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Abstract. We present a model of a mobile ad-hoc network in which nodes
can move arbitrarily on the plane with some bounded speed. We show
that without any assumption on some topological stability, it is impossi-
ble to solve the geocast problem despite connectivity and no matter how
slowly the nodes move. Even if each node maintains a stable connec-
tion with each of its neighbours for some period of time, it is impossible
to solve geocast if nodes move too fast. Additionally, we give a trade-
off lower bound which shows that the faster the nodes can move, the
more costly it would be to solve the geocast problem. Finally, for the one-
dimensional case of the mobile ad-hoc network, we provide an algorithm
for geocasting and we prove its correctness given exact bounds on the
speed of movement.
Keywords: Mobile ad-hoc networks, geocast, speed of movement vs cost
of the solution, distributed systems.

1 Introduction

There has been increasing interest in mobile ad-hoc networks with nodes that
move arbitrarily on the plane. This is justified by the significance of (wireless)
mobile computing in emerging technologies. Current technologies require a
stable infrastructure which is used for communication between mobile nodes.
Unfortunately, in some cases, such as a military operation or after some physi-
cal disaster, a fixed infrastructure cannot exist. For such cases, it is desirable to
program the mobile nodes to solve important distributed problems within spe-
cific geographical areas and without depending on a stable infrastructure. This
is why there has been an increasing interest in studying ”geo” related problems
in mobile ad-hoc networks such as georouting [1, 2], geocasting [3–6], geoquo-
rums [6], etc.

Geocasting is a variant of the multicast problem [7]. In geocasting, the nodes
eligible to deliver a message are the ones that belong to a specific geographical
area. Specifications to this problem can be either best effort or deterministic. An
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implementation of a best effort specification aims to maximize the probability
that nodes eligible to deliver the information, they actually deliver it [3–5]. De-
terministic specifications define a set of nodes and an implementation of such
a specification ensures that each of these nodes will deliver the information [6].

When geocasting is solved for mobile ad-hoc networks, the speed of how
nodes move becomes an important factor. This is because it can heavily influ-
ence, for example, the completion time of the message diffusion in a certain ge-
ographical area till making geocasting unsolvable if these speeds are too high.
In an extreme (unrealistic) scenario, nodes can move fast enough to ensure that
no two neighbours stay connected for enough time to complete the receipt of a
message. Geocasting cannot be solved in this scenario even though the topol-
ogy of the mobile ad-hoc network never disconnects. To our knowledge this re-
lation among problem solvability, the cost of a solution, and mobility has never
been investigated.

This paper focuses on geocasting based on deterministic specifications in-
vestigating the relation between cost of solving geocasting and mobility. In par-
ticular, we firstly provide a model of computation (Section 2) and a specification
for the geocasting problem (Section 3) which both take into account (explicitly
or implicitly) node mobility. The model makes a distinction between strong and
weak connectivity. A system strongly connected has some assurance of topo-
logical stability, i.e., there is always a path between every two nodes formed by
strong neighbors, where strong neighbors means that they remain neighbors
for some period of time. A connected system that does not satisfy the previ-
ous property is weakly connected. Our model does not rely on either GPS or
synchrony being thus very weak with respect to other models presented in the
literature [8]. The geocasting specification is split in three properties: reliable de-
livery, integrity, and termination. Reliable delivery states that all nodes, which
remain for some positive time C within distance d from the location l where
the geocast has been issued, will deliver the geocast information. Conversely,
integrity defines the minimum distance between the location l and a node in or-
der that the latter does not deliver the geocast information. Termination states
that after some period of time C′ from geocasting of some information, there
will be no more communication related to this geocast.

Hence, a general framework of geocasting algorithms is proposed (Section
3.2), which captures existing geocast algorithms. An algorithm belonging to this
framework acts as follows: once a node receives a message (with the geocast in-
formation) broadcast by a neighbour, it may repeat a (local) broadcast k times,
once every α rounds, depending on some condition. Using this framework in
our model several results have been proved: (i) if nodes are weakly connected
geocasting cannot be solved no matter how slowly the nodes can move (Theo-
rem 1); (ii) if stronger connectivity holds, then geocasting is still impossible for
some bound of node’s speed of movement (Theorems 2 and 3); (iii) a tradeoff
lower bound that relates the cost of geocasting to the speed of movement of
nodes (Theorem 4).



Finally, if the speed is small enough, we show how to solve the geocasting
problem in a one-dimensional setting (Section 5). We prove that the time com-
plexity of this algorithm increases with the speed of nodes. The algorithm does
not require any knowledge of the topology of the system. These results confirm
the intuition that the fastest the nodes move, the more expensive it would be to
solve the geocasting problem and if nodes move too fast then no solution can
be achieved.

2 A Model for Mobile Ad-Hoc Networks

We consider a system of (mobile) nodes which move with bounded speeds in
a continuous manner on the plane. There is no known upper bound on the
number of nodes in the system and nodes do not fail. Nodes communicate
by exchanging messages over a wireless radio network. To define neighbour-
hood of nodes, let distance(p, p′, t) denote the physical distance between two
nodes p and p′ at time t. Two nodes p and p′ are neighbours at some time t, if
distance(p, p′, t)< r, for fixed r > 0. We assume that each node can have at most
H neighbours at each time.

Nodes do not have access to a global clock, instead they have (not neces-
sarily synchronized) local clocks which run at the same rate. Within a small
time period, called a round, a node can execute in a sequential and atomic man-
ner receiving at most H messages, broadcasting at most one message, and local
computation. To perform a local broadcast of a message m, a node p is provided
with a primitive denoted broadcast(m). It takes at least one round for a broadcast
message m to be received by a node which then generates a receive(m) event.
For simplicity of presentation, the duration of a round is one time unit (i.e., in
[t, t + i], i rounds have elapsed). If broadcast(m) is performed by node p at time
t then all nodes that remain neighbours of p throughout [t, t + T ] receive m by
time t + T , for some fixed integer T > 0. It is possible that some nodes that are
neighbours of p at times in [t, t + T ] also receive m but no node receives m after
time t + T . If two or more nodes perform broadcasts concurrently there may be
interference and messages may be lost. We assume this to be dealt by a lower
level communication layer [9] within the T rounds it takes for a message to be
(reliably) delivered to its destination. There is no other way that messages can
be lost.

Connectivity. The standard definition of connectivity, called weak connectivity,
ensures that for every pair of nodes p and p′ and every time t, there is at least
one path of neighbours connecting p and p′ at time t. Weak connectivity allows
an adversary to continually change the neighbourhood of nodes and render
impossible even the basic task of geocasting (Theorem 1). For this reason, we
assume a stronger version, called strong connectivity. To define this, first, we
introduce the notion of strong neighbours. If there is an upper bound on the
speed of nodes, then the closer two neighbours are located to each other, the
longer they will remain neighbours. Hence, if nodes are located fairly close,
then their connection is guaranteed for some period of time. Formally,



Definition 1 (Strong Neighbours). Let δ2 = r and δ1 be fixed positive real numbers
such that δ1 < δ2. Two nodes p and p′ are strong neighbours at some time t, if there
is a time t′ ≤ t such that distance(p, p′, t′)≤ δ1 and distance(p, p′, t′′)< δ2 for all
t′′ ∈ [t′, t].

Assumption 1 (Strong Connectivity) For every pair of nodes p and p′ and every
time t, there is at least one path of strong neighbours connecting p and p′ at t.

Two nodes strongly connect when they become strong neighbours and they
lose their connection or disconnect when they cease being neighbours. By increas-
ing δ1, the set of strong neighbours of each node either remains the same or
increases. This is desirable, because then strong connectivity is not too much
stronger than weak connectivity. Therefore, for practical applications, we would
like to design algorithms considering values of δ1 that are as large as possible.
Because of this, in this paper, we assume δ1 ≥ δ2

2
.

Mobility. We assume an upper bound on the speed of node movement which
exists in practical situations. Then, Lemma 1 describes some topological stabil-
ity. Formally,

Assumption 2 (Movement Speed) It takes at least T ′ > 0 rounds for a node to
travel distance δ = δ2−δ1

2
on the plane.

From Definition 1 and Assumption 2, we gain some topological stability in
the network, which is formally expressed in the following lemma:

Lemma 1. If two nodes become strong neighbours at time t, then they remain (strong)
neighbours throughout [t, t + T ′] (i.e., for T ′ rounds).

Proof. If p and p′ become strong neighbours at time t, then distance(p, p′, t)= δ1.
To disconnect, they must move away from each other so that their distance is
larger than or equal to δ2 (traversing in total distance at least 2δ). From assump-
tion 2, this takes at least T ′ rounds when they travel in opposite directions.

3 The Geocast Problem

The goal of geocasting is to deliver information to nodes in a specific geograph-
ical area. The geocast problem can be solved by a geocast service, implemented
by a geocast algorithm which runs on mobile nodes. The geocast service sup-
ports each mobile node with two primitives: Geocast(I, d) to geocast informa-
tion I at distance d and Deliver(I) to deliver information I . As illustrated in Fig-
ure 1, on each mobile node there is a process running the geocast algorithm and
a co-located user of the service which invokes geocast. The geocast algorithm
uses broadcast(m) and receive(m) to achieve communication among neighbours.
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Fig. 1. System Architecture.

3.1 A Geocast Specification

The geocast information is initially known by exactly one node, the source. If the
source performs Geocast(I, d) at time t from location l, then:

Property 1 (Reliable Delivery). There is a positive integer C such that, by time
t + C, information I is delivered by all nodes that are located at distance at
most d away from l throughout [t, t + C].

The following properties rule out solutions which waste resources causing
continuous communication or distribution of information I among all nodes.

Property 2 (Termination). If no other node issues another call of geocast then
there is a positive integer C′ such that after time t + C′, no node performs any
communication triggered by a geocast (i.e. local broadcast).

Property 3 (Integrity). There is d′ > d such that, if a node has never been within
distance d′ from l, it never delivers I .

3.2 A General Framework for Geocasting Algorithms

We present a framework, (k, α)-Geocast(I, d) for α ≥ 1, that describes a large
class of geocast algorithms. When the source invokes (k, α)-Geocast(I, d), k
messages containing I are broadcast, once every α rounds. When a node re-
ceives a message containing I , k broadcasts of messages containing I are gen-
erated, once every α rounds as long as some condition (described by a boolean
function CHECK) holds. CHECK can be different for each algorithm in this class.

More precisely, for each call of Geocast(I, d), each node p stores a variable
timep,I , and a boolean variable flagp,I , initially set to ⊥ and 0, respectively. We
denote clockp the current value of the physical clock at p.

When source s executes (k, α)-Geocast(I, d), times,I is set to clocks and ev-
ery α rounds flags,I is set to 1 (illustrated in Figure 2 (a)). This causes the broad-
cast of a message m containing information I (illustrated in Figure 2 (b)).



(k, α)−Geocast(I, d) by s

1 times,I ← clocks;
2 for (i = 1; i + +; i ≤ k)
3 when (clocks == times,I + [(i− 1)α)])
4 flags,I ← 1;

(a)

WHEN (flags,I == 1)
1 trigger〈broadcast(m)〉; % I ∈ m %
2 flags,I ← 0;

(b)

Fig. 2. (k, α)−Geocast(I, d) algorithm performed by the source s.

The first time a node p executes receive(m), timep,I gets the value of clockp.
Any time p receives a message with information I , if CHECK is true, it sets
flagp,I to 1, every α rounds for k times (illustrated in Figure 3 (a)), which in
turn causes a broadcast of a message containing I (illustrated in Figure 3 (b)).
After each such broadcast, flagp,I is set to 0.

UPON EVENT 〈receive(m)〉 by p

1 trigger〈Deliver(I)〉; % I is contained in m %
2 tp,I ← clockp;
3 if (timep,I == ⊥)
4 then timep,I ← tp,I ;
5 if (CHECK)
6 then for (i = 1; i + +; i ≤ k)

7 when (clockp == timep,I + [⌈
tp,I−timep,I

α
⌉+ (i− 1)]α)

8 flagp,I ← 1;

(a)

WHEN (flagp,I == 1) by p

1 trigger〈broadcast(m)〉; % I ∈ m %
2 flagp,I ← 0;

(b)

Fig. 3. (k, α)−Geocast(I, d) algorithm performed by node p.

Note that if p receives more than one message containing I within α rounds,
only one broadcast is triggered. Hence at most one broadcast happens at p every
α rounds. The above is ensured by setting flagp,I to 1 only at certain times as



shown in line 7 of Figure 3 (a). In particular, flagp,I is set to 1, k times, starting
at the closest time after tp,I that is equal to timep,I + jα (where j is an integer).

4 Impossibility Results

End-to-end communication is impossible if the system remains disconnected.
Eventual connectivity [10] ensures the existence of a path between sender and
receiver with edges which transmit infinitely many messages if infinitely many
messages are sent through. Eventual connectivity is necessary for achieving
end-to-end communication in general networks. For our mobile ad-hoc net-
work, we show that it is impossible to solve the geocast problem using algo-
rithms in (k, α) - Geocast under weak connectivity, or under strong connectiv-
ity if nodes move too fast. To do so, we relate the speed of movement (which
is inversely related to T ′) to the speed of communication (which is inversely
related to T ). We also show how the speed of nodes relates to the cost of any
(k, α) - Geocast algorithm.

For the following impossibility results, we set CHECK to true because if
reliable delivery is impossible when the maximum broadcasts are allowed, it is
also impossible for less broadcasts.

The fact that the (k, α) - Geocast class of algorithms contains a large class
of natural geocasting algorithms (including existing ones) makes our impossi-
bility results significant for practical applications. We note that the following
lower bounds are not necessarily tight.

Theorem 1. No algorithm in (k, α) - Geocast(I, d) can solve the geocast problem un-
der the weak connectivity assumption no matter how slowly the nodes move.

Proof. Assume that the maximum speed of the nodes is v > 0. Consider a state,
spq , such that all nodes are located on a straight line. The source s is the leftmost
node at position l. The only neighbour, p, of s is on its right at distance r − dǫ

from l, at position l1 such that dǫ ≤ v min{α,T}
2

. There is a node q located on the
right of p at distance dǫ from p at position l2, as illustrated in Figure 4.

Because dǫ ≤ v min{α,T}
2

, distance 2dǫ can be traversed during min{α, T }

rounds. From state spq at time t, node q moves with speed 2dǫ

min{α,T} until it

reaches location l1 at time t + min{α,T}
2

. Then, node p moves away from l with

speed 2dǫ

min{α,T} until it reaches location l2 at time t + min{α, T }. The state, sqp,

reached is the same as spq if we replace p by q and q by p. Weak connectivity is
preserved.

Because the switch between spq and sqp takes min{α, T } rounds, and accord-
ing to the algorithm at most one broadcast can be initiated every α rounds, it
is possible to create an execution where the source starts a local broadcast ei-
ther at state spq, or at state sqp and its neighbourhood changes within min{α, T }
rounds. This implies that no node ever delivers I . In particular, if α > T then
there can be at most one message broadcast every T rounds and this message
will be lost because the neighbourhood changes within min{α, T } = T rounds.



Otherwise, α ≤ T . Since there is at most one message broadcast every α rounds,
every such message will be lost because the change in the neighbourhood hap-
pens within min{α, T } = α ≤ T rounds.

at time t:

s

q

p

s q p

s p q

dǫ

rl l1 l2

at time t + min{α, T}:
state sqp

t + min{α,T}
2

:

state spq

state at time

Fig. 4. Proof of Theorem 1.

As stated in Section 2, we assumed that δ1 ≥ δ2

2
which is reasonable for

practical applications. The following results in this section hold given this as-
sumption. Our lower bounds would be stronger if they held for all values of δ1.
This extension would be of theoretical interest and we leave it as future work.

Theorem 2. No algorithm in (k, α) - Geocast(I, d) can solve the geocast problem if
T ′ < T

4
even if strong connectivity holds.

Proof. Consider a (k, α)-Geocast(I, d) algorithm executed at time t by the source
s. We will describe an execution of this algorithm (illustrated in Figure 5) during
which no node (other than s) knows information I , violating reliable delivery.
Let spq be the state at time t with the following properties: all nodes are located
on a single line; the source, s, is the leftmost node located at position l; the
first node, p, located on the right of l is at position l1 at distance δ1 from l; the
second node, q, located on the right of l is at position l2 at distance δ2 from l
and at distance δ2 − δ1 = 2δ from l1; all other nodes of the system are located
on the right of s at distance at least δ1 + δ2 from l. Node p is the only (strong)
neighbour of s. Nodes s and q are the only (strong) neighbours of p, p is the
only (strong) neighbour of q located on the left of q at time t, and the remaining
(strong) neighbours, Q, of node q are located on its right at distance exactly δ1.
We conclude that strong connectivity holds at state spq . Assume that, from state
spq , p moves from l1 to l2 and q moves from l2 to l1 on a straight line with their
highest speed. Each of them will traverse a path of distance 2δ and arrive at its
destination at time t + 2T ′ (by the communication speed assumption). Strong
connectivity holds throughout [t, t + 2T ′] because throughout [t, t + 2T ′), the
sets of strong neighbours of every node in the system does not change, and the



state, sqp, reached at time t+2T ′ is the same as the state at time t if we replace p
by q and q by p. If the above movement happens continually, then for any even
integer i, we reach state spq and for any odd integer i, we reach state sqp at time
ti = t + 2T ′i.

Let t′ be a time at which the source s performs a (local) broadcast during its
call of (k, α)-Geocast(I, d). We consider the following two cases for i = odd (the
proof for i = even is symmetrical):

– There is i such that ti = t′. Because i is odd, the system is in state sqp at
time ti, it reaches state spq at time ti+1, and ti+1 − ti = 2T ′. At time t′, q
is the only neighbour of s. Node q will stop being a neighbour of s at time
ti+1 = ti +2T ′ = t′ +2T ′ which happens before time t′ +T because T ′ < T

4
.

Therefore q will not receive the message being broadcast by s at time t′.
– Otherwise, there is i such that ti < t′ < ti+1. Because i is odd, the system

is in state sqp at time ti and the only neighbours of s at time t′ are p and q.
But node q will cease being a neighbour of s at time ti+1 and node p will
cease being a neighbour of s at time ti+2. The local delivery of the broad-
cast message completes at time t′ + T . Node q will not receive the message
broadcast at time t′ by s because t′ + T > ti + 2T ′ = ti+1. Similarly, p will
not receive this message because t′ + T > ti + 4T ′ = ti+2.

In both cases, any node that will become a neighbour of s after time t′ will not
receive the broadcast message either.

state at some time

δ2
δ2

δ1 δ1
2δ

s Q
p

s Q
q p

s Q
p q

l l1 l2

q

at time ti:
state spq

state sqp
at time ti+1:

in (ti, ti+1):

Fig. 5. Proof of Theorem 2.

Theorem 3. No algorithm in (k, α) - Geocast(I, d) can solve the geocast problem if
T ′ < δT

δ1

, for a system with unbounded number of nodes even if strong connectivity
holds.



Proof. We describe an execution (illustrated in Figure 6) during which all nodes
are placed on a straight line and a node receives a message containing I if and
only if it is located on or on the left of the original location, l, of the source
s = p0. In this execution, there is a node, q, always located on the right of this
position at distance less than d, and hence, never delivers I , violating reliable
delivery. Initially, at time t = t0, the nodes are placed on a line on the right of
q0, one every δ1 distance, with the exception of q. Let pi be the node located at
distance iδ1 on the right of l at time t0 (for i ≥ 0). At time t0, the only neigh-
bours of p0 are p1 and possibly q because, since δ1 ≥ δ2

2
, all other nodes are

at distance at least δ2 from p0. Similarly, at time t0, the only neighbours of pi

(for i ≥ 1) are pi−1, pi+1 and possibly q. All nodes pi for (i ≥ 0) move continu-
ally, with speed δ1

T
towards the left. Note that this is possible because T ′ < Tδ

δ1

which implies that δ1

T
is smaller than the maximum speed (i.e., δ

T ′
). All other

nodes pi for i ≥ 0 form a path such that each two consecutive nodes are strong
neighbours. Furthermore, q is always a strong neighbour of the first node on its
right throughout the execution because their distance is at most equal to δ1. We
conclude that strong connectivity holds.

At time t0 only p0 (at location l) knows I . Node p1 delivers I at time t1 = t+T
when it is at location l. This is because during T rounds, p1 moves distance
Tδ1

T
= δ1 and it moves towards the left starting from a location at distance δ1

on the right of l. At time t1, both p0 and p1 will rebroadcast messages with
information I . Similarly, node pi is the rightmost node to deliver I at time ti =
t + iT when at location l. All other nodes that delivered I are on the left of
location l at that time. Since q is never a neighbour of any node on or on the left
of position l, it will never deliver I .

t0 = t

nodes without information
nodes with information

d

δ1

p1 p2s

δ1

s p1

δ1

δ1

. . .

q pi+2

q pi+1

δ1

. . .

. . .

. . .

pi

pi+1

t1 = t + T

Fig. 6. Proof of Theorem 3.



Theorem 4. Assuming that T ′ > max{ 1

4
, δ

δ1

}T , then if it is possible to solve geocast,

it would take more than (⌊ d−δ2

δ1−
Tδ
T ′

⌋ + 1)T rounds to ensure reliable delivery, using

any (k, α)-Geocast(I, d) algorithm for a system with more than ⌊ d−δ2

δ1−
T δ
T ′

⌋ nodes even if

strong connectivity holds.

Proof. We describe an execution (illustrated in Figure 7) of a geocast algorithm
that causes as much rebroadcasting as possible and which cannot guarantee
reliable delivery in less than (⌊ d−δ2

δ1−
T δ
T ′

⌋+1)T rounds. During this execution there

is a node, q, located exactly at distance d from the original location, l, of the
source, s = q0. At time t0, the nodes (other than q) are placed on a line on
the right of q0, one every δ1 distance. Let pi be the node at distance iδ1 on the
right of l at time t0 (for i ≥ 0). At time t0, the only neighbours of p0 are p1

and possibly q because (since δ1 ≥ δ2

2
) all other nodes are at distance at least δ2

from p0. Similarly, at time t0, the only neighbours of pi (for i ≥ 1) are pi−1, pi+1

and possibly q. All nodes pi for (i ≥ 0) move continually, with their maximum
speed (i.e., δ

T ′
) towards the left. Strong connectivity holds because, all nodes

pi (for i ≥ 0, other than q) form a path of strong neighbours and q is a strong
neighbour of the first node on its right throughout the execution because their
distance is at most equal to δ1.

At time t = t0 only p0 knows I . Node p1 first delivers I at time t1 = t + T
when it is at distance δ1 −

Tδ
T ′

on the right of l. Node pi is the rightmost node to

deliver I at time ti = t + iT when at distance iδ1 − iTδ
T ′

on the right of l. Node
q can only deliver I within T rounds after at least one of its neighbours has
delivered I . The earliest this happens is within T rounds after I is delivered by
a neighbour of q on its left. This neighbour has to be at distance smaller than δ2

from q. Hence, reliable delivery cannot happen before time tj +T (= t+(j+1)T )
for the smallest possible j for which d − (jδ1 − j Tδ

T ′
) < δ2 (i.e., j > ⌊ d−δ2

δ1−
T δ

T ′

⌋).

Theorem 4 verifies the intuition that the larger the speed of the nodes can be
(which is inversely related to T ′) the more time it would take to solve geocast-
ing.

5 A Geocasting Algorithm

We consider a special case of the mobile ad-hoc model, called one-dimensional
mobile ad-hoc model, for which the nodes move on a line. Inter-vehicle com-
munication [11] is an application of geocast in this model. For simplicity, the
line is straight and horizontal and the locations are real numbers representing
points which increase towards the right. We show that (7, T ) - Geocast(I, d)
works if T ′ > 9T . We attach a counter, cmsg, to each message which is set to
zero only in the first message broadcast by the source. Each node maintains,
in a local counter, the largest counter value it has either received or broadcast.
Every time it is ready to broadcast (i.e. its flag is set to 1), it increments its local
counter by one and appends this new value to the message. Upon receiving a
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nodes without information
nodes with information

. . .

. . .

. . .

pi+1. . .

δ1

Tδ
T ′

q

δ1

p2p1

δ1

iTδ
T ′

. . .

δ1

s qp1 p2

δ1 δ1 δ1

. . .

d

qpi

pi

pi+1

pi+1

t0 = t

t1 = t + T

ti = t + iT
pi

Fig. 7. Proof of Theorem 4.

message with counter cmsg, the receiver evaluates CHECK which returns true
iff cmsg ≤ 6T (i + 1) + 2T , where i = ⌊ d

δ1−
6δT

T ′

⌋. Assume that the source s = q0

initiates a call of (7, T ) - Geocast(I, d) at time t = t0 from location l = l0. Next,
we prove that I propagates from l0 towards the right of l0. (For the left of l0,
the proof is symmetrical.) This happens in steps so that within a small period
of time, I moves from a node, qj (at time tj and location lj), to another node,
qj+1 at some large distance away. The proofs of lemmata 2, 3, and 4 used for
correctness appear in the full version of the paper [12].

Lemma 2. If T ′ > 9T and node qj delivers I at time tj when at location lj then,
assuming that CHECK returns true for all nodes throughout [tj , tj+1], there is a node
qj+1 which delivers I at time tj+1 at location lj+1 such that tj+1 − tj ≤ 6T and
lj+1 − lj ≥ δ1 − 6δT/T ′.

Lemma 3. If T ′ > 9T and there is a j such that a node p is located in [lj , lj+1] at some
time t ∈ [tj , tj+1], then, assuming that CHECK returns true for all nodes throughout
[tj , tj+1], p delivers I by time tj+1 + 2T .

Lemma 4. If a node q stays within distance d from l throughout [t0, ti+1] for i such
that l + d ∈ [li, li+1], then there is j ≤ i such that q is located at some position in
[lj , lj+1] at some time in [tj , tj+1].

Theorem 5. If T ′ ≥ 9T , then (7, T ) - Geocast(I, d) ensures reliable delivery for C ≤
6T (i + 1) + 2T rounds, where i = ⌊ d

δ1−
6δT
T ′

⌋.



Proof. During [t, t + C], any node’s CHECK=true because if geocast starts at
time t, then (by induction on time) during [t, t + C], all messages broadcast or
received have counters at most equal to C. Then, we show that C ≤ 6T (i+1)+
2T , where i = ⌊ d

δ1−
6δT

T ′

⌋. First, we calculate the maximum value that i could

take in any execution such that li ≤ l + d (i.e., (l + d) ∈ [li, li+1)). Next, we
show that it suffices that I gets delivered and rebroadcast by a node at location
li+1. From Lemma 2, li − l ≥ i(δ1 − 6δT/T ′). Then i ≤ ⌊ li−l

δ1−
6δT

T ′

⌋ and because

li − l ≤ d, i ≤ ⌊ d

δ1−
6δT
T ′

⌋. It remains to calculate C. All nodes that remain within

distance d from l(= l0) throughout [t, t + C], also remain within that distance
throughout [t0, ti+1], (recall that t = t0). If p remains in this area throughout
[t0, ti+1] then from Lemma 4, there is a j such that p is located at some position
in [lj , lj+1] at some time in [tj , tj+1] for j ≤ i and from Lemma 3, p delivers I
by time tj+1 + 2T . Therefore, since j ≤ i, all nodes within distance d from l
deliver I by time ti+1 + 2T = t + C. By Lemma 2, ti+1 − t ≤ 6T (i + 1) and
C ≤ 6T (⌊ d

δ1−
6δT
T ′

⌋ + 1) + 2T .

Theorem 6. If T ′ ≥ 9T then (7, T ) - Geocast(I, d) ensures termination for C′ =
(6T (i + 1) + 2T + 1)T + 8T rounds, where i = ⌊ d

δ1−
6δT
T ′

⌋.

Proof. Every message received causes rebroadcasting of I in a message with
counter at least incremented by one and this will happen at least once every T
rounds (for at least 7 times). Termination happens within 7T rounds from the
time after which any message received has counter larger than 6T (i + 1) + 2T ,
where i = ⌊ d

δ1−
6δT
T ′

⌋. This happens within (6T (i + 1) + 2T + 1)T + T rounds,

because all messages broadcast after time (6T (i + 1) + 2T + 1)T have counters
at least equal to 6T (i + 1) + 2T + 1 and all such messages are received within
at most another T rounds. Therefore, C′ = (6T (⌊ d

δ1−
6δT
T ′

⌋ + 1) + 2T + 1)T + 8T

rounds.

Theorem 7. If T ′ ≥ 9T then (7, T ) - Geocast(I, d) ensures integrity.

Proof. A broadcast message will be received at least after one round during
which any node can traverse distance at most δ

T ′
. Therefore, if a node broadcasts

a message from location l′ at time t′, then its neighbours receive it the earliest at
time t′ + 1, when at distance less than δ2 + δ

T ′
away from l′. Then, if the source

starts (7, T ) - Geocast(I, d) at time t from location l, at time t + m, the furthest
node that delivers I is at distance less than m(δ2 + δ

T ′
) away from l. By Theorem

6, after time t+C′, no node broadcasts messages with information I . Therefore,
no node delivers I after time t+C′+T . But at time t+C′+T , all nodes that have
delivered I are within distance less than (C′ + T )(δ2 + δ

T ′
) from l. Therefore, if

a node remains further than d′ = (C′ + T )(δ2 + δ
T ′

) from l, it will never deliver
I .



6 Related Work

Geocast was introduced by Navas et al. [2, 1]. Geocast algorithms for mobile ad-
hoc networks [3, 7, 5, 4], unlike our deterministic solution, only provide proba-
bilistic guarantees. This may not suffice. For example, Dolev et al. [6] need de-
terministic geocast to implement atomic memory. Deterministic solutions are
given for multicast [13–15] and broadcast [8] for mobile ad-hoc networks. Both
solutions in [13, 14] consider a finite and fixed number of mobile nodes ar-
ranged somehow in logical or physical structures. They divide the nodes into
groups each of which has a special node which coordinates message propaga-
tion and collects acknowledgments. Moreover, they make the following stronger
than necessary assumption: they require that the network topology stabilizes
for periods long enough to ensure delivery. Finally, simulation results [16] show
that the approach proposed in [13] does not work if nodes move fast. Bounds
that allow the algorithms to work correctly are not presented. Chandra et al.
[15] provide a broadcasting algorithm and show by experiments that either
all or none of the nodes get the message with high probability. Mohsin et al.
[8] implement (deterministic) broadcast for a synchronous mobile ad-hoc net-
work with restricted movement patterns. In particular, nodes move on top of a
grid such that at the beginning of each round nodes are located at grid points.
They assume that all nodes move at the same constant speed and direction of
movement cannot change within a round. Finally, nodes need to inform their
neighbours about their future moving pattern for short future time periods.

7 Conclusion and Future Work

To the best of our knowledge, this is the first time in which bounds are formally
defined on the speed of node movement which make it possible to solve geo-
casting and relate its time complexity to the speed. This formally verifies that
the faster nodes move, the most costly it would be to solve geocasting. Our up-
per bounds and lower bounds do not match neither for the cost of geocast, nor
for the bounds on speed of movement. Although the gap is not large, it would
have theoretical interest to match these bounds. We proved our results for the
case where δ1 ≥ δ2

2
. It is unknown whether our lower bounds still hold for

δ1 < δ2

2
. Another future direction would be to design a geocast algorithm that

works for a two-dimensional model including failures.
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