
Tutorial: Cloud-based Data Stream Processing

Thomas Heinze1, Leonardo Aniello2, Leonardo Querzoni2, Zbigniew Jerzak1

1SAP AG 2CIS - Sapienza University of Rome
{firstname.lastname}@sap.com {lastname}@diag.uniroma1.it

ABSTRACT
In this tutorial we present the results of recent research about
the cloud enablement of data streaming systems. We illus-
trate, based on both industrial as well as academic prototypes,
new emerging uses cases and research trends. Specifically,
we focus on novel approaches for (1) scalability and (2) fault
tolerance in large scale distributed streaming systems. In
general, new fault tolerance mechanisms strive to be more
robust and at the same time introduce less overhead. Novel
load balancing approaches focus on elastic scaling over hun-
dreds of instances based on the data and query workload.
Finally, we present open challenges for the next generation
of cloud-based data stream processing engines.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications

Keywords
Cloud-based Data Stream Processing, Load Balancing, Fault
Tolerance

1. INTRODUCTION
A data stream processing system executes a set of con-

tinous queries over a potentially unbounded data stream.
Thereby, the system constantly outputs new results on the
fly. Typical use cases include financial trading and moni-
toring of manufacturing equipment or logistics data. These
scenarios require a high throughput and a low end to end
latency from the system, despite possible fluctuations in the
workload.

In the last decade, a large number of different academic
prototypes as well as commercial products have been built
to fulfill these requirements (see Figure 1). In general, data
stream processing systems can be divided into 3 generations:

First generation stream processing systems have been built
as stand-alone prototypes or as extensions of existing

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
DEBS’14, May 26-29, 2014, MUMBAI, India.
Copyright 2014 ACM 978-1-4503-2737-4/14/05 ...$15.00.
http://dx.doi.org/10.1145/2611286.2611309.

database engines. They were developed with a spe-
cific use case in mind and are very limited regarding
the supported operator types as well as available func-
tionalities. Representatives of this generation include
Niagara [29], Telegraph [11] and Aurora [2].

Second generation systems extended the ideas of data
stream processing with advanced features such as fault
tolerance [1], adaptive query processing [34], as well
as an enhanced operator expressiveness [7]. Important
examples of this class are Borealis [1], CEDR [7], System
S [22] and CAPE [34].

Third generation system design is strongly driven by the
trend towards cloud computing, which requires the
data stream processing engines to be highly scalable
and robust towards faults. Well-known systems of
this generation include Apache S4 [30], D-Streams [42],
Storm [27] and StreamCloud [18].

In this tutorial we illustrate the research trends for the third
generation of data stream processing engines. We describe
the key requirements, which led to the development of this
new generation of systems. In addition, we present detailed
technical insights as well as future research directions.

The focus of this tutorial is on three key differentiators
to previous research: (1) the intended use case, (2) the
used scaling mechanisms and (3) the provided fault tolerance
mechanisms. We present how the data stream processing
system allows a user to scale out to hundreds of processing
nodes, and ensures a fault tolerant execution even in an
error-prone environment. We highlight key achievements in
recent research and outline the difference to traditional data
stream processing systems.

In the following, we first (Section 2) illustrate the use cases
that drove the design of cloud-based data stream processing.
Afterwards, we detail state of the art techniques for both
scalability and fault-tolerance of a data stream processing
engine in Section 3 and 4 respectively. Finally, we illustrate
possible directions for future research in Section 5.

2. INTENDED USES CASES
In the third generation of data streaming systems a new

class of application areas has been introduced. These include
anomaly detection within social network data streams [3,
27, 30, 33] and website/infrastructure monitoring [30, 42].
All these use cases have a set of common requirements: (1)
the scenarios typically involve input streams with high up
to very high data rates (> 10000 event/s), (2) they have

��������	��
���	 �������	��
���	����	���	��
���	

���������		�

��������		�

�����������		�

����������� ��		�

��������� ��		�

���������		�

� ���!������"���	��

� ���!��#��$���	��

%����&�����	�	

���"�������	��

�'� �� � ��!���	��
 ����# ���	��

� ���!������	�	

���� �" � ���!���� ��	��

�(�)���		*

���� �" +���� ����		,

-#.������� � ���!���	�	

/012���		�

$����"��� ��		�

����3�� ���!�#����	�	

)4� ���!���	��

��5��� ��		6

�������		*

7� ���! ��		,

��(����		�

)4��(����		�

�$��� ��		*

(-(�����		�
 859��� ��		:

� ���!-#���� ��	�	

��!�� ���! ��	��

��)����		�

���(���	��

����� ��		:

���;��� ��		:

� ���!���� ��		�

�����*���		�

����� ��		:

�59��� ��(���	�	

+��"�����0���		:
 +��"�����(���		,

��(���(���	��

)�<�=� ��		,

�5� �!����		�

0�����	��

� ���!- ��		�

/��> ���!��		6

���� �" �5� �!����	��

���"��(��!����	��

�����#��5?�����		*

'�9�� ��� ����#�����;�# ���	��

�-��+�� ���!���� ��	��

�-��+�����#����;�# ���		*

�-0����		�

�-0�4()����		�

�0)���	��

����@������	��

A��3� ��		6

Figure 1: History of data stream processing systems

relaxed latency constraints (up to a few seconds), (3) the
use cases require the correlation among historical and live
data, (4) they require systems to elastically scale and to
support diverse workloads and (5) they need low overhead
fault tolerance supporting out of order events and exactly
once semantic. In the following, we illustrate some of these
use cases in detail.

Google Zeitgeist [3], which tracks web queries trend evolu-
tion at runtime, is an example of a data stream processing ap-
plication characterized by the aforementioned requirements.
Zeitgeist is designed to analyze queries from Google search
(hence the very high data rates) to build a historical model
for each query and then identify anomalies, like spiking or
dipping searches as quickly as possible. Zeitgeist collects in-
coming search queries in 1-second buckets; buckets are then
compared to historical data represented by known search
query models. Zeitgeist is an application running on top of
MillWheel [3], Google’s data stream processing system.

Whenever a relevant event happens in the world, people use
Twitter to discover what is happening by issuing queries. In
such cases, significant spikes occur in the queries submitted to
Twitter, and it is very likely that these queries have not been
seen before, making it really challenging to correctly relate
them to the events people are actually looking for. Twitter

has to manage 2.1 billion queries per day1, and needs to cope
with such occasional spikes by correlating queries with tweets
in real-time in order to provide results as accurate as possible.
Furthermore, the interest of people for these relevant events
is temporary and the corresponding query spikes fade away
within a limited time window, so it is mandatory to sharpen
this correlation as quickly as possible. At this aim, Twitter
employs Storm [27] to spot popular queries so as to analyze
them in details and achieve an improved accuracy in result
generation [38].

Yahoo! personalizes search advertising on the basis of
users’ queries. In order to improve the accuracy of the models
employed to predict advertisement relevance, this kind of
analysis requires the evaluation in real-time of thousands of
queries per second submitted by millions of distinct users.
Yahoo! used S4 [30] to cope with this requirement.

Dublin City Council had the need to enhance the moni-
toring of its 1000 buses with the aim of delivering the best
possible public transportation services to its 1.2 million cit-
izens. They employ System S [17] to track the position of
buses through GPS signals and to display real-time traffic in-
formation through dashboards. By continuously monitoring
bus movements across the city, it is possible to accurately

1http://www.statisticbrain.com/twitter-statistics/

http://www.statisticbrain.com/twitter-statistics/

foresee arrival times and to suggest the best routes to take
in case of traffic congestions or car accidents [21].

Aggregating online advertising flowing at a rate of 700K
URLs per second, and executing sentiment analysis on 10K
tweets per second, both within a 2-second maximum latency,
are real cases where TimeStream [33] is used.

Fraud detection in cellular telephony is enforced by pro-
cessing in real-time a number of Call Detail Records (CDRs)
in the order of 10K-50K CDRs per second. The queries to be
used to detect frauds include self-joins on the CDR stream
that require the comparison of millions of CDR pairs per
second. The challenges of this scenario have been addressed
by employing StreamCloud [18].

3. SCALING MECHANISMS
An important aspect of any data stream processing system

is its ability to scale with increasing load, where the load is
characterized by the number and complexity of issued queries
and the rate of incoming events to be analyzed. Cloud-
based data streaming engines, in particular, are designed
to dynamically scale to hundreds of computing nodes and
automatically cope with varying workloads. The design of
such engines poses two major technical challenges:

Data Partitioning The major challenge is to allow paral-
lel evaluation of multiple data elements ensuring se-
mantical correctness. This involves a reasonable data
partitioning and merging scheme as well as mechanisms
to detect points for parallelization.

Query Partitioning If a single host is not able to process
all incoming data or all queries running in the system a
distributed setup is applied. This involves the question,
how to distribute the load across available hosts and
how to achieve a load balance between these machines.

3.1 Data Partitioning
Early approaches for allowing parallel execution of data

stream processing systems have been proposed with FLUX [37]
and Aurora [2]. Both systems present a scheme for paralleliz-
ing operators by introducing a splitter and merge operator.
Depending on the type of the parallelized operator, the merge
operator can be either a simple union of all streams or might
include also a sorting function [1] (See Figure 2). A simple
filter can be parallelized using a round robin scheme where
each instance can process any input event. The output of the
available parallel instances needs only to be aggregated with
a union. In contrast, for an aggregation operator all data
elements pertaining to a same key group need to be processed
by the same instance to ensure semantical correctness. In
addition, the output of all instances needs to be sorted based
on a timestamp to ensure temporal ordering.

������

������

��	
��

���

�
��

����

����

����

����	����

�����

������

Figure 2: Examples for a parallel operator
.

Parallelization is a central feature of any cloud-based data
stream processing system. Therefore, both Apache S4 [30]
and Storm [27] allow the design of parallel applications.
Within Storm a user can express data parallelism by defining
the number of parallel tasks per operator. Apache S4 [30]
creates for each new key in the data stream a processing
element, which is than executed one of the running process-
ing node. In both approaches the user needs to understand
the data parallelism and explicitely enforce in its code the
sequential ordering.

An alternative approach is taken by Hadoop Online [13]
and StreamMapReduce [9], which presents a methods to
implement stream-based tasks through the map-reduce pro-
gramming paradigm. The authors extend the notion of map
and reduce with a stateful reducer to overcome the strict
phasing. The approach allows the usage of the MapReduce
paradigm for streaming use cases, which allows a custom and
highly parallelized execution.

An auto-parallelization approach has recently be proposed
as extension of System S [36]. This system consists of a
combination of compiler and runtime, which automatically
enforces data parallelism at the operator level. The compiler
detects regions for parallelization, while the system runtime
guarantees that output tuples follow the same order as for
a sequential execution. This approach supports classical
data stream operators, custom operators as well as pattern
matching operators [19].

Another research direction is based on elastic data par-
allelism. Elasticity describes the behavior of a system to
dynamically scale in or out based on a changing workload [5].
The goal of an elastic scaling system is to react to unpre-
dicted workload changes and minimize the monetary cost for
the user. The notion of elasticity was first used within data
stream processing systems by Schneider et al. for System
S [35]. The system varies the number of threads used for
pre-defined operator during runtime. If the load increases,
additional threads are launched. Similarly if the load de-
creases, the number of running threads is reduced. Gedik et
al. [17] combine the ideas of auto parallelization and elasticity
within a single prototype, which leveraging a controller-based
architecture, automatically determines the optimal number
of partitions to be used within the system.

3.2 Query Partitioning
A fundamental problem for a distributed data stream pro-

cessing system is to efficiently use the computational re-
sources (hosts) available in the data center. The problem
of assigning a set of operators to a set of available hosts is
usually referred to as the operator placement problem. Many
different placement algorithms have been presented for dif-
ferent use cases. An overview of alternative approaches is
presented by Lakshmanan et al. [24]. The most recent al-
gorithms have been presented by SODA [39], SQPR [23],
MACE [10] and [4] for the Storm system.

All placement algorithms can be differentiated based on
multiple factors, the most important ones include:

Optimization goal. Depending on the intended use case
the placement algorithm tries to optimize different ob-
jectives to overcome the limitations of the current setup.
These potential goals include a limited CPU bandwidth,
a limited network bandwidth [31], latency optimiza-
tion [10] or load balance within the system [39].

Execution model. The algorithms can be differentiated
on the basis of the execution model they employ. A
centralized approach [39, 23] collects all statistical infor-
mation within a single manager and derives placement
decisions for the whole network. In contrast, in a decen-
tralized approach [31] decisions are taken as the result of
a collaborative effort among all hosts. While the latter
provides better scalability, a centralized manager can
normally provide more optimized placement decisions
as it can reason on global system knowledge.

Algorithm runtime. The decision can be either made of-
fline based on an estimation of the workload [40], online
based on an adaptive algorithm measuring the workload
or based on a combination of both [23, 39].

An important aspect of the design of a distributed data
stream processing system is the mechanism used to migrate
operators among hosts. The migration of stateful operators,
like aggregation or join operators, requires both the rewiring
of data streams and the extraction and replay of the operator
current state. The mechanisms used for this process are
similar to those used to extract checkpoints or operator mi-
gration techniques used within adaptive query optimization
systems [43, 41]. Based on the recent research two classes of
operator movement protocols can be differentiated:

Pause & Resume. This approach [37] extracts the current
state from the old instance and replays it within the new
instance. Therefore, the operator needs to be paused to
ensure a semantically correct migration. The drawback
of this approach is that it creates an observable latency
peak during the execution.

Parallel Track In the Parallel Track approach [18, 43] both
the old and the new operator instances concurrently
produce partial output. Thereby, the old instance pro-
duces still output until the state of both instances are
in sync. Depending on the implementation the new in-
stances either produce only partial results or no results
during the synchronization time. This approach has
the advantage of no latency peak during an operator
movement. However, it requires enhanced mechanisms
like state movement and duplicate detection for aggre-
gation operators. In addition, such a migration might
take up to to w time intervals before the old instance
can be stopped, where w represents the size of the
migration window.

Storm [27] provides an abstraction of task, executor, worker
and topology. This is illustrated in Figure 3, which shows
a topology consisting of three workers. Each worker runs
multiple executors, which host one or more tasks. The user
defines the desired level of parallelism by defining the number
of tasks for an operator. The system then tries to balance
the tasks among all workers in the topology, based on the
number of tasks assigned to each worker. Storm has also an
option to rebalance the load during runtime to an increased
or decreased number of hosts. This is realized by pausing
and restarting the complete topology without loosing the
operator state.

Similarly, Apache S4 [30] supports the notion of multiple
processing nodes within a cluster, which allows a distributed
execution. It can be customized using different load bal-
ancing or load shedding techniques, however the number of
processing nodes in this system is fixed.

��������

���	
�

������

���	

������

�����

������

��	��	�� ��	��	�� ��	��	��

��	�������

���� ��

��	�������

���� ��

��	�������

���� ��

�����

���	

�
�	�

���	

���

���	

���

���	

�����

���	

�
�	�

���	

���

���	

���

���	

�����

���	

�
�	�

���	

���

���	

���

���	

Figure 3: Distributed setup of Storm

In contrast, elastic data stream processing systems like
StreamCloud [18] and SEEP [15] can dynamically vary the
number of processing nodes within the system based on the
workload. Therefore, both systems use a centralized archi-
tecture monitoring performance metrics like CPU utilization
of each hosts (see Figure 4). The system requests new re-
source from the cloud resource manager as needed. Based on
thresholds for individual hosts or the whole system, SEEP or
StreamCloud decide to scale in or out respectively. The op-
erator placement strategies are very simplistic, but adaptive.
The only metric used for placement decisions is system load.

����������

	�
���

�������

	�
���

������������

	�
������������

������������

	�
������������

������������

	�
������������

������

������

�������

������

������

������

�����
�����

Figure 4: General architecture of an elastic data stream
processing engine

StreamCloud [18] authors analyzed different design aspects
for the design of an elastic scaling data stream processing
engine. Based on their analysis, the best strategy for op-
erator migration ensuring a minimal overhead towards the
latency is based on a pause & resume approach. In contrast,
SEEP integrates the mechanisms for load balancing and fault
tolerance within a single prototype using enhanced state
management mechanisms.

MillWheel [3] is able to partition the running operators
using a dynamic key-based partitioning to a varying number
of computational nodes. They partition the key space into a
set of intervals, which can dynamically be split or merged.
Similarly to SEEP and StreamCloud, decisions are based on
a per-process measurement of the CPU load.

4. FAULT TOLERANCE MECHANISMS
Traditionally, distributed systems considered fault-tolerance

as a fundamental requirement to be satisfied through the
adoption of techniques, that were mostly designed to impose
a lightweight load during best-case (i.e. no faults) executions.
In such systems faults were considered as an exception that
justified paying possibly severe performance degradation dur-
ing a recovery phase. The advent of large-scale applications
running on cloud platforms completely changed this scenario
imposing fault-tolerance as first-class citizen in the design
phase. In such systems, in fact, due to their sheer size, faults
are no more exceptions but rather normal events that must
be possibly dealt with during a vast majority of the exe-
cutions. Data streaming systems aimed at cloud platforms
are no exception, and must thus be designed to efficiently
cope with faults. Faults may appear in a data streaming
system at several different places. However, we can generally
assume that a fault will either affect a single message (e.g.
an overloaded network link discarding packets) or a compu-
tational element (e.g. an operator becomes unavailable after
the crash of the CPU it was running in). As a consequence,
we can differentiate between State management techniques
employed to make operator state survive faults and Event
tracking techniques employed to track the correct handling
of events injected in the system.

4.1 State Management
State management for data stream processing systems is

fundamentally based on the two classic approaches used to
build fault tolerant software services: active and passive
replication.

Operator

Operator

Operator

Pr
ev

io
us

 s
ta

ge

N
ex

t s
ta

ge

State

State

State

Data

State implicitly synchronized by
ordered evaluation of same data

Active replication

Operator

Operator
(dormant)

Operator
(dormant)

Pr
ev

io
us

 s
ta

ge

N
ex

t s
ta

ge

State

State

State

Data

State periodically persisted on stable
storage and recovered on demand

Passive replication

Checkpoints

Figure 5: Basic functioning scheme for active (left) and
passive (right) replication.

Active replication [6, 26] requires the system to evaluate
an event in parallel on k identical operators (where k is the
replication degree) such that the operator state is correctly
maintained as long as less than k operators fails at the same
time (see Figure 5 left). In order for this technique to work
correctly (1) operator replicas must be guaranteed to evaluate
the same set of events in the same order and (2) they must
implement deterministic computations2. While active repli-
cation is considered very effective in providing uninterrupted

2Application-specific code may allow the correct execution
and replication of non-deterministic computations [32].

service in the presence of faults, it is generally regarded as
an inefficient technique for data stream processing systems.
It requires for the execution of an application, in fact, k-
times the resources that would be used by a corresponding
non fault-tolerant execution. Furthermore, the deterministic
fault-tolerance guarantees are more difficult to attain in a
virtualized environment (like a cloud platform is) where the
placement of operators on hardware machines is decoupled
by the usage of multiple virtualization mechanisms.

Passive replication [20] is a lazy technique where operators
are required to periodically backup their state to make it
survive possible future faults (See Figure 5 right). Upon a
fault, a new copy of the failed operator is instantiated and
its state restored from the backup. The advantage of this
approach is that few resources are periodically consumed at
runtime to backup operator state, while most of the load is
incurred only when an operator fails. In this case, in fact,
beside restoring the latest operator internal state backup,
all events managed by the failed operator before its failure
that were not included in the backup must be evaluated
again. Passive replication is today the most commonly used
approach for providing operator fault tolerance in data stream
processing systems, because it can easily be adapted and is
tailored to work efficiently with different system architectures.
In particular, most modern proposals adopt variants of this
approach that can be mostly distinguished on the basis of
the approach used to store state backups.

Storm does not provide state management explicitly. Its
extension called Trident [28] includes interfaces for backing
up operator states but leaves the actual implementation to
the user.

Apache S4 [30] takes a lightweight approach to the problem
as it assumes that lossy failovers are acceptable. Operators
(called Processing Elements in S4) hosted on failed servers
Processing Nodes are automatically moved to a standby
server. Running operators periodically checkpoint their in-
ternal state through a mechanism that is both uncoordinated
and asynchronous. It is uncoordinated because distinct op-
erator instances can checkpoint their state autonomously
without synchronization, and thus without global consis-
tency. Moreover, checkpointing is executed asynchronously
by first serializing the operator state and then saving it to
stable storage through a pluggable adapter. When a new
operator instance is created after a failure, first the system
checks if a state for that operator has been previously saved
to stable storage and, in this case, retrieves and restores
it. S4’s checkpointing mechanism can be overridden with
a user implementation that could possibly provide stronger
consistency guarantees.

Differently from S4, MillWheel [3] provides a simple pro-
gramming model by guaranteeing strong consistency among
all computations. This is achieved by checkpointing on per-
sistent storage (based on BigTable [12]) every single state
change incurred after a computation. Depending on the
specific characteristics of the application that must be run,
checkpointing can be either executed before emitting results
downstream, or after the result emission. In the former case,
operator implementations are automatically rendered idem-
potent with respect to the execution, greatly simplifying the
programmer work, but potentially incurring greater latencies.
In the latter case, it is up to the programmer making opera-
tors idempotent or ignoring the problem if the application
allows it.

Source
(spout)

Splitter
(bolt)

Counter
(bolt) DB

Documents Text lines Words Word count

stay hungry, stay foolish

stay

hungry

stay

foolish

countword

1

1

2

hungry

foolish

stay

Figure 6: Example of event tree tracking in Storm

Timestream [33] also employs a shared reliable storage to
backup information that are required for both fault recovery
and dynamic reconfiguration of the DAG. For each operator,
this information comprises two kinds of data dependencies:
state dependency, that is the list of input events that made an
operator reach a specific state, and output dependency, that
is the list of input events that made an operator produce a
specific output starting from a specific state. Such dependen-
cies allow to correctly recover from a fault without having to
store all the intermediate events produced by the operators
and their states, since they can be recomputed by simply
replaying required input events. Anyway, Timestream pro-
vides optimizations including the possibility to periodically
checkpoint an operator state in order to avoid re-emitting
the whole history of input events in order to recompute it.

While Apache S4, MillWheel and Timestream assume the
presence of a storage backend where state can be persisted,
SEEP [15] takes a different route allowing state to be stored
on upstream operators. This choice, often considered inef-
ficient, allows SEEP to treat operator recovery as a special
case of a standard operator scale-out procedure, greatly sim-
plifying system management. Operator state in SEEP is
characterized by three information categories, namely inter-
nal state, output buffers and routing state, that are treated
differently to reduce the state management impact on system
performance.

The way D-Streams [42] manages computation state strictly
depends on the model it uses for the computation itself. A
D-Streams computation is structured as a sequence of de-
terministic batch computations on small time intervals, and
the input and output of each batch, as well as the state of
each computation, are stored as reliable distributed datasets
(RDDs). For each RDD, the graph of operations used to
compute (its lineage) it is tracked and reliably stored, so
as to enable to recompute it in case of faults. As lineages
are backed in a distributed fashion, the recovery of an RDD
can be performed in parallel on separate nodes in order to
speed up recovery operations. Furthermore, similarly to
Timestream, in order to make recovery even faster, RDD
state is periodically checkpointed to limit the number of
operations required to restore it.

4.2 Event Tracking
When a fault occurs, events may need to be replayed.

Event losses are detected by setting timeouts on the recep-
tion of acknowledgments from downstream operators, and
the solution simply consists in making upstream operators
replay lost events. When recovering from a failure, after the
restoration of a previously checkpointed state, some events
may need to be replayed to correctly restore the updated

state. In order to understand which events have to be re-
emitted, some information have to be tracked and managed
at runtime.

Dealing with event losses boils down to decide (1) who is in
charge of storing events that have not been acknowledged yet
and (2) who is in charge of detecting losses and consequently
triggering event replaying. In Storm [27], dedicated operators
(ackers) are in charge of dealing with event losses by leverag-
ing management messages sent by the other operators about
the outcome of their event sendings. For each single input
event, the ackers track the tree of events generated by the
elaboration of such event in order to identify the input event
to replay in case an operator notified a fault in a delivering.
Figure 6 shows a simple example of the tracking information
kept by an acker. The well known word count problem is
used and the related topology is drawn on the top of the
figure, with a Source node emitting one event for each line of
the input documents, a Splitter node that emits an event for
each word in each line, and finally a Counter node in charge
of aggregating by word and providing the final output. On
the bottom of the figure, the tree of the dependencies among
the events generated by a single input event (a line of a
document) is reported. Each event emitted by the Splitter (a
word) is anchored to the input event, and in turn each event
produced by the Counter (a word and the related count) is
linked to an event emitted by the Splitter. Whenever the de-
livering of an event is not acknowledged within a predefined
timeout, the ackers can easily understand which input event
to replay (the root of the dependency tree). This solution
requires input sources to keep the events they have produced
until some acker tells them that such events are no longer
required because their elaboration completed. Furthermore,
it entails a relevant exchange of messages among operators
and ackers to keep the tracking updated.

In the other systems that implement fault tolerance mech-
anisms (MillWheel [3], Timestream [33], SEEP [15] and
D-Streams [42]), the event tracking functionality is strongly
coupled with the state management because a checkpointed
state has to be integrated with the replaying of the events
emitted after such checkpoint in order to correctly recover
the state itself. At this regard, events cannot be simply
garbage collected when they are acknowledged, rather the
checkpointing of a state updated with such events has to be
waited for.

MillWheel [3], Timestream [33] and SEEP [15] do not em-
ploy any dedicated entity to manage event losses and simply
designate upstream operators to track sent events until they
get acknowledged, and to replay them when a timeout expires.
In particular, Timestream does not store all the events and re-
compute those to be replayed by tracking their dependencies

with input events, similarly to Storm, and checkpointed states
(state and output dependencies). In addition, Timestream
supports an optimization that makes operators themselves
temporarily buffer output events in order to avoid recomput-
ing them from the scratch. While SEEP stores events and
tracking information at the upstream operator, MillWheel
and Timestream employ a reliable distributed store in order
to tolerate faults where also an upstream operator of a failed
downstream operator fails.

The event tracking in D-Streams [42] differs from the
described approaches. D-Streams divides the computation in
discrete intervals where events are moved from an interval to
the next one by storing them in a reliable store composed by
several reliable distributed datasets (RDDs). Each RDD is in
charge of tracking its lineage, that is the graph of operations
used to compute it.

5. FUTURE RESEARCH DIRECTIONS
Beside the recent great advancements in the field of data

stream processing systems outlined in the previous sections,
a few issues remain to be solved to fully adapt these sys-
tems to the peculiarities of cloud platforms. In particular,
the following point describe research directions where we
think further investigation would probably bring important
improvements to the current state of the art.

Infrastructure awareness. Most existing data stream pro-
cessing systems are infrastructure oblivious, i.e., their
deployment strategies do not take into account the
peculiar characteristics of the available hardware in-
frastructure. The physical connection and relationship
among infrastructural element is known to be a key
factor to both improve system performance and fault
tolerance. For example the Hadoop system allows sys-
tem administrators to manually define the association
between computing elements and racks to make this
information available to the scheduler (this feature is,
in fact, called “rack awareness”). We think infrastruc-
ture awareness is an open research field for data stream
processing systems that could possibly bring important
improvements.

Cost-efficiency. Users in these days are not only interested
in the performance of the system, but also the mon-
etary cost of the used cloud-based infrastructure [16].
Therefore, cloud-based data stream processing systems
must seek to minimize the monetary cost for the user.
This includes an efficient scaling behavior maximizing
the system utilization as well as efficient fault tolerance
mechanisms. Bellavista et al. [8] recently present a first
prototype, which allows the user to trade-off monetary
cost and fault tolerance. Their prototype only selects
a subset of the operators for replication based on a
user-defined value for the expected information com-
pleteness. Furthermore, as big data-centers strive to go
“green” improving their energy efficient, it is important
to consider this as a further variable in the game.

Advanced elasticity. Although, several mechanisms for
elastic scaling data streaming systems exists, the ap-
plied load balancing schemes are very simplistic. The
used operator placement algorithms only optimize the
utilization of the systems, other metrics like end to end

latency or network bandwidth are only partially con-
sidered. However, production-scale systems often use
these metrics to check contract-binding SLAs. Further
research in this direction could possibly lead to systems
where specific performance points can be probabilisti-
cally guaranteed.

Integration of different engines. Each of the presented
prototypes is more or less suited for a specific use
case. Given the increasing variety of different use cases,
components automatically selecting the best engine
would significantly improved the user experience. Early
work [25, 14] on this topic showed promising results for
such a federated approach. Duller et al. [14] presented
an abstraction layer based on OSGI, which allows a
federated execution on top of different streaming en-
gines. Lim et al. [25] presented an optimizer component,
which selects the best execution engine for a give query.

6. ACKNOWLEDGMENTS
This work has been partially supported by the TENACE

PRIN Project (n. 20103P34XC) funded by the Italian Min-
istry of Education, University and Research and by the aca-
demic project C26A133HZY funded by the University of
Rome “La Sapienza”.

7. REFERENCES
[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,

M. Cherniack, J.-H. Hwang, W. Lindner, A. Maskey,
A. Rasin, E. Ryvkina, et al. The Design of the Borealis
Stream Processing Engine. In CIDR, pages 277–289,
2005.

[2] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack,
C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and
S. Zdonik. Aurora: a new model and architecture for
data stream management. In VLDB, pages 120–139,
2003.

[3] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak,
J. Haberman, R. Lax, S. McVeety, D. Mills,
P. Nordstrom, and S. Whittle. MillWheel:
fault-tolerant stream processing at internet scale. In
VLDB, pages 1033–1044, 2013.

[4] L. Aniello, R. Baldoni, and L. Querzoni. Adaptive
online scheduling in storm. In DEBS, pages 207–218,
2013.

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, et al. A view of cloud computing.
Communications of the ACM, pages 50–58, 2010.

[6] M. Balazinska, H. Balakrishnan, S. R. Madden, and
M. Stonebraker. Fault-tolerance in the Borealis
distributed stream processing system. ACM TODS,
2008.

[7] R. S. Barga and H. Caituiro-Monge. Event correlation
and pattern detection in CEDR. In EDBT, pages
919–930, 2006.

[8] P. Bellavista, A. Corradi, S. Kotoulas, and A. Reale.
Adaptive fault-tolerance for dynamic resource
provisioning in distributed stream processing systems.
In EDBT, pages 85–96, 2014.

[9] A. Brito, A. Martin, T. Knauth, S. Creutz, D. Becker,
S. Weigert, and C. Fetzer. Scalable and low-latency

data processing with StreamMapReduce. In CloudCom,
pages 48–58, 2011.

[10] B. Chandramouli, J. Goldstein, R. Barga,
M. Riedewald, and I. Santos. Accurate latency
estimation in a distributed event processing system. In
ICDE, pages 255–266, 2011.

[11] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong,
S. Krishnamurthy, S. R. Madden, F. Reiss, and M. A.
Shah. TelegraphCQ: continuous dataflow processing.
In SIGMOD, pages 668–668, 2003.

[12] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for
structured data. ACM TOCS, 2008.

[13] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears. MapReduce Online. In
NSDI, 2010.

[14] M. Duller, J. S. Rellermeyer, G. Alonso, and N. Tatbul.
Virtualizing stream processing. In Middleware, pages
269–288, 2011.

[15] R. C. Fernandez, M. Migliavacca, E. Kalyvianaki, and
P. Pietzuch. Integrating scale out and fault tolerance in
stream processing using operator state management. In
SIGMOD, pages 725–736, 2013.

[16] D. Florescu and D. Kossmann. Rethinking cost and
performance of database systems. ACM Sigmod Record,
pages 43–48, 2009.

[17] B. Gedik, S. Schneider, M. Hirzel, and K. Wu. Elastic
scaling for data stream processing. IEEE TPDS, 2013.

[18] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez,
C. Soriente, and P. Valduriez. Streamcloud: An elastic
and scalable data streaming system. IEEE TPDS,
pages 2351–2365, 2012.

[19] M. Hirzel. Partition and compose: Parallel complex
event processing. In DEBS, pages 191–200, 2012.

[20] J.-H. Hwang, Y. Xing, U. Cetintemel, and S. Zdonik.
A cooperative, self-configuring high-availability solution
for stream processing. In ICDE, pages 176–185, 2007.

[21] IBM. Dublin city council - traffic flow improved by big
data analytics used to predict bus arrival and transit
times. http:

//www-03.ibm.com/software/businesscasestudies/

en/us/corp?docid=RNAE-9C9PN5, 2013.

[22] N. Jain, L. Amini, H. Andrade, R. King, Y. Park,
P. Selo, and C. Venkatramani. Design, implementation,
and evaluation of the linear road bnchmark on the
stream processing core. In SIGMOD, pages 431–442,
2006.

[23] E. Kalyvianaki, W. Wiesemann, Q. H. Vu, D. Kuhn,
and P. Pietzuch. SQPR: Stream query planning with
reuse. In ICDE, pages 840–851, 2011.

[24] G. T. Lakshmanan, Y. Li, and R. Strom. Placement
strategies for internet-scale data stream systems. IEEE
Internet Computing, pages 50–60, 2008.

[25] H. Lim and S. Babu. Execution and optimization of
continuous queries with cyclops. In SIGMOD, pages
1069–1072, 2013.

[26] A. Martin, C. Fetzer, and A. Brito. Active replication
at (almost) no cost. In SRDS, pages 21–30, 2011.

[27] N. Marz. Storm: Distributed and fault-tolerant
realtime computation, 2012.

[28] N. Marz. Trident tutorial. https://github.com/

nathanmarz/storm/wiki/Trident-tutorial, 2013.

[29] J. F. Naughton, D. J. DeWitt, D. Maier, A. Aboulnaga,
J. Chen, L. Galanis, J. Kang, R. Krishnamurthy,
Q. Luo, N. Prakash, et al. The Niagara internet query
system. IEEE Data Eng. Bull., pages 27–33, 2001.

[30] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4:
Distributed stream computing platform. In ICDMW,
pages 170–177, 2010.

[31] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos,
M. Welsh, and M. Seltzer. Network-aware operator
placement for stream-processing systems. In ICDE,
pages 49–49, 2006.

[32] D. Powell. Delta4: A generic architecture for
dependable distributed computing. ESPRIT Research
Reports, 1, 1991.

[33] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang,
L. Zhou, Y. Yu, and Z. Zhang. Timestream: Reliable
stream computation in the cloud. In Eurosys, 2013.

[34] E. A. Rundensteiner, L. Ding, T. Sutherland, Y. Zhu,
B. Pielech, and N. Mehta. CAPE: Continuous query
engine with heterogeneous-grained adaptivity. In
VLDB, pages 1353–1356, 2004.

[35] S. Schneider, H. Andrade, B. Gedik, A. Biem, and K.-L.
Wu. Elastic scaling of data parallel operators in stream
processing. In IPDPS, pages 1–12, 2009.

[36] S. Schneider, M. Hirzel, B. Gedik, and K.-L. Wu.
Auto-parallelizing stateful distributed streaming
applications. In PACT, pages 53–64, 2012.

[37] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and
M. J. Franklin. Flux: An adaptive partitioning
operator for continuous query systems. In ICDE, pages
25–36, 2003.

[38] Twitter. Improving twitter search with real-time
human computation. https:

//blog.twitter.com/2013/improving-twitter-

search-with-real-time-human-computation, 2013.

[39] J. Wolf, N. Bansal, K. Hildrum, S. Parekh, D. Rajan,
R. Wagle, K.-L. Wu, and L. Fleischer. SODA: An
optimizing scheduler for large-scale stream-based
distributed computer systems. In Middleware, pages
306–325, 2008.

[40] Y. Xing, J.-H. Hwang, U. Çetintemel, and S. Zdonik.
Providing resiliency to load variations in distributed
stream processing. In VLDB, pages 775–786, 2006.

[41] Y. Yang, J. Kramer, D. Papadias, and B. Seeger.
Hybmig: A hybrid approach to dynamic plan migration
for continuous queries. IEEE TKDE, pages 398–411,
2007.

[42] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and
I. Stoica. Discretized streams: Fault-tolerant streaming
computation at scale. In SOSP, pages 423–438, 2013.

[43] Y. Zhu, E. A. Rundensteiner, and G. T. Heineman.
Dynamic plan migration for continuous queries over
data streams. In SIGMOD, pages 431–442, 2004.

http://www-03.ibm.com/software/businesscasestudies/en/us/corp?docid=RNAE-9C9PN5
http://www-03.ibm.com/software/businesscasestudies/en/us/corp?docid=RNAE-9C9PN5
http://www-03.ibm.com/software/businesscasestudies/en/us/corp?docid=RNAE-9C9PN5
https://github.com/nathanmarz/storm/wiki/Trident-tutorial
https://github.com/nathanmarz/storm/wiki/Trident-tutorial
https://blog.twitter.com/2013/improving-twitter-search -with-real-time-human-computation
https://blog.twitter.com/2013/improving-twitter-search -with-real-time-human-computation
https://blog.twitter.com/2013/improving-twitter-search -with-real-time-human-computation

	1 Introduction
	2 Intended Uses Cases
	3 Scaling Mechanisms
	3.1 Data Partitioning
	3.2 Query Partitioning

	4 Fault Tolerance Mechanisms
	4.1 State Management
	4.2 Event Tracking

	5 Future Research Directions
	6 Acknowledgments
	7 References

