Book Title 1
Book Editors
10S Press, 2003

Quality of Service in Publish/Subscribe
Middleware

Angelo CORSARC, Leonardo QUERZON®2, Sirio SCIPIONF,
Sara TUCCI PIERGIOVANNT and Antonino VIRGILLITO?

& Universita di Roma La “Sapienza"
b Selex Sl - Roma

Abstract. During the last decade the publish/subscribe communitgiaradigm
gained a central role in the design and development of a tdags of applications
ranging from stock exchange systems to news tickers, fronraffic control to
defense systems. This success is mainly due to the capégitylish/subscribe to
completely decouple communication participants, thusnailg the development
of applications that are more tolerant to communicatiorysesrony. This chapter
introduces the publish/subscribe communication paradgjrassing those charac-
teristics that have a stronger impact on the quality of seryrovided to partic-
ipants. The chapter also introduce the reader to two widstpgnized industrial
standards for publish/subscribe systems: the Java MeSsgie (JMS) and the
Data Distribution Service (DDS).

Keywords. Publish/Subscribe, Event-based Systems,

1. Introduction

Since the early nineties, anonymous and asynchronouswisaion of information has
been a basic building block for many different distributgapléications such as stock
exchanges, news tickers, air-traffic control, industrialgess control, etc.

Publish/Subscribe systems are nowadays considered adt@yolegy for informa-
tion diffusion. Each participant in a publish/subscribencounication system can play
the role of goublisheror asubscriberof information. Publishers produce information in
form of events, which are then consumed by subscribers.cBbkss can declare their
interest on a subset of the whole information issuing supons. Subscriptions are
used to filter out part of the events produced by publishers.

The main semantical characterization of publish/subedsiin the way events flow
from publishers to subscribers: subscribers are not djré&ctown by publishers, but
rather they are indirectly addressed according to the abmevents. This form of
anonymity completely decouples publishers from subscsibius possibly allowing
large scale deployments. Interactions between publisiretsubscribers is mediated by

1This work was partially supported by a grant CINI-Finmedcaron “QoS in information dissemination
within network-centric architectures” and by the RESIS®ject, funded by the European Community.

2Correspondence to: Leonardo Querzoni, Via Salaria, 11398®oma. Tel.: +39 06 4991 8480; Fax: +39
06 8530 0849; E-mail: querzoni@dis.uniromal.it.

2 Corsaro et al. / QoS in Publish/Subscribe Middleware

the publish/subscribe system, that, in general, is cantetitby a set of nodes that coor-
dinate among themselves in order to dispatch published®t@all (and possibly only)
interested subscribers.

Since publish/subscribe has been largely recognized adfeatiee approach for
information diffusion, several publish/subscribe-basgstems, both research contribu-
tions and commercial products have been presented andtasdiypased in many appli-
cation contexts. From the research side, much work has bamid this field specif-
ically by software engineering and distributed systemsmoomties (focusing on scal-
ability, efficient information delivery or efficient and esgssive information matching).
From the industrial side, relevant achievements are thespicead industrial standards
that define semantics and interfaces for pub/sub middle¢@sexmon Object Request
Broker Architecture (CORBA) Event Service (CosEvent) [2BE CORBA Notification
Service (CosNoatification) [24], Java Message Service (J2H)and, recently, Data Dis-
tribution Service (DDS) [19]). In both worlds, one importgroblem is related to the
definition of quality of service (QoS) provision, defined hs guarantees that a pub/sub
middleware can offer in terms of timeliness, reliabilityadability etc. Market-ready so-
lutions clearly must be able to provide QoS guarantees,Xamgle in order to be de-
ployed in mission critical applications. The definition aardorcement of QoS properties
can be on the other hand a great inspiration for novel reBeanmtributions in this field.

The first part of this chapter gives the reader an overviewubliph/subscribe sys-
tems, first introducing a general framework and then anafym details the models
commonly used for subscriptions. Throughout this overwenfocus on the definition
of the very meaning of end-to-end QoS guarantees in a puslishcribe system. Indeed,
the complete decoupling between senders and receiversriakexact semantics of the
system not easily definable and subject to non-determiniéenidentify the sources of
such non-determinism and how to cope with it.

In the second part of the chapter the reader will be introduoetwo important
industrial standards for publish/subscribe middleware:lava Message Service (JMS)
[21] and the Data Distribution Service (DDS) [19]. JMS is alely recognized standard
for enterprise level messaging, targeted at applicatioch ss application integration
and large-scale data diffusion. Recently the Object Mameye Group (OMG) tried to
sum up the characteristics of various proprietary puldishécribe middleware products,
to deliver a new standard for real-time oriented publishésuibe; the result of this effort
was the DDS specification. The two standards are presenteasydering their general
characteristics, their programming model and their Qd&tad features. At the end of
the chapter the reader should have gained an introductamwylkdge about the ground
where publish/subscribe middleware developers are tggeryding their efforts.

2. Framework

In this Section we define a general framework for publishéstibe (pub/sub) systems.
First we introduce the basic elements constituting a pliggatem, then we discuss the
semantics of the system.

Corsaro et al. / QoS in Publish/Subscribe Middleware 3

. Pub/Sub Architecture - --—---—-—————————— o ________ A

Figurel. High-level interaction model of a publish/subscribe systeith its clients f ands indicate a generic
publisher and a generic subscriber respectively).

2.1. Elements of a Publish/Subscribe System

A generic pub/sub communication system (often referredtthé literature agvent
Serviceor Notification Servicgis composed of a set of nodes distributed over a commu-
nication network. The clients of this system are dividedoading to their role intgub-
lishers which act as producers of information, asubscriberswhich act as consumers
of information. Clients are not required to communicatedity among themselves but
are rathedecoupledthe interaction takes place through the nodes of the phisisstem,
that coordinate themselves in orderdaite information from publishers to subscribers.
Participants’ decoupling is a desirable characteristia @dommunication system as ap-
plications can be easily developed just ingoring issuel agcsynchronization or direct
addressing of subscribers.

Operationally, the interaction between client nodes ardphb/sub system takes
place through a set of basic operations that can be execyt@ithts on the system and
vice-versa (Figure 1). A publisher submits a piece of infatione (i.e., an event) to
the pub/sub system by executing thebl i sh(e) operation. Commonly, an event is
structured as a set of attribute-value pairs. Each at&ibat aname a simple character
string, and @ype The type is generally one of the common primitive data tygefned
in programming languages or query languages (e.g. integgdy string, etc.). On the sub-
scribers’ side, interest in specific events is expresseditirsubscriptionsA subscrip-
tion o is a filter over a portion of the event content (or the whola)fixpressed through
a set of constraints that depend on the subscription lareguagubscriber installs and
removes a subscription from the pub/sub system by executing thebscri be(o)
andunsubscri be(o) operations respectively.

We say that an event matches a subscriptiory if it satisfies all the declared
constraints on the corresponding attributes. The task wfyireg whenever an evert
matches a subscriptianis calledmatching.

2.2. Subscription Models

Various ways for specifying the subscribers’ interest leddistinct variants of the
pub/sub paradigm. The subscription models that appeatbe iiterature are character-
ized by their expressive power: highly expressive moddksr ¢ subscribers the possi-
bility to precisely match their interest, i.e. to receivdyote events they are interested
in. In this section we briefly review the most popular pub/subscription models.

4 Corsaro et al. / QoS in Publish/Subscribe Middleware

Topic-based Model Events are grouped in topics, i.e. a subscriber declarestés
est for a particular topic to receive all events pertainimghiat topic. Each topic corre-
sponds to a logical channel ideally connecting each passibblisher to all interested
subscribers. For the sake of completeness, the differezteesen channels and topics is
that topics are carried within an event as a special at&ibLihanks to this coarse grain
correspondence, either network multicast facilities €fudion trees, one for each topic,
can be used to disseminate events to interested subscribers

The topic-based model has been the solution adopted inril @ab/sub incarna-
tions. Examples of systems that fall under this categoryTéBéRV [25], SCRIBE [8],
Bayeux [31] and the CORBA Notification Service [24].

The main drawback of the topic-based model is the very lidnégpressiveness it
offers to subscribers. A subscriber interested in a sulfsetents related to a specific
topic receives also all the other events that belong to thredapic. To address problems
related to low expressiveness of topics, several soluaoamexploited in pub/sub imple-
mentations. For example, the topic-based model is ofteanebetd to provide hierarchical
organization of the topic space, instead of a simple flactire (such as in [1,25]). A
topic B can be then defined as a sub-topic of an existing tapi&vents matching?
will be received by all clients subscribed to bathand B. Implementations also often
include convenience operators, such as wildcard chaséterisubscribing to more than
one topic with a single subscriptibnAnother method for enhancing expressiveness of
the topic-based model is tlidtered-topicvariant [24,21], where a further filtering phase
is performed once the message is received based on the tofttemmessage. Messages
that does not satisfy the filter are not delivered to the appbn.

Content-based ModelSubscribers express their interest by specifying conuitmver
the content of events they want to receive. In other wordgjts@iption is a query
formed by a set of constraints composed through disjunaiiozonjunction operators.
Possible constraints depend on the attribute type and csutheeription language. Most
subscription languages comprise equality and comparipenators as well as regular
expressions [7,28,16]. The complexity of the subscriptémguage obviously influences
the complexity of matching operation. For this reason idisaommon to have subscrip-
tion languages allowing queries more complex than thoserijuaictive form (examples
are [5,4]). A complete specification of content-based stijpsen models can be found in
[22]. Examples of systems that fall under the content-basgegory are Gryphon [20],
SIENA [29], JEDI [12], LeSubscribe [27], Hermes [26], EN28].

In content-based publish/subscribe, events are not fitassiccording to some pre-
defined criterion (i.e., topic name), but rather accordogroperties of the events them-
selves. As a consequence, the correspondence betweeshgubland subscribers is on
a per-event basis. The difference with a filtered-topic nhizlat events that not match
a subscriber can be filtered out in any point in the systemoniyton the receiver, thus
possibly saving network resources. For these reasons,igherhexpressive power of
content-based pub/sub comes at the price of a higher rescarsumption needed to
calculate for each event the set of interested subscribers]|

1For the sake of completeness, we point out that the wabjectcan be used to refer to hierarchical topics
instead of being simply a synonymous for topic. Analogaustannel-baseds sometimes [23] used to refer
to a flat topic model where the topic name is not explicitiuded in the event.

Corsaro et al. / QoS in Publish/Subscribe Middleware 5

Type-based In the type-based [15] pub/sub variant events are actubjgots belonging
to a specific type, which can thus encapsulate attributeglssrmethods. With respect
to simple, unstructured models, Types represent a morestdata model for application
developer, enforcing type-safety at the pub/sub systaimerthan inside the application.
In a type-based subscription the declaration of a desineel iythe main discriminating
attribute. That is, with respect to the aforementioned nmdgpe-based pub/sub sits
itself somehow in the middle, by giving a coarse-grainedcitire on events (like in
topic-based) on which fine-grained constraints can be sspreover attributes (like in
content-based) or over methods (as a consequence of the-obgnted approach).

Concept-based The underlying implicit assumptions within all the abovemtioned
subscription models is that participants have to be awatbebtructure of produced
events, both under a syntactic (i.e., the number, name geddfyattributes) and a se-
mantic (i.e., the meaning of each attribute) point of viean€ept-based addressing [11]
allows to describe event schema at a higher level of abairalosy using ontologies, that
provide a knowledge base for an unambiguous interpretafidhe event structure, by
using metadata and mapping functions.

XML Some research works [9,10,30] describe pub/sub systerpsding a semistruc-
tured data model, typically based on XML documents. XML is merely a matter of
representation but differs in the fact that introduces thesibility of hierarchies in the
language, thus differentiating from a flat content-basedehim terms of an added flex-
ibility. Moreover, it provides natural advantages suchrasroperability, independence
from implementation and extensibility. As a main drawbatlatching algorithms for
XML-based language require heavier processing.

Location-awareness Pub/Sub systems used in mobile environments typicallyirequ
the support for location-aware subscriptions. For exangpheobile subscriber can query
the system for receiving notifications when it is in the proity of a specific location or
service. Works describing various forms of location-avganescriptions are [18,30]. The
implementation of location-aware subscriptions requihespub/sub system the ability
to monitor the mobility of clients.

2.3. Semantics of a Publish/subscribe System

In the following we intend to characterize the general seiosrmf a pub/sub system
in terms of three properties stating the exact behavior gfparb/sub implementatién
This is critical for understanding the subtleties hiddehibd the definition of the ex-
pected QoS offered by a pub/sub system and for highlightingt\are the aspects of the
system that are influential for it. We first consider two pagéens that respectively take
into account (i) non-instantaneous effects of subscritmibscribe operations and (ii)
the non-instantaneous diffusion of an event to the intetestbscribers after a publish
operation executed by a publisher. These parameters niwghie required for the in-
ternal processing in the system and the network delay edldps®ute subscriptions and
notifications, in a distributed implementation.

Indeed, when a process issues a subscribe/unsubscrilaiopgthe pub/sub system
is not immediately aware of the occurred event. In other wpad an abstract level, the

2The discussion is here presented informally. A formalizatf the pub/sub semantics can be found in [3]

6 Corsaro et al. / QoS in Publish/Subscribe Middleware

registration (resp. cancellation) of a subscription takesrtain amount of time, denoted
as Ty, to be stored into the system. This time encompasses for @ratme update
of the internal data structures of the pub/sub system ande¢hgork delay due to the
routing of the subscription among all the entities constiuthe system. Analogously,
as soon as a publication is issued, the pub/sub architegasferms adiffusionof the
information in order to reach the set of interested subecsibThis operation takes a
certain amount of time during which the system computes ssukis notify operations
to interested subscribers, i.e. diffusion of events takasmazero time and is represented
by a parameter ;.

The characterization of the exact behavior of the systengtisa#ly not obvious as
(i) the interest of a subscriber is a dynamic dimension ath@ notification of an event
can be issued to a subscriber at any time during the diffusinval of the event itself.
Then, semantics of a pub/sub system can be expressed byitwerig three properties:

- Safety (Legality)a subscriber cannot be natified for an information it is mb¢tiested
in.

- Safety (Validity) a subscriber cannot be notified for an event that has not e
ously published.

- LivenessThe delivery of a notification for an event is guaranteed/dat those sub-
scribers that subscribed at a time at I6éBg}, before the event was published and main-
tain their subscriptions stable for the entire tiffig,;, taken by the event’s dissemination.

Safety properties descrilfiactsthat cannot happen during system execution, while
Liveness gives a precise definition of which subscriberstrassurely notified about
an event. Obviously the longer a subscription remains stabthe system (i.e., it is
durable), the higher its probability of meeting all the events, d&sp,.,. The Liveness
property can be extended by considering the possibilitytHerpub/sub system to per-
sistently store events for a finite, non-zero amount of tidesoted ag\. Persistence is
exploited in distributed pub/sub implementations to pdevieliable delivery of events
through retransmission, or to allow notification of an evasb to subscribers that sub-
scribeafter the event has been published. A revised definition of Liveniest take into
account event persistence is:

- Liveness (with persistent event$he delivery of a notification is guaranteed only for
those subscribers that subscribed at a time at fhostT,,;, after the event is published
and maintain their subscriptions stable in the intef@@l+ Ts.p, max(Ts + Tsup +
Tpub7 Te + Tpub)] .

whereT andT, are the times at which the subscription and the event wenedss
respectively.
3. Quality of Servicein Publish/Subscribe Systems
Given the above definitions we can easily see that when ceriisglend-to-end QoS

characteristics in a pub/sub system one cannot set asiééféloeof decoupling between
senders and receivers, which is the main peculiar featutleegbub/sub paradigm. The

Corsaro et al. / QoS in Publish/Subscribe Middleware 7

lack of a direct producer/consumer relationship makes #fition and enforcement
of any end-to-end QoS policy very hard. Decoupling can bhiice in several senses a
non-deterministidehavior, meaning that the exact behavior of the systenffisudi to
specify, enforce and control. We give examples of how naerdanism can act over
three fundamental aspects of QoS and security, namelplelaessage delivery, timely
delivery and trust relationship.

3.1. Reliable delivery

Reliable delivery of an event means determining the sulbsigithat have to receive a
published event, as stated by the liveness property intexdlin the previous section, and
delivering the event to all of them. Event processing in thblish/subscribe infrastruc-
ture results in the event itself traveling several netwaskd) where each routing hop is
potentially a source of non-determinism due to transmissmver asynchronous WAN
channels or temporary node overloading. This can lead thwe w7}, to grow indefi-
nitely, leading, from our definition of liveness, to a reddeeobability of delivery of the
notification to all the intended subscribemsfification losq2]).

Persistence of events, durability of subscriptions anderatransmission can help
to reduce the non-deterministic behavior, providing higie#ability in delivery. In gen-
eral, the more an even remains in the system, the less nemueism is experienced,
at the price of a higher memory occupation. For example, ffexteof runs between
publications and subscriptions is limited and also theiseitg to small delays in both
subscription and publication dissemination. Reductionarf-determinism increases the
probability that an intended receiver will get the inforioat If the information is stored
in a permanently persistent way (i.e. with infinite memonyjtas infinitely retransmit-
ted, non-determinism is completely absent and this prdibatdises to one.

3.2. Timeliness

Real-time applications often require strict control oves time elapsed by a piece of
information to reach all its consumers. They are typicaliypldyed over dedicated in-

frastructures or simply managed environments where spndus message delivery can
be safely assumed. Even in a completely managed environaguib/sub infrastruc-

ture which decouples publishers and subscribers, cardintenon-determinism through
routing anomalies and unpredictable processing delayaddt Bode. In overall, where

timeliness constraints must be enforced, the design of tihéspb system should priv-

ilege point-to-point communications where decouplingristed or totally absent. The

drawback of this choice lies in the main benefit introducedhsy decoupling, that is

the higher scalability obtainable by delegating the irtfiacture, rather than the publish-
ers, to know all the subscribers and determine the recipientach event. Designing a
QoS-driven pub/sub system which at the same time can scalagsive sizes is one ma-
jor challenge in this area, particularly important for ftgumplementations of the DDS

specification (see Section 5).

3.3. Security and trust

Security issues represent one major problem in pub/suleragstonly marginally ad-
dressed at present by both researchers and industry. Asiaetlie obvious problem of

8 Corsaro et al. / QoS in Publish/Subscribe Middleware

granting access to the system only to authorized partitépan important aspect regards
enforcing trust between publishers and subscribers. Acsilles wants to trust authen-

ticity of the events it receives from the system, i.e. they baen generated by a trusty
publisher and the information they contains have not beemupted. On the system side,

subscribers have to be trusted for what concerns the splisas they issue.

Since an event is in general delivered to several subsetitiex producer/consumer
trust relationship that commonly occur in a point-to-paommunication, in pub/sub
system must involve multiple participants. Moreover, thet that message traverses sev-
eral infrastructure nodes during routing forces both mitgrs and subscribers to rely
such intermediary nodes not to corrupt events, subscriptio some of the participants’
identities.

Designing trust measures implies knowing with certainty idhentity of other par-
ticipants and this is in clear contrasts with the anonymityoh is at the base of pub/sub
itself. Under the assumption of trust the decoupling canrbegrved by using a solution
like the one presented in [13], where trust between a puidliahd each subscriber is
enforced through a chain of trust relationships involvifigtee nodes in the infrastruc-
ture that are met on the event path. In other words, when faling a message (either
an event or a subscription), an infrastructure node is @spansible for letting the trust
relationship flow with the message.

In the most general case where one cannot assume the whi@stin€ture to be
trustworthy, the possibility of an event traveling potaifiyi malicious networks or nodes
should be taken into account. In [17] a solution to this sdenaproposed. The idea is to
organize groups of trust iscopesi.e. logical domains within the pub/sub infrastructure.
The organization in scopes limits the visibility of pubkshk, subscribers, events and
subscriptions within a single scope in order to allow eacpedo be independent under
the points of view of management, routing algorithm and soSince a scope isolates
its participants from outside traffic it allows to relax thesamption of a fully trusted
infrastructure to each single scope. [17] describes a mdthadd a new trusted node to
an existing trusted scope, so that the assumption of coeiptetisted scope is preserved.
If the node to be added can be reached only through one or nmbnested nodes the
request is tunneled so that only encrypted informationsitarthrough the non-trusted
part of the network.

4. Java Message Service

Java Message Service [21] is a standard promoted by Sun $§&tems to define a Java
API, including a common set of interfaces and semanticsttferimplementation of
message-oriented middleware. It is part of the Java Enserfdition (J2EE) architec-
ture since version 1.3. The compliance to the specificaflowa implementations from
various vendors to be perfectly interoperable. In this wd$ Juarantees a portable way
for Java applications to exchange messages through psooliudifferent vendors.

Besides a message-centric publish-subscribe commuoricatodel, the JIMS API
also supports point-to-pointmode. With point-to-point, each application produces mes-
sages that are explicitly targeted toward a single receivediMS implementation then
represents a general-purpasessage oriented middlewa@OM) that acts as an in-
termediary between heterogeneous applications, alloteimpoose the communication
mode that better suits the specific application needs.

Corsaro et al. / QoS in Publish/Subscribe Middleware 9

JMS is specifically targeted at distributed enterpriseesyst frequently presenting
problems such as integration among heterogeneous comgoneamagement of com-
plex workflows, dissemination of large-size data on a laogdesand reliable data deliv-
ery. Those issues can be easily faced by means of a loosgilechfiexible and standard
communication mechanism such as a JIMS MOM, that can eftdgthelp in reducing
development costs and time.

4.1. JMS Conceptual Model

The JMS conceptual model marks a clear separation betweeaotht-to-point and the
publish-subscribe models; nevertheless, in both cas@snon strongly typed messages
are considered. Each message is characterized by a hedildr (mcludes message type,
priority, etc.), by a set of extension of header metadata tgesupport, for example,
compatibility with specific implementations and providgrecific properties, and a body
which includes the application specific data core of the agssin the following we
provide a characterization of entities that constituteJt& conceptual model.

subscribes
N
), <4 o0
Clont _Msg | delivers
ien E—
publishes| TOPIC | gybscribes
< _
— Client3
v delivers

Figure 2. JMS Topic Model.

Topics. the JMS publish-subscribe API is basedtopics Publishers and Subscribers
are anonymous and can dynamically publish and subscrib&ritous topics (see Figure
2). Applications can define reliability and QoS requirensdot each topic.

Publishers and Subscribers. Publishers and Subscribers are the classes used for im-
plementing producers and consumers for a topic. Multipteixers can subscribe to the
same topic and receive the same message. Topics, conteagibeues, retain messages
only as long as it takes to distribute them to current subecsi The interaction is one-
to-many and it has a timing dependency between senders e@deEs: consumers re-
ceive only messages sent after their subscription and thesy continue to be active in
order to consume new messages (see Section 2.3). Thatrits eve not persistent. Non-
determinism can be reduced by means diigable subscriptionDurable subscriptions
provide the reliability of queues but nevertheless mamtae one-to-many interaction
model. This aspect will be further analyzed in following tie.

10 Corsaro et al. / QoS in Publish/Subscribe Middleware

Subscriptions. In the JMS API subscriptions are topic-based. Applicatig@tgiiring
higher expressiveness can exploit a form of filtered-topiclat, as defined in thieles-
sage SelectohPI, where filters can be applied directly on receiver-saeeteived mes-
sages. A message selector is an expression whose syntesets i SQL92. It is eval-
uated when an attempt is made to receive a message, and g®#isapdo not match
the selection criteria are discarded. Message selectdysnark on header fields and
properties: body and content of the message cannot be usseldéation. Contrarily to a
pure content-based model, message filtering in IMS is ex@autly on receiver-side.

_Msg |

consumes
Msg | <

Client1 ‘ Client2
sends <

acknowledges

Figure 3. JMS Queue Model.

Point-to-point (Queues). The point-to-point model of JMS explogueues where
messages are stored until they are consumed or expire. ISegmtk receivers have to
bind to a queue to use it and once they subscribe they cansstading and retrieving
messages (see Figure 3).

Messages are explicitly addressed to a queue, and analpgeceivers extract mes-
sages directly from a queue. There is no timing dependeneyelea the execution of
send and receive operations: the receiver can retrievesagesven if it was not running
when the sender sent it. Finally the consumer of a messageecaan acknowledgment
as a result of the delivery of the message to queue.

Discovery Another feature of JIMS API is the ability to dynamically diser infor-
mation related to topics: clients can explore topics andugeghrough a search on a
centrally managed JNDI namespace.

4.2. JMS Programming model

A JMS application is composed from the following elemenigFe 4):

Administrated Objects. These are pre-configured objects that are created by admin-
istrators. They are of two type€onnect i onFact ory andDesti nati on.
JMS clients access these objects through interfaces thatlieen standardized
in the JMS specification, while the actual underlying tedbgy strictly depends
on the implementationConnect i onFact ory objects are used by clients to
connect with a providér Each of these objects encapsulates a set of connection
configuration parameters defined by an administr&®est i nat i on objects are
used by a sender to specify the target of a message it produmckdy a re-

3JMS provider is a proprietary part of JMS application, whiehlizes the messaging system and provides
administrative and control features.

Corsaro et al. / QoS in Publish/Subscribe Middleware 11

@creates
@creates
Message | .reates ' creates | Message
Producer .~ | Session | - |Consumer
receives
@sends to @creates from
-
Destination M Destination

Figure 4. JMS Topic Model.

ceiver to specify the source of messages it consumes. Irotheto-point domain,
Dest i nat i on objects represent queues, while in the publish/subscobgaih
they are called topics. Administrative and proprietaryidadlow to create and to
bind these two objects into a INDI namespace. A JMS clientisardNDI to look
up Connect i onFact ory andDest i nat i on objects and establish a logical
connection through the JMS provider.

Connections. Represent virtual connections to JMS providers. A conpads used to
create sessions.

Sessions. EachSessi on object represents a single-threaded context for message pr
ducers, message consumers and messages. A session paavatesactional con-
text where a set of sends and receives can be grouped in ait atoitrof work.

M essage Producersand Consumers. Objects used for sending/receiving messages
to/from destinations. Message production is asynchrobati3MS interface sup-
plies two modality for message delivergynchronousand asynchronousSyn-
chronous messages are delivered by callingrtheei ve method. This method
blocks the application until a message arrives or a timeoctis. Asynchronous
messages are consumed by creatimgeasage |i st ener. Its onMessage
method is executed by the JMS provider when a message aatiitsslestination.

4.3. Quality of Service

The only Quality of Service policy defined in the JMS spectfarais related to relia-
bility. An application can require every message to be kezkdbnce and only once or
it rather can choose a more permissive (and generally méicteat) policy, allowing
dropped and duplicated messages. JMS API specificationda®various degree of re-
liability through various basic and advanced mechanisms.

4.3.1. Basic Reliability Mechanisms

The most interesting basic mechanisms are:

12 Corsaro et al. / QoS in Publish/Subscribe Middleware

Specifying message persistence : a JMS application can specify that messages are per-
sistent, thus ensuring that a message will not be lost inveetef a provider fail-
ure. Two delivery modes are defined in the JMS specificapi@nsistentrequire
JMS providers to log messages in a stable storage, wbitepersistentlelivery
mode does not require it.

Setting message priority levels : applications can set a message priority level; in this
case the JMS provider will deliver urgent messages first. JW8 API provides
methods to set priority levels for all messages sent by aymerl through the
set Pri ority method of thevessagePr oducer interface, or to set priority
level for specific messages, througgndor publishmethods of same interface.

Allowing messagesto expire : in order to prevent duplicated messages an application
can set an expiration time for a message. As in the previaesddS API provides
methods that allow to set a time to live counter for all messggoduced from a
publisher, or just a single one.

4.3.2. Advanced Reliability Mechanisms

The most advanced mechanism to provide reliable messagergeh the JMS specifi-
cation is the creation afurable subscriptionsA durable topic subscription allows a sub-
scriber to receive messages sent while it is not active. Aldersubscription implements
the reliability of queues in the publish/subscribe modetiukable subscription can have
only one active subscriber at a time. When a durable sulesardigisters a durable sub-
scription, it specifies a unique identity by setting an IDtfog connection and a topic and
subscription name for the subscriber. Other subscribentbjhat have the same identity
resume the subscription in the state in which it was left leygreceding subscriber. The
subscriber can be closed and reloaded, but the subscrigittimues to exist until the
subscriber invokes the unsubscribe method. When the shbsis reactivated the JIMS
provider sends it the stored messages.

Other features common in MOM products, like load balanciagpurce usage con-
trol, and timeliness of messages, are not explicitly adwr@sn the JIMS specification.
Although recognized in the specification as fundamentatHerdevelopment of robust
messaging applications, they are considered providerifspe

5. DataDistribution Service

The pub/sub paradigm is a natural match, and often a fundaemchitectural build-
ing block, for a large class of real-time, mission, and satetical application domains,
such as industrial process control, air traffic controlegek systems, etc. These appli-
cation domains are characterized by real-time informatibich flows from sensors to
controllers and from controllers to actuators. The timedm of data distribution is es-
sential for maintaining the correctness and the safety éddtsystems,e., failing in
timely delivering data could lead to instability which migiesult in threats to either
infrastructures of human lives.

Historically, most of the pub/sub middleware standardhsagthe CosEvent [23],
the CosNoatification [24], and JMS [21], etc., as well as masppetary solutions, have
lacked the support needed by real-time, mission, and saf#éiyal systems. The main
limitations are typically due to the limited or non-existeupport for Quality of Ser-

Corsaro et al. / QoS in Publish/Subscribe Middleware 13

vice (QoS), and the lack of architectural properties whicbnpote dependability and
survivability, e.g, lack of single point of failure.

Recently, in order to fill this gap, the OMG has standardizedd DDS [19]. This
standard gathers the experience of proprietary real-tinféspb middleware solutions
which had been independently engineered and evolved iresjchithin the industrial
process control, and in the defense systems applicationaidoThe resulting standard,
which will be described in detail in the reminder of this $ewt is based on a completely
decentralized architecture, and provides an extremetyset of configurable QoS.

Before proceeding with a detailed explanation of the DD$5 worth mentioning
that the standard defines two level of interfaces. At a loewl it defines a Data Centric
Publish Subscribe (DCPS) whose goal is to provide an efficeralable, predictable,
and resource aware data distribution mechanism. Then,poftthe DCPS, it defines
the Data Local Reconstruction Layer (DLRL), an optionakiface which automates
the reconstruction of data, locally, from updates receiaed allows the application to
access data as if it was local.

5.1. DDS Conceptual Model

The DDS conceptual model is based on the abstraction of agyréyped Global Data
Space (GDS) (see Figure 5), where publisher and subsceggectivelywrite (produce)
andread (consume) data. In the reminder of this Section we will pde\a precise char-
acterization of the entities that constitute this alobahdaace.

P: Publisher — S: Subscriber - T: Topic

Figure5. DDS Global Data Space.

Topic. A topic defines a type that can be legally written on the GDShkpresent
standard, topics are restricted to be nonrecursive typfasedeby means of OMG Inter-
face Definition Language (IDL). The DDS provides the abititydistinguish topics of
the same type by relying on the use of a simple key. Finallyicocan be associated
with specific QoS. From an applicative perspective, topietlze mean used by designer
to define the application information model. The model sutgzbby the DDS is not as
powerful as that found in contemporary relational Data B&¥#)s, however it provides
the ability to perform simple topic aggregation, as well astent based filtering.

Identified by m Identified by
means of a Topic . means of a Topic
Data Object

data values

dissemination

data values

DataWriter

data values

DataReader

Figure6. DDS ConceptualModel.

Publisher. Topics allow the definition of the application data modelveadl as the
association of QoS properties with it. On the other hand|iplidrs provide a mean of
defining data sources. A publisher, can declare the integépnérating data with an as-
sociated QoS, and tarite the data in the GDS. The publisher declared QoS has to be
compatible with that defined by the topic. More specificallydepicted in Figure 6, the
DDS relies on a topic specifidat aW i t er which serves as a typed writer to the GDS.
On the other hand, theubl i sher encapsulate the responsibility associated with the
dissemination of data in agreement with the required QoS.

Subscriber. Subscribergead topics in the global data space for which a matching
subscription exist (the rules that define what representatahimg subscription are de-
scribed below). The DDS relies on a topic speciiat aReader which serves as a
typed reader into the GDS. On the other hand,3hbscri ber encapsulates the re-
sponsibility associated with the reception of data in agreat with the required QoS.

Subscription. A subscription is the logical operation which glues togethsubscriber
to its matching publishers. In the DDS a matching subsaniptias to satisfy two differ-
ent kind of conditions. One set of conditions relate to cetefeatures of the topic, such
as its type, its name, its key, its actual content. The otaeosconditions relate to the
QoS. More specifically, the DDS provides a subscription seehich is more general
than the typical topic-based model described in Sectiorag.i2 also allows for content
based subscription — a subset of Structured Query Lang®#ge) (s used for specifying
subscription filters. Regarding the QoS, the matching ¥adlan requested/offered model
in which the requested QoS has to be the same, or weakerjiheffered. As an exam-
ple, a matching subscription for a topic which is distrilslteliably, can be requesting
the topic to be distributed either reliably or as best effort

Corsaro et al. / QoS in Publish/Subscribe Middleware 15

Discovery. Another key feature at the foundation of DDS is that all infiation needed
to establish a subscription is discovered automaticatig, @ a completely distributed
manner. The DDS discovery service, finds-out and commuesdaie properties of the
GDS'’s participants, by relying on special topics and on thia dissemination capability
provided by the DDS.

Finally, for sake of completeness, it is worth pointing dwdttthe DDS supports the
concept of domains. A domain allows to administrativelyagepe and confine the dis-
tribution of different data flows. A DDS entity can belong tiffekent domains, however
data cannot flow across domains.

5.2. DDS Programming Model

Now that we have seen what are the core concepts at the foomadtDDS, we are
ready to move to its programming model. Figure 7, containgaified Modeling Lan-
guage (UML) diagram which represents the core DDS AppliceBrogramming Inter-
face (API) in terms of its key classes and their relationship

QoSPolicy | -dos Entity distener | <interface>
Listener
* 0.1
% WaitSet Condition
DomainEntity| * 1 DomainParticipant
; ¢ -status_condition %
StatusCondition
Topic
Publisher Subscriber
1

1 1 1
DataWriter <interface> DataReader
TypeSupport

Data

Figure 7. DDS Programming Model.

16 Corsaro et al. / QoS in Publish/Subscribe Middleware

From Figure 7 it is worth noticing how the DDS API is mostly bdson a rooted
hierarchy at the base of which we find tRat i t y class. This class, by means of the
association with th€oSPol i cy class, defines the basic mechanisms for associating
QoS with DDS entities. At the same time, with the associatidgth the Li st ener
and theSt at usCondi t i on classes define the two interaction model supported by the
DDS API —the reactive and selective interaction model. Baetive model is supported
by theLi st ener class. Instances of this class can be registered with amydéibDS
entity to receive callbacks on specific events, such as dditg lavailable for being read,
etc. On the other hand, the selective model is supportedéd$ttt usCondi ti on
class. Instances of this class can be used in a way similaetdNIX sel ect system
call to poll or wait on specific conditions.

TheDonmi nParti ci pant represents the local membership to a specific domain.
Only publisher and subscribers belonging to the same domaincommunicate. The
Domai nEnt i ty exists essentially to enforce the fact thainmai nParti ci pant
cannot be nested. Finally, the diagram shows the classesedeliy the DDS stan-
dard in order to write and read data from the GID8,, Publ i sher, Subscri ber,

Dat aWi t er, etc.

5.3. Quality of Service

One of the key distinguishing features of the DDS when corxban other pub/sub
middleware is its extremely rich QoS support. By relying omca set of QoS policies,
the DDS gives the ability to control and limit (1) the use cdaarces, such as, network
bandwidth, and memory, and (2) many non functional propetif the topics, such as,
persistence, reliability, timeliness, etc. In the remimafethis Section we will provide an
overview of the most interesting QoS defined by the DDS digisgj them with respect
to the aspect they allow to control.

Resources

The DDS defines a specific QoS policy to control the resourdéshacan be used to
meet requested QoS on data dissemination. Below are relpibtemost relevant QoS
policies which allow to control computing and network reisms.

e TheRESOURCE_LI M TSpolicy allows to control the amount of message buffer-
ing performed by a DDS implementation.

e TheTlI ME_BASED FI LTERallows applications to specify the minimum inter-
arrival time between data samples. Samples which are pealdatca faster pace
are not delivered. This policy allows to control both netlwbandwidth as well
as memory and processing power for those subscribers whéatoanected over
limited bandwidth networks and which might also have liditmmputing capa-
bilities.

The DDS provides other means to control the resources carthumowever, these will
be presented below as they also have an impact on applicasibie properties of data.

Data Timeliness

The DDS provides a set of QoS policies which allow to contneltimeliness properties
of distributed data. Specifically, the supported QoS arerie=d below.

Corsaro et al. / QoS in Publish/Subscribe Middleware 17

e The DEADLI NE QoS policy allows application to define the maximum inter-
arrival time for data. Missed deadline can be notified bgt ener s (see Figure
7).

e TheLATENCY_BUDGET QoS policy provides a means for the application to com-
municate to the middleware the level of urgency associaiéu adata commu-
nication. Specifically, the latency budget specifies theimam amount of time
that should elapse from the instant in which the data is @mito the instant in
which the data is placed in the queue of the associated iader

Data Availability

The DDS provides the following QoS policies which allow totml the data availabil-
ity.

e TheDURABI LI TY QoS policy provides control over the lifetime of the datatwri
ten on the GDS. At one extreme it allows the data be configurdmbtvolatile,
at the other it allows to have data persistency. It is wortticimgg that transient
and persistent data enables time decoupling between therarid the reader by
making the data available for late joining reader, in theeaastransient data, or
even after the writer has left the GDS, for persistent data.

e The LIFESPAN QoS policy allows to control the interval of &rfor which a data
sample will be valid. The default value is infinite.

e TheHl STORY QoS policy provides a mean to control the number of data sesnpl
i.e., subsequent write of the same topic, have to be kepaéaifor the readers.
Possible values are the last, the lasamples, or all the samples.

Data Delivery

The DDS provides several QoS which allow to control how datdélivered and who
is allowed to write a specific topic. More specifically theldaling QoS policies are
defined.

e TheRELI ABI LI TY QoS policy allows application to control the level of reliab
ity associated with data diffusion. The possible choiceseliable and best-effort
distribution.

e The DESTI NATI ON_ORDER QoS policy allows to control the order of changes
made by publishers to some instance of a given topic. Spaityfttie DDS allows
different changes to be ordered according to the sourceeoddistination time-
stamp.

e The OANERSHI P QoS policy allows to control the number of writers permitted
for a given topic. If configured as exclusive, then it indesathat a topic instance
can be owned and thus written by a single writer. The ownprehia topic is
controlled by means of another QoS policy, @&NERSHI P_STRENGTH. This
additional policy makes it possible to associate a numksitangth to writers,
so that the owner of a topic is defined to be the one availabie the highest
strength. If theOANERSHI P QoS policy is configured as shared then multiple
writer can concurrently update a topic. The concurrent geamwill be ordered
according to thé&ESTI NATI ON_ORDER policy.

18 Corsaro et al. / QoS in Publish/Subscribe Middleware

In addition to the QoS policies defined above, the DDS pravisteme mean of
defining and distributing bootstrapping information by meaf the USER _DATA,
TOPI C_DATA and GROUP_DATA. These policies apply at different levelitasn be
guessed by the name, and are distributed by means of budpics.

References

[1] S. Baehni, P. Th. Eugster, and R. Guerraoui. Data-awaréicast. InProceedings of the
2004 International Conference on Dependable Systems andoies (DSN 2004)pages
233-242, 2004.

[2] R. Baldoni, R. Beraldi, S. Tucci Piergiovanni, and A. §fifito. Measuring notification loss
in publish/subscribe communication systemsPtoceedings of the 10th International Sym-
posium Pacific Rim Dependable Computing (PRDC,@804.

[3] R. Baldoni, R. Beraldi, S. Tucci Piergiovanni, and A. y§fitito. On the modelling of pub-
lish/subscribe communication systen@oncurrency and Computation: Practice and Expe-
rience 17(12):1471-1495, 2005.

[4] S. Bittner and A. Hinze. On the benefits of non-canonidgriing in publish/subscribe sys-
tems. InProceedings of the International Workshop on DistributediE-Based Systems
(ICDCS/DEBS’05)2005.

[5] A. Campailla, S. Chaki, E. M. Clarke, S. Jha, and H. VeifEfficient filtering in publish-
subscribe systems using binary decision diagramPrdeeedings of The International Con-
ference on Software Engineerimgages 443—-452, 2001.

[6] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Achievingatability and Expressiveness
in an Internet-Scale Event Noatification Service. Rroceedings of the ACM Symposium on
Principles of Distributed Computingpages 219-227, 2000.

[7] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design andlBation of a Wide-Area Noti-
fication Service ACM Transactions on Computer Syste(49):332—-383, Aug 2001.

[8] M. Castro, P. Druschel, A. Kermarrec, and A. Rowston.il8crA large-scale and decentral-
ized application-level multicast infrastructul&EE Journal on Selected Areas in Communi-
cations 20(8), October 2002.

[9] R. Chand and P. Felber. Xnet: A reliable content-basddigiv/subscribe system. B8rd In-
ternational Symposium on Reliable Distributed System®&R04) pages 264—-273, 2004.

[10] R. Chand and P. Felber. Semantic peer-to-peer oveftaysublish/subscribe networks. In
Parallel Processing, 11th International Euro-Par Confece (Euro-par 2005)pages 1194—
1204, 2005.

[11] M. Cilia. An Active Functionality Service for Open Distributed Hetggneous Environments
PhD thesis, Department of Computer Science, Darmstadtesity of Technology, August
2002.

[12] G. Cugola, E. Di Nitto, and A. Fuggetta. Exploiting aneew-based infrastructure to de-
velop complex distributed systems. Pmoceedings of the 10th International Conference on
Software Engineering (ICSE "98)\pril 1998.

[13] I. Dionysiou, D. Frincke, D. E. Bakken, and C. Hausert@eoriented trust. Technical Report
EECS-GS-006, School of Electrical Engineering and Compa€&ience, Washington State
University, Pullman, WA, USA, 2005.

[14] P.Th. Eugster, P. Felber, R. Guerraoui, and S.B. Harnidurde. Event Systems: How to Have
Your Cake and Eat It Too. IProceedings of the International Workshop on Distributed
Event-Based Systems (DEBS’()02.

[15] P.Th. Eugster, R. Guerraoui, and Ch.H. Damm. On Objants Events. IrProceedings
of the Conference on Object-Oriented Programming Systeargguages and Applications
(OOPSLA) 2001.

Corsaro et al. / QoS in Publish/Subscribe Middleware 19

[16] F. Fabret, A. Jacobsen, F. Llirbat, J. Pereira, K. Rasd,D. Shasha. Filtering algorithms and
implementation for very fast publish/subscribe. Rroceedings of the 20th Intl. Conference
on Management of Data (SIGMOD 200ppages 115-126, 2001.

[17] L. Fiege, A. Zeidler, A. Buchmann, R. Kilian-Kehr, and 8uhl. Security aspects in pub-
lish/subscribe systems. IRroceedings of the 3rd International Workshop on Distréalit
Event-Based Systen004.

[18] Ludger Fiege, Felix C. Gartner, Oliver Kasten, and Aeadr Zeidler. Supporting mobility in
content-based publish/subscribe middleware AGM/IFIP/USENIX International Middle-
ware Conference (Middleware 2003)ages 103-122, 2003.

[19] Object Management Group. Data distribution servicer&al-time systems specification,
2002.

[20] Gryphon Web Site. http://www.research.ibm.com/dmym/.

[21] Sun Microsystems Inc. Java message service api re2QQdP.

[22] G. Muhl. Generic Constraints for Content-Based Pii8sibscribe. IriProceedings of the
6th International Conference on Cooperative Informatigist8ms (Coopl$p001.

[23] Object Management Group. CORBA event service spetificaversion 1.1. OMG Docu-
ment formal/2000-03-01, 2001.

[24] Object Management Group. CORBA notification servicedification, version 1.0.1. OMG
Document formal/2002-08-04, 2002.

[25] B. Oki, M. Pfluegel, A. Siegel, and D. Skeen. The inforioatbus - an architecture for
extensive distributed systems. Rroceedings of the 1993 ACM Symposium on Operating
Systems Principle®ecember 1993.

[26] P. Pietzuch and J. Bacon. Hermes: a distributed evastd middleware architecture. In
Proceedings of the International Workshop on Distributeii-Based Systems (DEBS’02)
2003.

[27] R. Preotiuc-Pietro, J. Pereira, F. Llirbat, F. FabketRoss, and D. Shasha. Publish/subscribe
on the web at extreme speed. Pmoc. of ACM SIGMOD Conf. on Management of Data
Cairo, Egypt, 2000.

[28] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Pkelontent Based Routing with
Elvin4. In Proceedings of AUUG2K, Canberra, Austrgliune 2000.

[29] SIENA Web Site. http://www.cs.colorado.edu/usesstanig/sienal.

[30] T. Sivaharan, G. Blair, and G. Coulson. GREEN: A Confaple and Re-configurable
Publish-Subscribe Middleware for Pervasive Computind®risceedings of DOA 2002005.

[31] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. Katz, and J. Kidwicz. Bayeux: An architec-
ture for scalable and fault-tolerant wide-area data digsation. In11th Int. Workshop on
Network and Operating Systems Support for Digital Audio ¥ialgg 2001.

