
An Architecture for Automatic Scaling of
Replicated Services

Leonardo Aniello, Silvia Bonomi, Federico Lombardi, Alessandro Zelli, and
Roberto Baldoni

Cyber Intelligence and Information Security Research Center and
Department of Computer, Control, and Management Engineering “Antonio Ruberti”

University of Rome “La Sapienza” - Via Ariosto 25, 00185, Rome, Italy
{last name}@dis.uniroma1.it

Abstract. Replicated services that allow to scale dynamically can adapt
to requests load. Choosing the right number of replicas is fundamental
to avoid performance worsening when input spikes occur and to save re-
sources when the load is low. Current mechanisms for automatic scaling
are mostly based on fixed thresholds on CPU and memory usage, which
are not sufficiently accurate and often entail late countermeasures. We
propose Make Your Service Elastic (MYSE), an architecture for auto-
matic scaling of generic replicated services based on queuing models for
accurate response time estimation. Requests and service times patterns
are analyzed to learn and predict over time their distribution so as to
allow for early scaling. A novel heuristic is proposed to avoid the flipping
phenomenon. We carried out simulations that show promising results for
what concerns the effectiveness of our approach.

Keywords: automatic scaling; performance modeling; traffic forecasting; QoS
compliance; resource-saving

1 Introduction
While designing a replicated service to deliver target response time for a fixed
workload is easily achievable by properly tuning the number and the specifics of
replicas, it becomes really challenging for highly variable loads. Methods based
on over-provisioning allow to cope with load peaks but entail huge waste of
resources, which translates in to money loss. Nevertheless, under-provisioning
systematically fails in delivering required performance when input spikes oc-
cur. The actual alternative to static provisioning is rendering the service elas-
tic, so that it can adapt to fluctuating workloads by changing the number
of replicas (configuration) on the fly. Such a functionality is called auto scal-
ing. Amazon Web Services (http://aws.amazon.com) and Google App Engine
(https://appengine.google.com) are among the most relevant XaaS providers
offering the possibility to reconfigure at runtime. Both allow to define policies
that trigger a reconfiguration on the basis of the variation of a set of off-the-shelf
and custom metrics, like memory usage and CPU utilization.

This kind of solutions has two main issues. One concerns the difficulty to find
an accurate relationship between the value of monitored metrics and the config-
uration needed to meet latency requirements. Indeed, an effective model should



be employed in order to find the proper relationship between gathered measures
and expected performance. The other regards the timeliness in reacting to load
variations: spotting a problematic situation when it is already occurring brings
temporary Quality of Service (QoS) violations, while reacting late to a load drop
causes the same problems of over-provisioning. The reaction delay also includes
the time required for the new configuration to be ready, which comprises addi-
tional factors like replica activation time and state transfer time.

One additional challenge of designing elastic solutions is the cost of elasticity,
i.e. the cost that the service provider pays to activate/deactivate a replica like,
for example, the bandwidth used to transfer the state from an active replica to
a new one, the energy used to keep replicas running with low utilization and the
tradeoff between buying the infrastructure or just renting it. Usually, such costs
occur each time that the system moves from one configuration to another and
they may grow up if the flipping phenomenon (i.e. a sequence of activation and
deactivation of replicas) is not properly mastered.

We propose a solution aimed at facing these issues. We designed the Make
Your Service Elastic module (MYSE) for the automatic horizontal scaling of a
replicated service. By monitoring input requests patterns and the service times
delivered by the replicated service, the MYSE module learns over time through
neural networks how input load and service times vary, and produces estimations
to enable early decisions about reconfiguration. A queuing model of the repli-
cated service is used to compute the expected response time given the current
configuration (number of replicas) and the distributions of both input requests
and service times. A novel graph-based heuristic called Flipping-reducing Scaling
Heuristic is employed that leverages this model to find the minimum number
of replicas required to achieve the target performance and to reduce as much as
possible the flipping phenomenon.

We carried out simulations by using a real dataset containing the requests
to a website over the time. The results showed high accuracy in input traf-
fic prediction and good effectiveness in taking proper scaling decisions. These
promising outcomes of the MYSE module validation have driven us to start its
real implementation on Amazon Web Services. With reference to the related
work (see Section 2), the novelty of MYSE consists in (i) combining together
traffic forecasting, done through artificial neural networks, and performance es-
timation through queuing models, and (ii) addressing the problem of flipping by
employing the innovative Flipping-reducing Scaling Heuristic.

The rest of the paper is organized as follows: related works are presented
in Section 2; Section 3 describes the MYSE architecture; Section 4 reports the
preliminary results obtained from simulations and Section 5 outlines how the
work is going to continue.

2 Related Work

According to a recent survey [19], there are several works on automatic scaling of
elastic applications in the cloud. This survey proposes the following classification



of the auto-scaling techniques existing in literature, on the basis of the approach
they employ.

– Static, threshold-based policies. The configuration is changed according
to a set of rules, some for scaling out and others for scaling in ([9] [14] [15]
[20]). This is a completely reactive approach that is currently used by most
of the cloud providers.

– Reinforcement learning. It is an automatic decision-making technique to
learn online the performance model of the target system without any a priori
knowledge. Such continuous learning is used to choose the best scaling deci-
sion according to the goals of decreasing response time and saving resources
([3] [10] [26] [30]).

– Queuing theory. The target system is modeled using techniques coming
from the queuing theory with the aim of estimating its performance given
a small set of parameters, like input rate and service time, that can be
monitored at runtime ([30] [31] [32] [36]).

– Control theory. It is used to automate the management of scaling deci-
sions through the employment of a feedback or feed-forward controller mod-
ule whose objective is to meet performance requirements by adjusting the
configuration of the target system ([5] [1] [24] [25] [34]). Feedback controllers
correct their behavior by taking into account the error reported by the target
system through a gain parameter that can be adapted dynamically. Feed-
forward controllers are based on model predictive control (MPC) and aim
at forecasting the future behavior of the system. The relationship between
the input (the workload) and the output (the configuration to adopt) is em-
bedded into the transfer function, which can be implemented in several ways
(i.e., smoothing spline, Kalman filter, Fuzzy model).

– Time-series analysis. It can be used to spot recurring patterns of the
workload over time, in order to forecast future workload so as to come to a
scaling decision early. Several techniques can be used like averaging methods,
regression and neural networks ([6] [7] [8] [13] [16] [17] [18] [21] [27] [29]).

The limitations of an approach based on static, threshold-based rules lies in
its reactive nature: it only takes action after the recognition of a situation that
requires scaling, and during the time needed for the scaling to complete either
the system provides poor performance or resources are wasted. This problem can
be addressed by using time-series analysis in order to forecast how the workload
is likely to change over time so as to enable scaling decisions in advance and
consequently avoid transient periods where the system is not properly configured.

The drawbacks of the techniques based on reinforcement learning are the
excessive length of the training phase before reaching a point where it becomes
effective, and the difficulty to adapt to workloads that change quickly.

Using control theory can actually be a valid choice, but choosing the right
gain parameter is hard. In fact, considering a fixed gain parameter, its tuning
is hard and cannot be adjusted at runtime; on the contrary, using an adaptive
parameter, that is changed according to the workload, is likely to introduce
flipping.



Fig. 1. Integration of MYSE module with target replicated service.

The employment of queuing models to estimate performance can turn out
to be not reliable enough because the hard assumptions it requires could be not
valid in a real scenario. Nevertheless, we chose to model the replicated service
using a queue model because it doesn’t require a long training as reinforcement
learning does instead.

In addition to the works cited in the survey, also others employ a proactive
approach for auto-scaling as we do, but none combines together traffic forecasting
through artificial neural networks, and performance estimation through queuing
models. Ghanbari et al. [12] present an auto-scaling approach based on MPC
that aims both to meet SLA and save resources by framing the problem as an
MPC problem. Moore et al. [22] describe an elasticity framework composed by
two controllers operating in a coordinated manner: one works reactively on the
basis of static rules and the other uses a time-series forecaster (based on support
vector machines) and two Naive Bayes models to predict both the workload and
the target system performance.

For what concerns how the flipping phenomenon is dealt with in literature,
the survey [19] reports that such an issue is addressed in some of the threshold-
based works by setting two distinct thresholds: one for scaling out and another
for scaling in, so as to have a “tolerance band” that can absorb part of the
oscillations. The survey also advises to set so called calm periods during which
scaling decisions are suspended. Our approach is based on the concept of calm
periods, as suggested in the survey, but is more refined as the length of such
period is adapted on the basis of the amount of flipping experienced so far.

3 MYSE Architecture

Figure 1 shows how the MYSE module is expected to be integrated with the
target service. We assume that a Configuration Manager module is available to
receive external commands that update the configuration.

We modeled the service as a queuing system with s servers [11]. Without loss
of generality, we considered that replicas are homogeneous (i.e. they have the
same computational capabilities and can be used interchangeably) and a single
class of service. The basic idea is to consider the replicated service as a black box
and monitor requests patterns over time to identify the relevant characteristics of
input traffic so as to properly reconfigure the service through the Configuration



Fig. 2. MYSE Internal structure

Manager. To this aim, we assume that replicated service instances export, as
performance metrics, their service times. This allows us to follow the black box
approach as in [2, 33] by considering only observable parameters.

Monitoring requests arrival and service times over time enables to predict
their probability distribution. The queuing model is then used to compute the
expected latency in serving a single request, which can be compared to given
QoS requirements to figure out whether the compliance is actually achieved. The
same queuing model is employed to derive the minimum configuration allowing
to meet the QoS and, at the same time, to avoid wasting resources. We employed
four Artificial Neural Networks (ANNs), two ANNs to learn how request rate
and request distribution vary over time, and other two to learn how service times
and their distribution vary over time. In this way, we can conveniently update
the configuration early enough to avoid temporary performance worsening or re-
source under-utilization. The timeline of these predictions is provided externally
(∆ parameter).

Figure 2 details the submodules of MYSE. The ∆-Load and Distribution
Forecaster is in charge of learning and forecasting request rate and request dis-
tribution (it includes ∆-Load Forecaster and ∆-Distribution Forecaster submod-
ules). The ∆-Service Times Forecaster looks at service time patterns to extract
the distribution of service times and its mean µ. The Decider determines the
suitable configuration to meet QoS on the basis of the inputs supplied by the
other two submodules and of the Flipping Parameters (see Section 3.4). Single
submodules are described below.

3.1 ∆-Load Forecaster Submodule
It analyzes request rates over time and employs an ANN to provide predictions
on expected request rate λ within ∆ time units. A real dataset with 8000 hours
provided by Google Analytics framework on our department services is used
for training and testing the ANN. It has been divided in three parts: 70% for



Fig. 3. The ANN implementing the ∆-Load Forecaster submodule.

training, 15% for validation and 15% for test using a k-fold cross validation with
k = 10 in order to choose the right ANN parameters and address overfitting. We
normalized the input parameters with the Max-Min Normalization [0, 1] and
employed the Backpropagation Algorithm [28] for learning, with a sigmoid as
activation function. A general method to set the network parameters doesn’t
exist, so we empirically fixed learning rate and momentum (to 0.3 and 0.5,
respectively), by executing several tests aimed at trading off the recognition
error with the exposure to overfitting.

Several guidelines are available for choosing the number of hidden layers
and nodes for obtaining good generalization and low overfitting. One hidden
layer is sufficient to approximate any complex nonlinear functions to any desired
accuracy. We implemented several ANNs to find out the best one, and it turned
out to be the one with four input nodes for the date (day, day of the week, month,
hour) and one input node for the current traffic. Again, we chose the number
of hidden nodes empirically (as also suggested in [35]) and we found out that
using 11 hidden neurons gives the best performances. The output node simply
represents the predicted traffic values. Figure 3 shows the final architecture of
the ANN used in the ∆-Load forecaster.

We also carried out some simulations to check how long it takes for the ANN
to be properly trained as the number of backpropagation iterations varies. The
obtained results show that using up to 100 iterations allows to keep the training
time below 1.2 seconds.

3.2 ∆-Distribution Forecaster Submodule

It is composed by two parts, the Distribution Recognizer and the Distribution
Forecaster ; it analyzes requests inter-arrival times to produce predictions on
request distribution ∆ time units ahead. The Distribution Recognizer estimates
the best-fitting continuous or discrete distribution by analyzing a set of samples



Fig. 4. Classification error in the ∆-Distribution Recognized while increasing the win-
dow size.

Fig. 5. Time needed by the ∆-Distribution Recognized to get the estimation of the
distribution type by varying the window size. This experiment has been executed on
an Intel Core 2 2.00 GHz, 2GB RAM.

given in input, which represent the requests inter-arrival times. These samples
are analyzed with a fixed-length sliding window. We computed that the length
has to be at least 80 samples to get an estimation error lower than or equal to
5% (see Figure 4); on the other hand, Figure 5 gives evidence that obtaining an
estimation latency below 5 ms requires 80 samples or less.

The estimation of distribution parameters is made by using the maximum-
likelihood estimation method [23]. This result is then used to perform “goodness-
of-fit” tests, such as the chi-squared test (for discrete distributions, i.e. Poisson)
and Kolmogorov-Smirnov test (for continuous distributions, i.e. Normal), for dis-
criminating among distinct distributions [4]. In the current implementation, the
submodule is able to recognize and classify the following distributions: Poisson,
Uniform and Exponential. Obviously, in case the real distribution of the samples
doesn’t correspond to any of those recognized by the Distribution Recognizer,
then the most similar distribution is chosen. The Distribution Forecaster is able
to predict the future distribution by using an ANN trained by taking as input
the output produced by the Distribution Recognizer, which is an encoding of
the recognized distribution. Such an encoding consists in assigning to each rec-



ognizable distribution a distinct numerical identifier, so that the identifiers are
distanced enough to avoid possible conflicts. The choice to use two distinct par-
allel ANNs (this one and the one of the ∆-Load Forecaster) is made to improve
the forecasting accuracy, as suggested in [35]. The ANN is built following the
same empirical guidelines discussed in Section 3.1: it has as input four nodes
for the date and one node for the previous distribution id, 150 hidden neurons
and one output for the forecasted distribution. The learning rate is fixed to
0.9 and momentum to 0.4, while the other parameters are the same derived in
Section 3.1.

3.3 ∆-Service Times Forecaster Submodule
It takes as input the service times provided by the replicated service and produces
as output the estimation of their distribution and the mean µ of service times.
The same techniques employed for the ∆-Load and Distribution Forecaster are
used here.

3.4 Decider Submodule
The submodule computes the minimum configuration for guaranteeing QoS com-
pliance in service provisioning (i.e. the latency in the specific case). It takes as
input the latency threshold specified in the QoS, the predictions on request dis-
tribution (distribution id and λ), the predictions on the distribution of service
times (distribution id and µ) and the Flipping parameters, which are the tuning
parameters of the Flipping-reducing Scaling Heuristic, described in detail later in
this section. The Decider submodule first applies the well-known queuing model
techniques to compute the expected latency T in the current configuration (i.e.
with s replicas), given the request rate and the service times provided by the
forecasters. Then, it applies the Flipping-reducing Scaling Heuristic to decide
whether scaling out (in case QoS is violated), scaling in (in case a configuration
with less replicas can still guarantee QoS compliance) or keeping the current
configuration.

The Flipping-reducing Scaling Heuristic. If QoS compliance can be achieved
with the current configuration (with s replicas), then the algorithm evaluates if
switching off replicas still makes it possible to satisfy QoS requirements. It com-
putes the maximum number n of replicas that can be removed without violating
the QoS, and moves from a configuration with s servers to a configuration with
s − n. On the contrary, if the expected latency is higher than QoS threshold,
then the algorithm computes the minimum number n of replicas to activate in
order to comply with the QoS, and moves from a configuration with s servers
to a configuration with s + n. Highly variable traffic and prediction errors can
make the configuration oscillate very often, introducing a lot of overhead due to
frequent activation/deactivation of replicas. This phenomenon is referred to as
flipping, and we dealt with it by introducing a cost function that prevents the
algorithm from moving back in a certain configuration in case such configuration
was set too recently.



To this aim, we defined an edge-weighted directed graph G = (V,E,w(e, t))
where (i) the set of vertex V represents all the possible configurations (i.e. num-
ber of active replicas) i.e. V = {1, 2, 3, . . . smax}, (ii) there exists an edge between
any pair of vertexes (iii) for any edge es,s′ ∈ E the edge weight w(es,s′ , t) repre-
sents the cost of moving from the configuration s to the configuration s′ at the
current time t.

The cost function is defined as w(es,s′ , t) = FlippingCost · flipping%, where
FlippingCost is one of the Flipping parameters, while flipping% is computed as
the number of the flippings detected from the beginning divided by the number
of heuristic executions. The detection of a flipping is triggered when two scaling
decisions in opposite directions (i.e., a scaling out and a scaling in) are executed
within a configurable window (the FlippingWindow, another Flipping Param-
eter). In this way, the flipping% decreases in time in case no flipping occurs.
When the algorithm moves from the configuration s to the configuration s′ at
time t, the edge es,s′ is assigned with the value w(es,s′ , t). Then, such weight
is decreased linearly in time until it comes back to 0. The transition from a
configuration s to a configuration s′ is allowed at time t only if w(es,s′ , t) = 0.
The flipping phenomenon is very likely to involve additional costs because of
the high number of machine activations. On the other hand, forcing to keep a
certain configuration for a period of time regardless of the load can raise tem-
porary over-provisioning and/or under-provisioning, and both lead to increased
costs. The FlippingCost parameter is indeed aimed at tuning such a tradeoff,
on the basis of both the real costs of replica activation and QoS violation, and
the expected variability of the input traffic.

We evaluated the effectiveness in avoiding the flipping phenomenon by car-
rying out a simulation that compares the behavior of the heuristic that uses
the cost function with a heuristic that doesn’t put any cost on the edges (i.e.,
FlippingCost = 0). We set FlippingCost to 15000 and FlippingWindow to
100 seconds. The results shown in Figure 6 give evidence that our heuristic is
successful, indeed it manages to keep the configuration fixed during the intervals
when the other oscillates instead. It is to note that at the beginning the algo-
rithm actually introduces flipping, but this is due to the fact the no flipping was
occurred before, so flipping% is zero, yet.

4 Simulations
In this section we describe a set of simulations aimed at assessing the effectiveness
of the proposed architecture. In particular, we first evaluated the ability of the
∆-Load Forecaster and ∆-Distribution Forecaster to adapt to different types of
loads and then we evaluated globally the goodness of the approach by evaluating
the evolution of the configurations in time. In all these simulations, ∆ is fixed
to one hour.

Evaluation of the ∆-Load Forecaster. In this experiments, we used a real
dataset including one year of statistics collected through the Google Analyt-
ics framework on our Department services. In order to show the adaptation to



Fig. 6. A comparison between the heuristic employing a cost function and another one
that doesn’t use any cost function. Over time, it is shown that putting costs on the
edges allows to limit the flipping phenomenon.

changes in the load pattern, this dataset has been integrated with a synthetic one.
In particular, starting from the real Google Analytics dataset, we appended five
days of the same dataset that has been scaled (amplified), and a sine function.
We didn’t simulate the Service Times Estimator because of the unavailability
of traces describing service times over time, but we considered it as fixed and
known to the Decider Module. Anyway, we believe that the effectiveness of the
results obtained for the ∆-Load and Distribution Forecaster can also hold for
this module, since the employed techniques are the same. In order to make the
ANN really adaptive to traffic changes, online learning is employed as follows.
We store the training set in a fixed-length sliding window containing the last
100 inputs, and at each new input the ANN is trained using all the inputs in the
window (by executing 100 iterations of the backpropagation algorithm, as ex-
plained in Section 3.1). Figure 7 shows the comparison between the real number
of requests over time and the predictions. As we can see, the predictions follow
the real pattern and converge quite quickly after a request pattern change. The
weekly Root Mean Square Error (RMSE) of predictions is 4%, and the Mean
Average Error (MAE) is 3%.

Evaluation of the ∆-Distribution Forecaster We evaluated the capability
of this module to recognize a distribution by using a synthetic dataset where the
distribution of inter-arrival times changes very often over time, from Uniform
to Poisson and viceversa. We measured the number of iterations required to
correctly recognize distribution changes, where one iteration corresponds to the
analysis of the samples of a single window, whose length was fixed to 80 samples
(see Section 3.2). The results showed that 62 iterations are required on average
to detect the transition from Uniform to Poisson, and 30 are needed instead for
the opposite transition. Since the window slides at each sample, these results
indicate that distribution changes can be recognized before the window gets
totally renewed.



Fig. 7. Comparison between dataset traffic and forecaster predictions. The instants in
time are indicated where traffic pattern changes: from normal to triplicated, to normal
again and finally to a sine function with amplitude 100 is used.

Fig. 8. Comparison between real and predicted request arrival distributions. Three dis-
tributions are recognizable: Uniform (id=0), Exponential (id=3) and Poisson (id=11).
The average error in 72 hours is 3%

We also evaluated the predictive accuracy of the ANN, by comparing real
and forecasted request distributions over time. Three distinct distributions are
recognized, each mapped to distinct ids chosen so that classification errors get
minimized. We modified the dataset used for the evaluation of the ∆-Load Fore-
caster in such a way that the distribution of inter-arrival times changes very often
over time among the recognizable distributions. Figure 8 shows that predictions
are notably accurate (3% error over 3 days).

Evaluation of the overall architecture. This evaluation is aimed to highlight
the relevant added value of employing traffic predictions for correctly issuing re-



Fig. 9. Comparison between the number of replicas requested by MYSE and NT-
MYSE, together with the indication of the optimum, that is the minimum number of
replicas required to meet QoS requirements.

source provisioning. The dataset used here is the Google Analytics one. Figure 9
shows how the number of requested replicas varies over time on a hour-basis dur-
ing a whole day. These results have been obtained by simulating three distinct
scenarios: (i) the optimal configuration, that is the minimum number of replicas
required to meet QoS requirements, (ii) the configuration produced without the
contributions of ∆-Load and Distribution Forecaster, referred to as Non-Trained
MYSE (NT-MYSE) and (iii) the configuration requested by the complete MYSE
module. In the simulation of NT-MYSE, the Decider is fed with traffic details
that are produced in real-time by the Distribution Recognizer on the basis of
the current traffic only.

Until 8:00 the traffic is stable and both the approaches behave correctly, then
traffic begins changing and the use of predictions shows its effectiveness by con-
tributing to generate configurations that are nearer to the optimum compared
to NT-MYSE approach. Another important advantage of employing predictions
is rendering the system more robust to unexpected peaks. This can be seen by
observing the effect of the isolated peak occurring at 16:00 (a peak in the num-
ber of the optimal number of replicas corresponds to a peak in traffic load):
NT-MYSE is biased by such occurrence and hereafter keeps to over-provision,
while MYSE correctly recognizes it as an outlier. We quantified numerically the
error of each approach by averaging over the entire day the number of replicas
above (over-provisioning) and below (QoS violation) the optimum. NT-MYSE
provided on average 0.29 replicas in excess and 0.33 replicas less than the min-
imum required, for a total of 0.62. MYSE allows on average to over-provision
0.13 replicas (55% more accurate) and under-provision 0.21 replicas (36% more
accurate), that is a total error of 0.34 replicas (45% more accurate).

5 Conclusions and Future Directions

Avoiding both performance worsening and over-provisioning for replicated ser-
vices is the goal of the architecture we propose in this work and, according to



the results obtained by the simulations we carried out, we believe that forecast-
ing requests and service times, and carefully modeling how performance gets
affected, are the proper building blocks for achieving that objective. We claim
that this approach is novel within the context of auto-scaling works. An ad-
ditional original contribution concerns the Flipping-reducing Heuristic, which
allows to address the problems due to quick oscillations in the load. Along this
line, we are carrying on this work by exploring distinct directions.

At the time of this writing we are deploying the MYSE architecture on Ama-
zon Web Services in order to concretely assess strengths and weaknesses of the
model. Once a target service for the prototype implementation is chosen, we will
be able to provide both a validation of the MYSE module and the specification
of the analytical model for the actual service in order to compare the results.
The deployment of MYSE in a real cloud infrastructure will allow to estimate
the delays due to replicas activation/deactivation, which will contribute to the
accuracy of the model itself. Another important aspect we want to investigate
is the economics behind this elastic model. What is the best model to price the
elastic replication system? Who are the customers for this kind of service? The
answers to these questions depend on the definition of a precise cost model that
can help to identify the market sectors where such replication mechanism could
be beneficial.

Finally, we are investigating how to make the MYSE architecture completely
non-intrusive, i.e., so that the MYSE module does not need any information
provided by the replicated service, such as the service times. This would enable
and ease its employment in a wider range of applications.

6 Acknowledgments
This work has been partially supported by the TENACE PRIN Project (n.
20103P34XC) funded by the Italian Ministry of Education, University and Re-
search and by the academic project C26A133HZY funded by the University of
Rome “La Sapienza”.

References

1. Ali-Eldin, A., Tordsson, J., Elmroth, E.: An adaptive hybrid elasticity controller
for cloud infrastructures. In: Network Operations and Management Symposium
(NOMS), 2012 IEEE. pp. 204–212 (2012)

2. Baldoni, R., Lodi, G., Montanari, L., Mariotta, G., Rizzuto, M.: Online black-box
failure prediction for mission critical distributed systems. In: SAFECOMP. pp.
185–197 (2012)

3. Barrett, E., Howley, E., Duggan, J.: Applying reinforcement learning towards au-
tomating resource allocation and application scalability in the cloud. Concurrency
and Computation: Practice and Experience 25(12), 1656–1674 (2013)

4. Biswas, S., Ahmad, S., Molla, M.K.I., Hirose, K., Nasser, M.: Kolmogorov-smirnov
test in text-dependent automatic speaker identification. Engineering Letters 16(4),
469–472 (2008)



5. Bod́ık, P., Griffith, R., Sutton, C., Fox, A., Jordan, M., Patterson, D.: Statisti-
cal machine learning makes automatic control practical for internet datacenters.
In: Proceedings of the 2009 Conference on Hot Topics in Cloud Computing. Hot-
Cloud’09, USENIX Association, Berkeley, CA, USA (2009)

6. Cardosa, M., Chandra, A.: Resource bundles: Using aggregation for statistical
large-scale resource discovery and management. Parallel and Distributed Systems,
IEEE Transactions on 21(8), 1089–1102 (2010)

7. Caron, E., Desprez, F., Muresan, A.: Forecasting for Cloud Computing On-demand
Resources Based on Pattern Matching. Research RR-7217, Inria (2010)

8. Chen, G., He, W., Liu, J., Nath, S., Rigas, L., Xiao, L., Zhao, F.: Energy-aware
server provisioning and load dispatching for connection-intensive internet services.
In: Proceedings of the 5th USENIX Symposium on Networked Systems Design and
Implementation (NSDI). pp. 337–350. USENIX Association (2008)

9. Dutreilh, X., Rivierre, N., Moreau, A., Malenfant, J., Truck, I.: From Data Center
Resource Allocation to Control Theory and Back. In: Cloud Computing (CLOUD),
2010 IEEE 3rd International Conference on. pp. 410–417 (2010)

10. Dutreilh, X., Kirgizov, S., Melekhova, O., Malenfant, J., Rivierre, N., Truck, I.:
Using reinforcement learning for autonomic resource allocation in clouds: Towards
a fully automated workflow. In: ICAS 2011, The Seventh International Conference
on Autonomic and Autonomous Systems. pp. 67–74. Venice/Mestre, Italy (2011)

11. Garlan, D., Cheng, S.W., Schmerl, B.: Architecting Dependable Systems. chap.
Increasing System Dependability Through Architecture-based Self-repair, pp. 61–
89. Springer-Verlag, Berlin, Heidelberg (2003)

12. Ghanbari, H., Simmons, B., Litoiu, M., Barna, C., Iszlai, G.: Optimal autoscaling
in a iaas cloud. In: Proceedings of the 9th International Conference on Autonomic
Computing. pp. 173–178. ICAC ’12, ACM, New York, NY, USA (2012)

13. Gong, Z., Gu, X., Wilkes, J.: Press: Predictive elastic resource scaling for cloud
systems. In: Network and Service Management (CNSM), 2010 International Con-
ference on. pp. 9–16 (2010)

14. Han, R., Guo, L., Ghanem, M., Guo, Y.: Lightweight resource scaling for cloud
applications. In: Cluster, Cloud and Grid Computing (CCGrid), 2012 12th
IEEE/ACM International Symposium on. pp. 644–651 (2012)

15. Hasan, M., Magana, E., Clemm, A., Tucker, L., Gudreddi, S.: Integrated and auto-
nomic cloud resource scaling. In: Network Operations and Management Symposium
(NOMS), 2012 IEEE. pp. 1327–1334 (2012)

16. Huang, J., Li, C., Yu, J.: Resource prediction based on double exponential smooth-
ing in cloud computing. In: Consumer Electronics, Communications and Networks
(CECNet), 2012 2nd International Conference on. pp. 2056–2060 (2012)

17. Iqbal, W., Dailey, M.N., Carrera, D., Janecek, P.: Adaptive resource provisioning
for read intensive multi-tier applications in the cloud. Future Gener. Comput. Syst.
27(6), 871–879 (Jun 2011)

18. Islam, S., Keung, J., Lee, K., Liu, A.: Empirical prediction models for adaptive
resource provisioning in the cloud. Future Gener. Comput. Syst. 28(1), 155–162
(Jan 2012)

19. Lorido-Botrán, T., Miguel-Alonso, J., Lozano, J.A.: Auto-scaling Techniques for
Elastic Applications in Cloud Environments. Research EHU-KAT-IK, Department
of Computer Architecture and Technology, UPV/EHU (2012)

20. Maurer, M., Brandic, I., Sakellariou, R.: Enacting slas in clouds using rules. In:
Proceedings of the 17th International Conference on Parallel Processing - Volume
Part I. pp. 455–466. Euro-Par’11, Springer-Verlag, Berlin, Heidelberg (2011)



21. Mi, H., Wang, H., Yin, G., Zhou, Y., Shi, D., Yuan, L.: Online self-reconfiguration
with performance guarantee for energy-efficient large-scale cloud computing data
centers. In: Services Computing (SCC), 2010 IEEE International Conference on.
pp. 514–521 (2010)

22. Moore, L.R., Bean, K., Ellahi, T.: Transforming reactive auto-scaling into proactive
auto-scaling. In: Proceedings of the 3rd International Workshop on Cloud Data and
Platforms. pp. 7–12. CloudDP ’13, ACM, New York, NY, USA (2013)

23. Myung, I.J.: Tutorial on Maximum Likelihood Estimation. Journal of Mathemat-
ical Psychology 47(1), 90–100 (Feb 2003)

24. Padala, P., Hou, K.Y., Shin, K.G., Zhu, X., Uysal, M., Wang, Z., Singhal, S.,
Merchant, A.: Automated control of multiple virtualized resources. In: Proceedings
of the 4th ACM European Conference on Computer Systems. pp. 13–26. EuroSys
’09, ACM, New York, NY, USA (2009)

25. Park, S.M., Humphrey, M.: Self-tuning virtual machines for predictable escience.
In: Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid. pp. 356–363. CCGRID ’09, IEEE Computer Society,
Washington, DC, USA (2009)

26. Rao, J., Bu, X., Xu, C.Z., Wang, L., Yin, G.: Vconf: A reinforcement learning
approach to virtual machines auto-configuration. In: Proceedings of the 6th In-
ternational Conference on Autonomic Computing. pp. 137–146. ICAC ’09, ACM,
New York, NY, USA (2009)

27. Roy, N., Dubey, A., Gokhale, A.: Efficient autoscaling in the cloud using predic-
tive models for workload forecasting. In: Cloud Computing (CLOUD), 2011 IEEE
International Conference on. pp. 500–507 (2011)

28. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations
by error propagation. Tech. rep., DTIC Document (1985)

29. Shen, Z., Subbiah, S., Gu, X., Wilkes, J.: Cloudscale: Elastic resource scaling for
multi-tenant cloud systems. In: Proceedings of the 2Nd ACM Symposium on Cloud
Computing. pp. 5:1–5:14. SOCC ’11, ACM, New York, NY, USA (2011)

30. Tesauro, G., Jong, N.K., Das, R., Bennani, M.N.: A hybrid reinforcement learn-
ing approach to autonomic resource allocation. In: Proceedings of the 2006 IEEE
International Conference on Autonomic Computing. pp. 65–73. ICAC ’06, IEEE
Computer Society, Washington, DC, USA (2006)

31. Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P., Wood, T.: Agile dynamic provi-
sioning of multi-tier internet applications. ACM Trans. Auton. Adapt. Syst. 3(1),
1:1–1:39 (Mar 2008)

32. Villela, D., Pradhan, P., Rubenstein, D.: Provisioning servers in the application
tier for e-commerce systems. In: Quality of Service, 2004. IWQOS 2004. Twelfth
IEEE International Workshop on. pp. 57–66 (2004)

33. Williams, A.W., Pertet, S.M., Narasimhan, P.: Tiresias: Black-box failure predic-
tion in distributed systems. In: IPDPS. pp. 1–8 (2007)

34. Xu, J., Zhao, M., Fortes, J., Carpenter, R., Yousif, M.: On the use of fuzzy modeling
in virtualized data center management. In: Autonomic Computing, 2007. ICAC ’07.
Fourth International Conference on. pp. 25–25 (2007)

35. Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting With Artificial Neural Networks:
the State of the Art. International Journal of Forecasting 14(1), 35 – 62 (1998)

36. Zhang, Q., Cherkasova, L., Smirni, E.: A Regression-Based Analytic Model for
Dynamic Resource Provisioning of Multi-Tier Applications. In: Proceedings of the
Fourth International Conference on Autonomic Computing. pp. 27–. ICAC ’07,
IEEE Computer Society, Washington, DC, USA (2007)


