
Space Uncertain Simulation Events: some Concepts and
an Application to Optimistic Synchronization

Francesco Quaglia and Roberto Beraldi
Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

Abstract
The notion of temporal uncertainty, expressed as the pos-

sibility for an event to occur in an interval of simulation
time, rather than at a specific instant, has been recently pro-
posed and exploited in order to enhance the performance of
parallel/distributed simulation systems. In this paper we
propose the concept of “spatial uncertainty” expressed as
the possibility for a simulation event to occur in one of a
set of points within the simulated system space. How to
handle/exploit space uncertain events in an optimistic sim-
ulation system is discussed. Also, experimental results for
optimistic simulations of a Personal Communication System
(PCS) modeled with space uncertain events are reported.
These results show the ability of spatial uncertainty to in-
crease the performance of the parallel simulation system by
providing a more flexible approach to synchronization.

1 Introduction
Increasing the performance of a parallel/distributed sim-

ulation system, whether it be based on conservative or op-
timistic synchronization, is still a core issue to address. To
this purpose, the notion of temporal uncertainty of simula-
tion events [6] has been recently proposed and exploited,
especially in the context of federated simulation systems.
Basically, a time uncertain simulation event is an event for
which we do not define a precise timestamp for its occur-
rence. Instead, we admit an interval of simulation time
within which it eventually occurs. The advantage of tem-
poral uncertainty derives from the fact that the execution of
events at any Logical Process (LP) is ordered on the basis
simulation time intervals, rather than precise timestamps,
with any two events considered as concurrent in case the
corresponding intervals overlap and they are not causally
dependent on each other. This increases the flexibility of
synchronization since concurrent events lead to the admis-
sion of multiple correct event execution orders at an LP. In
the context of optimistic synchronization, this allows reduc-
ing the amount of rollback in the parallel execution [2], in
the case of conservative synchronization it allows overcom-
ing problems due to poor lookahead in the simulation model
[6, 11].

Actually, temporal uncertainty has its justification in the
fact that any simulation is only an approximation of the
simulated system. Therefore there are some aspects that
might not be directly captured by the simulation model; we
call this phenomenon as discrepancy. Assigning an uncer-

tainty to the occurrence time of a simulation event is a way
to express the existence of the discrepancy. As an exam-
ple, consider a wireless communication system simulation,
where the service area is partitioned into cells. Typically,
the simulation model assigns to each cell a defined geomet-
ric shape in a way that there is no overlapping between cells
(e.g. cells are modeled as non-overlapping hexagons). On
the other hand, real wireless systems have cells that over-
lap, thus giving rise to portions of the coverage area that
are served by multiple base stations. This implies that, in
the real system, the hand-off procedure of a mobile that
switches between cells can occur when the mobile is in any
point of the overlapped portion of the coverage area. This
peculiarity, not explicitly captured by the simulation model,
is some way expressed by assigning a temporal uncertainty
to the occurrence time of the hand-off event in the simula-
tion model.

In this paper we present the concept of spatial uncer-
tainty that expresses the possibility for a simulation event to
occur in a spatial region of the simulated system, rather than
in a precise point. As for the case of temporal uncertainty,
spatial uncertainty is a mean to express the previously men-
tioned discrepancy phenomenon, which might appear in
specific simulation applications. To make clear the latter
assertion, consider again the example above regarding the
wireless system simulation, where cells are modeled as non-
overlapping hexagons. Consider a mobile within a cell, say
cell A, that moves outside this cell, thus giving rise to a
hand-off event in the simulation. Also, suppose, as shown
in Figure 1.a, that an exact point p is defined for the hand-off
just around a corner of cell A. In this case the simulation
model only admits the possibility for the mobile to enter
cell B. However, in the real system we might have overlap-
ping between cells B and C around point p therefore either
cell might accept the mobile and serve it. This discrepancy
can be captured, and expressed, by assigning to the hand-off
event a spatial region, say the segment L in Figure 1.b, thus
re-introducing in the simulation model the possibility that
either cell B or cell C accepts the mobile as it could occur
in the real system.

Similarly to temporal uncertainty, spatial uncertainty can
provide a mean to improve the run-time behavior of paral-
lel/distributed simulation systems. Specifically, the possi-
bility for an event to occur in any point within a spatial re-
gion means that multiple LPs in the parallel/distributed sim-
ulation system, i.e. all those LPs modeling a portion of that

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

181

mobile
movement

mobile
movement

A

C

B

(b)

A

C

B

point p

(a)

segment L

Figure 1. Hand-off in a Point p (a) or on a Seg-
ment Region L (b).

spatial region, might take care of the execution of that event.
Therefore, the decision on which LP should really execute
that event can be taken at run-time in a way to improve spe-
cific performance metrics for the parallel/distributed simu-
lation system. This aspect, together with mechanisms for
handling space uncertain events, will be explored in this pa-
per for the case of optimistic simulation. Then we also re-
port the results of an experimental study on optimistic sim-
ulations of a Personal Communication System (PCS) based
on spatial uncertainty, thus providing a quantification of the
performance benefits that can be achieved just through the
exploitation of such a kind of uncertainty.

The remainder of this paper is structured as follows.
In Section 2 we present a simple, pragmatical model for
space uncertain events and provide indications on how to
map the model on parallel simulation methodology. Sec-
tion 3 presents a discussion on how to exploit spatial un-
certainty in optimistic synchronization, and describes addi-
tional mechanisms required by an optimistic simulator to
handle the uncertainty. The results for the experiments with
the PCS application are reported in Section 4.

2 Spatial Uncertainty in Parallel Simulation
In this paper we are interested in spatial uncertainty

as a mean to improve the run-time behavior of a paral-
lel/distributed simulation system. In particular, we focus
on the reduction of the wall-clock time on a whole run
for an optimistically synchronized parallel simulator. For
this reason we provide in this section the description of an
event model with spatial uncertainty that well fits the re-
quirements of parallel/distributed simulation methodology.
However, we argue that the notion of spatial uncertainty
might be also exploited in other ways that we reserve for
future work. As an example, a space uncertain event might
give rise to multiple different outcomes depending on the
decision we take on the final position for the occurrence of
the event. Therefore, we might associate with each space
uncertain event a decision point that enables cloning of the
simulation [8]. This might allow fast exploration of multi-
ple execution paths due to sharing of portions of the com-
putation on different paths, independently of whether the
simulator executes sequentially or concurrently.

The remainder of this section is structured as follows.
We first introduce the event model expressing spatial uncer-
tainty as an extension of a classical event model for paral-

lel simulation, then we provide hints on the correctness of
the execution of a simulation model with space uncertain
events.

2.1 A Model for Space Uncertain Events
A discrete event simulation model is classically viewed

as a set S = {s1, s2, . . . , sn} of state variables, also re-
ferred to as state of the simulation model, and a sequence
of state changes, also referred to as events, occurring at dis-
crete points (timestamps) in simulation time.

In parallel discrete event simulation, the state S is par-
titioned into disjoint subsets of state variables Sj (with
j ∈ [1,m]) such that S =

⋃
∀j∈[1,m]Sj . The peculiar-

ity of such a partitioning is that each event, namely each
state transition, involves a single subset Sj . Therefore,
the state transition function associated with a given event
takes as input values only the variables within Sj and up-
dates only those same variables. In practice, this is im-
plemented by assigning the management of each subset
Sj of state variables to a specific LP, namely LPj , which
is entirely responsible for the execution of the state tran-
sition function associated with the event. We can model
such a classical approach by associating with each event e
the tuple τ(e) = [timestamp, content, position], where
timestamp is the simulation time for the event occurrence,
content is its content (which determines the state transition
function to be invoked), and position is a value in the inter-
val [1,m]. The latter value represents the index of the subset
of state variables involved in the state transition associated
with the event, therefore the state variables involved in the
transition due to the event e are only those in Sτ(e).position

(1).
The notion of spatial uncertainty we propose is based

on an extension of the previous classical perspective, and
deals with the partitioning of the simulation model state S
into the previously mentioned disjoint subsets Sj . Specif-
ically, we associate with the event e a tuple τ(e) =
[timestamp, content,Π], where the first two elements
have the same meaning as above, while Π is a non-empty
set of values, all different from each other, belonging to
the interval [1,m]. Π specifies multiple possibilities as re-
spect to the subset of state variables that are involved in the
state transition associated with the event e. Therefore, it ex-
presses uncertainty on where, within the state of the simu-
lation model, the event e will have an effect. In practice this
means that we have multiple LPs that can take care of the
execution of the event e, which expresses the fact that the
state transition associated with the event e can involve one
of a set of distinct parts of the system under investigation.

A special instance occurs when |τ(e).Π| = 1. In this
case we obtain that the event e has no degree of uncertainty
since, as respect to the partitioning of the state S, we ex-
actly know which is the subset of state variables where the
state transition function associated with τ(e).content needs
to be applied. This also shows how the classical approach
with no spatial uncertainty can be seen as a special case of a
simulation with space uncertain events, namely the case in
which the set Π has cardinality one for all the events.

1We use the notation τ(e).x to indicate the value of element x within
the tuple associated with the event e.

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

182

2.2 Correctness Criteria with Spatial Uncertainty
When dealing with parallel simulation, we need to ad-

dress the problem of correctness for the model execution,
i.e. the synchronization problem. This is because concur-
rency is admitted for the execution of events acting on dis-
tinct subsets of state variables Sj (i.e. distinct LPs) and the
execution of an event acting on a given subset can schedule
events destined for other subsets, therefore we have depen-
dencies among state transitions occurring on different sub-
sets of state variables.

For the case of no spatial uncertainty, we say that the
simulation model execution is correct if, for each pair of
events e and e′ such that τ(e).position = τ(e′).position
and τ(e).timestamp < τ(e′).timestamp, then the state
transition function associated with τ(e).content is executed
before the one associated with τ(e′).content. This is re-
flected by the classical perspective according to which the
execution of events at each LP in non-decreasing timestamp
order is a sufficient condition for the correctness of the sim-
ulation model execution, i.e. the correctness of simulation
results. We want to exploit this same perspective for the
case of simulation models with spatial uncertainty. In other
words, we want to define a property of the model execution
such that timestamp ordering is preserved at each LP. A nat-
ural way to approach such an issue is to define a property
based on the positions we admit for each event and on how
the admitted positions combine for distinct events within
the model execution itself.

Before proceeding, let us introduce an additional, sim-
ple notation: we denote as location(e) the value belong-
ing to τ(e).Π that identifies where, within the simulation
model state S, the state transition function associated with
τ(e).content really acts. In other words, Slocation(e) iden-
tifies the subset of state variables really involved in the exe-
cution of that transition function while the model execution
proceeds. Hence, LPlocation(e) is the LP that really takes
care of the execution of this event.

We can now envisage the following property, we call
ACceptability (AC), for the model execution:

Property 2.1 - ACceptability (AC).
Model execution is acceptable if, for each pair of
events e and e′ such that (τ(e).Π ∩ τ(e′).Π �= ∅) ∧
(τ(e).timestamp < τ(e′).timestamp), at least one of the
following two conditions holds: (1) the state transition func-
tion associated with τ(e).content is executed before the
state transition function associated with τ(e′).content; (2)
location(e) �= location(e′).

In other words, property AC asserts that, given any pair
of events e and e′ having the potential to work on a same
subset Sx of state variables within the state of the simula-
tion model, we accept to process them with no ordering con-
straint among each other in case we are able to select dis-
tinct locations for them while the model execution proceeds.
Trivially, in any acceptable model execution, for each sub-
set of state variables Sx, events eventually located on this
subset are all executed in non-decreasing timestamp order,
which translates in that each LPx is guaranteed to execute
its events in non-decreasing timestamp order. Therefore the
AC property can be seen as a criterion that expresses cor-
rectness of the model execution in the same classical terms

that characterize simulations with events having no spatial
uncertainty. At the same time, any parallel/distributed sim-
ulation system built to ensure the AC property could take
advantage from higher flexibility while synchronizing the
LPs. Specifically, the flexibility might come out by proper
specification of the function location(e) determining which
LP really takes care of the execution of the event e. In the
next section we discuss a scheme, layered on top of classical
optimistic synchronization, to build simulation systems pro-
viding acceptability in the model executions as expressed by
Property 2.1.

3 Optimistic Synchronization with Space Un-
certain Events

We focus on the classical approach to parallel/distributed
simulation, where LPs exchange messages to notify each
other about newly scheduled events. In this context we are
interested in the relation between the optimistic approach
to synchronization, as designed for events with no spatial
uncertainty [9], and the notion of acceptable model execu-
tion in the sense of Property 2.1. More precisely, we aim at
extending basic mechanisms underlying the optimistic ap-
proach to synchronization to embed within the simulation
system the ability to achieve, in an efficient way, an accept-
able model execution. The first step towards this direction
is to properly define an algorithm specifying the function
location(), namely an algorithm that establishes how to
determine final positions for the events. To this purpose,
we introduce an algorithm called Rollback If No Additional
Chance (RINAC). It specifies the function location() in the
attempt to keep low the occurrence of rollback. The last part
of this section is devoted to the management of cancellation
of events when considering that their location is established
through RINAC. As we shall discuss, this issue will be tack-
led through a proper Multicast Cancellation scheme (MC).

3.1 Rollback If No Additional Chance
When we need to define an algorithm specifying the

function location() in a way to provide an optimistic simu-
lation system supporting the AC property, several different
approaches might be devised. As a first example, upon the
scheduling of the event e by a given LP, say LPx, it might be
possible to collect information, e.g. via polling/reply mes-
sages, on the current simulation clock value for all the LPs
in the set φ = {LPj |j ∈ τ(e).Π}. Then LPx might ad-
dress the event e to the LP in the set φ, say LPy , having
simulation clock lower than τ(e).timestamp, if any. In
such a case, unless the simulation clock of LPy oversteps
τ(e).timestamp due to processing of other events before
the notification message for e finally arrives at LPy , the
event e can be processed by LPy in timestamp order, thus
not causing violation of the AC property (2). This avoids
the need for rollback procedures to recover acceptability in
the model execution. Another approach would be to let all
the LPs in the set φ to execute an explicit coordination algo-
rithm, e.g. via rounds of messages, to resolve the location

2This is because, there is no
event e′ different from e, with τ(e′).timestamp > τ(e).timestamp,
such that location(e′) = location(e) and the state transition function
associated with τ(e′).content is executed before the one associated with
τ(e).content.

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

183

Behavior of LPi upon the receipt of a notification
message m[e, visited]:
1. if ((local simulation clock ≤ τ(e).timestamp) ∨

(visited = τ(e).Π − {i}))
2. accept the event e for processing;
3. else
4. visited = visited ∪ {i};
5. select x ∈ τ(e).Π − visited;
6. forward m[e, visited] to LPx;

Figure 2. The RINAC Algorithm.

for the event e, again with the aim to address the event e it-
self to an LP that can process it in timestamp order. On the
other hand, the overhead due either to polling/reply mes-
sages sent/collected by LPx or to the explicit coordination
algorithm among the LPs in φ might be excessive, thus giv-
ing rise to a simulation system unable to really exploit spa-
tial uncertainty for performance purposes.

We are interested in this paper in the definition of an al-
gorithm specifying the function location(), which can be
implemented with minimal overhead. More precisely, we
neither want to collect information about current simulation
clocks of the LPs, nor want to execute an explicit coordi-
nation algorithm. Instead, our proposal is based on a for-
warding mechanism according to which an LP that receives
a notification message for an event e accepts the event in
case its simulation clock is lower than the event timestamp.
Otherwise it rejects the event, and the notification message
is forwarded to another LP among the possible destinations
for that event. This is done in the hope that the next des-
tination LP is able to maintain acceptability in the model
execution without the need for rollback procedures. To
avoid cycles of forwarding, that might lead to a situation
in which no LP eventually accepts the event (thus the event
itself is not eventually executed), forwarding can be done
only among the set of LPs not yet visited by the notification
message. If all the possible destination LPs have been vis-
ited, the LP lastly visited in the forwarding scheme cannot
reject the event, even in case the event timestamp is lower
than the current simulation clock of that LP. Therefore, we
need to execute rollback on that LP to recover acceptabil-
ity in the model execution since there is no more chance
to visit another LP in the forwarding scheme. Hence the
name RINAC (Rollback-If-No-Additional-Chance) for the
algorithm we propose to specify the function location().

The pseudo-code for RINAC is shown in Figure 2. Ac-
tually, to support RINAC we assume each notification mes-
sage m for a given event also carries a set of values, called
visited, initially empty, that contains the identifiers of all
the LPs that have already been visited during the forwarding
scheme. By line 1 of the algorithm, LPi accepts to process
the event in case no rollback needs to be executed or it is the
last LP visited through the forwarding scheme. Otherwise
it updates the visited set to include its identifier, namely
the value i (see line 4), selects a not yet visited LP among
the possible destinations for the event (see line 5) and then
forwards the notification message to that LP.

We argue that the cost of managing RINAC is definitely
lower than the cost of collecting information on current
simulation clock values, or executing explicit coordination.
On the other hand, as respect to those approaches, RINAC
might increase the time required to explore all the possi-
ble destination LPs on time for the event to be addressed
to any of them and processed in timestamp order. This is
because possible destinations are explored serially through
the forwarding of the event notification message. Such an
additional delay in the exploration of the possible destina-
tions might cause non-minimal rollback length since we are
actually delaying acceptance of the event, with possible ex-
ecution of rollback, until we become aware that there is no
chance to process the event in timestamp order at any LP
among the possible destinations. Anyway this phenomenon
is expected to have a limited impact each time the set τ(e).Π
has relatively low cardinality. Also, non-minimal rollback
length might be anyway acceptable if we are able to keep
low the frequency of rollback occurrence by carefully locat-
ing the events among the LPs, which is exactly the aim of
RINAC. Overall, RINAC represents a tradeoff between the
cost of management of spatial uncertainty and advantages
from its exploitation.

We also note that RINAC might be particularly effective
in case the simulation system makes use of the so called
kernel approach to implement core functionalities. Specifi-
cally, when using this approach, the LPs are typically exe-
cuted as application level threads, and each processor runs
an instance of a dispatcher thread (DT) that controls and
schedules a set of LPs for event execution according to a
given algorithm, e.g. Smallest-Timestamp-First [10]. DT
has control on the event queues of those LPs, on their
current simulation clock values, and so on. In this case,
upon the arrival of an event notification message at DT, the
RINAC algorithm is used to verify whether the condition in
line 1 holds for the destination LP. If the condition does not
hold and forwarding of the notification message is required
towards another LP belonging to the set controlled by that
same DT, then the message does not really need to be re-sent
since it is already buffered within a memory area accessible
by DT itself. This reduces the real number of message send
operations performed to explore the set of possible destina-
tions for a given event.

There is a final observation we would like to bring to the
reader’s attention. As already pointed out in Section 2.2, the
function location(e) identifies the LP that finally executes
the event e. This means that the value of location(e) might
theoretically be considered as not definitely determined un-
til an LP really executes the event e. In practice, RINAC
determines the value of location(e) by definitely establish-
ing which LP accepts to eventually process the event e, with
no possibility to switch to another LP even in case the event
e remains unprocessed for a while. In other words, with no
loss of correctness, we are studying the case in which the
final position for the event is established prior to the event
is really executed. It is established just upon the acceptance
of the event, for future processing, at a given LP. We reserve
for future work investigations on the possibility to keep the
establishment of the location provisional until the event exe-
cution really occurs, which might further increase flexibility
in the synchronization scheme.

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

184

Behavior of LPx when cancelling the event e:
1. ∀i ∈ τ(e).Π
2. send m−[e] to LPi;

Figure 3. Multicast Cancellation.

3.2 Multicast Cancellation
When the location of events is established through

RINAC, we need to consider an adequate scheme for can-
celling a scheduled event e due to rollback. Specifically,
the main problem in the cancellation issue is that, when
LPx needs to cancel an event e it has previously sched-
uled, it might have no knowledge on the identity of the
LP that finally accepted the event e for processing. There-
fore it has no knowledge on where to send the antimessage
for the event e. As for the algorithm specifying the func-
tion location(), we do not want LPx to collect information
about the final location for the even e prior to sending the
antimessage. This is due to both the overhead for infor-
mation collection and the fact that this approach might ex-
cessively delay the send operation of the antimessage itself.
Therefore, we have devised a cancellation scheme called
Multicast Cancellation (MC), according to which LPx mul-
ticasts the antimessage for the event e to all the LPs defined
as potential locations for the event e.

The pseudo-code for MC is shown in Figure 3, where
the notation m− is used to specify we are sending an an-
timessage, i.e. a negative message. With MC we expect to
promptly catch and annihilate the event e that needs to be
cancelled, this is because all the possible destinations are
notified about the need for cancellation at once. Therefore
we do favor the potential to annihilate the event e prior it
is really executed. On the other hand, with this scheme we
need to send |τ(e).Π| antimessages for each event e to be
cancelled. However, we argue that the communication over-
head due to multicasting can be kept low in any case the
cardinality of τ(e).Π is relatively low. Also, the number of
real send operations might be reduced in case proper solu-
tions for multicasting can be included within the simulation
system. This might be the case of the kernel based approach
mentioned in the previous section, since sending a set of an-
timessages to LPs controlled by the same dispatcher thread
(DT) could actually be implemented by sending a single an-
timessage to that DT, indicating the identities of all the re-
ceivers. Also, if the communication layer provides facilities
for efficiently multicasting information, then MC could ac-
tually be implemented through a multicast send operation
with adequate specification of the multicast group. We note
that MC simply specifies where to send the antimessages
in case we deal with spatial uncertainty resolved through
RINAC. However it does not indicate when the send opera-
tion should occur. This means that MC can be coupled with
either lazy or aggressive policies for the definition of the
time instant for the send operation of antimessages [7].

Actually when dealing with MC, there is the possibility
that the antimessage m−[e] arrives at the LP, say LPy , that
finally accepts the event e before the arrival of the corre-
sponding positive message m[e, visited]. This is because

the message m[e, visited] can be delivered to LPy through
the forwarding scheme after the delivery of m−[e]. How-
ever, this is not a problem since classical optimistic syn-
chronization admits the possibility for an antimessage to
arrive before the corresponding message (e.g. for exam-
ple due to non-FIFO message delivery between LPs). In
this case the antimessage is simply kept within a queue of
pending antimessages. It will eventually annihilate the cor-
responding message upon its arrival.

The real problem with MC is that the event e is ac-
cepted by a single LP, while all the LPs that are potential
destinations for the event e receive the antimessage m−[e].
Therefore we obtain annihilation between m and m− on
a single LP, while on all the other LPs the antimessage
m−[e] remains pending. This creates problems in case the
event e, after being cancelled, is re-scheduled. In this case
there is the possibility that a new instance of the message
m[e, visited] arrives at an LP that accepts the event, but
that holds a copy of a pending antimessage m−[e]. In this
case, the new instance of the event e is cancelled via an an-
timessage destined for cancellation of the previous instance.
Therefore we obtain that the event disappears from the sys-
tem, which obviously means incorrect execution of the sim-
ulation model. To avoid this problem we can piggyback
on each notification message for an event e a serial num-
ber, established by the LP that scheduled the event e, which
uniquely identifies that message, i.e. that instance of the
event, in the system . At the same time, all the antimessages
multicasted for catching a given message should carry that
same serial number, so that annihilation occurs only in case
the serial numbers on m and m− coincide at the LP that ac-
cepted the event. With this solution we avoid cancelling an
event via an antimessage destined for cancellation of a pre-
vious instance of that same event, thus no event disappears
in the system.

We note that an antimessage m−[e] remaining pend-
ing at an LP due to the fact that the event carried
by the corresponding message m[e, visited] is not ac-
cepted/delivered by/to that LP, can be eventually discarded
just while executing fossil collection procedures. Specif-
ically, upon computation of Global Virtual Time (GVT),
m−[e] can be discarded in case the GVT value is larger
than τ(e).timestamp. Therefore the storage usage due to
pending antimessages that will not eventually match with
the corresponding positive message can be run-time con-
trolled via classical fossil collection mechanisms.

4 An Experimental Study
In this section we report the results of an experimental

study carried out using a Personal Communication System
(PCS) simulation application as a test-bed. In this study, we
would like to verify whether spatial uncertainty, exploited
through RINAC, is able to really provide a more flexible
approach to synchronization, with respect to classical opti-
mistic synchronization, thus giving rise to better run-time
behavior of the simulation system. On the other hand, we
also would like to observe whether the simulation model
with space uncertain events provides performance indices
for the PCS system (e.g. call-block frequency) that exhibit
no significant error with respect to the values that can be ob-
tained in case of no uncertainty in the model when consider-

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

185

ing the same amount of events simulated by the simulation
system. In other words, we would like to observe the im-
pact of spatial uncertainty on the accuracy of the simulation
results that are produced. The remainder of this section is
organized as follows. We first provide details on the testing
environment we have used. Then we present the simula-
tion model and the performance metrics we have selected.
Finally, we report the obtained results.

4.1 Testing Environment
The experiments were all performed on a myrinet clus-

ter of 4 Pentium III 866 MHz (256 Mbytes RAM). All the
PCs of the cluster run LINUX (kernel version 2.2.15) and
are equipped with M3M-PCI64C myrinet cards employ-
ing LANai 9 technology. CCL v3.0 [12] has been used
to support message passing. Message exchange among
LPs hosted by the same machine does not involve opera-
tions of the CCL layer. We make use of the kernel ap-
proach to implement the core functionalities of the sim-
ulation system, therefore each LP is implemented as an
application-level thread and there is an instance of an op-
timistic simulation engine, namely the dispatcher thread
(DT), on each machine. DT manages the local event list
(resulting as the logical collection of the event lists of
the local LPs) and schedules LPs for event execution ac-
cording to the standard Smallest-Timestamp-First algorithm
[10]. Dynamic memory allocation/release based on stan-
dard malloc()/free() calls is adopted for the entries
of the event lists. Checkpointing is performed for any LP
before the execution of each new event by exploiting func-
tionalities provided by CCL. GVT calculation and fossil
collection are executed periodically. Finally, antimessages
are sent on an aggressive basis. Also, in case of MC, one
antimessage for each potential receiver LP of the event to
be cancelled is sent, therefore no specific optimization has
been implemented while supporting this type of cancella-
tion.

4.2 Simulation Model
In a PCS system, base stations provide communication

services to mobile units. In our simulation model the ser-
vice area is partitioned into cells, each modeled by a distinct
LP. A cell represents a receiver/transmitter having some
fixed number of channels allocated to it. The model is call-
initiated [5] since it only simulates the behavior of a mobile
unit during conversation, i.e. the movement of a mobile unit
is not tracked unless the unit itself is in conversation. There-
fore, the model is organized around two entities, namely
cells and calls. Call requests arrive to each cell according to
an exponential distribution [3, 4, 5] with inter-arrival time
tint seconds. All the calls initiated within a given cell are
originated by the LP associated with that cell, therefore no
external call generator is used. The state vector of any LP
records statistics, information about busy channels and, for
each channel, information about features of the mobile unit
involved in the ongoing call (e.g. scheduled call termina-
tion time, call initiation time, class of the mobile unit etc.),
if any. As a result, the size of the state vector depends on
the amount of channels associated with the cell. We have
selected a model with 100 channels per cell, which gives
rise to LP state vector size of about 4 Kbytes.

There are three types of events, namely hand-off, due
to mobile unit cell switch, call termination and call arrival.
A call termination simply involves the release of the as-
sociated channel, whose identifier is maintained into the
event compound structure, and statistics update. A call ar-
rival checks if there is at least an available channel. In
the negative instance, the incoming call is simply counted
as a block, otherwise an available channel is allocated for
the call. When a hand-off occurs between adjacent cells,
the hand-off event at the cell left by the mobile involves
the release of the channel and statistics update. Similarly,
the hand-off event at the destination cell checks for chan-
nel availability, and allocates an available channel, if any,
for the call. If there is no available channel, then the call is
simply cut off (dropped). In our model there are two distinct
classes of mobile units. Both of them are characterized by
residence time within a cell which follows an exponential
distribution [3], with mean 3 minutes (fast movement units)
and 30 minutes (slow movement units), respectively. The
average holding time for each call associated with both fast
and slow movement units is 2 minutes. When a call arrives
at a cell, the type (slow or fast) of the mobile unit associated
with the incoming call is selected from a uniform distribu-
tion, therefore any call is equally likely to be destined to a
fast or a slow movement mobile unit.

Cells are modeled as hexagons, therefore all the cells,
except bordering cells of the coverage area, have six neigh-
bors. In the experimental study we have varied the model
size (i.e. the amount of cells, namely the amount of LPs) be-
tween 16 and 256, with even distribution of the LPs on the 4
machines of the cluster. Variation of the model size allows
us to observe the simulation system behavior while varying
the degree of parallelism in the model execution which, in
its turn, typically gives rise to different rollback patterns.
We have set the expected call inter-arrival time per cell tint

to 1.4 seconds, thus obtaining channel utilization factor of
about 85%.

In this simulation model, a single type of events can
be scheduled among distinct LPs, namely the hand-off
events. Specifically, when the mobile involved in conversa-
tion switches out from a cell, the corresponding LP sched-
ules a hand-off event for the destination cell. We use a
classical random walk model for mobility [1], which means
each mobile can switch out from a cell in any point along the
border of the cell. However, on top of random walk we build
an uncertainty segment that establishes a spatial region for
the hand-off. More precisely, we establish through random
walk the median point of a segment L that represents the
whole spatial region where the hand-off can occur. We have
varied the length of the segment L between 0% and 95% of
the length of a single side of the hexagonal cell. The case
of 0% means that the length of L is null, therefore we ob-
tain an exact point for the hand-off, just defined according
to classical random walk; in other words, we have a simula-
tion model with no spatial uncertainty since the destination
cell (i.e. the destination LP) for the hand-off is precisely
defined. Instead, for non-null values of the length of L we
have a model in which there might be uncertainty on the
destination cell for the hand-off. Specifically, there might
be two possible destinations. Obviously, the larger L, the
higher the likelihood that the hand-off is uncertain in space

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

186

0 64 128 192 256
#LPs

0.00

0.01

0.02

0.03

0.04

0.05

ro
llb

ac
k

fr
eq

ue
nc

y

no uncertainty (L=0)
L=25% of cell side
L=50% of cell side
L=75% of cell side
L=95% of cell side

0 64 128 192 256
#LPs

0

5

10

15

ro
llb

ac
k

le
ng

th

no uncertainty (L=0)
L=25% of cell side
L=50% of cell side
L=75% of cell side
L=95% of cell side

0 64 128 192 256
#LPs

25000

30000

35000

40000

45000

50000

ev
en

t r
at

e

no uncertainty (L=0)
L=25% of cell side
L=50% of cell side
L=75% of cell side
L=95% of cell side

Figure 4. Performance of the Simulation System.

0 64 128 192 256
#LPs

0.005

0.007

0.009

0.011

0.013

0.015

0.017

0.019

ca
ll-

bl
oc

k
fr

eq
ue

nc
y

serial execution
no uncertainty (L=0)
L=25% of cell side
L=50% of cell side
L=75% of cell side
L=95% of cell side

0 64 128 192 256
#LPs

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

ca
ll-

dr
op

 fr
eq

ue
nc

y

serial execution
no uncertainty (L=0)
L=25% of cell side
L=50% of cell side
L=75% of cell side
L=95% of cell side

Figure 5. Statistics Related to the PCS.

due to the fact that two different cells might accept the mo-
bile. Therefore, increasing L actually means studying the
system behavior while the amount of uncertain events in-
creases. Actually, the upper value for L we consider, i.e.
95% of the length of the side of the hexagonal cell, origi-
nates a situation in which a hand-off event has two possible
destinations with probability 0.95. In other words, for that
value of L, the large majority of hand-off events are space
uncertain. As a final preliminary observation, each time the
hand-off has two possible destinations due to the fact that
the segment L covers a portion of the border that is adja-
cent to two different cells, then the first LP visited by the
forwarding scheme in RINAC is the one associated with the
cell touched by the median point of the segment L.

4.3 Performance Metrics
As already pointed out, when dealing with spatial uncer-

tainty we are interested in considering two different effects.
One is the possible improvement in the run-time behavior
of the simulation system (in our case through RINAC), the
other one is the effect of the uncertainty on proper statis-
tics related to the simulated system, namely the PCS. We
consider both these effects.

As respect to performance metrics for the simulation sys-
tem, we report measures related to the event rate, classically
evaluated as the amount of committed simulation events per
second, which is an indicator of the speed of the model

execution. We also report values related to the rollback
frequency (classically evaluated as the ratio between the
number of rollbacks and the number of executed simulation
events) and the rollback length (classically evaluated as the
average number or rolled back events at each rollback oc-
currence), which are indicators of the amount of rollback
experienced during the execution. Specifically, the amount
of rollback is typically expressed as the product pr between
the rollback frequency and rollback length, and this prod-
uct measures the probability for whichever executed event
to be eventually rolled back. The quantity 1 − pr is a met-
ric referred to as the efficiency of the simulation model ex-
ecution. It indicates the probability to carry out produc-
tive simulation work, i.e. to execute events that are not
eventually rolled back. We report data related to rollback
frequency and rollback length just because we want to ob-
serve whether possible variations in the execution speed due
to spatial uncertainty derive from variations in the rollback
pattern (e.g. a reduction in the amount of rollback). As re-
spect to proper statistics of the PCS, we report observed val-
ues for both the frequency of call-block and the frequency of
call-drop, which are two classical parameters characterizing
any PCS. Each reported value is computed as the average
over 5 runs, all done with different seeds for the pseudo-
random generation. At least 2×106 simulation events have
been committed in each run.

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

187

4.4 Results
The obtained results related to the performance of the

simulation system are reported in Figure 4. By the plots we
obtain that spatial uncertainty exploited through RINAC is
able to strongly reduce the frequency of rollback occurrence
as compared to the case of no spatial uncertainty, i.e. the
case of L = 0 (3). Also, a greater reduction of the rollback
frequency is observed in case of larger values for L. This
is an expected behavior when considering that larger values
for L mean higher likelihood for the hand-off event to be ad-
dressable to two distinct LPs. Therefore, increasing L actu-
ally means increasing the percentage of hand-off events that
can be forwarded to the second chance LP through RINAC
in case they cannot be accepted by the first chance LP with-
out the need for rollback. As an extreme, when L = 95%
of the length of the cell side, we have a reduction of the fre-
quency of rollback on the order of up to 86%. On the other
hand, we note that the reduction of the rollback frequency is
non-negligible (it is between 26% and 44%) even for lower
values of L, namely values between 25% and 50% of the
length of the cell side.

As already discussed in Section 3.1, RINAC might de-
lay the execution of rollback procedures in case no LP
along the forwarding chain is encountered, which has sim-
ulation clock lower than the event timestamp. This delay,
in its turn, might increase the length of rollback. How-
ever, this phenomenon does not seem to appear in the re-
sults. Specifically, the execution with spatial uncertainty
exploited through RINAC does not exhibit significant in-
crease of the rollback length for values of L up to 50% of
the cell side. It exhibits increase of the rollback length only
in case of very large values of L, namely 75%-95% of the
length of the cell side. By this phenomenon we argue that
the increase in the rollback length for this particular applica-
tion is not primarily related to delay in the execution of roll-
back procedures possibly caused by the forwarding scheme
underlying RINAC. Instead, it should be mainly due to the
fact that when L is largely increased we get a very strong
reduction of the rollback frequency, which means the simu-
lation execution is becoming more “asynchronous”. There-
fore simulation clocks at LPs on different processors might
slightly diverge, which, as expected, tends to negatively im-
pact the rollback length. However, the increase in the roll-
back length is less relevant as respect to the reduction we
obtain in the rollback frequency. Therefore, even for very
large values of L, the amount of rollback in the execution
gets lower than the one achieved with no spatial uncertainty.
Direct effect of the combination of results for the rollback
frequency and the rollback length is an increase in the exe-
cution speed, namely in the event rate, when spatial uncer-
tainty is exploited. This increase is more evident for the case
of larger values of L (due to the much larger reduction of the
rollback frequency as compared to lower values), and when
considering higher degree of parallelism in the model exe-
cution, namely a lower amount of LPs. Specifically, when
the number of LPs is 16, we get an increase in the execution
speed between 10% and 20%. This gain tends to decrease
while increasing the number of LPs. However, we would

3Recall that L = 0 means we have an exact point for the hand-off of
the mobile. Therefore the destination cell, that is the destination LP, for
the hand-off event is precisely defined.

like to note that the reduction of the gain in the execution
speed when the number of LPs is increased (while keeping
the same size of the underlying computing system) is not a
flaw of RINAC. Instead, it is due to the fact that reducing
the degree of parallelism leads to an execution with very
low amount of rollback even in case of no uncertainty and
classical optimistic synchronization, therefore the improve-
ments in the run-time behavior achievable through spatial
uncertainty and RINAC are necessarily limited.

Figure 5 reports statistics related to the PCS system. Ac-
tually, we have also reported the call-block and call-drop
frequencies estimated through serial executions of this same
simulation model. By the results we get that statistics ob-
tained with values of L up to 50% of the length of the cell
side are very close to those achieved with serial execution
or with parallel execution with no spatial uncertainty (i.e.
the case of parallel execution with L = 0). Specifically,
call-block and call-drop frequencies obtained with L set up
to 50% of the length of the cell side differ by no more than
10% from the values obtained with serial execution or par-
allel execution with no uncertainty. On the other hand, for
larger values of L, those parameters show values that re-
main within the 20% of those achieved with serial execution
or parallel execution with no uncertainty.

5 Summary
In this paper we have presented the notion of spatial un-

certainty of simulation events, with an application to opti-
mistic parallel/distributed simulation. As we have shown,
spatial uncertainty allows more flexible synchronization,
with consequent improvement in the run-time behavior of
the simulation system. We have also shown that the numer-
ical results obtained for a PCS simulation application with
space uncertain events are relatively close to those obtained
with no uncertainty when considering the same amount of
committed simulation events.

References
[1] I. F. Akyildiz, Y. B. Lin, W. R. Lai, and R. J. Chen. A new random walk

model for PCS networks. IEEE Journal on Selected Areas in Communications,
18(7):1254–1260, 2000.

[2] R. Beraldi and L. Nigro. A Time Warp based on temporal uncertainty. Trans.
of the Society for Modeling And Simulation, 18(2):60–72, 2001.

[3] A. Boukerche, S. K. Das, A. Fabbri, and O. Yildz. Exploiting model indepen-
dence for parallel PCS network simulation. In Proceedings of the 13th Work-
shop on Parallel and Distributed Simulation, pages 166–173. IEEE Computer
Society, May 1999.

[4] C. D. Carothers, D. Bauer, and S. Pearce. ROSS: a high performance modu-
lar Time Warp system. In Proceedings of the 14th Workshop on Parallel and
Distributed Simulation, pages 53–60. IEEE Computer Society, May 2000.

[5] C. D. Carothers, R. M. Fujimoto, and Y. B. Lin. A case study in simulating PCS
networks using Time Warp. In Proceedings of the 9th Workshop on Parallel and
Distributed Simulation, pages 87–94. IEEE Computer Society, June 1995.

[6] R. M. Fujimoto. Exploiting temporal uncertainty in parallel and distributed
simulation. In Proceedings of the 13th Workshop on Parallel and Distributed
Simulation, pages 46–53. IEEE Computer Society, May 1999.

[7] A. Gafni. Space management and cancellation mechanisms for Time
Warp. Tech. Rep. TR-85-341, University of Southern California, Los Angeles
(Ca,USA), 1985.

[8] M. Hybinette and R. M. Fujimoto. Cloning parallel simulations. ACM Trans.
on Modeling and Computer Simulation, 11(4):307–407, Oct. 2001.

[9] D. R. Jefferson. Virtual time. ACM Trans. on Programming Languages and
System, 7(3):404–425, July 1985.

[10] Y. B. Lin and E. D. Lazowska. Processor scheduling for Time Warp parallel
simulation. In Advances in Parallel and Distributed Simulation, pages 11–14,
1991.

[11] M. L. Loper and R. M. Fujimoto. Pre-sampling as an approach for exploiting
temporal uncertainty. In Proceedings of the 14th Workshop on Parallel and
Distributed Simulation, pages 157–164. IEEE Computer Society, May 2000.

[12] F. Quaglia and A. Santoro. CCL v3.0: Multiprogrammed semi-asynchronous
checkpoints. In Proceedings of the 17th Workshop on Parallel and Distributed
Simulation, pages 21–30. IEEE Computer Society, 2003.

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

188

