine failures at server side, processes may also suffer form
transient failures, i.e., local variables of any process (writer, reader, servers) can be arbitrarily modified [9].
It is nevertheless assumed that transient failures are quiescent i.e., there exists a round rno tr (which remains
always unknown to the processes) after which no more transient failures are going to happen.

3.2 Self-stabilizing Atomic Registers

A register is a shared variable accessed by a set of processes, i.e. clients, through two operations, namely
read() and write(). Informally, the write() operation updates the value stored in the shared variable while
the read() obtains the value contained in the variable (i.e. the last written value). In distributed settings,
every operation issued on a register is, generally, not instantaneous and it can be characterized by two events
occurring at its boundary: an invocation event and a reply event.

An operation op is complete if both the invocation event and the reply event occur (i.e. the process
executing the operation does not crash between the invocation and the reply). Contrary, an operation op
is said to be failed if it is invoked by a process that crashes before the reply event occurs. According to
these time instants, it is possible to state when two operations are concurrent with respect to the real time
execution. For ease of presentation we assume the existence of a fictional global clock (unknown to the
processes) and the invocation time and response time of every operation are defined with respect to this
fictional clock.
Given two operations op and op′, their invocation event times (tB(op) and tB(op′)) and their reply event
times (tE(op) and tE(op′)), we say that op precedes op′ (op ≺ op′) iff tE(op) < tB(op′). If op does
not precede op′ and op′ does not precede op, then op and op′ are concurrent (op||op′). Given a write(v)
operation, the value v is said to be written when the operation is complete.
We assume that locally any client never performs read() and write() operation concurrently (i.e., for any
given client ci, the set of operations executed by ci is totally ordered). We also assume that initially the
register stores a default value⊥written by a fictional write(⊥) operation happening instantaneously at round
r0. In case of concurrency while accessing the shared variable, the meaning of last written value becomes
ambiguous. Depending on the semantics of the operations, three types of register have been defined by
Lamport [11]: safe, regular and atomic.

In this paper, we consider a Self-Stabilizing Multi-Writer/ Multi-Reader (MWMR) atomic register i.e.,
an extension of Lamport’s atomic register that considers transitory failures.

The Self-Stabilizing Multi-Writer/Multi-Reader (MWMR) atomic register is specified as follow:

• ss− Termination: Any operation invoked on the register eventually terminates.

5

• ss− Validity: There exists a round rstab such that each read operation invoked in a round r > rstab
returns the last value written before its invocation, or a value written by a write() operation concurrent
with it.

• ss− Ordering: There exists a round rstab and a total order S such that (i) any operation invoked on
the register after rstab belongs to S, (ii) given op and op′ belonging to S, if op ≺ op′, then op appears
before op′ in S and (iii) any read() operation returns the value v written by the last write() preceding
it in S.

4 Lower Bounds on the number of Replicas for a Self-Stabilizing Register
Implementation

In this Section we prove lower bounds on the number of servers n needed to tolerate (i) up to f mobile
Byzantine faulty servers and (ii) any number of transient failures, in the implementation of an atomic register.
We prove lower bounds for all the four models [3, 10, 7, 17] presented in Section 3.

The structure of the proofs is as follow: we first prove lower bounds for the safe register2 in absence
of transient failures (Theorems 1 - 4). Secondly, we prove that the execution of a write() operation, when
no more transient failures happen, is necessary for the existence of a self-stabilizing safe register algorithm
(Theorem 5). Finally, we prove lower bounds in presence of transient failures (Theorem 6 and Corollary 1).
Let us note that a safe register is weaker than an atomic one; thus, if no implementation of a safe register
exists for a given pair n, f then no atomic implementation can exist.

The proofs argument for lower bounds is focused on the number of values and information gathered by
a read operation independently of its length (the number of rounds over it spans). In all the studied models
we prove that if there are not enough replicas, readers may be disoriented. Therefore, they cannot return the
correct value stored at the server level.

One may naturally think that since a read() operation does not succeed due to Byzantine agents move-
ments, then it may be helping to iterate the read reply round several times during a read() operation. The
idea is the following, since Byzantine agents moves, then once a server is correct, it is aware that the previous
reply might have been incorrect and thus it declares it in the current one. Something like ”hey, look, during
the previous read reply round I was not correct. Do not believe on what I did declare”. In the following this
kind of read operation will be called Multi-attempt read. We prove that iteration of read() operations do not
add useful knowledge. In particular we show that even if clients can leverage on all possible informations,
i.e., values and previous state declarations, it still is not able to read.

Note that in the context of the registers implementation the concept of Multi-attempt read is new and it
has been introduced in order to cope with the Byzantine agent movements. Also the multi attempt read is
different from the notion of multi-phase read operations generally used to implement atomic register. In the
case of the multi-phase read the read phase is followed by a write-back phase that helps obsolete servers to
update their value.

Firstly we show that a read() operation can not be implemented in less than two communication steps,
read request and read reply. After we formally define the read() operation and then the multi attempt
one, a − maRead(). So finally we prove, for each of the four models considered, the lower bound of
the number of servers n necessary to build a register and given the upper bound on the number of mobile
Byzantine failures f .

2A safe register is a register where read() operations are guaranteed to return a valid value (in the sense of atomic register
validity) only in the absence of concurrency with write() operations.

6

Lemma 1 Any algorithm As implementing a safe register has the read() operation communication pattern
compounded by at least two communication steps.

Proof [Sketch] We consider a non-local read() operation, thus an operation involving both client and servers.
Clients and servers communicate via message passing. This means that one communication step is required
to send the information from servers to client. Trivially we avoid to consider implementations in which
servers periodically send to clients their stored value, servers should know the whole clients set and there
would be too much workload on server side. In such scenario clients just have to wait for the time in which
servers send their value. Thus avoiding trivial implementations means that servers have to be aware of the
occurrence of a read() operation in order to send their value. To such aim, the only way to make them aware
for clients is to send them a message. Thus at least a two-communication pattern is required. 2Lemma 1

Definition 1 (Read operation) Let us define the read() operation as a two phase operation. In the first
phase, read request req, the read requesting message is sent by client and delivered by servers. In the
subsequent phase, read reply rep, replies are sent by servers and delivered by client which decides the
value to return.

Since the system is round based and synchronous, then any phase lasts exactly one round.

Definition 2 (Multi-attempt read operation) Let us define as a −maRead() as a sequence S of elements
si ∈ {req, rep}, i ∈ [2, a− 1] and s0 = req0 and sa = repa.

Note that since both req and rep requires one round, then an a − maRead() requires a rounds to be com-
pleted. In the following we use a a − maRead() in which si = req when i is odd and si = rep when i is
even, with a even. It is easy to see how the used reasoning can be applied also to not interleaved sequence
of req and rep, but also for instance to sequences req, rep, rep, rep.

Preliminaries: Let us define as READREQ(i), 1 ≤ i ≤ a, the message sent by client in the request phase and
as READREPLY(〈value, previousRead Rep State〉) the reply sent by servers in the reply phase. value is
the stored value at server side and if i > 1 then previousRead Rep State is used to indicate to the client if
the servers was Byzantine or cured during the previous read reply phase during the same a−maRead().

Theorem 1 If n ≤ 3f , there exists no algorithm that implements a MWMR Safe Register in Garay’s model
[10].

Proof Let us consider a 1 − maRead() operation beginning at round r. Let us consider, at such time, the
following server set states: S1corr, S2cur and S3Byz in which correct servers are storing value v. At the
beginning of the round client performs read1() operation sending an READREQ message which is delivered
by servers within the same round. Thus S1 and S2 deliver it.
At the begin of round r + 1, during the read reply phase, Byzantine agents move and we may have the
following server set states: S1Byz , S2corr and S3cur. In Fig. 1 is depicted how server set states change
during the two phases of a single read)().
Such servers reply as follow:

• S1Byz: 〈v′〉

• S2cor: 〈v〉

7

rreq rrep

. . .

. . .

. . .

t t+ 1 round

Figure 1: A generic run in which a 1-maRead() is performed over two rounds. Each circle represents a set
of f servers, correct ones in white, cured ones in shadow and Byzantine ones in red.

rreq rrep rreq rrep

. . .

. . .

. . .

t t+ 1 t+ 2 t+ 3 round

Figure 2: A generic run in which a 2-maRead() is performed over four rounds. Each circle represents a set
of f servers, correct ones in white, cured ones in shadow and finally Byzantine ones in red.

Given these information there is no way to decide a value nor to detect where Byzantine agents are placed.

Let us now consider a 2 − maRead() operation beginning at round r. For round r and r + 1 let us con-
sider the same server set states and replies as in the previous 1 − maRead() operation. Summing up, after
read1() operation client has the following replies:

• S1Byz: 〈v′〉

• S2cor: 〈v〉

At round r + 2 Byzantine agents move and another read() operation begins, read2(). Let us consider the
following server set states: S1cur, S2Byz and S3corr. Thus S1 and S3 deliver the READREQ message. At
the beginning of round r + 3, during the read reply phase, Byzantine agents move and we may have the
following server set states: S1corr, S2cur and S3Byz . In Fig. 2 is depicted how server set states change
during the four phases of a 2-maRead().

Such servers reply as follow:

• S1cor: 〈v,Byz〉

• S3Byz: 〈v′, Byz〉

Considering values coming from the two read() operations, a client has the following replies:

• S1Byz: 〈v′〉

8

rreq rrep

. . .

. . .

. . .

. . .

t t+ 1 round

Figure 3: A generic run in which a 1-maRead() is performed over two rounds. Each circle represents a set
of f servers, correct ones in white, cured ones in shadow and finally Byzantine ones in red.

• S1cor: 〈v〉

• S2cor: 〈v,Byz〉

• S3Byz: 〈v′, Byz〉

In such scenario, server set S1 replied differently during the two read operations, thus, since there are
no concurrent write() operation, in one of the two it has been affected by Byzantine agents. But nor the
information gathered from S2 neither the ones gathered from S3 helps the client to understand which are
the correct values or where Byzantine agents where placed. That is, the information about the previous state
gathered during the read2() does not help to distinguish the correct value coming from read1(). More general
since Byzantine servers may declare to have been affected during the previous reply phase, the information
gathered during a generic readk() do not improve the knowledge gathered during the previous readk−1().

2Theorem 1

Theorem 2 If n ≤ 4f , there exists no algorithm that implements a MWMR Safe Register in Sasaki’s model
[17].

Proof Let us consider an 1−maRead() operation beginning at round r. Let us consider, at t, the following
server set states: S1corr, S2corr, S3cur and S4Byz in which correct servers are storing value v. At the
beginning of the round client performs read1() operation sending an READREQ message which is delivered
by servers within the same round. Thus S1, S2 and S3 deliver it.
At the beginning of round r + 1 Byzantine agents move and we may have the following server set states:
S1Byz , S2corr, S3corr and S4cur. In Fig. 3 is depicted how server set states change during the four phases of
a 1-maRead().

Such servers may reply as follow:

• S1Byz: 〈value′〉

• S2cor: 〈value〉

• S3cor: 〈value〉

• S4cur: 〈value〉

9

rreq rrep rreq rrep

. . .

. . .

. . .

. . .

t t+ 1 t+ 2 t+ 3 round

Figure 4: A generic run in which a 2-maRead() is performed over four rounds. Each circle represents a set
of f servers, correct ones in white, cured ones in shadow and finally Byzantine ones in red.

Given these information there is no way to decide a value nor to detect where Byzantine agents are placed.

Let us now consider a 2−maRead() operation beginning at round r. For round r and r + 1 let us consider
the same server set states and replies as in the 1 − maRead() operation case. Thus after read1() operation
client has the following replies:

• S1Byz: 〈value′〉

• S2corr: 〈value〉

• S3corr: 〈value〉

• S4cur: 〈value〉

At round r + 2 Byzantine agents move and another read() operation begins, read2(). Let us consider the
following server set states: S1cur, S2Byz , S3corr and S4corr. Thus S1, S3 and S4 deliver the READREQ

message. At the beginning of round r+ 3 Byzantine agents move and we may have the following server set
states: S1corr, S2cur, S3Byz and S4corr. In Fig. 4 is depicted how server set states change during the four
phases of a 2-maRead().

Such servers may reply as follow:

• S1corr: 〈value,Byz〉

• S2cur: 〈value′, Byz〉

• S3Byz: 〈value′, cur〉

• S4corr: 〈value, cur〉

Considering values coming from the two read() operations, a client has the following replies:

• S1Byz: 〈value′〉

• S1corr: 〈value,Byz〉

• S2corr: 〈value〉

10

rreq rrep

. . .

. . .

t t+ 1 round

Figure 5: A generic run in which a 1-maRead() is performed over two rounds. Each circle represents a set
of f servers, correct ones in white, cured ones in shadow and finally Byzantine ones in red.

• S2cur: 〈value′, Byz〉

• S3corr: 〈value〉

• S3Byz: 〈value′, cur〉

• S4cur: 〈value〉

• S4corr: 〈value, cur〉

In such scenario, all server sets replied differently during the two read operations, thus, since there are no
concurrent write() operation, in one of the two, all of them have been affected or just left by Byzantine
agents. It is clear that the information about the previous state gathered during the read2() do not help to
distinguish the correct value coming from read1(). Since Byzantine server may declare as well to have been
affected during the previous reply phase, the information gathered during a generic readk() do not improve
the knowledge gathered during the previous readk−1(). 2Theorem 2

Theorem 3 If n ≤ 4f , there exists no algorithm that implements a MWMR Safe Register in Bonnet’s model
[3].

Proof The claim simply follows by considering that the Bonnet’s model is a particular case of Sasaki model,
in which cured servers act as less powerful faulty servers, forced to send the same message to all. The same
reasoning as in the proof of Theorem 2 is applied. 2Theorem 3

Theorem 4 If n ≤ 2f there exists no algorithm that implements a MWMR safe Register in Burhman’s
model [7].

Proof Let us consider an 1 − maRead() operation beginning at round r. Let us consider, at such time, the
following server set states: S1corr and S2Byz in which correct servers are storing value v. At the beginning
of the round client performs read1() operation sending an READREQ message which is delivered by servers
within the same round. Thus S1 delivers it.
At the beginning of round r + 1 Byzantine agents move and we may have the following server set states:
S1Byz and S2corr. In Fig. 5 is depicted how server set states change during the four phases of a 1-maRead().

Such servers may reply as follow:

• S1Byz: 〈value′〉

11

rreq rrep rreq rrep

. . .

. . .

t t+ 1 t+ 2 t+ 3 round

Figure 6: A generic run in which a 2-maRead() is performed over four rounds. Each circle represents a set
of f servers, correct ones in white, cured ones in shadow and finally Byzantine ones in red.

• S2cor: 〈value〉

Given these information there is no way to decide a value nor to detect where Byzantine agents are
placed.

Let us now consider a 2−maRead() operation beginning at round r. For round r and r + 1 let us consider
the same server set states and replies as in the 1 − maRead() operation case. Thus after read1() operation
client has the following replies:

• S1Byz: 〈value′〉

• S2cor: 〈value〉

At round r + 2 Byzantine agents move and another read() operation begins, read2(). Let us consider the
following server set states: S1corr and S2Byz (the same as in round r). Thus S1 delivers the READREQ

message. At the beginning of round r+ 3 Byzantine agents move and we may have the following server set
states: S1Byz and S2corr (the same as in round r + 1). In Fig. 6 is depicted how server set states change
during the four phases of a 2-maRead().

Such servers may reply as follow:

• S1Byz: 〈value′〉

• S2cor: 〈value〉

In such case Byzantine servers do not declare Byzantine during the previous read1(), since they indeed were
Byzantine.

Considering values coming from the two read() operation, client has the following replies:

• S1Byz: 〈value′〉

• S2cor: 〈value〉

• S1Byz: 〈value′〉

• S2cor: 〈value〉

In such scenario, all server sets replied the same during the two read operations. Thus in such situation
the client has still no way to decide which is the correct value. It follows that since Byzantine servers may
declare as well to have been affected during the previous reply phase or not, depending on the situation, the

12

information gathered during a generic readk() do not improve the knowledge acquired during the previous
readk−1(). 2Theorem 4

Intuitively, to prove the previous Theorems we show that even using all available information provided
by servers (e.g., values and information about the failure state in previous rounds), clients are not able to
select a correct value to return.

Theorem 5 Let rno tr the round after which no more transitory failures are going to happen. If no write()
operation is invoked at some round r > rno tr + 1 then there is no self-stabilizing algorithm implementing
a self-stabilizing safe register with any number of replicas.

Proof Consider a system with n servers and assume that there exists a protocol ASR implementing a self-
stabilizing safe register.

Consider a write(v) operation opw. Note that, since ASR is correct, opw eventually terminates and the
we can consider the time interval [tB(opw), tE(opw)] in which it is executed. Since, by assumption, there
not exists any write() operation happening after rno tr + 1, it means that tE(opw) < rno tr + 13. As a
consequence, transient failures still happen until round rno tr and thus the state of servers can be changed
arbitrarily. In addition, server may still receive corrupted messages (i.e., messages introduced in the channels
in the transitory phase) and take arbitrary decisions also in round rno tr + 1. Without loss of generality, let
us assume that opw is the last write() operation executed before rno tr + 1.

Let us now consider a read() operation opr starting at time tB(opr), where tB(opr) > rno tr + 1.
Such read() operation can only reasons on the set of values {v11, v12, . . . v1n

2
+1, vn

2
+2, . . . , vn} provided

by servers and either returns v1 6= v or not deciding for a value and keep waiting. This contradicts the
assumption that ASR implements a safe register as, in absence of concurrency, opr should return the value
v written by opw.

2Theorem 5

In the following we prove that the bounds previously computed for environments free of transient faults
still hold for the case of environments prone to transient faults even when a write() operation is correctly
executed after the transitory period.

Theorem 6 Let rno tr the round after which no more transient failures happen and let opw the first write()
operation invoked after rno tr + 1. If n ≤ αf (with α selected according with Table 1), then there is no
self-stabilizing protocol implementing a MWMR Safe Register in any considered model.

Proof The proof simply follows by considering that opw happens after the transitory phase ends. Thus the
state we have at the end of the operation is equivalent to the state we have at r0 in a system that is not prone
to transitory failures. As a consequence, the scenarios happening in Theorems 1 - 4 hold and the claim
follows.

2Theorem 6

From Theorem 6 the next Corollary directly follows

Corollary 1 Let rno tr the round after which no more transient failures happen and let opw the first write()
operation invoked after rno tr + 1. If n ≤ αf (with α selected according with Table 1), then there is no
self-stabilizing protocol implementing a MWMR Atomic Register in any considered model.

3With a slight abuse of notation, tE(opw) < rno tr + 1 means that opw terminates before beginning of round rno tr + 1.

13

5 Tight Self- Stabilizing MWMR
Atomic Register Implementation

In this section, we present an algorithmASSAreg implementing a Self-Stabilizing MWMR Atomic Register
resilient to the presence of up to f Byzantine agents affecting servers and moving at each round.

The algorithm follows the basic quorum-based approach to implement read() and write() operations.
Let us recall that mobile Byzantine agents move from one server to another corrupting their internal

states. As a consequence, if not properly mastered, this can bring to the compromising of all the servers
and to the loss of the register value (even in the absence of transitory failures). A naive solution would be
to exploit write() operations to clean values of cured processes and increase the number of replicas n to
ensure the presence of “enough” correct servers to select a valid value. However, such solution has two
strong drawbacks: (i) write() operations are not governed by servers and are invoked depending on clients
protocols and (ii) the number of replicas needed to tolerate f mobile Byzantine agents will grow immediately
linearly in the number of rounds between two following write() operations.
To handle the presence of mobile Byzantine agents, we started form this intuition and we defined a value
propagation mechanism that is used to help cured servers to recover and to update their local variables to a
correct state. Such mechanism is executed at the beginning of each round and it pushes information between
servers allowing cured ones to become correct in one round. The immediate benefit is the reduction of the
number of replicas required to master the mobility.

The second issue we faced in our implementation is the presence of transient failures that may alter
unexpectedly processes state and channels state. To master corruptions and limit the impact of transient
failures, we defined an algorithm that uses a number of local variables as small as possible. In addition, we
exploited the synchrony of the system to ensure that our algorithm stabilizes quickly as soon as a write()
happens (necessary condition for the stabilization) guaranteeing both safety and liveness properties. Let us
note that the tricky part is guarantee that read() operations eventually terminate and eventually return a valid
value. To this end, we introduced a control variable opR starti that is used to identify in which step of the
operation is the client. Such variable is used in the algorithm to determine termination conditions and avoid
that a client remain blocked forever after the end of transient failures.

The algorithm presented in the following is defined in a parametric way in order to fit all the four mobile
Byzantine failure models presented in Section 3. The first parameter of the algorithm, denoted as α, is used
to relate the global number of servers required n to the number of mobile Byzantine agents f that we want to
tolerate. In particular, we will relate such two values by the following inequality n > αf with α ∈ {2, 3, 4}
depending on the mobile Byzantine failure model considered.
The second parameter, denoted as β, is used to define the minimal number of occurrences of a same value
that a client needs to see in order to terminate a read() operation and select a valid value. Such value is
denoted by s and it is defined as s = n− βf , with β ∈ {1, 2}.

Finally, in order to abstract the knowledge that a server has of its failure state (i.e. cured or correct), we
introduce the cured state oracle. When invoked via report cured state() function, it returns, in the Garay
[10] and Buhrman et al. [7] models, true to cured servers and false to others. In this case the oracle is said
to be enabled. In Sasaki et al. [17] and Bonnet et al. [3] model the cured state oracle returns always false.
In this case the oracle is said disabled. The implementation of the oracle is out of scope of this paper and
the reader may refer to [8], [15] for further details.

Table 1 summarizes the above parameters for each model.

14

Table 1: ASSAreg parameters for the four different Mobile Byzantine Failure models.

Failure model Mid α β Oracle
Garay [10] M1 3 2 enabled

Bonnet et al. [3] M2 4 2 disabled
Sasaki et al. [17] M3 4 2 disabled

Burhman et al. [7] M4 2 1 enabled

5.1 ASSAreg Algorithm Detailed Description

The pseudo-code of the algorithm is presented in Figures 7-9. The algorithm exploits the round based nature
of the system.
Any write() operation spans at most two rounds. The operation may, in fact, be invoked in the middle of
a round and in this case it effectively starts in the send phase of the next round. The writer ss-broadcast
the value and all servers ss-deliver it in the same round. In the receive phase of the same round, servers
delivers WRITE() messages and, if more than one write() operation is executed in the same round, servers
will update the register by selecting the value coming from the client with the highest identifier. Due to the
synchrony assumptions no acknowledgement message is required and the operation can terminate at the end
of the round.
The read() operation spans at most three rounds. As for the write(), it effectively starts in the send phase
of the first round starting after its invocation and takes such round to send a read request to servers and the
following one to gather replies. In the computation phase of the second round, the reader selects the value
occurring at least s = n− βf times.

The value propagation mechanism is implemented by letting servers disseminate the stored value through
ECHO() messages at the beginning of each round. Such ECHO() messages are collected in the receive phase
and are used by cured processes to select a value and to update their value of the register. In such way, they
are able to cope with f servers that may have lost their value due to the Byzantine mobility.

Local variables at client ci. Each client ci needs to manage the following variables for the implementation
of the read() operation:
− opR starti: is a variable used to keep track of the state of a read() operation at client ci and it can have
the following values: {0 = request round, 1 = reply round,⊥ = no read running}.
− repliesi: is a set used to collect REPLY messages for a read() operation. It is set to ∅ at the beginning of
a read() operation.

Local variables at server si. Each server sj manages the following variables:
− valuei: it stores the current value of the register.
− echo valsi: is a set variable (emptied at the beginning of each round) where servers store values collected
trough ECHO messages in the current round.
− current writesi: is a set variable (emptied at the beginning of each round) where servers store values
sent trough a WRITE() message.
− current readsi: is a set variable where servers store identifiers of clients that are currently reading. It is
emptied after the reply to such clients.
− curedi: is a boolean variable set through the report cured state() event. It is set to true by the
cured state oracle (if enabled) when si is in a cured state. Otherwise it is always false.

15

At the beginning of each round r
(01) echo valsi ← ∅;
(02) current writesi ← ∅;
(03) curedi ← report cured state();
—————————————————————————————-
Send Phase of round r
(04) if (¬curedi)
(05) then ss− broadcast ECHO(val, i);
(06) for each j ∈ current readsi do
(07) send REPLY(valuei, i) to cj ;
(08) endFor
(09) endif
(10) current readsi ← ∅;
—————————————————————————————-
Receive Phase of round r
(11) for each ECHO(v, j) message ss-delivered do
(12) echo valsi ← echo valsi ∪ {v};
(13) endFor
(14) for each WRITE(v, j) message ss-delivered do
(15) current writesi ← current writesi ∪ {< v, j >};
(16) endFor
(17) for each READ(j) message ss-delivered do
(18) current readsi ← current readsi ∪ {j};
(19) endFor
—————————————————————————————-
Computation Phase of round r
(20) if (current writesi 6= ∅)
(21) then let v such that ∃ < v, j >∈ current writesi
(22) ∧j = maxk(< −, k >);
(23) valuei ← v;
(24) else if (∃v ∈ echo valsi |#occurrence(v) ≥ n− βf)
(25) then valuei ← v;
(26) else valuei ← ⊥;
(27) endif
(28) endif

Figure 7: ASSAreg implementation: code executed by any server si.

Server maintenance. In the send phase of each round, servers, whose cured state oracle returns false,
ss− broadcast a ECHO(val, i) message (line 05, Figure 7). If no write() operations happen in the current
round (the condition at line 20 is not verified), such collected values are then used during the computation
phase (line 24, Figure 7) by cured servers to select a value occurring at least n−βf occurrences and update
their state. Note that during the transitory period, it could happen that there are not enough occurrences of
the same value and then any servers will set its valuej to ⊥.

Write operation. In order to write a value v a client ci has to ss-broadcast the WRITE(v, i) message to all
servers (line 01, Figure 9). Since an operation invocation may happen in any time during a round, then the
ss− broadcast() is delayed until the next send phase. At the server side this message is ss-delivered within
the same round during the receive phase and any correct and cured server sj stores it in current writesj
set (lines 14-15, Figure 7). At the end of the round, during the computation phase, if current writesj is
not empty then the value associated to the highest client identifier is stored in valuej (lines 20-23, Figure
7). Back to the client side, during its computation phase, it returns the write conformation to the application
layer (line 03, Figure 9).

16

operation read():
(01) delay opR starti ← 0 until the end of the round;
—————————————————————————————
Send Phase of round r
(02) if (opR starti == 0)
(03) ss− broadcast READ(i);
(04) endIf
(05) repliesi ← ∅;
—————————————————————————————
Receive Phase of round r
(06) for each REPLY(vj , j) message received from sj do
(07) repliesi ← repliesi ∪ {< vj , j >};
(08) endFor
—————————————————————————————
Computation Phase of round r
(09) if (opR starti = 1)
(10) then opR starti ← ⊥;
(11) if (∃ < vj ,− >∈ repliesi |#occurrence(vj) ≥ n− βf)
(12) then v ← vj ;
(13) else v ← ⊥;
(14) endif
(15) return v;
(16) else if (opR starti = 0)
(17) then opR starti ← 1;
(18) else opR starti ← ⊥;
(19) return ⊥;
(20) endif
(21) endif

Figure 8: ASSAreg implementation: code executed by any client ci for the read() operation.

Read operation. When a read() operation is invoked by a client ci, opR starti is set to 0 at the end of the
current round (line 01, Figure 8), thus at the next send phase the condition at line 02 is true and the READ(i)
message is ss-broadcasted (line 03). Regardless the value of opR starti at each round the repliesi set is
emptied (line 05). In the computation phase, the condition at line 16 is true (opR starti is equal to 0) and
opR starti is set to 1. This means that the read request phase is over and the next one is the read reply one.
At server side (Figure 7), the READ(i) message is ss-delivered within the same invocation round. Once the
message is ss-delivered, any server sj stores the identifier of the reader in the current readsj set in order
to send back a REPLY() message at the beginning of the next round (lines 17-18, Figure 7).
At client side (Figure 8), when the next round begins, the condition at line 02 is not true, thus during the send
phase the repliesi set is emptied. Such set is filled with REPLY(valuej) messages during the receive phase
(lines 06 - 08, Figure 8). During the computation phase the condition at line 09 is true, thus opR starti is
set to ⊥ and the value in repliesi which occurs at least n − βf times is returned to the application layer
(lines 08-15, Figure 8).

5.2 Correctness Proofs

Lemma 2 Any write() operation eventually terminates.

Proof The proof trivially follows by considering that the writer generates a write confirmation event at the
end of the computation phase in which the operation is effectively started (line 03, Figure 9).

2Lemma 2

17

operation write(v)
(01) delay ss− broadcast WRITE(v, i) until next send phase;
—————————————————————————————
Send Phase of round r
—————————————————————————————
Receive Phase of round r
(02) nop
—————————————————————————————
Computation Phase of round r
(03) return write confirmation;

Figure 9: ASSAreg implementation: code executed by any client ci for the write() operation.

Lemma 3 Any read() operation eventually terminates.

Proof Let r be the round in which a read() operation opr is invoked and let rno tr the round in which
transient failures stop to happen. Let us note that when a reader invokes a read() operation, it executes line
01 in Figure 8 by setting opR starti = 0 just before entering in a send phase and sending the read request,
let’s say at round r + 1. Two cases may happen: (1) r > rno tr and (2) r < rno tr.

• Case (1): r > rno tr: If no transient failures occur at the reader client ci then opR starti is set to 1 in
the computation phase of r + 1 (line 17, Figure 8) Then, in the computation phase of round r + 2, ci
will execute lines 09-15, Figure 8 by returning from the operation and the claim follows in this case.

• Case (2): r ≤ rno tr: in this case, opR starti may be altered by transitory failures. Let us call Σ
the set of all possible values that the variable opR starti may take and let us consider what happen
during the computation phase for each value v ∈ Σ.

– Case (2.1) opR starti = 0: in this case, the transient failure brings the execution in a situation
equivalent to Case (1) causing a “logical restart” of the operation. However, the round rno tr
exists and is finite. Thus, after a finite number of iterations, we fall down in Case (1) and the
claim follows.

– Case (2.2) opR starti = 1: in this case the claim follows as ci will execute lines 09-15, Figure
8 by returning from the operation.

– Case (2.3) opR starti = v with v ∈ Σ \ {0, 1}: also in this case the claim follows as ci will
execute lines 18-19, Figure 8 by returning from the operation.

2Lemma 3

Theorem 7 (ss-Termination) Any operation invoked on the register eventually terminates.

Proof The proof directly follows from Lemma 2 and Lemma 3. 2Theorem 7

Lemma 4 Let αMi and βMi be the parameters for each of the 4 failure models Mi as reported in Table 1
and used by the algorithm in Figures 7-9. Let n > αMif for each failure model Mi considered. If there are
no transient failures, then at the end of each round at least n − f correct servers store the same value v in
their valuei local variable.

18

Proof The proof is done by induction.

- Basic Step. At the end of each round, each non-faulty server updates its valuei local variable (i) in
line 23 (i.e., if there exists at least a pair in the current writesi local variable) or (ii) in line 25 (i.e.,
current writesi is empty and there exist at least n− βf same values in echo valsi).

Let us recall that at round r0 all correct servers store the same default value ⊥ in their local variable
valuei. As a consequence, in r0 there exists at leas n− 2f correct servers storing v.

Let us first prove that one of the two cases always happens and then we prove that the number of
non-faulty servers storing the same values v at the end of r0 is n− f .

The current writesi local variable is initialized by any non-faulty server si to ∅ at the beginning of
each round r (cfr. line 02) and it is updated when a WRITE() message is received by si4. Thus, case
(i) corresponds to a scenario where at least a write() operation is executed in round r0 and case (ii)
corresponds to a scenario where no write() is running.

– Case (i): current writesi 6= ∅. In this case the claim simply follows by observing that the
current writesi local variable is filled in when servers deliver a WRITE() message. Consid-
ering that (i) writer clients broadcast a WRITE(v, j) message in the send phase of round r, (ii)
clients are correct and send the same set of values to all servers that will apply a deterministic
function to select the value v and (iii) at most f servers are faulty and may skip the update of
their valuei variable, the claim follows.

– Case (ii): current writesi = ∅ and line 24 is true. In this case, the valuei variable is updated
according to the values stored in echo valsi. Such variable is emptied by every non-faulty
process at the beginning of each round (cfr. line 01) and is filled in when an ECHO() message is
delivered. Such message is sent at least by any server, believing it is correct, at the beginning of
each round.
At the beginning of r0, at least n − f − x correct servers will send an ECHO(v, j) message,
where x is the number of non-faulty processes that become faulty in r0 (i.e. x = f for all the
models but Burhman’s one where x = 0 as faulty processes move during the send phase and not
at the beginning of the round). Let us note that the condition in line 24 is verified if and only if
n− 2f5 ≥ n− βf that is true in any model. Therefore, considering that at the end of round r0
non-faulty servers are exactly n− f , we have that n− f processes will execute this update.

- Inductive Step. Iterating the reasoning for any r the claim follows.

2Lemma 4

Theorem 8 (ss-Validity) LetαMi and βMi be the parameters for each of the 4 failure models Mi as reported
in Table 1 and used by the algorithm in Figures 7-9. Let n > αMif for each failure model, Mi, considered.
If there exists a write() operation opw issued at some round r > rno tr + 1 then there exists a round
rstab ≥ r such that each read() operation invoked in a round r′ > rstab returns the last value written before
its invocation, or a value written by a write() operation concurrent with it.

4Recall that such WRITE() message is sent by the writer client in the send phase of the first round starting after the write()
invocation and it is delivered by any non-faulty server in the same round.

5n− 2f is the number of correct servers sending the ECHO() message in r0.

19

Proof Let us recall that, due to Theorem 5, opw do exists. Let rw1 be the round in which opw terminates
and let v0 be the value written by opw. Clearly, rw1 ≥ rno tr + 1. Without lost of generality, let us consider
the first write(v) operation op′w and the first read() operation opr issued after rw1. Three cases may happen:
(i) opr ≺ op′w, (ii) op′w ≺ opr and (iii) op′w || opr. Let us note that opr spans over at least two rounds and
during the first one the client sends the READ() message while in the second one it collects replies.

• Case (i): opr ≺ op′w. This case follows directly from Lemma 4 considering that (i) at the end of the
first round of opr at least n − f correct processes have the same value v0 written by opw, (ii) while
moving to the second round of opr, at most x processes can get faulty (with x ≤ f for models M1-M3
and x = 0 for M4), (iii) n − f − x ≥ n − βMif (i.e. βMif ≥ f + x) for each model (i.e. there
will always be enough replies from correct servers to select a value) and (iv) n − βMif > f (i.e.
(αMi − βMi)f + 1 > f) for each model. It follows that faulty processes cannot force the client to
select a wrong value and the claim follow in this case.

• Case (ii): op′w ≺ opr. Let rw′ be the round at which op′w terminates and let rw′ + 1 be the round at
which opr is invoked. Due to Lemma 4, at round rw + 2 there are at least n − βf of the last written
value. So, applying the same reasoning of case (i) the claim follows.

• Case (iii): op′w || opr. Let us note that a read() operation spans two rounds, i.e., the round of the
request rreq and the round of the reply rreply. So, let us consider them separately.

– Case (iii.a): op′w is concurrent with opr during rreq. In that case the value v is delivered to
correct server at the end of rreq. Due to Lemma 4, at the end of rreq at least n−f correct servers
store the new written value v, we fall down into case (ii) and the claim follows.

– Case (iii.b): op′w is concurrent with opr during rreplay. Since, in every round, the send phase is
executed before the receive phase, it follows that at least all the correct servers will reply with
the value written before the invocation of the write() operation, we fall down into case (i) and
the claim follows.

2Theorem 8

Theorem 9 (ss-Ordering) Let αMi and βMi be the parameters for each of the 4 failure models Mi as
reported in Table 1 and used by the algorithm in Figures 7-9. Let n > αMif for each failure model Mi
considered. If there exists a write() operation opw issued at some round r > rno tr + 1 then there exists
a round rstab and a total order S such that (i) any operation invoked on the register after rstab belongs to
S, (ii) given op and op′ belonging to S, if op ≺ op′, then op appears before op′ in S and (iii) any read()
operation returns the value v written by the last write() preceding it in S.

Proof Let us recall that, due to Theorem 5, opw do exists. Let rw1 be the round in which opw terminates
and let v0 be the value written by opw. Clearly, rw1 ≥ rno tr + 1.

In order to prove the claim, we have to show that the algorithm in Figures 7-9 is eventually able to build
a total order of operations S that preserves (i) the read from last write property and that includes all the
operations from a certain round on.

Let us observe the following:

1. any write() operation is “effectively” executed in one round (i.e., the round in which the value is
propagated) even if it has been invoked during the previous round;

20

opr1 → v2

opw(v1)

opr2 → v1

opw(v2)

cr t

cw t

Figure 10: An example of new/old inversion.

(a)
b

ropr2opr1

rr1req rr1reply rr2req rr2reply

rwv1 rwv2

opw(v1) opw(v2)

(b)
b

ropr2opr1

rr1req rr1reply rr2req rr2reply

rwv1 rwv2

opw(v1) opw(v2)

Figure 11: Examples of runs showing in details how operations are aligned given the round-based nature of
the system.

2. any read() operation is “effectively” executed in two rounds (i.e., rreq the round in which the request
for reading the value is sent to servers and rrep where replies are collected at the client side) even if it
has been invoked during the previous round;

3. at the beginning of any round r > rw1, since no more transient failures are going to happen, there
always exist at least n− 2f correct servers storing the same value v (see Lemma 4);

4. correct servers answer to read request by sending back their local values.

Let us suppose by contradiction that a total order S does not exists. S cannot exist iff the scenario in Fig-
ure 10 happens. However, considering the observations above and that the algorithm evolves in synchronous
rounds, all the possible executions follow patterns similar to those shown in Figure 11, i.e., there can not
exist a write() operation that overlaps two different read() operations opr1 and opr2 such that opr1 ≺ opr12,
from which we have a contradiction.

2Theorem 9

Let us remark that from proofs of Theorem 8 and Theorem 9 we have that a write() operation after round
rno tr+1 is enough to ensure the correctness of our protocols and the stability is reached. From the previous
observation the following Corollario follows:

Corollary 2 If there exists a write() operation opw issued at some round r > rno tr + 1 then rstab = r+ 1.

Theorem 10 Let ASSAreg be the algorithm in Figures 7-9 and let n > αf . If α = 3 and β = 1 then for
each round r, such that r > rstab ASSAreg implements a Self-Stabilizing MWMR Atomic register in the
Garay’s model.

21

Proof It follows directly from Theorems 7, 8 and 9.
2Theorem 10

Theorem 11 Let ASSAreg be the algorithm in Figures 7-9 and let n > αf . If α = 4 and β = 2 then for
each round r, such that r > rstab ASSAreg implements a Self-Stabilizing MWMR Atomic register in the
Bonnet’s model.

Proof It follows directly from Theorems 7, 8 and 9.
2Theorem 11

Theorem 12 Let ASSAreg be the algorithm in Figures 7-9 and let n > αf . If α = 4 and β = 2 then for
each round r, such that r > rstab ASSAreg implements a Self-Stabilizing MWMR Atomic register in the
Sasaki’s model.

Proof It follows directly from Theorems 7, 8 and 9.
2Theorem 12

Theorem 13 Let ASSAreg be the algorithm in Figures 7-9 and let n > αf . If α = 2 and β = 1 then for
each round r, such that r > rstab ASSAreg implements a Self-Stabilizing MWMR Atomic register in the
Burhman’s model.

Proof It follows directly from Theorems 7, 8 and 9.
2Theorem 13

6 Conclusion

This paper addressed the first implementation of a self-stabilizing multi-writer multi-reader atomic register
tolerant to mobile Byzantine agents altogether with lower bounds on the number of replicas. We investigate
four models of mobile Byzantines in round-based synchronous systems: the model of Garay et al. [10],
where nodes have the capability to detect an infection and clean their state after the Byzantine agent leaves
the node; the models of Sasaki et al. [17] and Bonnet et al. [3], where infected nodes may execute their
code with a corrupted state even though the mobile agent is not anymore located at the node and finally,
the model of Buhrman et al. [7] where Byzantines moves are tide to messages and move during the send
phase. We prove that in the Garay’s model self-stabilizing atomic registers can be implemented provided
that in each round the number of Byzantine nodes (nodes occupied by a Byzantine agent), f , is less than n/3
where n is the number of correct nodes in that round while in the Bonnet’s and Sasaki’s models the number
of Byzantine nodes f is less than n/4. Finally, for the case of Buhrman’s model we show that f should be
less than n/2. The convergence time of our implementation is constant. This study can be extended to the
investigation of the self-stabilizing storage problem in the round-free synchronous and furthermore in the
asynchronous settings.

22

References

[1] N. Banu, S. Souissi, T. Izumi, and K. Wada. An improved byzantine agreement algorithm for syn-
chronous systems with mobile faults. International Journal of Computer Applications, 43(22):1–7,
April 2012.

[2] R. A. Bazzi. Synchronous byzantine quorum systems. Distributed Computing, 13(1):45–52, 2000.

[3] F. Bonnet, X. Défago, T. D. Nguyen, and M. Potop-Butucaru. Tight bound on mobile byzantine
agreement. In Distributed Computing - 28th International Symposium, DISC 2014, Austin, TX, USA,
October 12-15, 2014. Proceedings, pages 76–90, 2014.

[4] S. Bonomi, S. Dolev, M. Potop-Butucaru, and M. Raynal. Stabilizing server-based storage in byzantine
asynchronous message-passing systems: Extended abstract. In Proceedings of the 2015 ACM Sympo-
sium on Principles of Distributed Computing, PODC ’15, pages 471–479, New York, NY, USA, 2015.
ACM.

[5] S. Bonomi, M. Potop-Butucaru, and S. Tixeuil. Stabilizing byzantine-fault tolerant storage. In Parallel
and Distributed Processing Symposium (IPDPS), 2015 IEEE International, pages 894–903. IEEE,
2015.

[6] S. Bonomi, A. D. Pozzo, and M. Potop-Butucaru. Tight self-stabilizing mobile byzantine-tolerant
atomic register. (Available on line on arXiv), 2015.

[7] H. Buhrman, J. A. Garay, and J.-H. Hoepman. Optimal resiliency against mobile faults. In Proceedings
of the 25th International Symposium on Fault-Tolerant Computing (FTCS’95), pages 83–88, 1995.

[8] D. E. Denning. An intrusion-detection model. Software Engineering, IEEE Transactions on, (2):222–
232, 1987.

[9] S. Dolev. Self-Stabilization. MIT Press, 2000.

[10] J. A. Garay. Reaching (and maintaining) agreement in the presence of mobile faults. In Proceedings
of the 8th International Workshop on Distributed Algorithms, volume 857, pages 253–264, 1994.

[11] L. Lamport. On interprocess communication. part i: Basic formalism. Distributed Computing, 1(2):77–
85, 1986.

[12] D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing, 11(4):203–213, 1998.

[13] J.-P. Martin, L. Alvisi, and M. Dahlin. Minimal byzantine storage. In Distributed Computing, pages
311–325. Springer, 2002.

[14] J.-P. Martin, L. Alvisi, and M. Dahlin. Small byzantine quorum systems. In Dependable Systems and
Networks, 2002. DSN 2002. Proceedings. International Conference on, pages 374–383. IEEE, 2002.

[15] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks (extended abstract). In Proceedings
of the 10th Annual ACM Symposium on Principles of Distributed Computing (PODC’91), pages 51–59,
1991.

23

[16] R. Reischuk. A new solution for the byzantine generals problem. Information and Control, 64(1-
3):23–42, January-March 1985.

[17] T. Sasaki, Y. Yamauchi, S. Kijima, and M. Yamashita. Mobile byzantine agreement on arbitrary
network. In Proceedings of the 17th International Conference on Principles of Distributed Systems
(OPODIS’13), pages 236–250, December 2013.

[18] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial.
ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

[19] P. Sousa, A. N. Bessani, M. Correia, N. F. Neves, and P. Verissimo. Highly available intrusion-tolerant
services with proactive-reactive recovery. Parallel and Distributed Systems, IEEE Transactions on,
21(4):452–465, 2010.

[20] M. Yung. The mobile adversary paradigm in distributed computation and systems. In Proceedings of
the 2015 ACM Symposium on Principles of Distributed Computing, pages 171–172. ACM, 2015.

24

