
High Frequency Batch-oriented Computations over
Large Sliding Time Windows I

Leonardo Anielloa, Leonardo Querzonia, Roberto Baldonia

aCyber Intelligence and Information Security Research Center and
Department of Computer, Control, and Management Engineering “Antonio Ruberti”

University of Rome “La Sapienza”
Via Ariosto 25, 00185, Rome, Italy

Email: aniello,querzoni,baldoni@dis.uniroma1.it

Abstract

Today’s business workflows are very likely to include batch computations that
periodically analyze subsets of data relative to specific time ranges in order to
provide strategic information for stakeholders and other interested parties. The
frequency of these computations directly impacts on how much updated such
information can be, which provides an effective measure of their usefulness.
This in turn drives towards solutions that allow to carry out batch elabora-
tions more often, so as to always have updated information as soon as possible.
How often they can be executed usually depends either on application-specific
requirements or on some other constraints, typically about completion time be-
cause it’s uncommon to start a new batch computation before the previous one
has completed, and the typical amounts of data to elaborate in these scenarios
are so large that a computation can take very long.

In this paper we propose a model for batch processing on sliding time win-
dow event computations that allows the definition of multiple metrics for per-
formance optimization. These metrics specifically take into account the orga-
nization of input data to minimize its impact on computation latency. The
model is then instantiated on Hadoop, a batch processing engine based on the
MapReduce paradigm, and a set of strategies for efficiently arranging input data
is described and evaluated.

Keywords: event processing, batch processing, time window based
computations

1. Introduction

Event processing is a constantly evolving research area which keeps growing
to adapt to emerging technologies and paradigms [1]. With event processing,
events produced by possibly different sources are usually collected in bunches

IThis is an extended version of a paper from the same authors appeared at SAC 2013.

Preprint submitted to Future Generation Computer Systems April 19, 2013

delimited by time windows and then elaborated to produce other events as out-
put. Several real applications require indeed to recognize particular patterns
within specific time lapses or to produce periodic reports on what happened
in precise time ranges. A relevant example for the first case is represented by
Intrusion Detection Systems (IDSs), which keep monitoring network traffic data
searching for known malicious signatures, trace them and raise alerts whenever
too many suspect activities occur within a defined time interval. Port scan de-
tection techniques based on the activities observed in specific time windows are
investigated in [2] and [3]. In this scenario, where a large number of network
probes can produce high rate event streams, it is advisable to adopt large time
windows (hours, days) to catch slow attacks; at the same time, it is necessary to
have frequent (every few seconds) analysis results to promptly react to alarms.
An example of the second case is represented by algorithmic trading, an ap-
plication scenario where result latency is critical to profitability. Such scenario
is characterized by large data volumes (millions of trades per day), medium to
large observation windows (hours, days) and frequent (down to a second) up-
dates to quickly catch highly volatile financial opportunities. We refer to this
kind of event processing as Time Window Based Computations (TWBCs).

Event processing engines managing TWBCs must cope with an ever increas-
ing number of event sources and continuously growing data rates. To keep up
with this trend, processing engines must be able to manage huge input data
volumes. Output of such computations are often used to take the best decision
about some next action to be performed. Therefore, it is crucial to get these
results as soon as possible, otherwise they are likely to become obsolete before
they can be actually used. To cope with this requirement, processing engines
must be timely in the production of their output.

Event processing engines can adopt two possible approaches for TWBCs
with respect to the relationship between when events arrive and when they are
elaborated. If events are processed as soon as they enter the engine, we talk
about online event processing. Conversely, if events are first stored and then
periodically processed in batches, we talk about batch event processing. This
latter approach is usually preferred when timeliness requirements are not that
strict, indeed an inner characteristic of batch processing resides in the delays
to be paid in order to get updated results, because of its periodical nature.
On the other hand, running computations every so often allows to cope with
load spikes, failures and imbalances much more easily than the online approach
does. Furthermore, a batch approach enables the decoupling of data loading and
data elaboration, which provides higher flexibility to accommodate for possible
distinct requirements.

Batch processing is heavily employed within business workflows of many
medium to large companies for periodical ETL (Extract, Transform, Load) op-
erations where large data sets produced daily up to hourly have to be moved,
analyzed and archived so as to provide the proper means for enforcing specific
business intelligence strategies. These scenarios are representative examples of
the challenges and opportunities that the emerging BigData trend is foster-
ing. Some well Known companies that are employing this kind of approach are

2

Oracle [4], Dell [5], MicroStrategy [6] and Cisco [7].
In this paper we focus on the batch approach and investigate which are its

pros and cons in order to understand whether present batch-oriented computa-
tion frameworks can properly meet the previously introduced requirements for
TWBCs. In particular, the possibility to increase the frequency of computa-
tions on sliding time windows is thoroughly checked into so as to get a better
understanding about the class of use cases where a batch approach of this kind
can be effectively employed. To this respect the contributions of this paper are:

• the definition of a simple model for batch processing in TWBCs that
includes a set of important performance metrics. These metrics provide
the basis for fundamental optimizations;

• an analysis of the impact of input data organization on these metrics, that
shows how a smart subdivision of incoming events in data batches can help
in maximizing performance;

• an instantiation of the model in the Hadoop framework accompanied by
ad-hoc input data organization strategies that aim at reducing computa-
tion latency;

• and, finally, a prototype-based experimental evaluation that highlights
strengths and weaknesses of the proposed strategies.

The rest of the paper is structured as follows: Section 2 discusses the re-
lated work, Section 3 introduces batch processing in TWBCs and our model,
discussing the related performance metrics and two possible strategies for ar-
ranging input data; Section 4 describes the instantiation of the model in the
Hadoop batch processing framework and an ad-hoc strategy for improving per-
formances; Section 5 discusses the experimental evaluation results; finally, Sec-
tion 6 concludes the paper.

2. Related Work

The developments in the area of distributed event processing happened dur-
ing last decade have been based mostly on the concept of continuous queries,
which run unceasingly over streams of events provided by external sources.
These queries are compiled in a network of processing elements that can be
distributed over available resources. Several projects have been on this line,
although the structures used to model the compiled query are named differ-
ently. Among the most cited, we find InfoSphere [8, 9] (networks of InfoPipes),
Aurora [10, 11] (networks of processing boxes), TelegraphCQ [12] (networks of
dataflow modules), STREAM [13] (query plans composed by operators, queues
and synopses), Borealis [14] (networks of query processors), and System S [15]
(Event Processing Network (EPN) of Event Processing Agents (EPA)).

In this paper we adopt the jargon introduced by the latter. The reconfig-
uration of an EPN at runtime introduces several issues. The main one is the
rebalancing of the load among nodes.

3

Shah et al. [16] define a dataflow operator called flux, which is integrated in
an EPN and takes care of repartitioning stateful operators while the processing
is running. Its limitations concern the dependance on configuration parameters
that need to be tuned manually and the lack of fault tolerance mechanisms.

Gu et al. [17] propose a mechanism to process Multiway Windows Stream
Joins (MWSJs) which distributes tuples to distinct nodes to allow for parallel
processing. Their algorithm is specific for MWSJs. Xing et al. [18] describe an
algorithm for placing operators such that no replacement is required at runtime.
They deem that operators cannot be moved at all. Xing et al. [19] introduce
a load distribution algorithm for minimizing latency and avoiding overloading
by minimizing load variance and maximizing load correlation. Liu et al. [20]
propose a dynamic load balancing operators for stateful algorithm, which spills
state to disk or moves the operators to other nodes to resolve imbalances. Lak-
shmanan et al. [21] present a stratified approach where the EPN is partitioned
horizontally in strata and operators can be moved within a single stratum only.

Stateful operators in a continuous query pose the question of addressing the
problem of memory constraints. The most studied case is that of the joins over
distinct event flows or data streams, which require the usage of some time or
count based window in order to avoid maintaining the whole history of input
data. Time windows cannot guarantee a consequent bound on required memory
because of the variability of input event rate. Employing load shedding as a
solution [22, 23, 24, 25] could not be feasible in several scenarios where the
accuracy of the processing is a main requirement, for example decision support,
intelligence or disaster recovery. In this case, the employment of some disk-
based storage is required, as described in several works [26, 27, 28, 29] which
however deal with the processing of finite data sets.

There exist some projects addressing the topic of distributed processing of
data stored to secondary storage without employing continuous queries.

DataCutter [30] is a middleware which breaks down on-demand clients’ re-
quests into processing filters in charge of carrying out required computations.
It has been devised to carry out complex processing over large distributed data
sets stored to disk.

The MapReduce paradigm [31] implemented in Google and its open source
implementation Hadoop [32] have received a great interest by the community
and a lot of related projects [33, 34, 35]) have been developed adopting a similar
approach.

Dryad [36] is a project developed by Microsoft which organizes the processing
as a dataflow graph with computational vertices and communication channels.
The computation is batch and can elaborate files stored to a distributed file
system.

The possibility of employing a batch approach is touched on in [37], where
it is proposed as an appropriate solution when the computation is too much
slow compared to event arrival, so that executing the elaboration for each event
doesn’t allow to keep up with event rate. In this case events are buffered and
computation runs periodically on the current batch.

4

3. Batch processing for Time Window Based Computations

3.1. Time Window Based Computations

Etzion and Niblett in [1] define an event as “an occurrence within a partic-
ular system or domain; it is something that has happened, or is contemplated
as having happened in that domain”. Event processing is performed by feeding
events in the form of streams in a processing engine. A stream is “a set of as-
sociated events”, often “a temporally totally ordered set”. The ordering within
a stream is defined by a timestamp associated to each event. By elaborating
groups of events the engine can output new events that represent the the result
of its computation.

With the name time window based computation (TWBC) we refer to the
elaboration of a set of events that happened within a specific time window. The
length of the window and the way such length changes over time depend on the
scenario of interest. We can have either a single fixed-length time period, or
a fixed-length time period that repeats in regular fashion, or windows that are
opened or closed by particular events in the event stream, or, finally, windows
that are opened at regular intervals where each window is opened at a specified
time after its predecessor [1]. In this paper we focus on this latter type of time
windows.

A new window is started every ∆T time units, and here we assume that
∆T ≤ T 1. If ∆T = T then a new window is opened whenever the current one
is closed: at any time there is a single window opened and each event belongs
to one and only one window. We refer to this case as juxtaposed windows. If
∆T < T then a new window is opened before the previous one is closed, so
at any time t (at steady state) there are now(t) open windows where b T

∆T c ≤
now(t) ≤ d T

∆T e. We refer to this case as interleaved windows. Each event e
having te as timestamp belongs to now(te) different windows. We concentrate
on the cases where now(t) is fixed to N , that is where T is a multiple of ∆T . Such
assumption comes from the observation that often the length of the window is
a multiple of the window period.

In general, given a time window TWi which begins at time ti and ends at
ti + T , we want to decrease the latency li between the end of TWi and the
availability of the related result Ri (see Figure 1). This latency depends on
several distinct factors regarding both the time to produce the result itself and
the synchronization between the end of the window and the beginning of the
computation, as will be shown in next section.

3.2. Batch processing

TWBCs can be process using either an online or a batch approach. With
the former approach events are kept in memory and processed as soon as they

1Cases where ∆T > T , that imply a voluntary loss of events in the periods of length ∆T−T
that occur between the end of a window and the start of the next one, are of little interest
and thus ignored in this paper.

5

TWi$ Ri$

ti$ ti$+$T$ ti$+$T$+$li$
t$

T$
li$

Figure 1: Placement in time of a time window and the related result.

enter in the system in order to minimize the output delay. Conversely, with
batch processing incoming events are first stored in a secondary storage (e.g.
in a disk-based database or, more commonly, in a file system) and then period-
ically processed in batches. The frequency of these computations depends on
application specific requirements and on the feasibility of running many con-
current computations. While the online approach allows for continuous output,
periodical batch computations can only produce periodical output.

Batch processing provide some advantages with respect to online solutions
that make it suited to several application scenarios. The amount of data that
must be analyzed within a time window, being a function of both the window
size and the event rate, can easily grow to huge amount. Storing this data in
secondary storage instead of main memory can allow to support applications
with massive data rates and large time windows with simpler and less expensive
computing infrastructures. Moreover, systems based on the online approach
process events as they enter the system; this can easily limit system scalability
in applications where processing is computationally intensive and data rates are
large. Batch processing, on the other side, defer computation to the end of a
time window; incoming events are directly stored in the secondary storage thus
allowing very large input rates.

Existing batch processing solutions can be adopted to perform TWBCs. We
found that the class of technologies that naturally fits what we need is the one
described in Section 2 that includes the projects focused on distributed batch
processing of data kept on secondary storage [30, 31, 32, 33, 34, 35, 36]. All
them allow to execute distributed complex computations on huge volumes of
data. Such data is organized in large files partitioned over available storage
nodes. File systems are generally preferred to DBMSs because the operations
we need to execute on input data are very simple and don’t require most of the
high level functionalities provided by today’s DBMSs. Events pertaining to each
window are stored in files which become the input of the processing engines in
charge of producing the output for such time windows.

6

EP1$

EPN$

GW1$

GWM$

Storage$

file$
Engine$process$

TWBC$Manager$

control''
file'rolling' control'

computa0on'

input$
events$

norm
data$

Figure 2: High-level architecture of a batch-oriented event processing system.

1
j1
f

TWi$ Ri$

t$
li$

Ci$

w
il

c
il

Ti$

T$

1
1j1

f +
1

2j1
f +

M
jM
f M

jM
f 1+ fjM+2

M M
jM
f 3+

Figure 3: Performance metrics in batch-oriented TWBCs.

7

3.3. Computation Model

A high level architecture which highlights the interactions between event
producers (EPs) and the processing engine is shown in Figure 2. Several EPs
provide input events to a set of gateways (GWs) in charge of normalizing and
storing them in the storage. Data in the storage is organized in files. A new
event is appended to an open file f . Upon certain conditions, a file f is closed
and a new file f ′ is created. We refer to this operation as file rolling. At any
time, there can be several files that are being written to by distinct GWs and
the temporal coverages of different files can overlap. In Figure 3 a time window
TWi is shown together with the temporal coverages of the files containing its
events (fj1 , · · · , fj1+2 to fjM , · · · , fjM+3) and the position in time of the related
computation Ci. The trigger of file rollings is performed by a TWBC Manager,
which is also responsible of starting the computations by properly controlling
the processing engine. The engine simply runs the desired computation over all
the files intersecting the time window of interest. The output of the computation
is not shown here because it is not relevant for our purposes.

A crucial issue in this setting is represented by the synchronization between
events and time windows. If event timestamps were set by the EPs, an accurate
synchronization would be impossible as the EPs’ clocks and the TWBC Man-
ager’s clock in general present non negligible skews. Various synchronization
techniques (e.g. [38]) can be used to mitigate this problem. Event processing
systems usually rely on their internal clocks, so an event is considered included
within a certain time window according to the time such event enters the en-
gine. In our model, we assume that events are timestamped by GWs as they
are written to file. Note that this solution does not completely solve the syn-
chronization issue but effectively alleviates it as synchronizing multiple GWs,
components usually deployed in a controlled environment within a single admin-
istrative domain, is a reasonably easy to solve task. In general, synchronization
guarantees depend on the employed technologies and the type and extent of the
deployment. Whether such guarantees allow for a properly accurate computa-
tion depends on the specific application.

The latency li, that separates the end of the time window TWi from the
output of the result Ri, is constituted by two distinct temporal components
(see Figure 3):

• the wait latency lwi representing the time between the end of the time
window TWi and the beginning of the computation Ci;

• the computation latency lci representing the time it takes for the compu-
tation Ci to complete.

Note that that nothing prevents Ci from beginning before the file containing
the last of event in TWi is closed, assuming that the chosen technologies allow
to elaborate files while they are being written to. In that case, also the wait
latency doesn’t depend on when such last file is closed. Figure 3 represents a
simple case where the computation begins after the closure of such last file.

8

In order to reduce the wait latency lwi , the computation should be started
as soon as a time window ends. By making the TWBC Manager in charge of
determining when time windows begin and end, we can minimize it.

The reduction of the computation latency is more complex at this level of
abstraction. As shown in Figure 3, the computation of TWi requires to process
all the files that contain events in TWi. These files cover a time range of length
Ti, where in general Ti ≥ T . It is up to the computation itself to filter out the
events outside the time window. Since distinct files can overlap in time and
also be partitioned without taking into account the temporal order of contained
events, the processing engine has to read the content of all these files in order to
decide which events must be processed. If we assume that (i) the length of the
computation increases as the size of data read from the storage grows (IO bound
computation) and that (ii) the size of stored data grows with the length of the
time interval it covers, then we can conclude that a possible way of reducing the
computation latency is to include in the processing all and only the events that
are included in the time window of interest. A convenient metric able to capture
this aspect is the time efficiency, defined as the ratio T/Ti, which represents an
approximation of the fraction of processed events that actually are within the
time window. The approximation is based on the assumption that event rate is
stable during the period T . The time ratio is a real number in the range [0, 1]
where 1 represents the optimum, i.e. only events in TWi are processed.

3.4. Input data organization strategies

We can define proper strategies for organizing input data in files with the aim
of optimizing the metrics introduced in the previous section. A strategy defines
when file rollings are triggered and thus determines the positioning of events
in file and how these files are organized for batch processing. We first present
the strategy for juxtaposed windows (∆T = T) and then that for interleaved
windows (T = N ·∆T).

Juxtaposed Windows. The case where ∆T = T is the simplest one and the
strategy we propose for it is straightforward but yet allows for the optimization
of all the metrics.

Figure 4 illustrates this strategy. We assume there are M GWs, each writing
events to distinct files. During time window TWi, the GWg writes its incoming
events to file fg

i . When TWi ends, the TWBC Manager issues a file rolling to all
the GWs and tells the Engine to start the computation. This picture represents
the collocation of time windows (TWi), temporal coverage of files (fg

i) and
computations (Ci) on a timeline that spans a period of four consecutive windows.
All the events related to time window TWi are stored in files fx

i , where x =
1...M . At time ti, files f1

i , · · · , fM
i are opened. At time ti+1 = ti + T , all these

files are closed and the computation Ci for TWi is started. The computation
ends at time ti+1 + lci . The figure is simplified so that it seems that the ideal
relation li = lci holds. In practice, there is some operational delay between the
end of TWi and the beginning of Ci (that is lwi). If the Engine cannot process
files while they are written to, some degree of coordination is necessary between

9

TWi$

ti$
t$

TWi&1$

Ci&1$

ti&1$

Ci$

TWi+1$

Ci+1$

ti+1$ ti+2$

c
1i$i l&t + c

i1i l%t ++ ti+2 + li+1
c

Ci&2$

c
2i$1i$ l't +

TWi+2$

ti+3$

1
1"#"if

1
if

1
1"if +

1
2#if +

M
1#$if

M
if

M
1#if +

M
2#if +

Figure 4: Strategy for juxtaposed time windows.

TWi$

ti$
t$

TWi&1$

Ci&1$

ti&1$

Ci$

TWi+1$

Ci+1$

ti+1$ c
1i$1i$ l&Tt ++ c

ii l$Tt ++ c
1ii l%Tt ++ ++1

ΔT

1
1"#jf

1
jf

1
1"jf +

1
2#jf +

1
3#jf +

M
1#$jf

M
jf

M
1#jf +

M
2#jf +

M
3#jf +

Figure 5: Strategy for interleaved time windows.

the TWBC Manager and the GWs in order to start the computation only after
files f1

i , · · · , fM
i are closed, but these are implementation details which depend

on the technologies employed. Summing up, we can state that (i) the wait
latency is minimized and (ii) the time efficiency is optimized (T = Ti).

In Figure 4 we are implicitly assuming that li ≤ ∆T , in order to avoid that
computations execute concurrently. This is not a mandatory requirement, but
running each computation in isolation allows to use the whole computational
power provided by the underlying infrastructure, which possibly means that the
latency can be further minimized.

Interleaved Windows. In reference to Section 3.1, when ∆T < T we talk about
interleaved time windows. In particular, we concentrate on the case T = N ·∆T ,
where N ∈ N, N > 1. Also In this case we can define a simple strategy,
which optimizes all the metrics and can be considered as a generalization of the
strategy described in the previous section.

Figure 5 shows that each time window is covered by N ·M distinct files.
In this figure we have reported the time windows, the temporal coverage of
files and the computations related only to three consecutive time windows in a

10

setting where ∆T = T/3 (N = 3). We have not included occurrences related to
other time windows that actually happen in the time span shown in the figure
in order to avoid complicating the figure itself. Consecutive time windows begin
with a delay of ∆T , so ti+1 = ti + ∆T . Assuming that TW0 and the temporal
coverage of fx

0 , for x = 1...M , begin at the same instant t0, and making each
GW use one file for each period spanning ∆T time units, we have that TWi

is covered by files fx
i to fx

i+N−1, for x = 1...M . Since T is a multiple of ∆T ,
we obtain an optimum time coverage of the periods of length T , which means
that (i) the wait latency is minimized and (ii) the time efficiency is optimized
(T = Ti).

An interesting aspect of interleaved windows is that the constraint li ≤ ∆T
becomes much more difficult to comply with respect to juxtaposed windows,
because the amount of data to be processed is the same, but the time available
for the computation is 1/N .

4. Implementation with Hadoop

Starting from the model introduced in the previous section we implemented
a batch processing engine for TWBCs using Hadoop (Section 4.1) as processing
engine and HDFS (Section 4.2) for input data storage. In this section we analyze
which additional factors have to be taken into account for the optimization of
performance metrics with this specific setup.

4.1. Hadoop and the MapReduce paradigm

Apache Hadoop [32] is a Java-based open source framework that allows the
distributed processing of large data sets across clusters of computers. It is based
on the MapReduce programming model [31] which lets a user define the desired
computation in terms of map and reduce functions. The underlying runtime
system automatically parallelizes the computation across large-scale clusters of
machines, handles machine failures, and schedules inter-machine communication
to make efficient use of the network and disks.

A Hadoop computation is called job and its work is decomposed in map
tasks and reduce tasks. Input data is fed to a variable set of map tasks that
perform part of the overall elaboration and produce an halfway output.

Such halfway output is then computed by a fixed number (cluster-wise con-
figuration parameter) of reduce tasks for the provision of the final output. In
this case, the EPN of the computation simply consists in a two stage digraph
where map tasks are at the first stage and reduce tasks at the second one.

A Hadoop deployment consists of (i) a single JobTracker in charge of creating
and scheduling tasks and monitoring job progress and (ii) a set of TaskTrackers
which execute the tasks allocated by the JobTracker and report to it several
status information.

One of the key characteristics of Hadoop is its ability to allocate map tasks
where input data are placed, so as to minimize data transfers and decrease
the overall job latency. Such locality awareness fits very well with the need of

11

timely and smartly reconfiguring the allocation of maps (EPAs) to resources
since before starting each job a proper task placement is enforced.

4.2. Hadoop Distributed File System

The Hadoop Distributed File System (HDFS) [39] is the default storage used
by Hadoop and has been designed to properly support read/write access patterns
typical of Hadoop jobs. Data in HDFS is organized in files and directories. Like
in a standard file system, each file is broken into block-sized (64 MB by default)
chunks, which are stored as independent pieces to simplify the storage subsystem
and to fit well with replication for providing fault tolerance and availability.

An HDFS installation includes (i) a single NameNode which manages the
whole namespace of stored data and controls how data is spread over available
resources and (ii) a set of DataNodes responsible of storing the actual data.

The default data replication factor is 3, which means that in the cluster
there are in total 3 replicas for each block. In our implementation we set the
replication factor to 1 because we want to be as fast as possible in storing events,
and replicating data would consume too much time. This choice penalizes the
fault tolerance of our system but in the scenarios of interest it is more important
to keep up with input data rates than loosing some input data because of failures
of cluster nodes.

In our implementation, the GWs are in charge of (i) receiving events from
the EPs and (ii) converting them in a format suitable for being written to HDFS
files. Data in a HDFS file cannot be read by map tasks until such file is closed,
so some coordination is needed to ensure that required files have been closed
before starting a job.

Although in the scenarios of interest we want to deal with several EPs pro-
viding events to a set of GWs, our current implementation supports a single
GW. This has no impact on our evaluation of a strategy because the metrics we
want to optimize are independent from the number of GWs.

4.3. Performance Metrics Optimization

In our implementation, we developed a Java application which encapsulates
the functionalities of both a GW and the TWBC Manager. Such application is
thus in charge of (references to items of Figure 2 are reported in parentheses)

• receiving input events (input events)

• converting them in ASCII format and writing them to a HDFS file (norm
data)

• deciding when to execute a file rolling (control file rolling)

• triggering the execution of Hadoop jobs (control computation)

As explained in Section 3.3, a key aspect for the optimization of performance
metrics is the synchronization between time windows and computations. In our
implementation based on Hadoop, a coordination between file rollings and jobs

12

executions is also required. By assigning to the Java application the duties of
both the GW and the TWBC Manager, we have the possibility of enforcing
such synchronization and minimizing the wait latency. For what concerns the
computation latency, the time efficiency is important because Hadoop jobs are
known to be IO bound, as shown by Wlodarczyk et al. [40].

Besides the synchronization issues and the optimization of time efficiency, a
strategy has further influence on the computation latency. The general problem
of data acquisition in Hadoop has been studied in part by Jia et al. [41]. The
important point emerging from this papers is that Hadoop works much more
better with a small number of large files with respect to a large number of
small files. Hadoop divides the input of a job into fixed-size pieces called input
splits, then creates one map task for each split, which runs the user-defined
map function for each record in the split. In a Hadoop cluster configured with a
block size B, for a file of size S Hadoop considers dS/Be splits 2. Since a limited
number of map tasks can run concurrently and since each map task involves a
management overhead, the overall performance would improve by using files
having size B. In this way, in fact, each map task works on a chunk of size B
and the number of allocated map tasks is minimized.

More formally, we consider a data set of total size D which is organized in
N files of size di (i = 1...N), such that

N∑
i=1

di = D (1)

The number of splits required for such data is

S(N) =

N∑
i=1

⌈
di
B

⌉
(2)

where S(l) indicates the number of splits using l files. To show how the number
of splits decreases with the number of files, we consider what would happen if
we used a single file of size D.

S(1) =

⌈
D

B

⌉
(3)

The comparison between the terms in equations (2) and (3) requires to express
both D and di as a function of B. Let b = D div B and r = D mod B, where
div and mod are the quotient and the remainder of the division, respectively.
Then we can write

D = b ·B + r (4)

2This relation has been obtained using default values for the configuration parameters
that control the way input splits are computed: minimumSize and maximumSize; they
constraint the minimum and maximum size of a split, respectively. The formula used to
compute the split size is max(minimumSize,min(maximumSize,B)), where B is the block
size [32].

13

where r < B. Similarly, for i = 1, · · · , N we can write

di = bi ·B + ri (5)

where ∀i, bi = di div B, ri = di mod B, ri < B. Replacing equations (4) and
(5) into (1) we have

b ·B + r = B ·
N∑
i=1

bi +

N∑
i=1

ri (6)

We state that

b ≥
N∑
i=1

bi (7)

which in turn by (6) implies r ≤
∑N

i=1 ri, and we prove it by contradiction as

follows. Let us assume that b <
∑N

i=1 bi, so we can write

b =

N∑
i=1

bi − a (8)

where a ∈ N, a > 0. Replacing (8) in (6) we have

(

N∑
i=1

bi − a) ·B + r = B ·
N∑
i=1

bi +

N∑
i=1

ri =⇒

r = a ·B +

N∑
i=1

ri =⇒

r ≥ B

which is in contradiction with the definition of r. Replacing (4) and (5) in (3)
and (2) respectively,

we can write
S(1) = b + 1 (9)

S(N) ≤ N +

N∑
i=1

bi (10)

The ≤ relation in (10) comes from the fact that ri = 0 can hold for some i.
Subtracting (9) from (10) we have

S(N) − S(1) ≤ N − 1 + (

N∑
i=1

bi − b) ≤ N − 1 (11)

where the last ≤ relation comes from (7).
Equation (11) expresses the fact that using N files instead of one can make

the number of splits increase by up to N−1. The worst case is when b =
∑N

i+1 bi.

14

Figure 6: Rolling Strategy for interleaved time windows with Multi Files Flows.

In a Hadoop cluster with L TaskTrackers configured with MS available map
slots each, at most L ·MS map tasks can run at the same time. Depending on
the value of D, it could be impossible to run all the map tasks in a single round.
Indeed, if D > B ·L ·MS, at least L ·MS + 1 map tasks are required, regardless
of how data is organized in files. However, the goal remains to arrange input
data so that resulting map tasks can be executed in the minimum number of
rounds, and at the same time ensuring that the load is fairly distributed among
TaskTrackers. The last point is important since the reducer tasks start their
work whenever all map tasks are completed, so load imbalances can make a
TaskTracker employ more time than the others to complete the map phase,
which in turn causes the beginning of reduce phase to delay.

As discussed in [42], the best solution for loading this kind of input data to
HDFS is employing some technology like Chukwa, that is something in charge
of collecting external streams and writing them to HDFS files. While Chukwa
proves to be very useful when there are several geographically distributed GWs,
simpler scenarios with a single local GW can be managed by a single application
like ours which keeps writing data to HDFS as new events arrive.

Multi Files Flows. What emerged so far is that in a Hadoop based implemen-
tation a possible problem of the interleaved window strategy described in Sec-
tion 3.4 is that N can be very large and involve high computation latencies.
In Section 5 we will see some scenarios where this actually happens. Trivially
using larger files doesn’t work. In reference to Figure 5, if for example we set
each file to cover 2 · ∆T , then for time windows TWj with j even we would
have a wait latency of ∆T (due to the fact that a Hadoop job cannot read open
files), which is unacceptable. The synchrony between time windows, HDFS files
rollings and Hadoop jobs has to be kept in order to optimize wait latency. This
also implies that each time window still has to be perfectly fit by HDFS files,
that is the time efficiency has to be optimal.

The solution we propose consists in replicating data so as to (i) use a lower
number of bigger files and (ii) provide each time window with the HDFS files

15

required to have a perfect coverage. As shown in Figure 6, data is replicated K
times (K = 2 in the figure) using K distinct files flows. K is required to be a
divisor of N , that is N mod K = 0. Since we have a single GW, we don’t need
to specify which GW writes which file. In this case we use the notation fw,j to
indicate the j-th HDFS file of the w-th files flow. With K files flows, each file
can cover a time interval of K ·∆T and the number of files required to cover a
time window becomes N/K. Files in flow w are closed with a delay of ∆T with
respect to files in flow w − 1. In this way, each time window TWi has a perfect
coverage with the files fw,j to fw,j+ N

K−1 where w = i mod k and j = i div k. In

reference to Figure 6, TWi−1 is covered by f0,j and f0,j+1 while TWi is covered
by f1,j and f1,j+1 and so on.

Compared to the solution for interleaved windows reported in Section 3.4,
this strategy allows to decrease the number of required files by a factor K at
the cost of replicating input data K times.

5. Experimental Evaluation

Our experimental evaluations are aimed at validating the model introduced
so far, giving a hint about the exhibited computation latencies and comparing
the two strategies defined for interleaved time windows. We didn’t evaluate
the strategy for juxtaposed windows because it can be considered as a special
case of interleaved windows with N = 1, and the evaluations of these strategies
become interesting when N is large.

We carried out several evaluations simulating a scenario in which a fictional
traffic monitoring application is requested to produce statistics every minute
(∆T = 1 minute) about the packets observed in the last hour (T = 1 hour,
N = 60). We vary input packet rate and observe the latency of the jobs. For
each fixed packet rate we measured the latency of the first 12 jobs. Latencies of
subsequent jobs did not reveal any further insights on the performance of the
system and are thus not shown. As a warm up phase, we let the system load
data for 1 hour before starting the first job. In this way each job actually works
on a time window of 1 hour.

The equations defined in Section 4.3 can be simplified by introducing some
assumptions based on the properties of our evaluations. Since packet rate is
kept fixed for each run, the size of the input data stored for each ∆T can be
considered constant, so we can assume that

∀i, di = d (12)

With the largest packet rate we used, the size of the input data stored for each
∆T was at most 40 MB, which is less than the size of a block (64 MB), so we
can also assume

d < B (13)

We can use (12) and (13) to rewrite (1), (2) and (3) as follows, respectively

D = N · d

16

0"

20"

40"

60"

80"

100"

120"

500" 1000" 2000" 3000" 4000" 5000"

La
te
nc
y"
(s
ec
)"

packet"rate"(pkt/sec)"

∆T

Figure 7: Average latencies and standard deviations for the basic interleaved windows strategy.

S(N) =

N∑
i=1

d d
B
e = N

S(1) = dN · d
B
e

We use a simple TCP traffic data analysis computation, where packets are
filtered out on the basis of the value of TCP flags and are then written to an
output HDFS file. The filter we considered is such that almost any packet is
dropped. The number of reducers is set to 1. This kind of computation is
executed by a very simple event processing network with a set of map tasks
which execute IO-bound work and send filtered data to a single reduce task
in charge of writing the resulting data to a file. The choice of using this kind
of filter has been driven by the observation that different rolling strategies can
only impact the performance of map tasks, so, in order to better observe their
effectiveness, we consider a computation where the contribution of reduce tasks
to the latency is negligible.

We setup a Hadoop deployment with 7 nodes. In one node we placed the
JobTracker and the NameNode. In each of the other nodes we place a Task-
Tracker and a DataNode, so as to enable the JobTracker to allocate map tasks
where data actually is and minimize data transfers. We used another node
where we installed our Java-based application. Each node was a Virtual Ma-
chine (VM) running Ubuntu 10.04 and equipped with 2x2800 MHz CPUs, 3 GB
of RAM and 15 GB of disk storage. The networking infrastructure was based
on a 10 Gbit LAN.

Basic Interleaved Windows Strategy. The evaluations for the basic interleaved
windows strategy (as introduced in Section 3.4) are aimed at showing (i) how the
engine is able to keep up with increasing input data rates and (ii) what happens

17

50#

100#

150#

200#

250#

300#

0# 2# 4# 6# 8# 10# 12#

La
te
nc
y#
(s
ec
)!

job#number#

3000#pkt/sec#

4000#pkt/sec#

5000#pkt/sec#

∆T

Figure 8: Observed latencies when packet rate is greater than 2000 pkt/sec.

when the constraint li ≤ ∆T is violated, i.e. the time needed for computing over
a time window is greater than the time-span between the start of two subsequent
windows. The average latencies and related standard deviations registered in
these experiments are reported in Figure 7. These results confirm that Hadoop
jobs are IO bound: as the packet rate grows, input data size grows as well and the
latencies become larger. When packet rate is set at 3000 pkt/sec the standard
deviation is quite large (10.86 sec.), which denotes a high variability in the
observed latencies. The latency values for packet rates 4000 and 5000 pkt/sec
are purposely left out of scale to highlight how such variability grows with input
data size.

We say that there is stability when the computation latency doesn’t keep
growing job after job. It is to note that when packet rate is set at 2000 pkt/sec
the average latency is 63 seconds, i.e. slightly greater than ∆T , stability is nev-
ertheless preserved. This happens because the overlapping between consecutive
jobs is quite small and unable to make the engine run out of available resources.
With packet rates 3000 pkt/sec or greater we observe that stability doesn’t
hold anymore, as shown in Figure 8, where it is made clear that the latencies
keep increasing as new jobs are executed. In this case the initial latencies are
more than 10 seconds larger than ∆T and subsequent jobs are progressively de-
layed. The consequence is that the engine becomes unable to deliver acceptable
performances.

Multi Files Flows Strategy. The evaluation of the Multi Files Flows Rolling
Strategy is aimed at showing how decreasing the number of files positively im-
pacts on the computation latency. We used again the same packet rates reported
in Section 5 and we tracked average latencies and related standard deviations
with K (replication factor) varying from 1 to 6. We didn’t tested larger values
for K because it would have required too much space on disk and generated too
much overhead network traffic due to the high level of data replication.

18

20#

30#

40#

50#

60#

70#

80#

90#

100#

1# 2# 3# 4# 5# 6#

La
te
nc
y#
(s
ec
)#

K#

3000#pkt/sec#

2000#pkt/sec#

1000#pkt/sec#

500#pkt/sec#

∆T

Figure 9: Average latencies varying both input packet rate and K.

Results are reported in Figure 9. Each curve represents the average latency
for a specific packet rate with different values of K with error bars used to plot
the standard deviations. Introducing data replication, that is moving from K =
1 to K = 2, makes stability hold even with a packet rate set at 3000 pkt/sec.
This can be noted by looking at the difference between the standard deviations
for K = 1 and K = 2. With reference to the equations derived before in this
Section, using a specific K we can organize input data in N/K files and the
resulting number of splits is

S(N/K) =
N

K
· dK · d

B
e (14)

The relations between packet rates, K, number of splits and file sizes are
reported in Table 1. Let us define the set divN as the set of divisors of N . The
value of K which minimizes the number of splits is

Kopt = argmin
K∈divN

S(N/K) (15)

Figure 10 plots the distance in percentage from the optimum number of splits as
K varies for some distinct ratios d/B, so as to provide results that are oblivious
from the specific dimensions that can come into play in individual scenarios.
As such picture makes evident, just using small values for K allows to obtain
numbers that are not far from the minimums, which means that a convenient
tradeoff between storage requirements and resulting mappers count can be firstly
foreseen and then achieved.

Figure 11 shows how the number of splits varies in function of K (a loga-
rithmic scale is used) for several packet rates. As already stated, the number
of splits commonly decreases with the increase of K, except for some unlucky
cases where the dimension of resulting files doesn’t fit well with the block size

19

K 500 p/s 1000 p/s 2000 p/s 3000 p/s

1 60 split 60 split 60 split 60 split
60 files 4 MB 8 MB 16 MB 24 MB

2 30 split 30 split 30 split 30 split
30 files 8 MB 16 MB 32 MB 48 MB

3 20 split 20 split 20 split 40 split
20 files 12 MB 24 MB 48 MB 72 MB

4 15 split 15 split 15 split 30 split
15 files 16 MB 32 MB 64 MB 96 MB

5 12 split 12 split 24 split 24 split
12 files 20 MB 40 MB 80 MB 120 MB

6 10 split 10 split 20 split 30 split
10 files 24 MB 48 MB 96 MB 144 MB

Table 1: Number of splits and file sizes as packet rate and K change.

0"

20"

40"

60"

80"

100"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10"

Di
st
an
ce
"(%

)"

K"

d/B"="0,7"

d/B"="0,9"

d/B"="1,1"

d/B"="1,3"

Figure 10: Distance (%) from the optimum for the number of splits in function of K, for
distinct ratios d/B.

20

0"

10"

20"

30"

40"

50"

60"

70"

1" 10" 100"

Sp
lit
s"(
m
ap
pe

rs
)"

K"

5000"pkt/sec"

3000"pkt/sec"

500"pkt/sec"

Figure 11: Number of splits in function of K for some packet rates.

B, but we will see soon that this is not necessarily a problem. With large packet
rates, obtaining a near optimum number of splits doesn’t require the use of large
values of K. For example, when packet rate is 5000 pkt/sec and K = 3 there
are 40 splits while the optimum is 38. When packet rate is 3000 pkt/sec, K = 5
allows to have 24 splits, that is only 1 more than the optimum.

Optimizing the number of splits with lower packet rates require larger values
of K. Indeed with 500 pkt/sec a good result can be achieved setting K = 10,
which entails 6 splits while the optimum is 4. This trend mainly depends on
the fact that when the packet rate is small the size of files is small as well,
and several files can be merged within a single split, that is the decrease of the
number of files coincides with the decrease of the number of splits. Conversely,
when the packet rate is large merging files is not likely to decrease the number
of splits, because the size of merged files is probably greater than the block
size. For example, when packet rate is 5000 pkt/sec, d = 40 MB and 60 splits
are required. By setting K = 2, the size of a single file becomes 80 MB, which
requires 2 splits, so even if the number of files has been halved, the total number
of splits remains the same.

For what concerns the latencies reported in Figure 9, for packet rates 500
and 1000 pkt/sec the situation is quite easy to analyze because K · d ≤ B for
K ≤ 6, so the (14) becomes S(N/K) = N/K. This implies that the number
of splits decreases monotonically as K is increased, which in turn makes the
average latency decrease as well, except for the case K = 6 where a small
growth occurs. The reason of such worsening is the imbalance of the allocation
of map tasks to TaskTrackers, as previously introduced in Section 4.3. Looking
at Table 1, when K = 5 there are 12 splits with the same size, which allows for
a fair allocation of 2 map tasks for each TaskTracker (with 6 TaskTrackers in
the cluster). Each TaskTracker can execute such tasks in parallel because there
are 2 available slots for map tasks for each TaskTracker. When K = 6 we have

21

instead 10 equal-sized splits, which makes a fair allocation impossible, in fact
2 slots remain not allocated. In this case, each TaskTracker runs in parallel 1
or 2 map tasks that work on splits larger than those of the case K = 5, which
causes the small increase in the overall latency.

The case for packet rate 2000 pkt/sec is a little bit more complex. For K up
to 3, everything is fine and the average latency keeps decreasing. When K = 4
latency grows by 4 seconds (8%) despite the number of splits is minimized (15
splits is indeed the minimum for K ≤ 6). The reason again is the imbalance
in the allocation of map tasks to TaskTrackers. The first 12 map tasks can run
in parallel, while the remaining 3 have to run after the first batch completes.
Furthermore, these 3 tasks work on block-sized splits, which makes their com-
pletion time not marginal. Therefore, the critical path in the map phase is
the sequence of two map tasks each working on a block-sized split (64 MB +
64 MB). A possible solution would consist in reorganizing the last 3 splits so
as to fairly spread the load among all the TaskTrackers, but such feature is not
provided by Hadoop. When K = 5 the number of splits raises to 24 but the
average latency is 1 second lower. Each of the 12 files has size 80 MB, so is
divided in 2 splits, one with size 64 MB and the other 16 MB. In total there are
12 block-sized splits and 12 splits of 16 MB. The allocation in this case can be
very fair because each map slot can be assigned in sequence to two map tasks,
the first works on a 64 MB split and the other on 16 MB one, which would
shorten the critical path (64 MB + 16 MB). In reality, the locality awareness of
Hadoop (see Section 4.1) affects such a theoretically optimal allocation strategy
because the placement of some map tasks is driven by the actual position of
the input data they need to work on. Depending on how the blocks of input
data are distributed over the DataNodes, this can entail an allocation where
2 tasks working on a 64 MB split are assigned to the same slot, making the
critical path equal to the one for K = 4. Furthermore, the presence of two
classes of splits having so different sizes (64 MB vs 16 MB) can make some slots
become free much sooner than others, forcing the JobTracker to assign them
available splits without concerning too much about whether the new allocation
could cause future imbalances. Among the 12 jobs we ran for K = 5, for 7 of
them we observed a 64 MB + 64 MB critical path while for the other 5 the
critical path was 64 MB + 16 MB + 16 MB. Such variability is also highlighted
by the higher value of the standard deviation. In this case, the potential bene-
fits of an optimal allocation are offset by an unlucky distribution of blocks over
the cluster, which, on average, makes the performance improve only marginally.
When K = 6 the average latency is improved by 5 seconds (9%) with respect
to K = 5. Such an enhancement is due to (i) the reduction of splits and (ii)
the reduction of the difference between the sizes of the splits, which helps to
prevent allocations resulting in imbalances. Indeed, each file is 96 MB and is
divided into 2 splits of 64 MB and 32 MB, which is much less likely to cause the
imbalances we observed for K = 5. All the 12 jobs we ran exhibited a critical
path of 64 MB + 32 MB.

For packet rate 3000 pkt/sec we get stability using K = 2 and we registered
a critical path of 48 MB + 48 MB + 48 MB. Setting K = 3, the critical path

22

reduces to 64 MB + 64 MB + 8 MB but the great difference between split sizes
causes imbalances which make the latency improve negligibly and the standard
deviation increase. When K = 4, in most of the jobs we observed a critical
path of 64 MB + 64 MB while in a few we reported 64 MB + 64 MB + 32 MB,
but the reduced difference between the splits and the lower number of mappers
(10 less) entails a decrease of the latency of 3 seconds. Going up to K = 5,
the situation improves further because we get no imbalances thanks to the very
small variation between split sizes (64 MB vs 56 MB) and the number of map
tasks allows for an optimal allocation to the TaskTrackers. Finally, using K = 6,
a small worsening (2 seconds) is noticed due the increment of both the difference
between split sizes (64 MB vs 16 MB) and the number of the map tasks, which
together entails for a worse allocation to TaskTrackers.

The table does not report the results for packet rates 4000 and 5000 pkt/sec
because we didn’t manage to make stability hold using K ≤ 6.

Figure 9 gives evidence that major improvements are achieved with small
values of K (2 or 3) and that larger settings of K don’t provide relevant en-
hancements. What we can get from these evaluations is that we can apply the
Multi Files Flows Rolling Strategy for successfully decreasing the computation
latency at the price of replicating data with a reasonable replication factor.

6. Conclusions

Coping with today’s event streams is getting more and more challenging
because they keep increasing both in number and rate. Solutions adopting an
online approach exist but several complexities arise when they have to man-
age on-the-fly reconfiguration to adapt to input evolution. From an high level
point of view, a batch approach is able to provide opportunities to major such
complexities, provided that the latencies it exhibits are in line with application
requirements. The possibility to place computation near to the data to process
allows to decrease data transfers and to consequently improve performances. Its
periodic nature enables to properly tune the frequency of computations on the
basis of application specific requirements.

In this context we introduced a model for batch processing in time window
based computation where the importance of some metrics (wait latency, compu-
tation latency and time efficiency) for performance optimization is highlighted.
The model underlines the importance of properly organizing input data in files
in order to reduce latencies. We instantiated the model using the Hadoop dis-
tributed computing platform and evaluated the performance of a simple event
processing application using different input organization strategies. The results
show how several factors strongly impacts the feasibility of batch processing for
TWBC, but also outlines that this is a viable solution in important application
scenarios.

In that regard, the batch approach we propose can be employed in collabora-
tive environment, which represent an interesting emerging paradigm in the field
of cloud computing. A collaborative environment consists of a set of participants
willing to share

23

• their own data, so as to collectively take advantage from the availability
of much more data to extract useful information from;

• their own resources, in order to provide required computational, network
and disk power without turning to any third party.

The advantages and the obstacles of collaborative approaches are deeply ex-
plored in [43], where the focus is mainly on the financial context. Our batch
oriented Hadoop based solution can be applied in such context by installing
Hadoop and HDFS software on the resources provided by the participants.

An additional key functionality, that is required to cope with the variable
nature of input event streams, is the ability to seamlessly add and remove nodes
from the cluster so as to properly scale in and out as input rates change. Our
solution can be integrated with existing services like Amazon Elastic Compute
Cloud [44].

7. Acknowledgments

The work presented in this paper has been partially funded by the Italian
Ministry for Education, University and Research through the PRIN project
TENACE.

References

[1] O. Etzion, P. Niblett, Event Processing in Action, Manning Publications
Co., 2010.

[2] L. Aniello, G. A. Di Luna, G. Lodi, R. Baldoni, A Collaborative Event
Processing System for Protection of Critical Infrastructures From Cyber
Attacks, in: SAFECOMP ’11.

[3] R. Baldoni, G. A. Di Luna, L. Querzoni, Collaborative Detection of Coor-
dinated Portscan, in: ICDCN ’13. To appear.

[4] Oracle big data appliance x3-2, http://www.oracle.com/technetwork/

server-storage/engineered-systems/bigdata-appliance/overview/

index.html, 2012. [last accessed March 22, 2013].

[5] Cloudera and dell partner to deliver complete apache hadoop so-
lution, http://www.cloudera.com/content/dam/cloudera/documents/

Dell-Solution-Brief.pdf, 2011. [last accessed March 22, 2013].

[6] Cloudera and microstrategy announce integration between business
intelligence and apache hadoop, http://finance.yahoo.com/news/

Cloudera-MicroStrategy-iw-812071667.html?x=0, 2011. [last accessed
March 22, 2013].

24

http://www.oracle.com/technetwork/server-storage/engineered-systems/bigdata-appliance/overview/index.html
http://www.oracle.com/technetwork/server-storage/engineered-systems/bigdata-appliance/overview/index.html
http://www.oracle.com/technetwork/server-storage/engineered-systems/bigdata-appliance/overview/index.html
http://www.cloudera.com/content/dam/cloudera/documents/Dell-Solution-Brief.pdf
http://www.cloudera.com/content/dam/cloudera/documents/Dell-Solution-Brief.pdf
http://finance.yahoo.com/news/Cloudera-MicroStrategy-iw-812071667.html?x=0
http://finance.yahoo.com/news/Cloudera-MicroStrategy-iw-812071667.html?x=0

[7] Cloudera enterprise with cisco unified computing system, http://files.
cloudera.com/cisco/SolutionBrief_Cisco_Oct_2012.pdf, 2012. [last
accessed March 22, 2013].

[8] R. Koster, A. P. Black, J. Huang, J. Walpole, C. Pu, Infopipes for compos-
ing distributed information flows, in: Proceedings of the 2001 international
workshop on Multimedia middleware M3W.

[9] C. Pu, K. Schwan, Infosphere project: System support for information flow
applications, ACM SIGMOD Record 30 (2001) 25–34.

[10] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, S. Zdonik, Aurora: a new model and architec-
ture for data stream management, The VLDB Journal 12 (2003) 120–139.

[11] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel,
Y. Xing, S. Zdonik, Scalable Distributed Stream Processing, in: CIDR
2003 - First Biennial Conference on Innovative Data Systems Research,
Asilomar, CA.

[12] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Heller-
stein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, M. A.
Shah, Telegraphcq: Continuous dataflow processing for an uncertain world,
in: CIDR 2003 - First Biennial Conference on Innovative Data Systems Re-
search.

[13] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, K. Ito, R. Motwani, U. Sri-
vastava, J. Widom, Stream: The stanford data stream management system,
Technical Report, Stanford University, 2004.

[14] D. J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J. hyon Hwang,
W. Lindner, A. S. Maskey, E. Rasin, E. Ryvkina, N. Tatbul, Y. Xing,
S. Zdonik, The design of the borealis stream processing engine, in: CIDR
2005 - Second Biennial Conference on Innovative Data Systems Research,
pp. 277–289.

[15] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen, R. King, P. Selo, Y. Park,
C. Venkatramani, Spc: a distributed, scalable platform for data mining, in:
Proceedings of the 4th international workshop on Data mining standards,
services and platforms, DMSSP ’06, ACM, New York, NY, USA, 2006, pp.
27–37.

[16] M. Shah, J. Hellerstein, S. Chandrasekaran, M. Franklin, Flux: an adaptive
partitioning operator for continuous query systems, in: Proceedings of the
19th International Conference on Data Engineering, pp. 25 – 36.

[17] X. Gu, P. S. Yu, H. Wang, Adaptive load diffusion for multiway windowed
stream joins, in: Proceedings of the 23rd International Conference on Data
Engineering,, pp. 146–155.

25

http://files.cloudera.com/cisco/SolutionBrief_Cisco_Oct_2012.pdf
http://files.cloudera.com/cisco/SolutionBrief_Cisco_Oct_2012.pdf

[18] Y. Xing, J.-H. Hwang, U. Çetintemel, S. B. Zdonik, Providing resiliency
to load variations in distributed stream processing, in: Proceedings of the
32nd international conference on Very large data bases, pp. 775–786.

[19] Y. Xing, S. Zdonik, J.-H. Hwang, Dynamic load distribution in the borealis
stream processor, Proceedings of the 21st International Conference on Data
Engineering, 0 (2005) 791–802.

[20] B. Liu, M. Jbantova, E. A. Rundensteiner, Optimizing state-intensive non-
blocking queries using run-time adaptation, in: Proceedings of the 23rd
International Conference on Data Engineering - Workshop, IEEE Computer
Society, Washington, DC, USA, 2007, pp. 614–623.

[21] G. T. Lakshmanan, Y. G. Rabinovich, O. Etzion, A stratified approach
for supporting high throughput event processing applications, in: Proceed-
ings of the 3rd ACM International Conference on Distributed Event-Based
Systems.

[22] B. Gedik, K.-L. Wu, P. S. Yu, L. Liu, Adaptive load shedding for windowed
stream joins, in: Proceedings of the 14th ACM international conference
on Information and knowledge management, CIKM ’05, ACM, New York,
NY, USA, 2005, pp. 171–178.

[23] U. Srivastava, J. Widom, Memory-limited execution of windowed stream
joins, in: Proceedings of the Thirtieth international conference on Very
large data bases - Volume 30, VLDB ’04, VLDB Endowment, 2004, pp.
324–335.

[24] A. Das, J. Gehrke, M. Riedewald, Approximate join processing over data
streams, in: Proceedings of the 2003 ACM SIGMOD international confer-
ence on Management of data, SIGMOD ’03, ACM, New York, NY, USA,
2003, pp. 40–51.

[25] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, M. Stonebraker, Load
shedding in a data stream manager, in: Proceedings of the 29th inter-
national conference on Very large data bases - Volume 29, VLDB ’2003,
VLDB Endowment, 2003, pp. 309–320.

[26] B. Liu, Y. Zhu, E. Rundensteiner, Run-time operator state spilling for
memory intensive long-running queries, in: Proceedings of the 2006 ACM
SIGMOD international conference on Management of data, SIGMOD ’06,
ACM, New York, NY, USA, 2006, pp. 347–358.

[27] T. Urhan, M. J. Franklin, Xjoin: A reactively-scheduled pipelined join
operator, IEEE Data Engineering Bulletin 23 (2000) 2000.

[28] M. F. Mokbel, M. Lu, W. G. Aref, Hash-merge join: A non-blocking join
algorithm for producing fast and early join results., in: Z. M. Özsoyoglu,
S. B. Zdonik (Eds.), Proceedings of the 20th International Conference on
Data Engineering, IEEE Computer Society, 2004, pp. 251–262.

26

[29] S. D. Viglas, J. F. Naughton, J. Burger, Maximizing the output rate of
multi-way join queries over streaming information sources, in: Proceedings
of the 29th international conference on Very large data bases - Volume 29,
VLDB ’03, VLDB Endowment, 2003, pp. 285–296.

[30] M. D. Beynon, T. Kurc, U. Catalyurek, C. Chang, A. Sussman, J. Saltz,
Distributed processing of very large datasets with DataCutter, Parallel
Computing 27 (2001) 1457–1478.

[31] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large
clusters, Communications of the ACM 51 (2008) 107–113.

[32] T. White, Hadoop: The Definitive Guide, O’Reilly Media, original edition,
2009.

[33] H. Liu, D. Orban, Gridbatch: Cloud computing for large-scale data-
intensive batch applications, in: Proceedings of the 8th IEEE International
Symposium on Cluster Computing and the Grid, pp. 295–305.

[34] C. Miceli, M. Miceli, S. Jha, H. Kaiser, A. Merzky, Programming abstrac-
tions for data intensive computing on clouds and grids, in: Proceedings of
the 9th IEEE/ACM International Symposium on Cluster Computing and
the Grid, CCGRID ’09, IEEE Computer Society, Washington, DC, USA,
2009, pp. 478–483.

[35] P. Wang, D. Meng, J. Han, J. Zhan, B. Tu, X. Shi, L. Wan, Transformer: A
new paradigm for building data-parallel programming models, IEEE Micro
30 (2010) 55–64.

[36] M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, Dryad: distributed data-
parallel programs from sequential building blocks, in: Proceedings of the
2nd ACM SIGOPS/EuroSys European Conference on Computer Systems,
EuroSys ’07, ACM, New York, NY, USA, 2007, pp. 59–72.

[37] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom, Models and issues
in data stream systems, in: Proceedings of the twenty-first ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, PODS
’02, ACM, New York, NY, USA, 2002, pp. 1–16.

[38] L. Lamport, Time, clocks, and the ordering of events in a distributed
system, Communications of the ACM 21 (1978) 558–565.

[39] K. Shvachko, H. Kuang, S. Radia, R. Chansler, The hadoop distributed
file system, in: Proceedings of the 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST), MSST ’10, IEEE Computer
Society, Washington, DC, USA, 2010, pp. 1–10.

[40] T. W. Wlodarczyk, Y. Han, C. Rong, Performance analysis of hadoop for
query processing, in: Proceedings of the 25th IEEE International Confer-
ence on Advanced Information Networking and Applications - Workshops,
pp. 507–513.

27

[41] B. Jia, T. W. Wlodarczyk, C. Rong, Performance considerations of data
acquisition in hadoop system, Proceedings of the 2nd IEEE International
Conference on Cloud Computing Technology and Science (2010) 545–549.

[42] J. Boulon, et al., Chukwa, a large-scale monitoring system, in: Cloud
Computing and its Applications, pp. 1–5.

[43] R. Baldoni, G. Chockler, Collaborative Financial Infrastructure Protec-
tion: Tools, Abstractions, and Middleware, Springer Publishing Company,
Incorporated, 2012.

[44] Amazon elastic compute cloud, http://aws.amazon.com/ec2/, 2006.

28

http://aws.amazon.com/ec2/

	Introduction
	Related Work
	Batch processing for Time Window Based Computations
	Time Window Based Computations
	Batch processing
	Computation Model
	Input data organization strategies

	Implementation with Hadoop
	Hadoop and the MapReduce paradigm
	Hadoop Distributed File System
	Performance Metrics Optimization

	Experimental Evaluation
	Conclusions
	Acknowledgments

