
Book Title
Book Editors
IOS Press, 2003

1

Quality of Service in Publish/Subscribe
Middleware1

Angelo CORSAROb, Leonardo QUERZONIa,2, Sirio SCIPIONIa,
Sara TUCCI PIERGIOVANNIa and Antonino VIRGILLITOa

a Universitá di Roma La “Sapienza"
b Selex SI - Roma

Abstract. During the last decade the publish/subscribe communication paradigm
gained a central role in the design and development of a largeclass of applications
ranging from stock exchange systems to news tickers, from air traffic control to
defense systems. This success is mainly due to the capacity of publish/subscribe to
completely decouple communication participants, thus allowing the development
of applications that are more tolerant to communications asynchrony. This chapter
introduces the publish/subscribe communication paradigm, stressing those charac-
teristics that have a stronger impact on the quality of service provided to partic-
ipants. The chapter also introduce the reader to two widely recognized industrial
standards for publish/subscribe systems: the Java MessageService (JMS) and the
Data Distribution Service (DDS).

Keywords. Publish/Subscribe, Event-based Systems,

1. Introduction

Since the early nineties, anonymous and asynchronous dissemination of information has
been a basic building block for many different distributed applications such as stock
exchanges, news tickers, air-traffic control, industrial process control, etc.

Publish/Subscribe systems are nowadays considered a key technology for informa-
tion diffusion. Each participant in a publish/subscribe communication system can play
the role of apublisheror asubscriberof information. Publishers produce information in
form of events, which are then consumed by subscribers. Subscribers can declare their
interest on a subset of the whole information issuing subscriptions. Subscriptions are
used to filter out part of the events produced by publishers.

The main semantical characterization of publish/subscribe is in the way events flow
from publishers to subscribers: subscribers are not directly known by publishers, but
rather they are indirectly addressed according to the content of events. This form of
anonymity completely decouples publishers from subscribers, thus possibly allowing
large scale deployments. Interactions between publishersand subscribers is mediated by

1This work was partially supported by a grant CINI-Finmeccanica on “QoS in information dissemination
within network-centric architectures” and by the RESIST project, funded by the European Community.

2Correspondence to: Leonardo Querzoni, Via Salaria, 113 - 00198 Roma. Tel.: +39 06 4991 8480; Fax: +39
06 8530 0849; E-mail: querzoni@dis.uniroma1.it.

2 Corsaro et al. / QoS in Publish/Subscribe Middleware

the publish/subscribe system, that, in general, is constituted by a set of nodes that coor-
dinate among themselves in order to dispatch published events to all (and possibly only)
interested subscribers.

Since publish/subscribe has been largely recognized as an effective approach for
information diffusion, several publish/subscribe-basedsystems, both research contribu-
tions and commercial products have been presented and are actually used in many appli-
cation contexts. From the research side, much work has been done in this field specif-
ically by software engineering and distributed systems communities (focusing on scal-
ability, efficient information delivery or efficient and expressive information matching).
From the industrial side, relevant achievements are the widespread industrial standards
that define semantics and interfaces for pub/sub middleware(Common Object Request
Broker Architecture (CORBA) Event Service (CosEvent) [23], the CORBA Notification
Service (CosNotification) [24], Java Message Service (JMS)[21] and, recently, Data Dis-
tribution Service (DDS) [19]). In both worlds, one important problem is related to the
definition of quality of service (QoS) provision, defined as the guarantees that a pub/sub
middleware can offer in terms of timeliness, reliability, availability etc. Market-ready so-
lutions clearly must be able to provide QoS guarantees, for example in order to be de-
ployed in mission critical applications. The definition andenforcement of QoS properties
can be on the other hand a great inspiration for novel research contributions in this field.

The first part of this chapter gives the reader an overview of publish/subscribe sys-
tems, first introducing a general framework and then analyzing in details the models
commonly used for subscriptions. Throughout this overviewwe focus on the definition
of the very meaning of end-to-end QoS guarantees in a publish/subscribe system. Indeed,
the complete decoupling between senders and receivers makes the exact semantics of the
system not easily definable and subject to non-determinism.We identify the sources of
such non-determinism and how to cope with it.

In the second part of the chapter the reader will be introduced to two important
industrial standards for publish/subscribe middleware: the Java Message Service (JMS)
[21] and the Data Distribution Service (DDS) [19]. JMS is a widely recognized standard
for enterprise level messaging, targeted at applications such as application integration
and large-scale data diffusion. Recently the Object Management Group (OMG) tried to
sum up the characteristics of various proprietary publish/subscribe middleware products,
to deliver a new standard for real-time oriented publish/subscribe; the result of this effort
was the DDS specification. The two standards are presented byconsidering their general
characteristics, their programming model and their QoS-related features. At the end of
the chapter the reader should have gained an introductory knowledge about the ground
where publish/subscribe middleware developers are today spending their efforts.

2. Framework

In this Section we define a general framework for publish/subscribe (pub/sub) systems.
First we introduce the basic elements constituting a pub/sub system, then we discuss the
semantics of the system.

Corsaro et al. / QoS in Publish/Subscribe Middleware 3

Figure 1. High-level interaction model of a publish/subscribe system with its clients (p ands indicate a generic
publisher and a generic subscriber respectively).

2.1. Elements of a Publish/Subscribe System

A generic pub/sub communication system (often referred to in the literature asEvent
Serviceor Notification Service) is composed of a set of nodes distributed over a commu-
nication network. The clients of this system are divided according to their role intopub-
lishers, which act as producers of information, andsubscribers, which act as consumers
of information. Clients are not required to communicate directly among themselves but
are ratherdecoupled: the interaction takes place through the nodes of the pub/sub system,
that coordinate themselves in order toroute information from publishers to subscribers.
Participants’ decoupling is a desirable characteristic ina communication system as ap-
plications can be easily developed just ingoring issues such as synchronization or direct
addressing of subscribers.

Operationally, the interaction between client nodes and the pub/sub system takes
place through a set of basic operations that can be executed by clients on the system and
vice-versa (Figure 1). A publisher submits a piece of information e (i.e., an event) to
the pub/sub system by executing thepublish(e) operation. Commonly, an event is
structured as a set of attribute-value pairs. Each attribute has aname, a simple character
string, and atype. The type is generally one of the common primitive data typesdefined
in programming languages or query languages (e.g. integer,real, string, etc.). On the sub-
scribers’ side, interest in specific events is expressed throughsubscriptions. A subscrip-
tion σ is a filter over a portion of the event content (or the whole of it), expressed through
a set of constraints that depend on the subscription language. A subscriber installs and
removes a subscriptionσ from the pub/sub system by executing thesubscribe(σ)
andunsubscribe(σ) operations respectively.

We say that an evente matches a subscriptionσ if it satisfies all the declared
constraints on the corresponding attributes. The task of verifying whenever an evente
matches a subscriptionσ is calledmatching.

2.2. Subscription Models

Various ways for specifying the subscribers’ interest led to distinct variants of the
pub/sub paradigm. The subscription models that appeared inthe literature are character-
ized by their expressive power: highly expressive models offer to subscribers the possi-
bility to precisely match their interest, i.e. to receive only the events they are interested
in. In this section we briefly review the most popular pub/subsubscription models.

4 Corsaro et al. / QoS in Publish/Subscribe Middleware

Topic-based Model Events are grouped in topics, i.e. a subscriber declares itsinter-
est for a particular topic to receive all events pertaining to that topic. Each topic corre-
sponds to a logical channel ideally connecting each possible publisher to all interested
subscribers. For the sake of completeness, the difference between channels and topics is
that topics are carried within an event as a special attribute. Thanks to this coarse grain
correspondence, either network multicast facilities or diffusion trees, one for each topic,
can be used to disseminate events to interested subscribers.

The topic-based model has been the solution adopted in all early pub/sub incarna-
tions. Examples of systems that fall under this category areTIB/RV [25], SCRIBE [8],
Bayeux [31] and the CORBA Notification Service [24].

The main drawback of the topic-based model is the very limited expressiveness it
offers to subscribers. A subscriber interested in a subset of events related to a specific
topic receives also all the other events that belong to the same topic. To address problems
related to low expressiveness of topics, several solutionsare exploited in pub/sub imple-
mentations. For example, the topic-based model is often extended to provide hierarchical
organization of the topic space, instead of a simple flat structure (such as in [1,25]). A
topic B can be then defined as a sub-topic of an existing topicA. Events matchingB
will be received by all clients subscribed to bothA andB. Implementations also often
include convenience operators, such as wildcard characters, for subscribing to more than
one topic with a single subscription1. Another method for enhancing expressiveness of
the topic-based model is thefiltered-topicvariant [24,21], where a further filtering phase
is performed once the message is received based on the content of the message. Messages
that does not satisfy the filter are not delivered to the application.

Content-based ModelSubscribers express their interest by specifying conditions over
the content of events they want to receive. In other words, a subscription is a query
formed by a set of constraints composed through disjunctionor conjunction operators.
Possible constraints depend on the attribute type and on thesubscription language. Most
subscription languages comprise equality and comparison operators as well as regular
expressions [7,28,16]. The complexity of the subscriptionlanguage obviously influences
the complexity of matching operation. For this reason it is not common to have subscrip-
tion languages allowing queries more complex than those in conjunctive form (examples
are [5,4]). A complete specification of content-based subscription models can be found in
[22]. Examples of systems that fall under the content-basedcategory are Gryphon [20],
SIENA [29], JEDI [12], LeSubscribe [27], Hermes [26], Elvin[28].

In content-based publish/subscribe, events are not classified according to some pre-
defined criterion (i.e., topic name), but rather according to properties of the events them-
selves. As a consequence, the correspondence between publishers and subscribers is on
a per-event basis. The difference with a filtered-topic model is that events that not match
a subscriber can be filtered out in any point in the system, notonly on the receiver, thus
possibly saving network resources. For these reasons, the higher expressive power of
content-based pub/sub comes at the price of a higher resource consumption needed to
calculate for each event the set of interested subscribers [6,14].

1For the sake of completeness, we point out that the wordsubjectcan be used to refer to hierarchical topics
instead of being simply a synonymous for topic. Analogously, channel-basedis sometimes [23] used to refer
to a flat topic model where the topic name is not explicitly included in the event.

Corsaro et al. / QoS in Publish/Subscribe Middleware 5

Type-based In the type-based [15] pub/sub variant events are actually objects belonging
to a specific type, which can thus encapsulate attributes as well as methods. With respect
to simple, unstructured models, Types represent a more robust data model for application
developer, enforcing type-safety at the pub/sub system, rather than inside the application.
In a type-based subscription the declaration of a desired type is the main discriminating
attribute. That is, with respect to the aforementioned models, type-based pub/sub sits
itself somehow in the middle, by giving a coarse-grained structure on events (like in
topic-based) on which fine-grained constraints can be expressed over attributes (like in
content-based) or over methods (as a consequence of the object-oriented approach).

Concept-based The underlying implicit assumptions within all the above-mentioned
subscription models is that participants have to be aware ofthe structure of produced
events, both under a syntactic (i.e., the number, name and type of attributes) and a se-
mantic (i.e., the meaning of each attribute) point of view. Concept-based addressing [11]
allows to describe event schema at a higher level of abstraction by using ontologies, that
provide a knowledge base for an unambiguous interpretationof the event structure, by
using metadata and mapping functions.

XML Some research works [9,10,30] describe pub/sub systems supporting a semistruc-
tured data model, typically based on XML documents. XML is not merely a matter of
representation but differs in the fact that introduces the possibility of hierarchies in the
language, thus differentiating from a flat content-based model in terms of an added flex-
ibility. Moreover, it provides natural advantages such as interoperability, independence
from implementation and extensibility. As a main drawback,matching algorithms for
XML-based language require heavier processing.

Location-awarenessPub/Sub systems used in mobile environments typically require
the support for location-aware subscriptions. For example, a mobile subscriber can query
the system for receiving notifications when it is in the proximity of a specific location or
service. Works describing various forms of location-awaresubscriptions are [18,30]. The
implementation of location-aware subscriptions requiresthe pub/sub system the ability
to monitor the mobility of clients.

2.3. Semantics of a Publish/subscribe System

In the following we intend to characterize the general semantics of a pub/sub system
in terms of three properties stating the exact behavior of any pub/sub implementation2.
This is critical for understanding the subtleties hidden behind the definition of the ex-
pected QoS offered by a pub/sub system and for highlighting what are the aspects of the
system that are influential for it. We first consider two parameters that respectively take
into account (i) non-instantaneous effects of subscribe/unsubscribe operations and (ii)
the non-instantaneous diffusion of an event to the interested subscribers after a publish
operation executed by a publisher. These parameters model the time required for the in-
ternal processing in the system and the network delay elapsed to route subscriptions and
notifications, in a distributed implementation.

Indeed, when a process issues a subscribe/unsubscribe operation, the pub/sub system
is not immediately aware of the occurred event. In other words, at an abstract level, the

2The discussion is here presented informally. A formalization of the pub/sub semantics can be found in [3]

6 Corsaro et al. / QoS in Publish/Subscribe Middleware

registration (resp. cancellation) of a subscription takesa certain amount of time, denoted
asTsub, to be stored into the system. This time encompasses for example the update
of the internal data structures of the pub/sub system and thenetwork delay due to the
routing of the subscription among all the entities constituting the system. Analogously,
as soon as a publication is issued, the pub/sub architectureperforms adiffusionof the
information in order to reach the set of interested subscribers. This operation takes a
certain amount of time during which the system computes and issues notify operations
to interested subscribers, i.e. diffusion of events takes anon-zero time and is represented
by a parameterTpub.

The characterization of the exact behavior of the system is actually not obvious as
(i) the interest of a subscriber is a dynamic dimension and (ii) the notification of an event
can be issued to a subscriber at any time during the diffusioninterval of the event itself.
Then, semantics of a pub/sub system can be expressed by the following three properties:

- Safety (Legality): a subscriber cannot be notified for an information it is not interested
in.
- Safety (Validity): a subscriber cannot be notified for an event that has not beenprevi-
ously published.
- Liveness: The delivery of a notification for an event is guaranteed only for those sub-
scribers that subscribed at a time at leastTsub before the event was published and main-
tain their subscriptions stable for the entire timeTpub taken by the event’s dissemination.

Safety properties describefactsthat cannot happen during system execution, while
Liveness gives a precise definition of which subscribers must be surely notified about
an event. Obviously the longer a subscription remains stable in the system (i.e., it is
durable), the higher its probability of meeting all the events, despite Tpub. The Liveness
property can be extended by considering the possibility forthe pub/sub system to per-
sistently store events for a finite, non-zero amount of time,denoted as∆. Persistence is
exploited in distributed pub/sub implementations to provide reliable delivery of events
through retransmission, or to allow notification of an eventalso to subscribers that sub-
scribeafter the event has been published. A revised definition of Liveness that take into
account event persistence is:

- Liveness (with persistent events): The delivery of a notification is guaranteed only for
those subscribers that subscribed at a time at most∆ − Tsub after the event is published
and maintain their subscriptions stable in the interval[Ts + Tsub, max(Ts + Tsub +
Tpub, Te + Tpub)].

whereTs andTe are the times at which the subscription and the event were issued
respectively.

3. Quality of Service in Publish/Subscribe Systems

Given the above definitions we can easily see that when considering end-to-end QoS
characteristics in a pub/sub system one cannot set aside theeffect of decoupling between
senders and receivers, which is the main peculiar feature ofthe pub/sub paradigm. The

Corsaro et al. / QoS in Publish/Subscribe Middleware 7

lack of a direct producer/consumer relationship makes the definition and enforcement
of any end-to-end QoS policy very hard. Decoupling can introduce in several senses a
non-deterministicbehavior, meaning that the exact behavior of the system is difficult to
specify, enforce and control. We give examples of how non-determinism can act over
three fundamental aspects of QoS and security, namely reliable message delivery, timely
delivery and trust relationship.

3.1. Reliable delivery

Reliable delivery of an event means determining the subscribers that have to receive a
published event, as stated by the liveness property introduced in the previous section, and
delivering the event to all of them. Event processing in the publish/subscribe infrastruc-
ture results in the event itself traveling several network hops, where each routing hop is
potentially a source of non-determinism due to transmissions over asynchronous WAN
channels or temporary node overloading. This can lead the value ofTpub to grow indefi-
nitely, leading, from our definition of liveness, to a reduced probability of delivery of the
notification to all the intended subscribers (notification loss[2]).

Persistence of events, durability of subscriptions and event retransmission can help
to reduce the non-deterministic behavior, providing higher reliability in delivery. In gen-
eral, the more an even remains in the system, the less non-determinism is experienced,
at the price of a higher memory occupation. For example, the effect of runs between
publications and subscriptions is limited and also the sensitivity to small delays in both
subscription and publication dissemination. Reduction ofnon-determinism increases the
probability that an intended receiver will get the information. If the information is stored
in a permanently persistent way (i.e. with infinite memory) or it is infinitely retransmit-
ted, non-determinism is completely absent and this probability raises to one.

3.2. Timeliness

Real-time applications often require strict control over the time elapsed by a piece of
information to reach all its consumers. They are typically deployed over dedicated in-
frastructures or simply managed environments where synchronous message delivery can
be safely assumed. Even in a completely managed environment, a pub/sub infrastruc-
ture which decouples publishers and subscribers, can introduce non-determinism through
routing anomalies and unpredictable processing delays at each node. In overall, where
timeliness constraints must be enforced, the design of the pub/sub system should priv-
ilege point-to-point communications where decoupling is limited or totally absent. The
drawback of this choice lies in the main benefit introduced bythe decoupling, that is
the higher scalability obtainable by delegating the infrastructure, rather than the publish-
ers, to know all the subscribers and determine the recipients for each event. Designing a
QoS-driven pub/sub system which at the same time can scale tomassive sizes is one ma-
jor challenge in this area, particularly important for future implementations of the DDS
specification (see Section 5).

3.3. Security and trust

Security issues represent one major problem in pub/sub systems, only marginally ad-
dressed at present by both researchers and industry. Aside from the obvious problem of

8 Corsaro et al. / QoS in Publish/Subscribe Middleware

granting access to the system only to authorized participants, an important aspect regards
enforcing trust between publishers and subscribers. A subscriber wants to trust authen-
ticity of the events it receives from the system, i.e. they has been generated by a trusty
publisher and the information they contains have not been corrupted. On the system side,
subscribers have to be trusted for what concerns the subscriptions they issue.

Since an event is in general delivered to several subscribers, the producer/consumer
trust relationship that commonly occur in a point-to-pointcommunication, in pub/sub
system must involve multiple participants. Moreover, the fact that message traverses sev-
eral infrastructure nodes during routing forces both publishers and subscribers to rely
such intermediary nodes not to corrupt events, subscriptions or some of the participants’
identities.

Designing trust measures implies knowing with certainty the identity of other par-
ticipants and this is in clear contrasts with the anonymity which is at the base of pub/sub
itself. Under the assumption of trust the decoupling can be preserved by using a solution
like the one presented in [13], where trust between a publisher and each subscriber is
enforced through a chain of trust relationships involving all the nodes in the infrastruc-
ture that are met on the event path. In other words, when forwarding a message (either
an event or a subscription), an infrastructure node is also responsible for letting the trust
relationship flow with the message.

In the most general case where one cannot assume the whole infrastructure to be
trustworthy, the possibility of an event traveling potentially malicious networks or nodes
should be taken into account. In [17] a solution to this scenario is proposed. The idea is to
organize groups of trust inscopes, i.e. logical domains within the pub/sub infrastructure.
The organization in scopes limits the visibility of publishers, subscribers, events and
subscriptions within a single scope in order to allow each scope to be independent under
the points of view of management, routing algorithm and so on. Since a scope isolates
its participants from outside traffic it allows to relax the assumption of a fully trusted
infrastructure to each single scope. [17] describes a method to add a new trusted node to
an existing trusted scope, so that the assumption of completely trusted scope is preserved.
If the node to be added can be reached only through one or more untrusted nodes the
request is tunneled so that only encrypted information transits through the non-trusted
part of the network.

4. Java Message Service

Java Message Service [21] is a standard promoted by Sun Microsystems to define a Java
API, including a common set of interfaces and semantics, forthe implementation of
message-oriented middleware. It is part of the Java Enterprise Edition (J2EE) architec-
ture since version 1.3. The compliance to the specification allows implementations from
various vendors to be perfectly interoperable. In this way JMS guarantees a portable way
for Java applications to exchange messages through products of different vendors.

Besides a message-centric publish-subscribe communication model, the JMS API
also supports apoint-to-pointmode. With point-to-point, each application produces mes-
sages that are explicitly targeted toward a single receiver. A JMS implementation then
represents a general-purposemessage oriented middleware(MOM) that acts as an in-
termediary between heterogeneous applications, allowingto choose the communication
mode that better suits the specific application needs.

Corsaro et al. / QoS in Publish/Subscribe Middleware 9

JMS is specifically targeted at distributed enterprise systems, frequently presenting
problems such as integration among heterogeneous components, management of com-
plex workflows, dissemination of large-size data on a large scale and reliable data deliv-
ery. Those issues can be easily faced by means of a loosely coupled, flexible and standard
communication mechanism such as a JMS MOM, that can effectively help in reducing
development costs and time.

4.1. JMS Conceptual Model

The JMS conceptual model marks a clear separation between the point-to-point and the
publish-subscribe models; nevertheless, in both cases, only non strongly typed messages
are considered. Each message is characterized by a header (which includes message type,
priority, etc.), by a set of extension of header metadata used to support, for example,
compatibility with specific implementations and provider-specific properties, and a body
which includes the application specific data core of the message. In the following we
provide a characterization of entities that constitute theJMS conceptual model.

Figure 2. JMS Topic Model.

Topics. the JMS publish-subscribe API is based ontopics. Publishers and Subscribers
are anonymous and can dynamically publish and subscribe to various topics (see Figure
2). Applications can define reliability and QoS requirements for each topic.

Publishers and Subscribers. Publishers and Subscribers are the classes used for im-
plementing producers and consumers for a topic. Multiple receivers can subscribe to the
same topic and receive the same message. Topics, contrarilyto queues, retain messages
only as long as it takes to distribute them to current subscribers. The interaction is one-
to-many and it has a timing dependency between senders and receivers: consumers re-
ceive only messages sent after their subscription and they must continue to be active in
order to consume new messages (see Section 2.3). That is, events are not persistent. Non-
determinism can be reduced by means of adurable subscription. Durable subscriptions
provide the reliability of queues but nevertheless maintain the one-to-many interaction
model. This aspect will be further analyzed in following section.

10 Corsaro et al. / QoS in Publish/Subscribe Middleware

Subscriptions. In the JMS API subscriptions are topic-based. Applicationsrequiring
higher expressiveness can exploit a form of filtered-topic model, as defined in theMes-
sage SelectorAPI, where filters can be applied directly on receiver-side to received mes-
sages. A message selector is an expression whose syntax is based on SQL92. It is eval-
uated when an attempt is made to receive a message, and messages that do not match
the selection criteria are discarded. Message selectors only work on header fields and
properties: body and content of the message cannot be used for selection. Contrarily to a
pure content-based model, message filtering in JMS is executed only on receiver-side.

Figure 3. JMS Queue Model.

Point-to-point (Queues). The point-to-point model of JMS exploitqueues, where
messages are stored until they are consumed or expire. Senders and receivers have to
bind to a queue to use it and once they subscribe they can startsending and retrieving
messages (see Figure 3).

Messages are explicitly addressed to a queue, and analogously receivers extract mes-
sages directly from a queue. There is no timing dependency between the execution of
send and receive operations: the receiver can retrieve a message even if it was not running
when the sender sent it. Finally the consumer of a message cansend an acknowledgment
as a result of the delivery of the message to queue.

Discovery Another feature of JMS API is the ability to dynamically discover infor-
mation related to topics: clients can explore topics and queues through a search on a
centrally managed JNDI namespace.

4.2. JMS Programming model

A JMS application is composed from the following elements (Figure 4):

Administrated Objects. These are pre-configured objects that are created by admin-
istrators. They are of two types:ConnectionFactory andDestination.
JMS clients access these objects through interfaces that have been standardized
in the JMS specification, while the actual underlying technology strictly depends
on the implementation.ConnectionFactory objects are used by clients to
connect with a provider3. Each of these objects encapsulates a set of connection
configuration parameters defined by an administrator.Destination objects are
used by a sender to specify the target of a message it producesand by a re-

3JMS provider is a proprietary part of JMS application, whichrealizes the messaging system and provides
administrative and control features.

Corsaro et al. / QoS in Publish/Subscribe Middleware 11

Figure 4. JMS Topic Model.

ceiver to specify the source of messages it consumes. In the point-to-point domain,
Destination objects represent queues, while in the publish/subscribe domain
they are called topics. Administrative and proprietary tools allow to create and to
bind these two objects into a JNDI namespace. A JMS client canuse JNDI to look
up ConnectionFactory andDestination objects and establish a logical
connection through the JMS provider.

Connections. Represent virtual connections to JMS providers. A connection is used to
create sessions.

Sessions. EachSession object represents a single-threaded context for message pro-
ducers, message consumers and messages. A session providesa transactional con-
text where a set of sends and receives can be grouped in an atomic unit of work.

Message Producers and Consumers. Objects used for sending/receiving messages
to/from destinations. Message production is asynchronousbut JMS interface sup-
plies two modality for message delivery:synchronousand asynchronous. Syn-
chronous messages are delivered by calling thereceive method. This method
blocks the application until a message arrives or a timeout occurs. Asynchronous
messages are consumed by creating amessage listener. Its onMessage
method is executed by the JMS provider when a message arrivesat its destination.

4.3. Quality of Service

The only Quality of Service policy defined in the JMS specification is related to relia-
bility. An application can require every message to be received once and only once or
it rather can choose a more permissive (and generally more efficient) policy, allowing
dropped and duplicated messages. JMS API specification provides various degree of re-
liability through various basic and advanced mechanisms.

4.3.1. Basic Reliability Mechanisms

The most interesting basic mechanisms are:

12 Corsaro et al. / QoS in Publish/Subscribe Middleware

Specifying message persistence : a JMS application can specify that messages are per-
sistent, thus ensuring that a message will not be lost in the event of a provider fail-
ure. Two delivery modes are defined in the JMS specification:persistentrequire
JMS providers to log messages in a stable storage, whilenon persistentdelivery
mode does not require it.

Setting message priority levels : applications can set a message priority level; in this
case the JMS provider will deliver urgent messages first. TheJMS API provides
methods to set priority levels for all messages sent by a producer, through the
setPriority method of theMessageProducer interface, or to set priority
level for specific messages, throughsendor publishmethods of same interface.

Allowing messages to expire : in order to prevent duplicated messages an application
can set an expiration time for a message. As in the previous case JMS API provides
methods that allow to set a time to live counter for all messages produced from a
publisher, or just a single one.

4.3.2. Advanced Reliability Mechanisms

The most advanced mechanism to provide reliable message delivery in the JMS specifi-
cation is the creation ofdurable subscriptions. A durable topic subscription allows a sub-
scriber to receive messages sent while it is not active. A durable subscription implements
the reliability of queues in the publish/subscribe model. Adurable subscription can have
only one active subscriber at a time. When a durable subscriber registers a durable sub-
scription, it specifies a unique identity by setting an ID forthe connection and a topic and
subscription name for the subscriber. Other subscriber objects that have the same identity
resume the subscription in the state in which it was left by the preceding subscriber. The
subscriber can be closed and reloaded, but the subscriptioncontinues to exist until the
subscriber invokes the unsubscribe method. When the subscriber is reactivated the JMS
provider sends it the stored messages.

Other features common in MOM products, like load balancing,resource usage con-
trol, and timeliness of messages, are not explicitly addressed in the JMS specification.
Although recognized in the specification as fundamental forthe development of robust
messaging applications, they are considered provider-specific.

5. Data Distribution Service

The pub/sub paradigm is a natural match, and often a fundamental architectural build-
ing block, for a large class of real-time, mission, and safety critical application domains,
such as industrial process control, air traffic control, defense systems, etc. These appli-
cation domains are characterized by real-time informationwhich flows from sensors to
controllers and from controllers to actuators. The timeliness of data distribution is es-
sential for maintaining the correctness and the safety of these systems,i.e., failing in
timely delivering data could lead to instability which might result in threats to either
infrastructures of human lives.

Historically, most of the pub/sub middleware standards such as the CosEvent [23],
the CosNotification [24], and JMS [21], etc., as well as most proprietary solutions, have
lacked the support needed by real-time, mission, and safetycritical systems. The main
limitations are typically due to the limited or non-existent support for Quality of Ser-

Corsaro et al. / QoS in Publish/Subscribe Middleware 13

vice (QoS), and the lack of architectural properties which promote dependability and
survivability,e.g., lack of single point of failure.

Recently, in order to fill this gap, the OMG has standardized the DDS [19]. This
standard gathers the experience of proprietary real-time pub/sub middleware solutions
which had been independently engineered and evolved in niches, within the industrial
process control, and in the defense systems applications domain. The resulting standard,
which will be described in detail in the reminder of this Section, is based on a completely
decentralized architecture, and provides an extremely rich set of configurable QoS.

Before proceeding with a detailed explanation of the DDS, itis worth mentioning
that the standard defines two level of interfaces. At a lower level, it defines a Data Centric
Publish Subscribe (DCPS) whose goal is to provide an efficient, scalable, predictable,
and resource aware data distribution mechanism. Then, on top of the DCPS, it defines
the Data Local Reconstruction Layer (DLRL), an optional interface which automates
the reconstruction of data, locally, from updates received, and allows the application to
access data as if it was local.

5.1. DDS Conceptual Model

The DDS conceptual model is based on the abstraction of a strongly typed Global Data
Space (GDS) (see Figure 5), where publisher and subscriber respectivelywrite (produce)
andread (consume) data. In the reminder of this Section we will provide a precise char-
acterization of the entities that constitute this global data space.

P1

P2

Pn

S1

S2

Sm

S3Ta

Tb

Tc

P: Publisher – S: Subscriber – T: Topic

Figure 5. DDS Global Data Space.

Topic. A topic defines a type that can be legally written on the GDS. Inthe present
standard, topics are restricted to be nonrecursive types defined by means of OMG Inter-
face Definition Language (IDL). The DDS provides the abilityto distinguish topics of
the same type by relying on the use of a simple key. Finally, topics can be associated
with specific QoS. From an applicative perspective, topics are the mean used by designer
to define the application information model. The model supported by the DDS is not as
powerful as that found in contemporary relational Data Base(DB)s, however it provides
the ability to perform simple topic aggregation, as well as content based filtering.

14 Corsaro et al. / QoS in Publish/Subscribe Middleware

Data Object

Identified by

means of a Topic

Subscriber

DataReader

data values

Subscriber

DataReader

data values

Publisher

DataWriter

data values
dissemination

Identified by

means of a Topic

Figure 6. DDS ConceptualModel.

Publisher. Topics allow the definition of the application data model, aswell as the
association of QoS properties with it. On the other hand, publishers provide a mean of
defining data sources. A publisher, can declare the intent ofgenerating data with an as-
sociated QoS, and towrite the data in the GDS. The publisher declared QoS has to be
compatible with that defined by the topic. More specifically,as depicted in Figure 6, the
DDS relies on a topic specificDataWriterwhich serves as a typed writer to the GDS.
On the other hand, thePublisher encapsulate the responsibility associated with the
dissemination of data in agreement with the required QoS.

Subscriber. Subscribersread topics in the global data space for which a matching
subscription exist (the rules that define what represents a matching subscription are de-
scribed below). The DDS relies on a topic specificDataReader which serves as a
typed reader into the GDS. On the other hand, theSubscriber encapsulates the re-
sponsibility associated with the reception of data in agreement with the required QoS.

Subscription. A subscription is the logical operation which glues together a subscriber
to its matching publishers. In the DDS a matching subscription has to satisfy two differ-
ent kind of conditions. One set of conditions relate to concrete features of the topic, such
as its type, its name, its key, its actual content. The other set of conditions relate to the
QoS. More specifically, the DDS provides a subscription scheme which is more general
than the typical topic-based model described in Section 2.2as it also allows for content
based subscription – a subset of Structured Query Language (SQL) is used for specifying
subscription filters. Regarding the QoS, the matching follows an requested/offered model
in which the requested QoS has to be the same, or weaker, then the offered. As an exam-
ple, a matching subscription for a topic which is distributed reliably, can be requesting
the topic to be distributed either reliably or as best effort.

Corsaro et al. / QoS in Publish/Subscribe Middleware 15

Discovery. Another key feature at the foundation of DDS is that all information needed
to establish a subscription is discovered automatically, and, in a completely distributed
manner. The DDS discovery service, finds-out and communicates the properties of the
GDS’s participants, by relying on special topics and on the data dissemination capability
provided by the DDS.

Finally, for sake of completeness, it is worth pointing out that the DDS supports the
concept of domains. A domain allows to administratively separate and confine the dis-
tribution of different data flows. A DDS entity can belong to different domains, however
data cannot flow across domains.

5.2. DDS Programming Model

Now that we have seen what are the core concepts at the foundation of DDS, we are
ready to move to its programming model. Figure 7, contains anUnified Modeling Lan-
guage (UML) diagram which represents the core DDS Application Programming Inter-
face (API) in terms of its key classes and their relationships.

QoSPolicy Entity-qos

* *

-listener

0..1

WaitSet Condition

StatusCondition

* *

*

-status_condition

*

DomainEntity DomainParticipant1*

Publisher

DataWriter

Topic

Data

Subscriber

DataReader

1

*

1

*

*

1

*
*

<interface>

Listener

<interface>

TypeSupport

Figure 7. DDS Programming Model.

16 Corsaro et al. / QoS in Publish/Subscribe Middleware

From Figure 7 it is worth noticing how the DDS API is mostly based on a rooted
hierarchy at the base of which we find theEntity class. This class, by means of the
association with theQoSPolicy class, defines the basic mechanisms for associating
QoS with DDS entities. At the same time, with the associationwith the Listener
and theStatusCondition classes define the two interaction model supported by the
DDS API – the reactive and selective interaction model. The reactive model is supported
by theListener class. Instances of this class can be registered with any kind of DDS
entity to receive callbacks on specific events, such as data being available for being read,
etc. On the other hand, the selective model is supported by the StatusCondition
class. Instances of this class can be used in a way similar to the UNIX select system
call to poll or wait on specific conditions.

TheDomainParticipant represents the local membership to a specific domain.
Only publisher and subscribers belonging to the same domaincan communicate. The
DomainEntity exists essentially to enforce the fact thatDomainParticipant
cannot be nested. Finally, the diagram shows the classes defined by the DDS stan-
dard in order to write and read data from the GDS,i.e.,Publisher, Subscriber,
DataWriter, etc.

5.3. Quality of Service

One of the key distinguishing features of the DDS when compared to other pub/sub
middleware is its extremely rich QoS support. By relying on arich set of QoS policies,
the DDS gives the ability to control and limit (1) the use of resources, such as, network
bandwidth, and memory, and (2) many non functional properties of the topics, such as,
persistence, reliability, timeliness, etc. In the reminder of this Section we will provide an
overview of the most interesting QoS defined by the DDS classifying them with respect
to the aspect they allow to control.

Resources

The DDS defines a specific QoS policy to control the resources which can be used to
meet requested QoS on data dissemination. Below are reported the most relevant QoS
policies which allow to control computing and network resources.

• TheRESOURCE_LIMITS policy allows to control the amount of message buffer-
ing performed by a DDS implementation.

• TheTIME_BASED_FILTER allows applications to specify the minimum inter-
arrival time between data samples. Samples which are produced at a faster pace
are not delivered. This policy allows to control both network bandwidth as well
as memory and processing power for those subscribers which are connected over
limited bandwidth networks and which might also have limited computing capa-
bilities.

The DDS provides other means to control the resources consumed, however, these will
be presented below as they also have an impact on applicationvisible properties of data.

Data Timeliness

The DDS provides a set of QoS policies which allow to control the timeliness properties
of distributed data. Specifically, the supported QoS are described below.

Corsaro et al. / QoS in Publish/Subscribe Middleware 17

• The DEADLINE QoS policy allows application to define the maximum inter-
arrival time for data. Missed deadline can be notified byListeners (see Figure
7).

• TheLATENCY_BUDGETQoS policy provides a means for the application to com-
municate to the middleware the level of urgency associated with a data commu-
nication. Specifically, the latency budget specifies the maximum amount of time
that should elapse from the instant in which the data is written to the instant in
which the data is placed in the queue of the associated readers.

Data Availability

The DDS provides the following QoS policies which allow to control the data availabil-
ity.

• TheDURABILITYQoS policy provides control over the lifetime of the data writ-
ten on the GDS. At one extreme it allows the data be configured to be volatile,
at the other it allows to have data persistency. It is worth noticing that transient
and persistent data enables time decoupling between the writer and the reader by
making the data available for late joining reader, in the case of transient data, or
even after the writer has left the GDS, for persistent data.

• The LIFESPAN QoS policy allows to control the interval of time for which a data
sample will be valid. The default value is infinite.

• TheHISTORYQoS policy provides a mean to control the number of data samples,
i.e., subsequent write of the same topic, have to be kept available for the readers.
Possible values are the last, the lastn samples, or all the samples.

Data Delivery

The DDS provides several QoS which allow to control how data is delivered and who
is allowed to write a specific topic. More specifically the following QoS policies are
defined.

• TheRELIABILITYQoS policy allows application to control the level of reliabil-
ity associated with data diffusion. The possible choices are reliable and best-effort
distribution.

• TheDESTINATION_ORDER QoS policy allows to control the order of changes
made by publishers to some instance of a given topic. Specifically the DDS allows
different changes to be ordered according to the source or the destination time-
stamp.

• TheOWNERSHIP QoS policy allows to control the number of writers permitted
for a given topic. If configured as exclusive, then it indicates that a topic instance
can be owned and thus written by a single writer. The ownership of a topic is
controlled by means of another QoS policy, theOWNERSHIP_STRENGTH. This
additional policy makes it possible to associate a numerical strength to writers,
so that the owner of a topic is defined to be the one available with the highest
strength. If theOWNERSHIP QoS policy is configured as shared then multiple
writer can concurrently update a topic. The concurrent changes will be ordered
according to theDESTINATION_ORDER policy.

18 Corsaro et al. / QoS in Publish/Subscribe Middleware

In addition to the QoS policies defined above, the DDS provides some mean of
defining and distributing bootstrapping information by means of theUSER_DATA,
TOPIC_DATA and GROUP_DATA. These policies apply at different level, asit can be
guessed by the name, and are distributed by means of built-intopics.

References

[1] S. Baehni, P. Th. Eugster, and R. Guerraoui. Data-aware multicast. InProceedings of the
2004 International Conference on Dependable Systems and Networks (DSN 2004), pages
233–242, 2004.

[2] R. Baldoni, R. Beraldi, S. Tucci Piergiovanni, and A. Virgillito. Measuring notification loss
in publish/subscribe communication systems. InProceedings of the 10th International Sym-
posium Pacific Rim Dependable Computing (PRDC ’05), 2004.

[3] R. Baldoni, R. Beraldi, S. Tucci Piergiovanni, and A. Virgillito. On the modelling of pub-
lish/subscribe communication systems.Concurrency and Computation: Practice and Expe-
rience, 17(12):1471–1495, 2005.

[4] S. Bittner and A. Hinze. On the benefits of non-canonical filtering in publish/subscribe sys-
tems. InProceedings of the International Workshop on Distributed Event-Based Systems
(ICDCS/DEBS’05), 2005.

[5] A. Campailla, S. Chaki, E. M. Clarke, S. Jha, and H. Veith.Efficient filtering in publish-
subscribe systems using binary decision diagrams. InProceedings of The International Con-
ference on Software Engineering, pages 443–452, 2001.

[6] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Achieving Scalability and Expressiveness
in an Internet-Scale Event Notification Service. InProceedings of the ACM Symposium on
Principles of Distributed Computing, pages 219–227, 2000.

[7] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and Evaluation of a Wide-Area Noti-
fication Service.ACM Transactions on Computer Systems, 3(19):332–383, Aug 2001.

[8] M. Castro, P. Druschel, A. Kermarrec, and A. Rowston. Scribe: A large-scale and decentral-
ized application-level multicast infrastructure.IEEE Journal on Selected Areas in Communi-
cations, 20(8), October 2002.

[9] R. Chand and P. Felber. Xnet: A reliable content-based publish/subscribe system. In23rd In-
ternational Symposium on Reliable Distributed Systems (SRDS 2004), pages 264–273, 2004.

[10] R. Chand and P. Felber. Semantic peer-to-peer overlaysfor publish/subscribe networks. In
Parallel Processing, 11th International Euro-Par Conference (Euro-par 2005), pages 1194–
1204, 2005.

[11] M. Cilia. An Active Functionality Service for Open Distributed Heterogeneous Environments.
PhD thesis, Department of Computer Science, Darmstadt University of Technology, August
2002.

[12] G. Cugola, E. Di Nitto, and A. Fuggetta. Exploiting an event-based infrastructure to de-
velop complex distributed systems. InProceedings of the 10th International Conference on
Software Engineering (ICSE ’98), April 1998.

[13] I. Dionysiou, D. Frincke, D. E. Bakken, and C. Hauser. Actor-oriented trust. Technical Report
EECS-GS-006, School of Electrical Engineering and Computer SCience, Washington State
University, Pullman, WA, USA, 2005.

[14] P.Th. Eugster, P. Felber, R. Guerraoui, and S.B. Handurukande. Event Systems: How to Have
Your Cake and Eat It Too. InProceedings of the International Workshop on Distributed
Event-Based Systems (DEBS’02), 2002.

[15] P.Th. Eugster, R. Guerraoui, and Ch.H. Damm. On Objectsand Events. InProceedings
of the Conference on Object-Oriented Programming Systems,Languages and Applications
(OOPSLA), 2001.

Corsaro et al. / QoS in Publish/Subscribe Middleware 19

[16] F. Fabret, A. Jacobsen, F. Llirbat, J. Pereira, K. Ross,and D. Shasha. Filtering algorithms and
implementation for very fast publish/subscribe. InProceedings of the 20th Intl. Conference
on Management of Data (SIGMOD 2001), pages 115–126, 2001.

[17] L. Fiege, A. Zeidler, A. Buchmann, R. Kilian-Kehr, and G. Muhl. Security aspects in pub-
lish/subscribe systems. InProceedings of the 3rd International Workshop on Distributed
Event-Based Systems, 2004.

[18] Ludger Fiege, Felix C. Gärtner, Oliver Kasten, and Andreas Zeidler. Supporting mobility in
content-based publish/subscribe middleware. InACM/IFIP/USENIX International Middle-
ware Conference (Middleware 2003), pages 103–122, 2003.

[19] Object Management Group. Data distribution service for real-time systems specification,
2002.

[20] Gryphon Web Site. http://www.research.ibm.com/gryphon/.
[21] Sun Microsystems Inc. Java message service api rev 1.1,2002.
[22] G. Muhl. Generic Constraints for Content-Based Publish/Subscribe. InProceedings of the

6th International Conference on Cooperative Information Systems (CoopIS), 2001.
[23] Object Management Group. CORBA event service specification, version 1.1. OMG Docu-

ment formal/2000-03-01, 2001.
[24] Object Management Group. CORBA notification service specification, version 1.0.1. OMG

Document formal/2002-08-04, 2002.
[25] B. Oki, M. Pfluegel, A. Siegel, and D. Skeen. The information bus - an architecture for

extensive distributed systems. InProceedings of the 1993 ACM Symposium on Operating
Systems Principles, December 1993.

[26] P. Pietzuch and J. Bacon. Hermes: a distributed event-based middleware architecture. In
Proceedings of the International Workshop on Distributed Event-Based Systems (DEBS’02),
2003.

[27] R. Preotiuc-Pietro, J. Pereira, F. Llirbat, F. Fabret,K. Ross, and D. Shasha. Publish/subscribe
on the web at extreme speed. InProc. of ACM SIGMOD Conf. on Management of Data,
Cairo, Egypt, 2000.

[28] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps. Content Based Routing with
Elvin4. In Proceedings of AUUG2K, Canberra, Australia, June 2000.

[29] SIENA Web Site. http://www.cs.colorado.edu/users/carzanig/siena/.
[30] T. Sivaharan, G. Blair, and G. Coulson. GREEN: A Configurable and Re-configurable

Publish-Subscribe Middleware for Pervasive Computing. InProceedings of DOA 2005, 2005.
[31] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. Katz, and J. Kubiatowicz. Bayeux: An architec-

ture for scalable and fault-tolerant wide-area data dissemination. In11th Int. Workshop on
Network and Operating Systems Support for Digital Audio andVideo, 2001.

