
A study on obfuscation techniques for

Android malware

Matteo Pomilia

Recommended for Acceptance

by the Department of

Master of Science in Engineering in Computer Science

Sapienza University of Rome

Adviser: Professor Roberto Baldoni

March 2016

c© Copyright by Matteo Pomilia, 2016.

All rights reserved.

Abstract

In the last years more and more often obfuscation techniques are used on malware to

evade the detection of static analysis tools. This problem was already mentioned and

studied in some papers, in particular [26], [27], [23]. In these papers was shown

that some obfuscation techniques were very effective to avoid the detection, despite

all malware were at least a couple of years old. In particular all malware of used

datasets were prior to 2013.

Then, starting from these premises, this work can be divided in two parts. In the first,

we present our framework, implemented using tools easily available, able to obfuscate

and test a large number of malware. Then with our framework we obfuscate malware

previous to 2012, as in the last (2014) literature studies [27] [23], to evaluate if after

two year the anti-malware tools have improved their capabilities. From our results

we conclude that these improvements didn’t happen. To conclude this first part we

evaluate the effectiveness of obfuscation techniques applied on malware beyond 2012.

We discover that if these techniques are implemented on more recent malware increase

their effectiveness. Even very simple strategies, that no require code level changes,

reach important drops in the detection rate. Moreover our results show also that

a very big portion of the obfuscated malware subsequent to 2012 can evade all the

anti-malware tools considered.

In the second part of this work we focus on tools used for reverse engineering ob-

fuscated malware and for realize static analysis. In particular we show concretely

how Androguard [2] can be used to make static analysis through practical examples.

Using Androguard we analyse a malware belonging to the Opfake family detecting

the obfuscation techniques and trying to understand what they hide.

iii

Acknowledgements

Vorrei innanzitutto ringraziare il Prof. Baldoni, il Dott. Aniello e il Dott. Ucci per

l’aiuto fornitomi e per avermi sempre seguito con grande disponibilitá durante questo

percorso.

Ringrazio i miei genitori per tutti i sacrifici che hanno fatto in questi anni mantenendo

sempre il sorriso sulle labbra. Poco importa se questi sacrifici abbiano portato o meno

al risultato desiderato, per me sono sempre stati fonte di insegnamento e un motivo

di stima e affetto.

Ringrazio mio fratello per le risate e l’allegria che emana 24 ore su 24, con lui si

colorano anche le mie giornate piú grigie.

Ringrazio tutti i miei amici per gli infiniti momenti divertenti, con loro ho condiviso

molto e sono una vera e propria seconda famiglia.

Supportare e sopportare si differenziano di poco e, nella vita di tutti i giorni, molto

spesso finiscono per combaciare. Quindi per quanto possa impegnarmi non credo

esistano parole adatte per ringraziare sufficientemente la mia famiglia e i miei amici

che sono stati sempre al mio fianco in questi anni, loro sono tutto per me e si meritano

i fatti concreti, non semplici parole.

iv

Alla mia famiglia.

v

Contents

Abstract . iii

Acknowledgements . iv

List of Tables . viii

List of Figures . ix

1 Introduction 1

2 Background 3

2.1 Android Architecture . 3

2.2 File.apk structure . 5

2.3 Types of malware . 7

3 Obfuscation techniques: state of the art 9

3.1 Why obfuscation strategies are used? 10

3.2 State of the Art . 11

3.2.1 Trivial Techniques . 12

3.2.2 Non-Trivial Techniques . 14

3.2.3 Other Obfuscation Strategies 19

3.3 Obfuscation strategies in the future 22

4 Evaluation of obfuscation techniques against malware detection 23

4.1 Datasets . 24

vi

4.2 Obfuscation tools . 25

4.3 Framework architecture . 26

4.3.1 Obfuscation techniques implemented 30

4.4 Evaluation obfuscation’s results . 32

4.4.1 General results . 33

4.4.2 Temporal comparison . 41

4.4.3 Evaluation on single anti-malware engine 43

5 A methodology for analysing obfuscated malware 49

5.1 Androguard . 49

5.2 Androguard vs. obfuscation techniques 51

5.2.1 Identifier renaming . 52

5.2.2 Reflection . 52

5.2.3 Code Reordering . 53

5.2.4 String Encryption . 54

5.3 Practical use of Androguard for analyse obfuscated malware 55

5.3.1 Implementing static analysis without the original version of the

malware . 56

5.3.2 Implementing static analysis having the original version of the

malware . 62

6 Conclusion 66

6.1 Future Work . 68

Bibliography 69

vii

List of Tables

4.1 Percentage of malware that evade all the 9 anti-malware tools 40

4.2 Minimum techniques able to evade the detection of each anti-malware

tools. 48

viii

List of Figures

2.1 Android Architecture . 4

2.2 File.apk Structure . 6

2.3 Encrypted Malware . 8

3.1 Android App Distribution Channels in China 11

3.2 Trivial Techniques detection rate in 2011 13

3.3 Piece of code taken from the malware DroidDream 15

3.4 Piece of code of the Fig. 3.3 after the identifier renaming technique . 15

3.5 Piece of code of the Fig. 3.3 after the code reordering technique . . . 16

3.6 Piece of code of the Fig. 3.3 after the junk code insertion technique . 16

3.7 Detection rate for obfuscated APK [23] 20

3.8 Detection rate for obfuscated APK vs. Obfuscated APK + Encrypted

Assets and obfuscated Entry Point 21

4.1 Part of a VirusTotal report . 28

4.2 Framework Architecture . 29

4.3 Piece of code of the malware Newfpwap wallpaper 30

4.4 Piece of code of the malware Newfpwap wallpaper obfuscated with our

framework using renaming technique 31

4.5 Piece of code of the malware Newfpwap wallpaper obfuscated with our

framework using string encryption technique 32

ix

4.6 Average detection rate for the obfuscated malware previous to 2013

(C.F. = Control Flow, R.M. = Reorder Member) 35

4.7 Average detection rate for the obfuscated malware subsequent to 2013

(C.F. = Control Flow, R.M. = Reorder Member) 37

4.8 Detection rate for obfuscated APK [23] 41

4.9 Average detection rate for obfuscated malware 44

4.10 Average detection rate for not obfuscated malware 45

4.11 Average detection rate for malware obfuscated with repacking technique 46

4.12 Average detection rate for malware obfuscated with rename all technique 46

4.13 Average detection rate for malware obfuscated with string encryption

technique . 47

4.14 Average detection rate for malware obfuscated with the combination

of all the techniques . 47

5.1 Searching obfuscated classes in Android Rootsmart malware with An-

droguard . 53

5.2 Using Cytoscope to visualize the control flow graphs of Basebridge

malware . 54

5.3 Searching obfuscated strings in a Basebridge malware with Androguard 55

5.4 Output of Androguard’s shell for the a.get package() request on Op-

fake’s family malware . 56

5.5 Output of Androguard’s shell for the a.get permissions() request on

Opfake’s family malware . 57

5.6 Output of Androguard’s shell for the d.get classes names() request on

Opfake’s family malware . 58

5.7 Output of Androguard’s shell for is native code(dx), is dyn code(dx)

and is reflection code(dx) requests on Opfake’s family malware 59

x

5.8 Output of Androguard’s shell for d.get class(’Lfhvm/vnnej/contributed;’).source()

request on Opfake’s family malware 60

5.9 Output of Androguard’s shell for d.get class(’Lfhvm/vnnej/contributed;’).source()

request on Opfake’s family malware 60

5.10 Output of Androguard’s shell for d.get class(’Lbnjk/jjk3e/a;’).source()

request on Opfake’s family malware 61

5.11 Output of Androguard’s shell for d.get class(’Lbnjk/jjk3e/a;’).source()

request on Opfake’s family malware 61

5.12 Encrypted url contained in the analysed Opfake’s family malware . . 62

5.13 Output of Androguard’s shell for the a.get package() request on Op-

fake’s family malware . 63

5.14 Output of Androguard’s shell for the a.get permissions() request on

Opfake’s family malware . 63

5.15 Output of Androguard’s shell for the d.get classes names() request on

Opfake’s family malware . 64

5.16 Part of the output of Androguard’s d.get class(’La/a/a/IIIiiiiiII;’).source()

request on Opfake’s family malware 64

5.17 Output of Androguard’s androsim.py 65

5.18 Output of Androguard’s androsim.py 65

xi

Chapter 1

Introduction

In the last years the spread of mobile devices has exceeded the personal computer

one. Only in 2014 seems that more than one billion of device with Android OS have

been sold. Moreover these users start to spend more money and time on mobile appli-

cations rather than on PC ones. With a large number of users and money around the

mobile devices’ world, a new business model was born. This new business model was

an attraction also for authors of malware. In addition, the several markets besides

Google Play Store in which are published applications without Googles support al-

lowed the spread of a large number of malware. To fight the increase of malware new

solutions in the area of anti-malware tools were implemented. In the official Android

market the presence of a wide variety of free and paid applications for the malware

detection became substantial. The static analysis was (and is) the only detection

analysis applicable on mobile devices due to their low computational power. Static

analysis consists in dissecting the different components and files of the application

inspecting each element without executing it. Consequently malware’s authors began

to implement some techniques trying to avoid the detection. Among these techniques

there are those of obfuscation. As obfuscation techniques are defined all strategies

that change the content of the .dex file and/or .xml files (AndroidManifest.xml and

1

other), preserving the original functionalities of the application and without modify-

ing the semantic.

The past literature has deepened this topic testing anti-malware capabilities against

obfuscation techniques. However also more recent studies [27] [23] are of almost two

years ago and evaluate the effectiveness of the obfuscation strategies only on malware

previous to 2013. Then for these reasons our work provides four main contributions:

• We create a framework with easily findable tools able to obfuscate malware and

test in an automatic manner the effectiveness of obfuscation strategies applied.

• We use our framework to implement obfuscation techniques on malware belong-

ing to the same years (previous to 2012) as those in the papers cited above.

Then we verify if, after more than one year, they cause the same or different

drops in the detection rate.

• We obfuscate with our framework malware belonging to years beyond 2012, in

order to investigate, for the first time, the effectiveness of obfuscated malware

against nowadays detection engines.

• We show, using Androguard [2] and through practical examples, a methodology

for analysing obfuscated malware.

Then we will address the first three topics in the chapter 4 and the last one in the

chapter 5. But, first of all, we will make an overview on Android’s background in

the chapter 2 and then we will introduce obfuscation techniques in the chapter 3,

presenting the state of the art.

2

Chapter 2

Background

According to the data of September 2015 provided by Netmarketshare.com Android

is the most popular operating system on mobile devices. It’s also the one with the

largest number of dedicated third party markets. Unfortunately it’s also the most

”infested” by malware. For these reasons in our work we will study the effectiveness

of obfuscation techniques applied to Android malware. So we need to introduce in

the next sections an overview on the architecture and the structure of the application

in this operating system. As last step, for completeness, we will make a distinction

about different types of malware. In this way the reader will have all the necessary

tools to understand the next chapters.

2.1 Android Architecture

Android is an open source operating system Linux-based for mobile devices like smart-

phones, tablets and wearable gadgets. The set of companies that developed Android

is led by Google. The first commercial version of this operating system was published

in 2008, today we arrived to the 6.0.

As we can see in Fig. 2.1 the architecture can be divided in five components and four

layers. The layer at the bottom is the Linux Kernel that contains all the hardware

3

drivers and gives an abstraction degree between hardware components.

In the layer above, Libraries, there are all the libraries for example the OpenGL,

Figure 2.1: Android Architecture1

the SQLite, the SSL ones and other for audio and video. Another important role

in this layer is owned by the Android libraries specific for this environment. In this

second layer there is a separate section called Android Runtime that utilized as

virtual machine Dalvik Virtual Machine till android 4.4, in most recent versions

it has been substitued by ART. Both are Java virtual machines created specifically

for devices with low performances. For security reasons these virtual machines force

1https://lokeshv.wordpress.com/2014/06/26/android-architecture/

4

every Android application to execute in its own process, with a specific instance of

the VM.

The third layer from the bottom is called Application Framework and it supplies

services to the applications. For example allows to display notifications, manages the

applications’ lifecycle, etc..

The top layer is called Applications, contains all the applications installed.

Two main security measures are implemented in Android the permissions model and

the sandboxing. The first allows to execute applications with limited access permis-

sions. If an application want to use resources outside standard ones it must request

further permissions. Then the system asks to the user to grant these permissions.

The second one guarantees isolation of the applications’ data and code execution

from each other.

2.2 File.apk structure

After introducing the Android architecture we need to get an overview on the struc-

ture of the file.apk.

The file.apk can be considered like a .zip file and contains several files and direc-

tories important for the proper functioning of the application. The main components

of the file.apk are:

• file.dex: Android applications are implemented in Java. After the source code

is compiled into .class files. Then the dx tool, provided with the Android SDK,

convert the .class files into a file.DEX that holds Dalvik bytecode.

• AndroidManifest.xml: a file.xml that contains the permissions required by

the applications, the description of the application components and other im-

portant information about the application.

5

Figure 2.2: File.apk Structure2

• META.INF folder: a directory used to store the signature of the application.

The developers have their signing key and independently sign their applications.

Only signed applications can be installed on devices.

• res folder: is the resources directory and contains some .xml files as UI-layout,

icons, images, etc. that are used to realize layouts and menus.

• resources.arsc: is a file that contains all the data about the parameters (in-

cluding their ids) of the xml elements.

• assets: (optional) is a set of external resources used by the application.

To understand the build process of an Android application we can summarize it

in six steps. The first is the preparation, in which the metadata of the Android

2Faruki et al. [22]

6

project is converted in Java code. After in the compilation step, the Java source

code files are compiled into files.class. Then all the .class files are converted in .dex

ones, this step is called bytecode conversion. The next step, called building,

consists in pack all the files seen in the list above into an .apk file. The last two

steps, signing and alignment, consist in signing the .apk file and applying some

optimization techniques to improve the performances of the Android application.

2.3 Types of malware

As explained in the paper [28] there are two main generation of malware. The first

in which malware remain the same without modifications in their structure. The

second in which are implemented modifications in their structure resulting in a lot of

different versions/variants but maintaining the same semantic. This last generation

can be separated in encrypted, oligomorphic, polymorphic and metamorphic malware.

• Encrypted malware: composed by two elements, an encrypted body and a

decryption routine. The body can be XORed with a different key for every

different infection so to evade the signature detection. Instead the decryption

routine doesn’t change.

• Oligomorphic malware: they implement few different decryption routines.

So, for different infections there are different decryptors.

• Polymorphic malware: also in this case there are an encrypted body and

a routine for decryption but are applied some techniques, called obfuscation

techniques, to modify the instructions with the aim to generate millions of

different decryptors. Changing the order, the number and the type of these

techniques, it’s possible to create an infinite number of decryptors.

7

Figure 2.3: Encrypted Malware3

• Metamorphic malware: implementing modifications to the code of the de-

cryption routine and also of the body, without modifying the semantic, different

versions of the malware are generated. So we can generalizing that metamorphic

malware are simply body-polymorphic.

Concluding, the obfuscation techniques, that we will explain in the next chapters,

are used both on polymorphic and metamorphic malware. They differ only on the

point in which they are applied. Then, in this work, as the other in the bibliography,

we will use the term ”malware” referring to both the polymorphic and metamorphic

malware.

3http://vxheaven.org/lib/apb01.html

8

Chapter 3

Obfuscation techniques: state of

the art

In this chapter we are going to deepen the obfuscation strategies, main topic of

this work. As we shall see in the next paragraphs, there are a lot of obfuscation tech-

niques, some very simple to apply and other more complex and difficult to implement.

As obfuscation techniques are defined all strategies that change the content of the

.dex file and/or .xml files (AndroidManifest.xml and other), preserving the original

functionalities of the application. These strategies are used for two opposite reasons.

The first, and the original one, is to obfuscate the application’s code so that it be-

comes difficult to be cloned. The second one is to obfuscate a malicious application

with the purpose to evade the detection of anti-malware tools.

In the next paragraphs we will introduce the state of the art of obfuscation tech-

niques, then we will explain how they evolved over time and finally we will introduce

the most famous obfuscation tools that are used today.

9

3.1 Why obfuscation strategies are used?

To understand the reasons for which the obfuscation strategies have become widely

used by malware authors, we have to explain the context in which they are used and

against what.

As we seen in the paragraph above there are different types of obfuscation techniques,

some very easy to apply, other more complex and difficult to implement. Logically to

apply the easy ones are required less time and skills but allow to obtain low drops in

the detection rate, instead the complex ones need more time and skills but allow to

reach bigger drops in the detection rate. All these techniques are used to obfuscate

the code and the strings of the malware to avoid the detection of the static analy-

sis. In fact static analysis consists in dissecting resources and files of the application

studying each component, without executing it. In particular detection tools com-

pare files’ hashes (signatures) of the analysed application to a database of known

malicious samples. They also inspect the application components to find signatures

of malicious code. Then for the static analysis tools is very difficult compare the

obfuscated application/code with the samples in their database. Despite this type

of analysis doesn’t appear to be the best against obfuscated malware, it’s the only

one that can be performed directly on mobile devices. Due to the limited hardware

owned by these devices all other types of analysis that require the execution of the

application (dynamic analysis) aren’t feasible.

Until users download applications from Google Play Store, that before publishing an

application inspects it with a complex system that uses both static and dynamic anal-

ysis, they have very low probability to download a malware. Instead for all the users

that utilize non-official markets probabilities to download a malicious application able

to avoid the detection, thanks to the obfuscation strategies, are very high (we deepen

the percentages in the next chapters). In fact often the third party markets offer

no security guarantees on the downloaded applications. Despite this lack of security

10

non-official markets achieve millions of users and downloads. Only China has more

than 200 unofficial markets, some of them with more of 30 million users and more

of 600 million apps downloaded every month. According to One Platform Founda-

tion [11] publishing an application on third party stores increased the number of its

downloads and installs over 200%. Only this statistic suggests how important are the

unofficial stores for the distribution of applications and often of malware. Then, due

to the large basin of users that download unverified applications and due to the poor

capabilities of static analysis implemented on the users mobile devices, also simple

obfuscation techniques allow to malware authors to reach ”excellent” results.

Figure 3.1: Android App Distribution Channels in China

3.2 State of the Art

As seen before we can define as obfuscation strategies each technique that mod-

ify and obfuscate the content of the .xml files (AndroidManifest.xml and other)

and/or the file.dex preserving the original semantic of the application. Many studies

[26] [27] [23] [21] [30] [25] have studied and classified obfuscation strategies. Then,

11

following the current and the past literature, we can divide these techniques in two

main categories, trivial and non-trivial. The trivial ones consist in modifying the

file.apk structure or some strings of the application, without applying changes to the

code. The non-trivial ones, instead, modify also the bytecode.

3.2.1 Trivial Techniques

These techniques consist for example in renaming the application or its package,

unpackage the file.apk and repackage it, disassembling and reassembling the .dex file

and so on. They are the simplest to apply and require few time and skills. Their aims

is to defeat the anti-malware tools based on the signature of the whole application

or on a part of it. Today they aren’t very effective in decrease the detection rate.

However if we consider the trade off between simplicity and results achievable they

aren’t to be neglected.

• Repacking: as said in the introduction the file.apk is a compressed archive that

can be easily decompressed and then repacked. During this process the applica-

tion can be resigned with a new custom signature. Whenever an application is

repacked the hash of the file.apk changes due to the different order in which the

components of the application are positioned and/or due to the replacement of

the signature. Then this simple technique can be used to avoid the detection of

the anti-malware tools based on the signature of the whole application.

• Disassembling and reassembling: the bytecode contained in the file.dex can

be disassembled and then reassembled. This operation modify the placement of

all files in the .dex one. So, also in this case, with this technique it’s possible to

create different versions of the file.dex without changing its ”semantic”. This

trivial technique has the aim to beat the detection based on the signature of

the classes.dex file.

12

• Changing package name: each application is represented by a specific pack-

age name defined in the AndroidManifest.xml. This simple obfuscation strategy

substitute the malicious package name with another one.

• Alignment: this technique consists in realign the data of the file.apk. Zi-

palign [16] is a specific Android tool usually used to realign the uncompressed

data contained in the file.apk. In this manner, reorganizing the structure of

the application’s files is generated a different .apk from the point of view of the

hash signature.

As showed in recent works [27] [23] trivial techniques (applied on few years ago mal-

ware) ”today” are no longer effective despite in 2011, as reported in the work of Zheng

et al. [30] Fig. 3.2, these strategies allowed drops in the detection rate of at most 20%

compared to the original malware.

Figure 3.2: Trivial Techniques detection rate in 2011 [30]

13

3.2.2 Non-Trivial Techniques

As said before are the techniques that obfuscate both the strings and the bytecode of

the application. They are used to evade the detection of the anti-malware tools that

analyse the bytecode to find malicious applications. These strategies require to be

implemented more time and resources compared to the trivial ones. However these

efforts have paid off with bigger drops in the detection rate in comparison to the

original/not-obfuscated malware. In particular they reach important results against

detection tools when they are used together [27] [23].

This macro category can be divided in two subcategories: transformation attacks de-

tectable by static analysis and transformation attacks non-detectable by static anal-

ysis.

Transformation attacks detectable by static analysis:

Before starting to explain this category of obfuscation strategies we have to deepen

the static analysis. As said in a paragraph above, static analysis consists in dissecting

the different components and files of the application inspecting each element without

executing it. Decompilers, disassemblers and source code analyser are used to de-

compose the application. This type of analysis has the advantage to be implemented

directly on the mobile devices, but also many disadvantages. For example, without

executing the applications it’s impossible to fully predict their behaviours. Another

problem is that this type of analysis it’s not applicable if the anti-malware tool hasn’t

malicious samples to compare to the analysed application.

The transformation attacks that we are going to introduce in this paragraph are

composed by all those obfuscation techniques applied on the strings and/or on the

bytecode, but are theoretically all detectable by static analysis. However nowadays

the combination of these techniques reaches substantial drops in the detection rate.

14

Figure 3.3: Piece of code taken from the malware DroidDream [27]

• Identifier Renaming: this technique try to obscure the application, renaming

methods, classes and field identifiers in the application.

Figure 3.4: Piece of code of the Fig. 3.3 after the identifier renaming technique [27]

• Call Indirections: this technique modifies the graph of the calls of the appli-

cation. If we have a method call A, this technique substitutes it with a new

method call B that when invoked make the original method call A.

• Code Reordering: consists in modify the order of the instructions in the code.

Usually the ”goto” is added in the code to maintain the original sequence of

instruction at runtime.

• Junk Code Insertion: this technique consists in adding in the code some

instructions that will be executed but without changing the semantic of the

application. The detection tools that inspect the sequence of the instructions of

the malware can be evaded by junk code insertion strategy. The junk code added

to the malware can be simple nop sequences or complex cycles of instructions.

15

Figure 3.5: Piece of code of the Fig. 3.3 after the code reordering technique [27]

Figure 3.6: Piece of code of the Fig. 3.3 after the junk code insertion technique [27]

• Encapsulate Field: this technique consists in adding for a specific field a setter

and a getter method. The first is used to set the value of the field, instead the

second to retrieve that value. So there is no more direct access to the selected

field, substituted by the relative methods. In this way the utilization of a specific

field can be obfuscated.

• Encrypting Payloads and Native Exploits: native code, usually, is used to

manipulate in a flexible way the memory or when is necessary operating close

to the hardware. This type of code is stored in native binary code. Very often

native code is used by malware authors due to the lack of security mechanisms

in Android for its execution. A malware using it can breakout the sandbox

16

made by the Android permissions policy. Usually, in malware, native code is

stored encrypted and only at runtime decrypted.

• Composite Transformations: every obfuscation technique seen before can be

combined with the other to improve the obfuscation level of the code. Usually,

also strategies that are not very effective used alone, if used in combination can

reach good results in obfuscation.

Transformation attacks non-detectable by static analysis:

These type of transformation attacks can evade all type of static analysis. Several

studies have demonstrated the effectiveness of these strategies against static analy-

sis, for example to mention one ”PANDORA Applies Non-Deterministic Obfuscation

Randomly to Android” [25]. In this study is shown the inefficacy of anti-malware

tools based on static analysis against the transformation attacks that we will explain

in this paragraph. For these reasons in the last years a new type of analysis was

introduced, called dynamic analysis. Unlike the static, the dynamic one executes

the application and then logs its behaviours. Due to the computational power needed

to run and log several applications, in dynamic analysis are used sandboxes and vir-

tual machines. During the execution the behaviours recording is entrusted to tools

like debuggers and loggers. However malware authors implemented some methods to

evade also dynamic analysis. These methods consist in recognize if the application is

running on a real device or on an emulator. Then if it’s running on an emulator the

malware hides its malicious behaviours. As reported in the study of Petsas et al. [24],

to understand where are running, malware can control specific parameters like IMEI

or IMSI, verify the sensors’ outputted parameters and inspect the scheduling order

of the instructions.

Then we now introduce some obfuscation techniques that are non-detectable by static

analysis but that can be recognized by the dynamic one. These transformation at-

17

tacks are more complex than those seen before. They require to the malware’s authors

more time and skills. As reported in recent studies [27] [23] the following techniques

are still used either alone or in combination with other seen above reaching important

results in drops of detection rate.

• Reflection: a class can inspect itself using this technique. It’s used to obtain

informations on classes, methods, etc. The API of Java that supports reflection

is Java.Reflect. Every invocation instruction is substituted with other bytecode

instructions that use reflective calls to realize the same operations of the original

invocation. In particular three invocations are used. The forName one that find

a class with a precise name. The getMethod one that gives back the method

belonging to the forName invocation. The third one is invoke that execute the

desired method. Then reflection adds unnecessary code to the original one with

the aim of obscuring the application.

• Bytecode Encryption: this technique encrypts some pieces of code to evade

the anti-malware tools based on static analysis. In particular the malicious code

is stored encrypted in the application and only at runtime a decryption class

decrypts it. For this reason is impossible for the static analysis to detect the

malicious code. Moreover the possibility for the malware’s author to obfuscate

the encrypted code and the decryption routine doesn’t leave chances to a signa-

ture based detection applied on them. In fact for every obfuscation technique

added the hash signature changes. An example of this technique is given in

Rastogi et al. [27]. The malicious code is stored encrypted, packed as a jar. At

runtime the decryption routine is called and it decrypts the malicious code and

loads it through a class loader established by the author of the malware.

18

• String Encryption: it encrypts the strings of an application using an algo-

rithm based on XOR operation. The original string is recomposed at runtime

providing the encrypted one to the decryption routine.

• Class Encryption: as said in the paper of Maiorca et al. [23] this is one of

the most complex and effective technique. Class encryption is used to encrypt

every class of the application. Then, it zips the encrypted classes and store

them in the application. Also in this case it’s necessary a decryption routine.

In detail when the malicious application runs the encrypted classes need to be

decompressed, decrypted and then loaded in memory. Usually with the methods

ClassLoader(), getDeclaredConstructor(), and newInstance() a new instance of

the class is generated and its fields and methods are invoked through reflection.

Class Encryption technique obtains the better results in drops of detection rate

but it’s difficult to be implemented and produces an overhead in term of file size.

As said in the paper [23] the average percentage increment of the obfuscated

applications size is of about 194%.

As showed in recent works [27] [23] Non-Trivial obfuscation techniques (despite ap-

plied on few years ago malware) ”today” are still effective. We can see their potential

against anti-malware tools in Fig. 3.7.

3.2.3 Other Obfuscation Strategies

In the previous sections we have introduced almost all obfuscation techniques that

concern the .dex file. In addition to those there are other ones that affect the .xml

files, the resources and the assets of the applications.

• .xml files and resources: these techniques can be used in addition to the

ones seen above. These files can be slightly obfuscated to improve the total

obfuscation of the application. For example the tag android:name from the

19

Figure 3.7: Detection rate for obfuscated APK [23]

AndroidManifest.xml can be removed. Another reason to obscure resources

files is to weaken the signatures of the anti-malware tools, which may base their

diagnosis on the hash value related to those files.

• Assets: this technique consists in obfuscate the assets using the XOR encryp-

tion. The aim is to avoid the detection of some anti-malware tools that inspect

the assets. The study [23] showed that the assets have an important role in the

detection for the anti-malware tools. In fact, making some tests, they noticed

that all the files contained in assets were considered as malicious. Then due to

the presence of assets all the .apk was reported as malicious, although the .dex

files and the .xml files were obfuscated and then impossible to be detected. For

this reason the assets encryption was introduced by the malware authors.

• Entry Point Classes: in this case are the entry point classes to be obfuscated

using encryption. Often, this technique forces the malware author to adapt

some elements of the AndroidManifest.xml file due to the changes made.

20

As showed in Rastogi et al. [27] these techniques used in combination with those of

the previous paragraphs allow to obtain drops in the detection rate. Then this shows

that the detection rate is strongly influenced by the presence of the assets and by the

entry point classes. These improvements were confirmed by the study of Maiorca et

al. [23]. To understand how much these techniques can affect the detection rate of

malicious applications we report in Fig. 3.8.

Figure 3.8: Detection rate for obfuscated APK vs. Obfuscated APK + Encrypted
Assets and obfuscated Entry Point [23]

21

3.3 Obfuscation strategies in the future

Due to the substantial results obtained by the obfuscation techniques seen in the

previous paragraphs doesn’t seem necessary an increase of new strategies. Instead

might be logic an improvement of the existing ones, to make them more effective and

efficient. For example we have seen before how class encryption is very effective but

requires some improvements to reduce the overhead in file size. Moreover, as showed

in recent works [27] [23], seems that the obfuscation strategies will continue to be used

in combination between them and with encrypted assets and encrypted entry point

classes. In this manner, the utilization of combinations of the simplest techniques will

allow to malwares authors to reach results almost similar to those obtained by more

complex strategies with less overheads and manual modifications of code.

Another strategy that will continue to be used in the future is to complement the

techniques seen above with strategies used to evade dynamic analysis. Then all the

techniques that allow to understand if the malware is running on an emulator and

not on a real device. In case the malware checks that is executed on an emulator it

hides malicious behaviours to avoid dynamic analysis’ detection. Some examples of

these techniques are explained on the work of Petsas et al. [24]. Some of them analyse

the values outputted by the gyroscope, accelerometer, and gravity sensors, etc.. In

fact null or fixed values mean that the application is running on an emulator. Other

techniques verify the presence of identifiers like IMEI and IMSI that are necessary for

a real device.

Other strategies that could be used in the future are showed by the studies of Apvrille

et al. [19] [21] and Albertini [18]. The Albertini’s work introduces a Python script

that allows to manage AES or DES output so it seems like a PNG, JPG or sound

file. In this way a malicious .apk file in the form of a simple image can be stored

in resources or in assets of an application. Then this payload can be decrypted at

runtime to obtain the malicious file that will be installed on the device.

22

Chapter 4

Evaluation of obfuscation

techniques against malware

detection

This work wants to have the purpose to fill some ”gaps” and deepen some arguments

of the recent literature on obfuscation techniques. First of all in literature there isn’t

a clear explanation on ways with which the analysed malware were obfuscated. Then

our work wants to answer the question: can we implement a framework, using easily

available tools, for obfuscate and test in an automatic way a large number of mal-

ware?

Another purpose of this work is to apply obfuscation techniques to malware of the

same years (prior to 2013) of the last works in literature [27] [23]. Then see if, al-

most two years after, anti-malware tools have improved their capabilities in detection.

Moreover also in recent works [27] [23] the malware obfuscated and tested belonged

to datasets prior to 2013. Then, to get a broader overview, we want to obfuscate and

test malware subsequent to 2012.

In the next paragraphs we will explain how we have implemented an automatic frame-

23

work to obfuscate and test malware, which dataset we used, which obfuscation tech-

niques our framework implements. Then we will show results obtained by the 9

most famous anti-malware tools when they try to detect malware obfuscated with

our framework.

4.1 Datasets

Malwares used in this work are taken from three different datasets. We can divide used

malware in two macro categories, those belonging to the years before 2012 (included)

and those belonging to the years after 2012. For the first category we took malware

from the Contagio Mobile [5] and the Drebin [10] dataset. For the second one we

took malware from the Andrototal [3] and the Contagio Mobile [5].

• Andrototal: is a free service for Android application files analysis. The user

can send to it applications that will be scanned with several mobile antivirus.

Then a detailed report is returned to the user. Moreover using the appropriate

API is possible to download samples in a specific interval time. In our work we

downloaded samples subsequent the 2012.

• Contagio: is a free collection of malware samples belonging to several years.

In particular it offers a dropbox folder to upload malware and share them to

everyone. This service allows to download malware from the 2011 to the 2015.

In our work we used malware taken from this dataset both prior the 2012 and

subsequent.

• Drebin: is a project sponsored by the German Federal Ministry of Education

and Research. It’s a free dataset, composed by 5,560 applications related to 179

different families of malware. These samples were grouped between 2010 and

2012.

24

4.2 Obfuscation tools

Before introducing our framework, we have to say few words on obfuscation tools.

These tools were created to obfuscate applications with the purpose to make diffi-

cult their reverse engineering. In this way the possibilities to copy an application fall

drastically. There are a lot of obfuscation tools more or less known. For example Pro-

guard [12] is an obfuscation tool included in Android SDK, able to rename classes,

methods and variables. Another important tool is DexGuard [8] the improved com-

mercial version of Proguard. This tool is able to implement the string encryption tech-

nique and to rename classes and methods with non ASCII symbols. Other widespread

commercial tools are DashO [7], DexProtector [9] and Stringer [13]. These more

powerful tools due to the complex changes that implement on the applications can

generate some problems. First of all can happen that the author of the application

should correct the code so that the application returns to work properly. Moreover

these relevant changes can generate false positive when the obfuscated applications

are analysed by anti-malware tools. In fact, as seen in the previous chapters, these

obfuscation techniques very often are used by malware authors trying to evade the

detection. In particular DexProtector is affected by the problem of false positive.

Bangcle [4] is another controversial tool. It’s an online service that allow to imple-

ment some obfuscation strategies with the aim to avoid the cloning of the applications,

but, at the same time, there are rumors that attribute to it the obfuscation of some

malware like Zeus and SMS Sender.

In our work we have used Allatori Java Obfuscator [1]. It is a second generation

java obfuscation tool able to implement several obfuscation techniques with the pur-

pose to protect intellectual property. In fact this tool, due to the obfuscation that it

applies, makes very difficult to reverse engineering the code. We have use it to imple-

ment on malware the most common obfuscation techniques. Then these obfuscated

malware were used to test the best anti-malware tools.

25

Beyond these tools, in the last years, many studies have proposed new frameworks

with the aim to test the robustness of the anti-malware engines against the obfus-

cation techniques. An example is ADAM [30] an automatic system for obfuscate

malware and verify their effectiveness against anti-malware engines. Another exam-

ple is given by Protsenko et al. [25]. In this work they created an Android bytecode

obfuscation system to test the detection capabilities of anti-malware tools. On the

same type of framework there is also DroidChameleon used by Rastogi et al. both

in [26] and [27].

Despite the presence in the literature of these systems for obfuscate and test malware,

as said in the introduction of this chapter, there isn’t a specific explanation about

their components, their functioning and if they are achievable using simple and easy

available tools. For these reasons in the next section we will describe our automated

framework to obfuscate and test malware.

4.3 Framework architecture

As seen in the introduction of this chapter, our work wants to answer the question:

can we implement a framework, using easily available tools, for obfuscate and test in

an automatic way a large number of malware? Then in this section we try to answer

this question.

In our framework Fig. 4.2 we have used the following, easy findable online, tools:

• Zipfile Python library: the zip format is the most diffused standard for the

compression. This library offers services to list, extract, read, create and append

zip files.

• Dex2Jar: is a free tool for converting the file.dex used in Android applications

to Java file.class format.

26

• Allattori: as we said in the previous section it’s a second generation java obfus-

cation tool able to implement several obfuscation techniques with the purpose

to protect intellectual property.

• Dx: is a tool contained in the Android SDK that can be used to convert java

bytecode (and JARs) in file.dex (Dalvik bytecode).

• Apktool: is a free tool with a lot of features. In particular it allows to disas-

sembling applications and reassembling them to .apk file.

• Jarsigner: is an Oracle tool provided with the Android SDK that can be used

to sign .apk/JAR files and verify their integrity of the signed ones.

• VirusTotal API [14]: is a free service able to analyse a lot of files, including

Android applications, and to return a detailed report 4.1. It provides also some

specific API to send samples to be analysed and to retrieve the related reports.

First of all the Zipfile library is used to extract the content of the file.apk that we

want to obfuscate. For the obfuscation we are interested in the file.dex, that contains

the compiled code of the application. Then the dex2jar tool converts the file.dex,

extracted before, in a JAR file. At this point we can use the Allatori obfuscation tool

on this file. Using an .xml file the user can specify which technique or combination

have to be applied on the JAR file. Once occurred obfuscation we need to convert

the JAR file in .dex. For this purpose we use dx. Then now we have obtained a

file.dex obfuscated. This file is inserted in the directory in which the original files of

the application were unzipped and using Apktool the file.apk is rebuilt. As last step

Jarsigner signs the new .apk file. The new obfuscated application is sent to Virus-

Total through the appropriate API. After few hours will be possible to retrieve the

related report with the results of the analysis. VirusTotal’s analysis is based on 55

anti-malware tools, but as we will see in the next section we consider only the results

27

Figure 4.1: Part of a VirusTotal report

of the 9 most famous detection engines.

We have created python scripts to coordinate and to execute tools above in an auto-

matic manner.

• Tesi Framework2.0.py: this script for every malware taken in input retrieves

other 11 obfuscated versions. In particular it’s used to coordinate tools cited

above with the purpose to create an automatic workflow. When the obfuscated

versions of the malware are ready, it sends them to VirusTotal that will an-

swer with a specific mapping hash for everyone. These mapping hash will be

necessary to retrieve reports related to malware sent.

28

Figure 4.2: Framework Architecture

• Retrieve Reports.py: this script reads from file the mapping hash of every

malware sent before, then for each of these launches a request to VirusTotal.

At every request VirusTotal will answer with a json file containing the related

report. Then each report is written on file.

We have showed how using easily findable tools it’s possible to create an automatic

framework to obfuscate and test a large number of malware. This framework is

created exclusively to evaluate the effectiveness of obfuscation techniques against

static analysis tools that analyse the code of the application without running it.

Then it’s not important if obfuscated applications work properly or not. Logically

more the technique applied is complex more probably the application author should

be manually modify the code to make the application work correctly.

29

4.3.1 Obfuscation techniques implemented

We have showed in the chapter 3 the state of the art of obfuscation strategies, then

we want to deepen those implemented by our framework. In particular in our work

we want to inquire if today it’s still possible to reach important results in drops

of the detection rate using not very complex obfuscation techniques or some of their

combinations. In fact simpler is the technique to be applied less is the probability that

the malware author should apply further changes to make the obfuscated malware

work. Moreover as said in the section 3.1 due to the large basin of users that download

unverified applications and due to the poor capabilities of static analysis implemented

on mobile devices, also not exciting results reached with simple techniques can be a

very important milestone for malware authors.

As seen in the previous section we have used Allatori as obfuscation tool. It allowed

us to implement all the following techniques except the repacking and resign one that

don’t require an obfuscation tool to be implemented.

Figure 4.3: Piece of code of the malware Newfpwap wallpaper

• Repacking: as seen in the section 3.2.1 the simplest technique, doesn’t require

an obfuscator tool.

30

Figure 4.4: Piece of code of the malware Newfpwap wallpaper obfuscated with our
framework using renaming technique

• Resign: as seen in the section 3.2.1 it’s equal to the repacking one but adds

also a new signature.

• Reorder Member: it’s a subcategory of the code reordering technique seen in

the section 3.2.2. In this case are not used the ”goto” instructions, but simply

related methods and fields are reordered.

• Control Flow Obfuscation: with this technique we refer to the code reorder-

ing seen in the section 3.2.2.

• Renaming classes, methods and fields: with this technique we refer to the

identifier renaming strategy, seen in the section 3.2.2. Are not renamed all the

classes belonging to Service, Receiver, etc.. We can see an example in Fig. 4.4.

• Renaming all: as for the technique above but in this case also the classes

excluded before are affected by this strategy.

• Control Flow + Reorder Member: combination of techniques seen above.

31

Figure 4.5: Piece of code of the malware Newfpwap wallpaper obfuscated with our
framework using string encryption technique

• Control Flow + Reorder Member + Renaming: combination of tech-

niques seen above.

• String Encryption: as seen in the section 3.2.2 this technique encrypts the

strings of the application. We can see an example in Fig. 4.5.

• Control Flow + Reorder Member + String Encryption: combination

of techniques seen above.

• All: all the techniques seen above are combined together.

4.4 Evaluation obfuscation’s results

In this section we want to present the results obtained through our framework. First

of all we can divide these results in two category:

• Results obtained obfuscating malware previous to 2013: all the past and

the current literature is based on obfuscated malware belonging to years prior to

2013 (excluded). Then we have used our framework to obfuscate malware of the

32

same years with the purpose to verify if after almost two years the detection tools

have improved their capabilities. With our results we can make a comparison

with the ones obtained by the last studies. Belonging to this category we have

obfuscated and tested 350 malware taken from the Contagio [5] and Drebin [10]

datasets.

• Results obtained obfuscating malware subsequent to 2013 (included):

there aren’t in literature results about obfuscation techniques effectiveness on

malware belonging to years subsequent to 2012. So we have used our framework

to verify if the latest years malware cause bigger detection rate drops or if anti-

malware tools have improved their capabilities. With these results we can show

the temporal evolution of the obfuscation techniques’ effectiveness. Belonging

to this category we have obfuscated and tested 250 malware taken from the

AndroTotal [3] and Contagio [5] datasets.

For the analysis of malware we have chosen the Virustotal’s service [14]. Virus-

Total’s analysis is based on 55 anti-malware tools, but we will consider only results

of the 9 most famous and widespread detection engines. As in the work of Vadrevu

et al. [29] these anti-malware tools are: Avast, AVG, F-Secure, Kaspersky, McAfee,

Microsoft, Sophos, Symantec, TrendMicro.

Then we have 9 detection tools and, as seen in the section 4.3.1, 11 obfuscation

techniques implemented by our framework. In the next sections we will show general

results, a temporal comparison between the two category seen above and a single

anti-malware evaluation.

4.4.1 General results

First of all to represent our results we will use box plots. It’s represented starting

from 5 numbers, the minimum, the first quartile, the median, the third quartile and

33

the maximum. The colored box has as lower limit the first quartile Q1 and as upper

limit the third quartile Q3. The 50% of the results are contained between these two

values. The red line is the median value. The dashed lines represent the whiskers,

one connect Q1 to the minimum value (representing 25% of the results) and the other

the Q3 to the maximum (representing the remaining 25% of the results). The red

crosses, instead, show the presence of some anomaly values because they fall outside

the most part of the observed values. Finally the little star represent the average

value. On the abscissa axis we have the obfuscation technique implemented on the

malware, instead on the ordinate one the detection rate (%).

Now we can start describing Fig. 4.6 related to the results obtained obfuscating

malware previous to 2013.

• Normal: for the not obfuscated malware we can see that 75% of the results

have a detection rate higher than 90%, the remaining 25% is contained between

the 78% and the 90%. In particular the median is on the 100% value then we

can conclude that at least the half of the time anti-malware engines detect all

the not-obfuscated malware. In general we can say that is not a bad result for

the anti-malware tools but however for 25% of tests we have a value lower than

90%, a little bit worrying because are malware of more than three years ago.

• Repacking, Resign, Control Flow, Reorder Member: as showed by the

Fig. 4.6 for these techniques we have very similar results, change of a few per-

centage points. Knowing that the repacking technique is the simplest we can

conclude that the other three techniques don’t affect in improving the obfusca-

tion and in decreasing the detection rate. The half of the tests have a detection

rate almost greater than the 80%, then we can consider these techniques not

very effective.

34

Figure 4.6: Average detection rate for the obfuscated malware previous to 2013 (Ex-
cluded) (C.F. = Control Flow, R.M. = Reorder Member)

35

• Renaming: as showed in Fig. 4.6 this is the first technique that allows to

decrease the median value. Before this technique we had that only a 25% of the

tests had a detection rate lower than the 65%, with renaming technique half of

the tests have a value lower than that.

• Renaming All, C.F. + R.M. + Renaming (all): for these two techniques

we have very similar results, they change only of a few percentage points. Then

we can conclude that the control flow and the reorder member techniques don’t

affect in improving the obfuscation and in decreasing the detection rate. Seeing

median values we can notice that with renaming all technique increase of a 25%

the number of tests that has a detection rate lower than 55%. Moreover these

techniques are the first that haven’t a test with a detection rate greater than

the 90%.

• String Encryption, C.F. + R.M. + String Encryption: as for the other

cases for these two techniques we have very similar results, they change only

of a few percentage points. Then we can conclude that the control flow and

the reorder member techniques don’t affect in improving the obfuscation and

in decreasing the detection rate. These techniques have the bigger dispersion

of values, in fact there are values form the 0 to the 100%. As for the renaming

all techniques half of the tests have a detection rate lower than 55%.

• All: this combination of techniques is the most effective. We have that 75% of

the tests have a detection rate lower than 45% and the remaining 25% doesn’t

exceed the 65%. Considering that this technique is applied on malware pre-

vious to 2013 we can conclude that anti-malware tools should improve their

capabilities.

Instead in Fig. 4.7 we have the results obtained obfuscating malware sub-

sequent to 2013 (included). About it we can say:

36

Figure 4.7: Average detection rate for the obfuscated malware subsequent to 2013
(included)(C.F. = Control Flow, R.M. = Reorder Member)

37

• Normal: for the not obfuscated malware we have that 75% of the tests have a

detection rate lower than the 80% but how we can see from the median a 25%

of them are close to that threshold. However considering that these malware

have not been obfuscated we can conclude that it’s a very negative result for

the anti-malware tools.

• Repacking, Resign: as showed by the Fig. 4.7 for these techniques we have

very similar results, change only few percentage points. Knowing that the

repacking technique is the simplest one we can conclude that resign doesn’t

affect in improving the obfuscation and in decreasing the detection rate. Using

these techniques we have that 75% of the tests have a detection rate lower

than 65% with a 25% of them under the 50%. Then, considering that they are

the simplest techniques compared to the other, we can conclude that they are

effective.

• Control Flow, Reorder Member, C.F. + R.M.: also in this case for these

techniques we have very similar results, change only few percentage points. As

we can see their combination doesn’t decrease the detection rate. Seeing the

medians we can notice that 25% of the tests have a detection rate concentrated

around the 55% and another 50% is under that value.

• Renaming: as showed in Fig. 4.6 this technique allows to decrease the median

value. Before this technique we had that half of the tests had a detection rate

under the 55%, with this technique the detection rate for half of the tests drops

to 45%.

• Renaming All, C.F. + R.M. + Renaming (all): for these two techniques

we have very similar results, they change only of a few percentage points. Then

we can conclude that the control flow and the reorder member techniques don’t

affect in improving the obfuscation and in decreasing the detection rate. Seeing

38

median values we can notice that with renaming all technique increase of a 25%

the number of tests that has a detection rate lower than 35%. Moreover the

75% of the tests have a detection rate under the 45%, a great result for the

obfuscated malware.

• String Encryption, C.F. + R.M. + String Encryption: as for the other

cases for these two techniques we have very similar results, they change only

of a few percentage points. Then we can conclude that the control flow and

the reorder member techniques don’t affect in improving the obfuscation and

in decreasing the detection rate. We have very similar results to the renaming

all ones, are only lower the average values.

• All: also in this case this combination of techniques is the most effective. We

have that 75% of the tests have a detection rate lower than 35% and the 50%

of them lower than 25%. The anti-malware tools seem to be not sufficient to

detect malware obfuscated with this technique.

Then regarding the first part of experiments we have seen that, despite we have

obfuscated malware belonging to years previous to 2013, techniques like renaming and

string encryption still obtain important drops in the detection rate. In the second

part of experiments the situation becomes more critical for the anti-malware engines.

In fact even simple techniques like repacking reach interesting drops in the detection.

In both these categories of experiments we have noticed also that resign, control flow

and reorder member techniques used in combination with other ones don’t affect in

improving the obfuscation and in decreasing the detection rate.

Before making in the next subsection a temporal comparison between these results

and the ones obtained in the work of Maiorca et al. [23] we want to show other

important results. In detail, we asked ourselves for every obfuscation technique how

many malware succeed to avoid the detection. To avoid the detection we mean how

39

many malware are not detected by any of the 9 anti-malware tools. Considering that

the 9 engines that we have chosen are the most famous and used, if an obfuscated

malware could evade them then probably we could conclude that no other tool should

detect it. A very important result for obfuscation techniques. We can see in the Table

4.1 our results.

Obfuscation Techniques Malware previous 2013 Malware subsequent 2012
Normal 0% 0,8%
Repacking 0% 2,4%
Resign 0% 2,4%
Reorder Member 0,3% 2,4%
Control Flow 0,3% 2,4%
R.M.+C.F. 0,3% 2,4%
Renaming 0,3% 3,2%
Renaming All 0,6% 5,2%
R.M.+C.F.+Renam. 0,6% 5,2%
String Encryp. 0,6% 9,2%
R.M.+C.F.+S. Encr. 0,6% 9,6%
All 9,5% 23,2%

Table 4.1: Percentage of malware that evade all the 9 anti-malware tools

As we notice from the Table 4.1 the column related to malware previous 2013,

excluded the percentage for the combination of all obfuscation techniques, shows suf-

ficient results. Instead, almost 10% of malware of more than 3 years ago succeed to

evade all the most famous anti-malware tools is very worrying. And the situation

precipitates in case of malware subsequent to 2012, even almost 1% of the not obfus-

cated malware aren’t detected by any detection tool. Moreover in this case for the

combination of all obfuscation techniques we arrive to have that almost a quarter of

the malware analysed evade the detection of all the 9 engines used. Then we can

conclude that these tools need to improve their capabilities.

40

4.4.2 Temporal comparison

In this subsection we want to make a temporal comparison on the results obtained,

underlining how the obfuscation techniques effectiveness is changed obfuscating mal-

ware of different years. We can comparing our results also with the work of Maiorca

et al. [23] (2014) Fig. 4.8.

Figure 4.8: Detection rate for obfuscated APK [23]

Also in their work, published in 2014, were obfuscated malware belonging to the

years previous to 2013, but due to differences in the datasets and anti-malware tools

used we cannot make a direct comparison. However we can use their results to check

if in general almost two years later the effectiveness of the obfuscation techniques re-

mained the same. In particular we can compare detection rate values of the original

malware, the string encryption and the trivial + string encryption that is equivalent

to our combination of all techniques. So comparing Fig. 4.8 and Fig. 4.6 we can see

how in both the median value for the original malware is on the 100% then at least

50% of the experiments are detected by all the anti-malware used, instead in our

results the remaining 50% obtained lower values but however, despite the differences

in the datasets and in the detection tools, we can assert that the detection rate for

41

the original malware remained the same. Approximatively, also for the string encryp-

tion technique we have a similar situation, in our work we have a median value of

almost 60% instead in Fig. 4.8 is slightly higher than the 60%. So in both cases there

are a 50% of results with a detection rate lower than 60% and the other 50% with

a detection rate higher. A substantial difference can be seen comparing our results

for the combination of all techniques with their equivalent Tri.+S.Enc.. In fact our

results show a bigger decline in the detection rate for this technique. So from this

comparison we can conclude that in the last two year the detection capabilities of the

anti-malware tools remained the same, without the hint of a minimal improvement.

Instead comparing Fig. 4.6 and Fig. 4.7 we can see how the same obfuscation tech-

niques applied on more recent malware cause very high drops in the detection rate.

In fact also repacking technique, the simplest one, that on malware previous to 2013

not achieve excellent results, applied on malware subsequent to 2013 reach important

drops in the detection rate. If in Fig. 4.6 we had that 75% of the results have a

detection rate higher than the 65%, in the case of the Fig. 4.7 we have that 75%

of the results have a detection rate lower of that percentage. Also for techniques

like control flow, reorder member and their combination we have that if applied on

the more recent category of malware induce substantial drops in the detection rate.

These techniques applied on malware belonging to years previous to 2013 could be

considered as ineffective, instead if applied on malware subsequent to 2012 become

effective. In the case of renaming and string encryption techniques in Fig. 4.6 we can

see that half of the results had a detection rate higher to the 55%, instead in Fig. 4.7

75% of the results have a detection rate lower than that value. The combination of all

the techniques was very effective yet on malware previous to 2013 then on the most

recent malware it may have only improved its capabilities. In fact as we can see in

the Fig. 4.6 only 25% of the results had a detection rate lower than 25% instead in

Fig. 4.7 even the 50% of the results have a detection rate lower than that value.

42

Then from the considerations above we can say that these obfuscation techniques

applied on recent malware are very effective and, as consequence, the anti-malware

tools in the last years haven’t improved their capabilities in detection. Also simplest

techniques like repacking, that not require code modifications, can reach substantial

drops in the detection rate. And this is an important consideration because malware

authors have to evaluate the balance between effectiveness of the technique and the

amount of work that it requires. In Fig. 4.9 are summarized the average detection

rate for every obfuscation technique both for the category of malware belonging to

years previous to 2013 and for the one with malware belonging to years subsequent

to 2012. Seeing this figure we can notice that, excluding the not obfuscated malware

and the combination of all techniques, every obfuscation strategy had an average de-

tection rate higher than 55% for the malware previous to 2013 instead for latest years

malware average values become lower than the 55%. Also this difference shows how

much effectiveness these techniques have if applied on the latest years malware.

4.4.3 Evaluation on single anti-malware engine

In this subsection we want to compare the average detection rate of each anti-malware

tool for some of the obfuscation techniques implemented with our framework. In the

Fig. 4.10 we compare the average detection rate for the not obfuscated malware.

We can see how for the not obfuscated malware previous to 2013 only three anti-

malware tools obtain not sufficient results (under the 90%), instead for the latest

malware become five. These detection engines have difficulties also in the detection

of the original malware and probably in the last years they haven’t updated their

malware database. In Fig. 4.11 we can notice how repacking was an effective technique

only against four anti-malware tools when applied on malware previous to 2013,

instead when applied on malware belonging to the last years causes important drops in

43

Figure 4.9: Average detection rate for obfuscated malware

44

Figure 4.10: Average detection rate for not obfuscated malware

detection rate (considering their simplicity of deployment) for other two anti-malware

solutions.

The Fig. 4.12 represents the average detection rate for the renaming all technique.

As we can see it’s the first technique that shows their effectiveness also on the malware

previous to 2013. In fact it causes a decline in the detection rate also in anti-malware

tools like Kaspersky, Avast and Sophos that showed good capabilities. This technique

improves its effectiveness when applied on more recent malware in fact 7 engines seem

to be not able to contrast it.

Also for the string encryption technique, as showed in Fig. 4.13, we have a sit-

uation similar to that above. In the category of malware previous to 2013 half of

the detection tools seems to be effective against this technique, instead in the other

category of malware only two have an average detection rate higher than the 50%.

Finally in Fig. 4.14 we can see the average detection rate for the combination of all the

obfuscation techniques implemented by our framework. This technique is the most

45

Figure 4.11: Average detection rate for malware obfuscated with repacking technique

Figure 4.12: Average detection rate for malware obfuscated with rename all technique

46

Figure 4.13: Average detection rate for malware obfuscated with string encryption
technique

Figure 4.14: Average detection rate for malware obfuscated with with the combination
of all the techniques

47

effective on both the malware previous to 2013 and on the ones subsequent to 2012.

In fact excluded AVG and F-Secure all the other detection engines are easily evaded.

However Sophos and Kaspersky in the last years seem to improve their detection

capabilities against this technique. Then we conclude with the Table 4.2 in which

we report the minimum technique able to evade the detection of each anti-malware

tool. We consider able to avoid the detection a technique that induces an average

detection rate lower than the 50%. The order to consider the minimum technique is

the following: normal, repack, resign, control flow, reorder member, C.F.+R.M., re-

naming, renaming all, C.F.+R.M.+renaming, string encryption, C.F.+R.M.+String

Encryption, combination of all.

Anti-malware Tools Malware previous 2013 Malware subsequent 2012
Avast Combination of all Renaming all
AVG None Combination of all
F-Secure None None
Kaspersky Combination of all String Encryption
McAfee Renaming Repacking
Microsoft Renaming Normal
Sophos Renaming all Renaming all
Symantec Control Flow Repacking
TrendMicro Repacking Normal

Table 4.2: Minimum techniques able to evade the detection of each anti-malware
tools.

48

Chapter 5

A methodology for analysing

obfuscated malware

As seen before anti-malware tools based on static analysis have an important role

in the mobile malware detection. In fact static analysis is light, fast and, despite

the poor results against obfuscation techniques, the only that can be used directly

on mobile devices. Moreover, as showed in Petsas et al. [24] work, also dynamic

analysis can be easily evaded if the malware understand that is running in an emulated

environment. For these reasons in the last years have been introduced a large number

of tools related to static analysis. These tools have the goal to reverse engineering,

disassemble, decompile and allow the user to manually analyse the malware. Among

these, in our work, we have chosen Androguard [2]. So in the next section we will

introduce Androguard and its features. Then, after explaining its potentialities, we

will show a methodology for analysing obfuscated malware.

5.1 Androguard

Androguard 2.0 is a python based tool that can be used on Linux, Windows and

OSX. It’s used to reverse engineering Android’s applications allowing the user to

49

”manually” implement static analysis. It has a lot of components, each with different

features and goals:

• androlyze.py: with this component the user can launch the Androguard in-

teractive shell. Through this shell it’s possible to give in input to Androguard

a file.apk or a file.dex. Then the user can start firing away commands to anal-

yse and gather useful information about the file. For example he can query

Androguard to obtain the list of the permissions, activities, receivers, classes

and strings used in the application analysed. This script allows also to decom-

pile and visualize the source code of a specific class selected by the user. The

possibility to obtain a list containing the permissions used by each class of the

application is no less important. Finally, due to the frequent use in malware

of native code, reflection and dynamic code loading, androlyze.py provides the

possibility to show if and where these techniques are used in the application.

• androsim.py: this script has the function of comparing two file.apk or file.dex.

After the execution, it returns how many methods are identical, similar, new,

deleted in the two applications and a percentage of similarities.

• androaxml.py: with this script the user can convert Android’s binary XML

(i.e. AndroidManifest.xml file) into a human readable version.

• androdd.py: this script allows to save a graphical output of all components of

the analysed application.

• apkviewer.py: using this component the user can export a file containing the

calls graph of the analysed application. Then this file can be explored with

specific graph editor programs, for example yEd [15].

50

• androapkinfo.py: with this script the user can retrieve a lot of generic infor-

mations on the application. For example the list of all the files belonging to the

file.apk, the permissions used, etc..

• androdiff.py: this tool is similar to androsim.py, in fact has the goal to com-

pare two file.apk and retrieve detailed informations on their differences and

similarities. The only difference about these two tools is that androdiff.py re-

turns in detail elements by elements how many differences and similarities there

are and where are located.

• androrisk.py: this script is used to calculate how much an application can be

risky. Relying on permissions and features implemented in the application the

script returns a risk index.

• androxgmml.py: this script takes in input an application and allows to save a

file.xgmml. Using a program to explore networks like Cytoscape [6], the user

can visualize the control flow graph of the application.

5.2 Androguard vs. obfuscation techniques

As seen in the previous section Androguard [2] has a lot of useful features to reverse

engineering and analyse applications/malware. Some of these features can be used to

find obfuscation techniques implemented and try to reveal what they hide. However

we still want to remind that obfuscation techniques were created for benevolent pur-

poses (avoid plagiarism) so only their presence doesn’t allow us to understand if the

analysed application is a malware or not. Then once the user has found if and where

obfuscation techniques have been implemented he will go to inspect what they hide.

As first step in the next subsections 5.2.1 5.2.2 5.2.3 5.2.4 we will show how find

some of the most common obfuscation techniques using Androguard. Then in the

51

section 5.3 we will show a concrete example of methodology for analysing obfuscated

malware.

5.2.1 Identifier renaming

As showed in the section 3.2.2 this obfuscation technique consists in renaming classes,

methods and field identifiers in the code with alphabet letters or strings composed by

sequences of i. Using Androguard we can identify on which classes this technique has

been used. So, in case of a malicious application, we can focus the attention on these

classes because if they have been obfuscated probably they contain the malicious

code. In detail using the script androlyze.py we can execute the Androguard ’s shell

and with the command AnalyzeAPK choose what application analyse. At this point

simply with the method get classes names() we can obtain the list of the classes used

in the application. As showed in the Fig. 5.6 we can easily see what are the obfuscated

classes.

5.2.2 Reflection

As seen in the section 3.2.2 this obfuscation technique consists in replacing each in-

vocation instruction with other bytecode instructions that use reflective calls to make

the same operations of the original invocation. Using Androguard is easy to find if

and where this obfuscation technique has been implemented in the analysed appli-

cation. As in the subsection 5.2.1 using the script androlyze.py we can execute the

Androguard’s shell and with the command AnalyzeAPK choosing which application

to analyse. Then with the method is reflection code() we can query Androguard to

know if reflection has been used in the code. If the answer is true we can launch the

function show ReflectionCode() to obtain the list of the methods and classes in which

reflection has been used. So, once the obfuscated classes have been localized we can

focus the analysis on them because probably they contain the malicious code.

52

Figure 5.1: Searching obfuscated classes in Android Rootsmart malware with Andro-
guard

5.2.3 Code Reordering

As explained in the section 3.2.2 this obfuscation technique consists in modify the

order of the instructions. Usually the ”goto” is inserted in the code to maintain the

original sequence of instruction at runtime. To detect this obfuscation technique we

can analyse the control flow graph of an application to see if, how much and where the

goto instructions are used. To explore the control flow graph Androguard provides a

useful script, androxgmml.py section 5.1. This script takes in input an application

and allows to save a file.xgmml. This file contains all the control flow graphs belonging

to the application. Using a program for exploring networks like Cytoscape [6] we can

search if and where in these graphs are frequently used the ”goto” instructions. In

Fig. 5.2 a detail of the file.xgmml visualized with Cytoscope.

53

Figure 5.2: Using Cytoscope to visualize the control flow graphs of Basebridge mal-
ware

5.2.4 String Encryption

As said in the section 3.2.2 this obfuscation technique consists in encrypting the

strings of an application using an algorithm based on XOR operation. Using Andro-

guard we can easily recover the original string if we have both the obfuscated malware

and the original one. In particular we can use the script androdiff.py that, as we have

showed in the section 5.1, allows to compare two file.apk retrieving elements by ele-

ments how many differences and similarities there are and where are located. So, also

in case of string encryption, Androguard allows us to visualize the encrypted strings

in the obfuscated application and the related original ones of the old application.

In this way, as showed in Fig. 5.3, we can find where this obfuscation technique is

implemented and retrieve the original string version.

54

Figure 5.3: Searching obfuscated strings in a Basebridge malware with Androguard

5.3 Practical use of Androguard for analyse obfus-

cated malware

After introducing Androguard and its features, in this section we want to provide a

practical methodology for analyse obfuscated malware. In particular this section will

be divided in two parts. In the first we will show how to implement static analysis

on an obfuscated malware using Androguard. In the second we will have the same

purpose but this time we will have also similar/not obfuscated malware. As seen

in the subsection 5.2.4 having available the original malware allows to the analyser

to retrieve more information through Androguard. For both sections we will use

malware belonging to the Opfake family and the latest version of Androguard (2.0).

The Opfake malware is taken from the Drebin dataset [10].

55

5.3.1 Implementing static analysis without the original ver-

sion of the malware

Before starting the analysis of the malware through Androguard, we have to do a

premise. Despite we know that this application is a malware, we assume hereafter

that will be the analysis to decide if the application is malicious or not.

The first step is to launch the Androguard interactive shell with the command python

androlyze.py -s. Then we provide in input to Androguard the Opfake’s file.apk with

the command a,d,dx = AnalyzeAPK(opfake.apk”, decompiler = ”dad”). With this

function we select the application to be analysed and the decompiler that will be used

by Androguard. a,d,dx are used to invoke on specific elements the functions provided

by Androguard. In detail we invoke the operations on a to access information on the

apk elements. Functions are invoked on d to access information on Dalvik Virtual

Machine elements and on dx to obtain information on the analysis elements. At

this point we can start to retrieve information using the interactive shell. The first

information that we want to ask is the package name, this is possible using the

command a.get package(). As we can see in Fig. 5.4 the answer is fhvm.vnnej then

probably the package name was obfuscated.

Figure 5.4: Output of Androguard’s shell for the a.get package() request on Opfake’s
family malware

Then another important information is related to permissions requested by the

application. Some permissions are very common in malware rather than other, a

big part of the research has studied and has implemented detection tools based on

several features including permissions [20] [17]. Moreover if we knew the application

56

genre we will already reach to a conclusion. For example if the application was an

offline tool/game but it demanded the permission to send SMS, we will suspect that

it hides malicious behaviours. In the case of our malware belonging to Opfake fam-

ily some of the dangerous permissions requested are ACCESS NETWORK STATE,

SEND SMS, ACCESS FINE LOCATION, ACCESS COARSE LOCATION and IN-

STALL PACKAGES. In fact the first allows to the application to access information

about the networks, the subsequent to send SMS, the subsequent two to obtain in-

formation on the device position and the last to install packages. We can see the

complete list of the permissions outputted by Androguard in Fig. 5.5. This list was

obtained with the function a.get permissions(). Before deepening where these po-

tential dangerous permissions were used, we continue to query Androguard with the

purpose to obtain other interesting information about the application.

Figure 5.5: Output of Androguard’s shell for the a.get permissions() request on Op-
fake’s family malware

Then we can search if was used the identifier renaming technique to re-

name the classes of the application. For this purpose we can use the function

d.get classes names(). In Fig. 5.6 we can see the shell’s output.

Seeing this output we can notice clearly that every application’s class has nonsense

name, probably because have been obfuscated with random words. Usually if only

57

Figure 5.6: Output of Androguard’s shell for the d.get classes names() request on
Opfake’s family malware

some classes had been obfuscated we will focus the analysis on them. Because logically

the malicious code would be content in the obfuscated classes. At this point we

can try to narrow down to few classes using other features of Androguard. For

example we can ask to the interactive shell if and where native code, reflection and/or

dynamic code loading techniques were used in the application. We have already

deepened native code and reflection in the sections 3.2.2 and 3.2.2 respectively.

Instead the third technique consists in loading code dynamically at runtime. So to

know if these techniques are implemented in the application we launch the following

functions is native code(dx), is reflection code(dx) and is dyn code(dx). We obtain

the output in Fig. 5.7.

58

Figure 5.7: Output of Androguard’s shell for is native code(dx), is dyn code(dx) and
is reflection code(dx) requests on Opfake’s family malware

From the output we can see that these three techniques were not used. Then

the way left to exclude some classes by the analysis is to inspect only those

that need dangerous permissions. We can achieve this purpose with the function

show Permissions(dx). It returns for each permission in which classes was used.

From this output we already can obtain the specific methods that require those

permissions, however for illustration purposes we will use Androguard to obtain the

source code of the classes that we want to analyse. Then now we can start the

research from the class that use the permission SEND SMS, fhvm/vnnej/contributed.

Using the command d.get class(’Lfhvm/vnnej/contributed;’).source() Androguard

allows to see the source code of this class. As we can notice in Fig. 5.8 and Fig. 5.9

we found in this class methods to send SMS and another suspicious method to obtain

the IMSI code of the user. Then in addition to send sms this application try to

obtain sensitive user information, suspects begin to increase. To be sure we will go

forward in the analysis.

Following the reasoning above as next step we will inspect the class that use the

permission ACCESS FINE LOCATION. As expected we found methods to access the

cell location of the device. But, in addition to this, also methods to obtain the device

id and phone number, as showed in Fig. 5.10 and Fig. 5.11.

Also in this case, not knowing what type of application is, we are more concerned

about the theft of private user and device data rather than the sms sending or the

59

Figure 5.8: Output of Androguard’s shell for
d.get class(’Lfhvm/vnnej/contributed;’).source() request on Opfake’s family malware

Figure 5.9: Output of Androguard’s shell for
d.get class(’Lfhvm/vnnej/contributed;’).source() request on Opfake’s family malware

location access. As final proof we can go to inspect the source code of a class that

require the permission INTERNET, in particular Lbnjk/jjk3e/contributed. In this

class we can find an url to which the application open a connection. Despite this url

was encrypted, using the same decryption routine implemented in the application to

retrieve the original string at runtime, we can reconstruct it. The encrypted url can be

seen in Fig. 5.12 and its counterpart decrypted is http//m-001.net/i/. Searching on

Virustotal we discover that it is a malicious site. Then due to the private information

60

Figure 5.10: Output of Androguard’s shell for d.get class(’Lbnjk/jjk3e/a;’).source()
request on Opfake’s family malware

Figure 5.11: Output of Androguard’s shell for d.get class(’Lbnjk/jjk3e/a;’).source()
request on Opfake’s family malware

theft and the connection to a malicious site, we can conclude that the analysed

application is a malware.

With this practical example we showed potentialities and the effectiveness of An-

droguard in reverse engineering and analysing an application. This tool allows to

61

Figure 5.12: Encrypted url contained in the analysed Opfake’s family malware

obtain in a simplified manner a lot of information useful for the analysis that other-

wise would have been difficult to retrieve.

5.3.2 Implementing static analysis having the original ver-

sion of the malware

In this section we will proceed to analyse through Androguard an obfuscated mal-

ware belonging to the Opfake’s family, but in this case we will have also similar/not

obfuscated malware to help us in the analysis. Usually, malware’s authors implement

a more obfuscated version of their malicious applications when their original ones

become easily detected by analysis tools. Then the first assumption is that we want

to inspect an application very difficult to analyse due to the obfuscation techniques.

The second one is that we have a ”database” of malware with which making a com-

parison to obtain more information. As in the previous section despite we know that

this application is a malware, we assume hereafter that will be the analysis to decide

if the application is malicious or not.

Also to analyse this application we have to implement the same steps seen in the

previous section. To avoid being repetitive we report directly the results. In Fig. 5.13

62

we can see the package name, in Fig. 5.14 permissions requested by the application

and in Fig. 5.15 the name of classes.

Figure 5.13: Output of Androguard’s shell for the a.get package() request on Opfake’s
family malware

Figure 5.14: Output of Androguard’s shell for the a.get permissions() request on
Opfake’s family malware

As we can see from the last figure the identifier renaming technique has been

used on this application. If we try to inspect the source code of one class using

the Androguard’s function d.get class(’La/a/a/IIIiiiiiII;’).source() we can notice that

also the string encryption technique has been applied. So the source code of the

application is very difficult to analyse, as we can see in Fig. 5.16. Then to simplify

the analysis we try to use androsim.py, showed in the section 5.1, to search if we

have a not obfuscated version of the application in our ”database”. Using this tool

we found a very similar one Fig. 5.17.

Now to understand if this other application is the related not obfuscated version

we will use androdiff.py, Androguard’s component seen in the section 5.1. From the

63

Figure 5.15: Output of Androguard’s shell for the d.get classes names() request on
Opfake’s family malware

Figure 5.16: Part of the output of Androguard’s
d.get class(’La/a/a/IIIiiiiiII;’).source() request on Opfake’s family malware

androdiff.py output we can see a lot of matches between the two applications. Then

we can conclude that the analysed application is the obfuscated version of the one

64

Figure 5.17: Output of Androguard’s androsim.py

in our ”database”. Using this tool we can recover the original names of classes and

strings as we can see in the Fig. 5.18. Replacing decrypted strings of the Fig. 5.18 in

the class code of Fig. 5.16 we discover that the analysed application sends out sensitive

user and device information. Then we can conclude that the analysed application is

a malware.

Figure 5.18: Output of Androguard’s androdiff.py

With this practical example we confirmed the effectiveness of the static analysis

implemented through Androguard. Moreover we showed how this tool simplifies even

more the analysis when we own a not obfuscated version of the analysed application.

65

Chapter 6

Conclusion

In this work we have introduced obfuscation techniques, born to avoid the plagia-

rism of Android applications. Instead, in the last years, they play and have played a

very important role to avoid the detection of the anti-malware engines. In fact the

static analysis is the only analysis that can be implemented on mobile devices, due to

their low hardware capabilities. This type of analysis disassembles and decompiles re-

sources and files of the application studying each component, without executing it. In

particular detection tools compare files’ hashes (signatures) of the analysed applica-

tion to a database of known malicious samples. They also inspect the application com-

ponents to find signatures of malicious code. Then for the static analysis tools is very

difficult compare the obfuscated application/code with the samples in their database.

The past literature has deepened this topic testing anti-malware capabilities against

obfuscation techniques. However also more recent studies [27] [23] are of almost two

years ago and evaluate the effectiveness of the obfuscation strategies only on mal-

ware previous to 2013. Then in our work we showed how create, with easy available

tools, a framework with the purpose to implement common obfuscation techniques

and test their effectiveness in avoid the detection. To test these obfuscated malware

we have used the 9 more important and widespread anti-malware tools (Avast, AVG,

66

F-Secure, Kaspersky, McAfee, Microsoft, Sophos, Symantec, TrendMicro). Obfuscat-

ing and testing malware previous to 2013, taken from the Contagio [5] and Drebin [10]

datasets, we noticed that the simplest techniques are no longer effective to avoid the

detection. Instead, the more complex ones, despite have been applied on malware of

more than 4 years ago, are very effective against today’s anti-malware tools. Similar

results were obtained also by the work cited above [23] then we can conclude that

the detection engines haven’t improved their capabilities in last years. Even almost

the 10% of malware obfuscated with the more complex technique aren’t detected by

any of the 9 anti-malware tools. A more critical situation can be seen from results

that we obtained obfuscating and testing malware belonging to years subsequent to

2012, taken from the Andrototal [3] and Contagio [5] datasets. In fact in this case

also simple techniques like repacking, that not require code level modifications, reach

interesting drops in the detection rate. Moreover almost all obfuscation strategies

implemented on malware previous to 2013 had average detection rates higher than

55%, instead for latest years malware those values become all lower than the 55%.

Even 5 anti-malware tools not obtained sufficient results in the detection of the not

obfuscated malware belonging to years subsequent to 2012. In this category of mal-

ware the percentage of them that were not detected by any detection engines when

was used the more complex technique become 23,2%. Moreover, always considering

the category of the more recent malware, deepening the experiments on the single

anti-malware tool we discover that 2 of the 9 engines can be evaded (detection rate

lower than 50%) by the not obfuscated malware and other 2 using the repacking

technique. Then anti-malware tools show a lot of weaknesses and absolutely must

improve their capabilities in detection. So that the effective obfuscation techniques

could become too difficult to implement, discouraging the malwares authors.

In the second part of our work we introduced Androguard [2], a python based tool

able to reverse engineering Android’s applications allowing the user to ”manually”

67

implement static analysis. We showed how it can be used to analyse obfuscated mal-

ware. Through practical examples we proved how to obtain in a simplified manner a

lot of information useful for the analysis that otherwise would have been difficult to

retrieve.

6.1 Future Work

First of all it might be useful to increment the number of malware analysed, in

particular for the category of the more recent ones. Unfortunately we didn’t have the

possibility to use the same dataset of Maiorca et al. [23] so we couldn’t do a direct

comparison with our work. So, retrieving the same dataset, would be interesting to

see if in the last two years anti-malware tools have improved their capabilities. Seeing

the results obtained from our work would seem not.

We have considered the 9 most popular and widespread anti-malware tools, however

some are more used than others. Then, starting from specific values of the diffusion

of each detection tool, a possible extension to our work could be to evaluate for each

engine how much its percentage of detection rate influences the malware widespread.

Logically a detection rate of 10% for a tool used by few persons it’s different compared

to a rate of 40% belonging to a tool used by one million people. We could apply the

same reasoning dividing the malware in families and testing for each family which

anti-malware tool (of which we know the number of users) is evaded. In this way we

could know what are the most dangerous malware families.

68

Bibliography

[1] Allatori,http://www.allatori.com/.

[2] Androguard, https://github.com/androguard/androguard.

[3] Andrototal, https://andrototal.org.

[4] Bangcle, http://www.bangcle.com/.

[5] Contagio mobile, http://contagiodump.blogspot.it.

[6] Cytoscape, http://www.cytoscape.org/.

[7] Dasho, https://www.preemptive.com/solutions/android-obfuscation.

[8] Dexguard, https://www.guardsquare.com/dexguard.

[9] Dexprotector, https://dexprotector.com/.

[10] Drebin dataset, http://user.informatik.uni-goettingen.de/ darp/drebin/.

[11] One platform foundation, http://onepf.org/.

[12] Proguard, http://developer.android.com/tools/help/proguard.html.

[13] Stringer, https://jfxstore.com/stringer/.

[14] Virustotal, https://www.virustotal.com/.

[15] yed, https://www.yworks.com/products/yed.

[16] Zipalign, http://developer.android.com/tools/help/zipalign.html.

[17] Yousra Aafer, Wenliang Du, and Heng Yin. Droidapiminer: Mining api-level
features for robust malware detection in android. 6 2014.

[18] Ange Albertini. When aes(*)=*. 2014.

[19] Axelle Apvrille. Playing hide and seek with dalvik executables. Hacktivity,
Budapest, Hungary, 2013.

[20] Daniel Arp, Michael Spreitzenbarth, Hugo Gascon, and Konrad Rieck. Drebin:
Effective and explainable detection of android malware in your pocket, 2014.

69

[21] Ruchna Nigam Axelle Apvrille. Obfuscation in android malware, and how to
fight back. Virus Bulletin.

[22] Parvez Faruki, Vijay Laxmi, Ammar Bharmal, M.S. Gaur, and Vijay Ganmoor.
Androsimilar: Robust signature for detecting variants of android malware. Jour-
nal of Information Security and Applications, 22(Complete):66–80, 2015.

[23] Davide Maiorca, Davide Ariu, Igino Corona, Marco Aresu, and Giorgio Giacinto.
Stealth attacks: An extended insight into the obfuscation effects on android
malware. Computers & Security, 51:16–31, 2015.

[24] Thanasis Petsas, Giannis Voyatzis, Elias Athanasopoulos, Michalis Polychron-
akis, and Sotiris Ioannidis. Rage against the virtual machine: hindering dynamic
analysis of android malware. In Proceedings of the Seventh European Workshop
on System Security, page 5. ACM, 2014.

[25] Mykola Protsenko and Tim Muller. Pandora applies non-deterministic obfusca-
tion randomly to android. In Malicious and Unwanted Software:” The Amer-
icas”(MALWARE), 2013 8th International Conference on, pages 59–67. IEEE,
2013.

[26] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. Droidchameleon: evaluating
android anti-malware against transformation attacks. In Proceedings of the 8th
ACM SIGSAC symposium on Information, computer and communications secu-
rity, pages 329–334. ACM, 2013.

[27] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. Catch me if you can: Evaluating
android anti-malware against transformation attacks. Information Forensics and
Security, IEEE Transactions on, 9(1):99–108, 2014.

[28] Ashu Sharma and Sanjay Kumar Sahay. Evolution and detection of polymorphic
and metamorphic malwares: A survey. CoRR, abs/1406.7061, 2014.

[29] Phani Vadrevu, Babak Rahbarinia, Roberto Perdisci, Kang Li, and Manos An-
tonakakis. Computer Security – ESORICS 2013: 18th European Symposium on
Research in Computer Security, Egham, UK, September 9-13, 2013. Proceedings,
chapter Measuring and Detecting Malware Downloads in Live Network Traffic,
pages 556–573. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[30] Min Zheng, Patrick PC Lee, and John CS Lui. Adam: an automatic and extensi-
ble platform to stress test android anti-virus systems. In Detection of Intrusions
and Malware, and Vulnerability Assessment, pages 82–101. Springer, 2013.

70

