
A Privacy Preserving Scalable Architecture For Collaborative Event Correlation

Hani Qusa, Roberto Baldoni, Roberto Beraldi
Dipartimento di Ingegneria Informatica Automatica e Gestionale ”Antonio Ruberti”

Università degli Studi di Roma, Via Ariosto 25 - 00185 Roma, Italy
{qusa,baldoni,beraldi}@dis.uniroma1.it

Abstract—We propose an efficient software architecture for
private collaborative event processing, enabling information
sharing and processing among administratively and geograph-
ically disjoint organizations over the Internet. The architecture
is capable of aggregating and correlating events coming from
the organizations in near real-time, while preserving the
privacy of sensitive data items even in the case of coalition
of attackers. Although there is a rich literature in the field of
secure multi party computation techniques that preserve the
privacy in a distributed systems, the ability of such systems to
scale up horizontally (number of participants) and vertically
(dataset per participant) is still limited.

The key novelty of the architecture is the usage of a
pseudo-random oracle functionality distributed among the
organizations participating to the system for obfuscating the
data, that allows for achieving a good level of privacy while
guaranteing scalability in both dimensions. Some preliminary
performance results are provided.

Keywords-Privacy-preserving, secure multiparty computa-
tion, collaborative environments

I. INTRODUCTION

Data level collaboration among different organizations is a
key factor for increasing their productivity with consequent
benefits for customers, such as improving competitiveness
and cost reduction [1]. In addition, sharing information
allows for a deeper analysis in the context of the organiza-
tion’s security. For example, organizations that suffer from
distributed denial of service (DDoS) attack [2], know that
they have been attacked, but they cannot easily distinguish
the group of IP addresses that commit this attack alone.
Therefore, an essential correlation of malicious activities
from different monitoring networks can help in extracting
robust attack signature and prevent such an attack in advance
[3], [4].

Hence, these systems often consider the privacy issues
as one of the main requirements to be satisfied during the
analysis and the processing of the collected data. Secure
Multiparty Computation (SMC) techniques have been stud-
ied for designing a system where a set of data distributed
among several organizations who are interested in jointly
running a computation over these data, while at the same
time preserve the data privacy without relying on a trusted
third party. However, even though SMC provides a strong
privacy and security guarantees, designing a practical solu-
tion using these techniques in terms of time, computation
and communication, is still considered as non-trivial issue.

The problem we are discussing in this paper is refereed in
the literature as privacy-preserving data aggregation. We are
particularly interested in collaborative environments where
a set of participants agree on a common form of data and
want to compute a specific function over the collected data
from all of them. For example, the participant’s input is
represented as a key-value pair event. This event indicates
a specific measurement in the network such as a suspicious
events occurred in these organizations. The function to be
computed usually includes aggregation of the data. In this
context, aggregation has the meaning of event correlation,
where the values of the same key are added together.

The risk of the privacy comes from the behavior of some
participants, where all of them are interested in getting the
results of collaboration by following the protocol assigned
to them step by step, but some of them try to get more
information about the others by getting their private data
illegally. This breach of the private data can lead to financial
loss or a degradation in the reputation of some participants in
the environment. The appropriate description and modeling
of this behavior is well-known as semi-honest adversary
model (or honest but curious adversary model) [5].

Furthermore, the risk of the privacy becomes more serious
when a set of semi-honest participants, a coalition, collude
together after the execution of the protocol and attempt to de-
duce additional information from non-colluding participants.
This behavior is considered as malicious behavior, where
there is an intention of one participant to share information
illegally with another participant in the environment in
order to get more information about others. The risk of the
violation of the privacy of some participants can limit their
contribution and affect the efficiency of the collaboration.
In particular, we consider only the risk raised by the semi-
honest adversary model while other types like malicious
adversary model is not covered in this work.
A reference scenario: the financial infrastructure

A number of service providers (e.g., banks) make avail-
able a set of on-line services to their customers. Service
provision relationships are regulated by means of contracts
as depicted in figure 1. A contract defines the rights and
obligations the involved parties have to comply with. De-
pendability requirements can be specified in the contracts
and include, among the others, privacy guarantees customers
may require and service providers can ensure. For example

a contract specifies clauses related to the non disclosure of
sensitive data (e.g., customers’ identities) to any third party
unless the customer is doing suspicious activities1. In the
latter case, a bank is relieved by any privacy obligation and
can disclose information2.

To protect themselves from frauds and cyber attacks,
banks share information on top of the internet through
a collaborative processing system for timely discovery of
customers performing cyber attacks, and thus mitigating
the risks those attacks can cause to bank systems (e.g.,
unavailability of the services, economic losses3, damage to
reputation)[8]. For this purpose, we assume that banks use a
short form of NetFlow data model [9] for this early detection
process, where the form comprises the source IP address
and the traffic amount occurred by this IP address in a
specific period of time. However, the IP address can lead
to some information about the costumers of the banks. This
knowledge can be exploited by the other competitors in the
collaborative environment for their advantage in the case of
sharing this information in clear. For instance, bank A gives
an IPA of one of its costumers to bank B, then bank B
can use some services provided by advertising companies
like Phorm [10] which has an agreement with ISPs, and
runs deep packet inspection in order to extract the habit of
that costumer. After that, bank B exploits this information to
advertise more attractive offers making that costumer moves
from bank A to bank B. Thus, there is a need to obfuscate
the source IP address, before sharing it with the others.
While, the rest of the data, known as the value part, could
include more than one field and can be shared in clear to
preserve the accuracy of the computation. The knowledge
of the value part reflects very little information about the
costumers of a specific bank without the knowledge of the
source IP address.

Practically, as not all customers misbehave; then sensitive
data (IP address) of honest customers are to be kept secret
during the collaborative computation, with respect to the
other competitive banks while the sensitive data of misbe-
having costumers must be revealed to all without harming
the reputation of the bank that hosts that costumer.

Our Contribution. In this paper, we design, implement,
and evaluate a system that provides event correlation through
different participants in a scalable way that can support the
architecture shown in figure 1. In doing this, the system
preserves the privacy of the data and the privacy of the
participants, despite of a set of colluding participants. In the
proposed architecture, each participant of the system has an
obfuscated copy generated in a pseudo-random way of the

1Suspicious activities have a different meaning from country to country
according to country’s legislation.

2Protection of the financial infrastructure has been deeply investigated in
the context of the EU CoMiFin project [6].

3Recent studies evaluate around 6 millions dollars per day the tangible
loss for a utility company of a down of an e-service [7].

Figure 1. Contract-based privacy preserving architecture

whole dataset collected from all the participants. Nothing
can be inferred from these datasets separately. However, the
original data can only be reconstructed by combining all
the local dataset together. This local copy allows for each
participant to perform event correlation locally, thus avoiding
costly distributed event correlation operations. Hence, the
system achieves a good level of privacy while guaranteing
scalability in horizontal (number of participants) and vertical
(dataset per participant) dimensions.

The rest of the paper is organized as follow: Section
II presents the related works. Section III discusses System
properties and assumptions. Section IV presents the privacy
preserving architecture. Section V discuss the privacy anal-
ysis and the proof of the privacy properties. Section VI
shows the experimental results and performance evaluation
of the privacy preserving architecture and finally Section VII
concludes the paper.

II. RELATED WORKS

Aggregating and analyzing distributed data collected from
different participants has been studied in several ways.
We categorize these ways under three main approaches:
centralized, fully decentralized, and semi-centralized. Many
of the existing solutions rely on centralized approach for the
aggregation like depending on the existence of trusted third
party(TTP) [11], [12]. In this approach, TTP aggregates the
data from different participants, analyzes and processes it,
thereby learns the identity and the data of all the participants.
Hashing is considered as one of the main techniques for
preserving the privacy of sensitive data of the clients in
centralized solutions, where the clients hash their sensitive
fields (for example, using SHA-256) before sending it to
the TTP server, so the server can see only the hashed
values of the sensitive data [13], [14], [15]. This approach
is not recommended in the case if the participants are rivals
in the same market (i.e. like a set of banking systems
or internet service providers) for two main reasons: 1)
Colluding between any participant and the TTP intentionally
or unintentionally (i.e. one participant can attack the TTP)
will lead to a privacy breach of all the participants. 2) finding

a TTP that all participants can send their sensitive data to
it with a high certainty that their sensitive data will not be
revealed illegally is not a practical and easy issue. These
reasons can prevent someone from participating and gaining
the benefits from such collaboration or at least minimize
the contribution in a way that makes this collaboration
insufficient and useless.

Another approach is for fully decentralized systems. The
theoretical cryptographic solutions provided in this approach
satisfy a very strong notion of the privacy and the security.
In general, these tools are not efficient enough to be used
in practice. Secure multi-party computation (SMC) is the
formal description of these tools and techniques. In SMC,
few systems have been implemented [16], [17], [18] rely on
secret sharing scheme for developing multi-purpose private
computation. [19] is another SMC system that rely on gar-
bled circuits for running a set of functions over distributed
private data. Secure set intersection [20], [21] has been
considered as more efficient solution when the number of
participants is small. However, while most of these solutions
have a strong guarantee in the context of the privacy and
some of them achieved a quiet good efficiency in a small set
of participants, non of them achieves a practical efficiency
in our setting where the number of participants is increasing
and generating a large amount of data to be processed in a
reasonable time.

A new approach, semi-centralized approach, provides a
privacy guarantee when a small set of participants try
intentionally to collude in order to deduce more information
during computation. In [22], Authors proposed a solution
that has this guarantee of privacy. The environment includes
a set of participants and additional two components called
proxy and database. Database is responsible for correlating
encrypted data coming from all participants through the
proxy. Proxy is responsible for blinding participant’s input
and forwarding it to the database for correlation. Authors
proved that the system preserves the privacy of the data
and the privacy of the participants and anti-colluding in
the case if there are a coalition between participants among
themselves, coalition between participants and the proxy, or
a coalition between the participants and the database. In this
system, there is a possibility for some participants to have an
access to the proxy and to capture the data passing through it,
which could lead to a privacy breach, especially, the privacy
of the participants.

III. SYSTEM PROPERTIES AND ASSUMPTIONS

The collaborative environment is composed of n uniquely
identified participants that agree on a common data format
consisting of a set of key-value records. We assume that the
key is the sensitive part of the data and we want to aggregate
in a private way all the records of the data by summing the
value part of the same keys and to reveal the keys that have
a total sum value greater than a specific threshold.

A. Privacy properties

Our system guarantees that no one of the participants
can know or link any key of the other participants in the
collaborative environment, unless a specific data pattern is
satisfied.

Therefore, generally, we define the privacy properties to
be guaranteed in these systems by the following points:

• Data Privacy: At the end of the computation, no
one can deduce any additional information about the
private data of the other participants in the collaborative
environment.

• Participant Privacy: At the end of the computation, no
one can link between the disclosed data, that represents
a specific behavior, and the original owner of this data.

• Coalition Resistance: In the presence of a set of
colluding participants, a coalition, the system must
guarantee the data privacy and participant privacy of
the non-colluding participants.

More details about these properties will be provided later in
privacy analysis section.

B. Threat Model

We consider semi-honest (known also as Honest-but-
Curious) adversary model for describing the behavior of
the adversary in the environment. A semi-honest adversary
is assumed to faithfully follow all protocol specifications.
However, it attempts to infer additional information from the
local views and the intermediate messages obtained during
or after protocol’s execution.

Furthermore, we focus our attention on a specific mali-
cious behavior where a set of semi-honest participants, a
coalition, collude together after the protocol’s execution by
exchanging their local views and intermediate messages in
order to deduce additional information about the private data
of non-colluding participants.

C. Cryptosystem schemes

Two main cryptosystem schemes are used in the proposed
privacy-preserving architecture, (i) Shamir’s secret sharing
which is used to preserve the privacy of the key part
during the correlation process and (ii) Oblivious Pseudo
Random Function (OPRF) helps in getting the same secret
values of the same keys for all participants and keeps the
comparability of the private data. These two techniques are
summarized next.

1) Shamir secret sharing: Shamir’s (k, n) secret shar-
ing scheme [23] permits to keep data d secret among n
participants in a way that the secret (data) can be easily
reconstructed if and only if any k out of the n participants
make their local data (called the shares) available, where
k ≤ n provides the strength of the scheme. This is achieved
by generating a random polynomial f of degree k − 1
defined over a prime field Zp, with p > d and such that
f(0) = d. The polynomial is used to generate n different

shares, d1, d2, .., dn, where di = f(i). The vector of shares
is denoted by s[d], i.e., s[d] = s1[d], s2[d], .., sn[d], whereas
the i-th share is denoted as si[d]. The secret is reconstructed
by exploiting the Lagrange interpolation technique.

2) Oblivious Pseudo Random Function: An oblivious
pseudo-random function (OPRF) [24], [25] is a protocol ex-
ecuted between two parties: a client C and a server S. OPRF
is used when a client has an input k and wishes to obtain
a blinded version of k. At the end of the OPRF protocol,
the participant learns Fs(k) and nothing else, and the server
learns nothing. Basically, let Gg be a multiplicative group
with a generator g, Fs be a function that contains a vector
of m values {s1, s2, ..., sm} selected according to the seed
s known only by the server, and k be an array of m-bits =
{x1, x2, ..., xm}, then Fs(k) = g

∏
xi=1 si . Oblivious Transfer

(OT) protocol is used in order to make the server unable to
recognize the sequence of the selected values from the m-
vector according to the 1-bit in the input key k.

IV. PRIVACY PRESERVING ARCHITECTURE

The architecture of our collaborative environment consists
of n participants. Each participant has three main compo-
nents 1) The Edge Gateway, 2) The Processing Unit and
3) The Anonymizer Proxy. The participant’s components
are used in three different phases of the data processing.
The edge gateway executes the first level of aggregating,
filtering, and anonymizing of the input data with a help
from all anonymizer proxies in all participants, whereas
processing unit aggregates the private data. The phases work
in a pipeline as described next.

A. Pre-processing phase

This phase is carried out by the Edge Gateway component.
The component is responsible for (i) encrypting sensitive
data items, and (ii) injecting encrypted data to the Collabo-
rative Processing System. The Edge Gateway embodies two
modules, namely the privacy-enabled pre-processing and
data dissemination modules.

1) Privacy-enabled pre-processing module: This module
transforms raw data (e.g., received from a log file of a web
server) into a set of m key-value pairs (k, v) following a
predefined format. The key (which represents the sensitive
part) of each pair is then used as the secret of the Shamir’s
protocol, so that each participant generates a vector of shares
s[k] for each key k they have. The number of generated
shares in the vector is equal to the number of participants in
the environment, where later, each participant will hold one
share from the vector. In order to perform correlation process
correctly, all participants need to produce the same list of
shares for the same key k. For this reason, the Shamir’s
protocol in our system uses a pseudo-random generator ini-
tialized with the same value, called seed, in order to generate
the same set of coefficients required for the polynomial func-
tion which are used to generate the shares in the Shamir’s

protocol. Using the input key k as the seed makes the system
vulnerable against dictionary attack. Hence, we use OPRF
protocol described before in order to compute the seed in the
following way: the participant divides the input key k into a
set of parts equal to the number of participants in the system
part1(k), . . . , partn(k) where each part comprises a set of
bits (parti(k) ∈ {0, 1}∗). After that, the participant starts
running OPRF protocol for each part parti(k) by contacting
the anonymizer proxy component in each participant where
the edge gateway in the participant represents the client side
of the OPRF protocol with input part1(k), . . . , partn(k)
and the anonymizer proxy in each participant represents the
server side of OPRF protocol. At the end of this process,
the seed can be computed using the following equation:

seed(k) = Fs(k) =

n∏
i=1

Fsi(parti(k)) (1)

where si is the seed of the anonymizer proxy of the
participant Pi. It’s worth to mention that each participant
will contact at most a number of proxies equal to the number
of bits in the input key. This leads to the fact that in case
if the number of participants is greater than the number of
bits in the input key, then some proxies will have the same
seeds.

Unfortunately, this doesn’t prevent that two shares belong-
ing to two different keys from being the same. Therefore, a
perfect hash function is applied to the concatenation of all
the shares, so that each share can correctly be associated to
its original key (this is required by the processing phase, as
detailed next).

Anonymizer

Proxy of P1

Edge Gateway at provider N

Privacy preserving algorithm

<ki, vi>
Oblivious

PseudoRandom

Function Protocol

s1

1. <<part1(ki)>>

Coefficient

generation using

PseudoRandom

Function (C)

2. <<return Fs1
(ki)>>

3. C1=Fs(ki)

…
…

Function (C1)

Share generation

Pol(y)=C0+C1*y+…+Cn-1*yn-1

4. C2,C3,…, Cn-1

5. List of shares

…<S1[ki],vi> <S2[ki],vi> <Sn[ki],vi>

Anonymizer

Proxy of Pn

sn

…
…

Figure 2. Privacy preserving algorithm

In more details, as depicted in figure 2, the module
performs the following operations for each key-value pair
in the input file:

1) The participant divides the input key k into parts

and starts running OPRF protocol with each proxy
component for each part in order to generate Fs(k).

2) Fs(k) is used to initialize a pseudo-random function
that generates the coefficients of the share generation
polynomial.

3) The set of shares s[k] is generated using Shamir’s
secret scheme using the polynomial prepared in the
previous step, where f(0) = k.

4) For each generated share si[k], a triple
(hash(s[k]), si[k], v) is prepared and added into
a list Li. It’s worth to note that the hash value is one-
to-one mapping between the original and obfuscated
key, and it’s used in the aggregation phase while the
share si[k] is used only in the reconstruction phase.

2) Data Dissemination Module: This module is in charge
of disseminating the previously generated lists to all the par-
ticipants. The dissemination occurs periodically, i.e., every
fix time window. The beginning and end of each period is
demarcated through special signaling messages. We denote
Lij to be the List Li produced by Pj .

Participants are connected as a logical ring. Participant Pi

starts the collection of lists Li∗ from all the other participants
by sending a start-collection message in the form of an
empty token, Ti. The token is circulated along the ring until
all the participants have appended their lists to it. After
that, Pi removes the token. To avoid link-ability, the first
participant that puts the list inside the token is determined
at random. Specifically, when participant Pj (where i 6= j)
receives Ti for the first time then, if the token is empty it
adds its list Lij to Ti with a probability pstart; otherwise,
it adds the list for sure. Pi removes the token from the
ring when the token passes through it for the second time
nonempty and unmodified. This ensure that all participants
have added to the token their lists. Pi then sends the list
Λi = Li1, Li2, . . . , Lin to private processing module and
the next private processing phase begins. It’s worth to note
that Lii is never sent to any participants and it’s added to
Λi after delivering the token.

B. Private processing phase

During this phase each participant processes the received
list Λi in order to check for anomalies. This phase is
implemented by the private processing unit. The unit uses
the MapReduce framework [26]. The processing logic is
represented by high level query language which is compiled
into a series of MapReduce jobs. Specifically, the language
supports SQL-like query (e.g.,we use HIVE [27]) constructs
that specifies the data pattern to be discovered on the set
of input data. A query engine inside each private processing
unit retrieves the data in the storage elements and aggregates
them according to one or more SQL-like queries. The output
of the query is a subset of Λi, denoted as Λ∗

i .

C. Reconstruction phase

In this phase, the secret associated to Λ∗
i has to be

retrieved. Each reconstruction unit sends Λ∗
i and waits for

receiving a similar list from all the other participants. Each
unit then applies the Lagrange interpolation algorithm to
reconstruct the original secret. The reconstruction algorithm
is organized as sequence of reconstructions. The first inter-
polation is applied using the first share in the lists received
from the participants, the second interpolation is applied
using the shares in the second position, etc.

V. PRIVACY ANALYSIS

In this section, we discuss the privacy properties of the
proposed system:

Property 1 (Data privacy). Let ki and kj be two
input keys owned by Pi and Pj respectively. Then, Pi

can reconstruct the input key kj of the other participant
Pj if and only if kj appears in the short list, or kj = ki.
In other words, Pi can know nothing about kj unless: (i)
si[kj] ∈ Λ∗

i or (ii) si[kj] ∈ Λi and ki = kj .
In order to show that, let s[kj] be the vector of n-shares

for the key kj produced by participant Pj and let DP be
the data pattern applied during the processing of the data.
Now, each participant will hold one share of s[kj] and all
the participants will apply the same data pattern DP over
this data. If the share si[kj] that is held by participant Pi

satisfies the data pattern DP , then it will appear in the short
list Λ∗

i (that must be reconstructed) of the participant Pi as
well as for any other participant. This means that, eventually,
Pi will reconstruct and know the value of input key kj .

However, if participant Pi has the same key (ki = kj),
then Pi can deduce from the share si[kj] that some one
in the environment has the same input key ki, even if this
share doesn’t appear in Λ∗

i , but it cannot know exactly who
is that one according to the participant privacy guarantee.

Property 2 (Participant privacy). Any participant Pi

is unable to link any input key kj with the owner Pj .
In fact, for Pi being able to link kj to Pj , Pi must know

the insertion order of shares in the token Ti as well as
the number of shares that each participant added to the
token. However, this is not possible as the first participant
that starts adding shares in the token Ti is random (recall
that a participant begins the data dissemination phase with
probability pstart) and a participant can add an arbitrary
number of shares.

Property 3 (Coalition resistance). A coalition of
n − 1 participants cannot break data privacy by revealing
the original value ki of a non-colluding participant Pi.

This is because Pi will only distribute (n−1)-shares, and
keep one share for its use. As the system uses (n-out-of-n)

(a) (b) (c)

Figure 3. (a)Privacy-preserving mechanism overhead , (b)Scaling number of keys/sec., (c)Processing unit throughput.

Shamir secret sharing, so a collection of n− 1 shares is not
enough to reconstruct the original value ki.

VI. EXPERIMENTAL RESULTS

The proposed architecture has been implemented in Java
and run on a cluster of 4 quad core 2.8 Ghz dual processor
physical machines, equipped with 24GB of RAM. The phys-
ical machines are connected to a LAN of 10Gbit, running
ubuntu linux.

A. Privacy-preserving mechanism analysis

In order to asses the time overhead added by the proposed
privacy-preserving mechanism with respect to the processing
of the collected data without the privacy-preserving mech-
anism, we analyzed the time required by all the modules
involved in this mechanism. Practically, the total time of
the privacy-preserving mechanism is the sum of the time
required by privacy-enabled preprocessing module(OPRF),
the shares generation and the reconstruction modules.

In order to asses the overhead introduced by this OPRF
module, we have first implemented a basic 3-way obliv-
ious transfer (OT 2

1), which comprises one encryption in
the gateway component side and one decryption on the
proxy component side. We used RSA implementation for
encryption and decryption. All the encryption and decryption
used 1024-bit key. The proxy required 35 ms to perform
RSA decryption, while the participant needs 9 ms for RSA
encryption. The computation of the seed of one IP address
(the input key), then requires (35 + 9) × 32 ≈ 1400 msec,
regardless the time needed for the communications.

In order to reduce this time, we implemented batch
oblivious transfer(b-OT 2

1 , where b is the size of the batch)
based on batch RSA proposed in [28]. Basically, only one
decryption has to be computed for every set of small size
of public exponents encryptions. In our experimentation,
we use a batch of size b=2 which requires just two small
encryptions. This leads to a very short decryption time.
Furthermore, we adopt offline computation technique, where
only one 3-way communication is needed instead of using
multiple 3-way communications used in the basic OT 2

1 .

Hence, the computation time of the seed of one IP address
was reduced to 40 ms.

The computation time required to generate the shares for
one IP is about 0.12 ms while the reconstruction phase takes
about 0.2 ms per IP. The share generation and reconstruction
times vary very little according to the number of exponenti-
ations, which are determined by the number of participants
in the environment.

Figure 3(a) shows the total time overhead of the whole
privacy-preserving mechanism as a function of the number
of input key/participant and a different number of partic-
ipants. We notice that the relationship of the increasing
number of input key per each participant (vertical scalability)
is linear in time.

Figure 3(b) shows the throughput of the system (total
number of keys per sec) as a function of the number
of participants (horizontal scalability). We can see that
throughput increases with the number of participants and
reaches more than 300 keys per second for 12 participants.
Clearly, the load of each proxy increases with the number
of participants and this will eventually limit the throughput.
However, proxies can be duplicated as soon as their number
becomes greater than the size of the input key.

B. Data processing analysis

Inside the processing unit, the data is processed by a
collection of Hadoop’s MapReduce jobs inside participant.
The processing logic, which represents our data pattern, is
expressed in HIVE-QL. Figure 3(c). the throughput of this
phase. The time for processing the data is an average of
≈22 sec in all cases. This is because Hive is used mainly
for processing large dataset and it requires a high start-up
time, while in our experiments, the dataset comprises 12000
records in case of 12 participants with 1000 record per each
one which is not big enough in terms of Hive.

In fact, the processing time of the data in this unit is not
influenced by the privacy-preserving mechanism. In other
word, the time of processing the obfuscated data is the same
time of processing non-obfuscated data.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the design, implementation,
and the evaluation of privacy-preserving mechanism for
a scalable collaborative environment that can scale up in
input data as well as in the number of participants. The
proposed mechanism avoids the time complexity of the fully
decentralized system and doesnt rely on a TTP. In our vision,
we introduced a solution that can survive and preserve the
privacy in the existence of a coalition between participants.

In our future work, we intend to use C++ cryptography
library in order to improve our throughput as, currently, we
use a fully java implementation which affects the perfor-
mance of system. We are planing to carry out an intensive
experimental evaluation in order to assess more the cost of
our privacy mechanism in terms of throughput and accuracy.
We also plan to study privacy preserving mechanism while
increasing the complexity of the adversary, i.e., passing from
colluding honest but curious processes to byzantine ones.

REFERENCES

[1] F. Cate, M. Staten, and G. Ivanov, “The value of information
sharing,” 2000.

[2] C. V. Zhou, C. Leckie, and S. Karunasekera, “A survey
of coordinated attacks and collaborative intrusion detection,”
Computers & Security, vol. 29, no. 1, pp. 124 – 140, 2010.

[3] G. Zhang and M. Parashar, “Cooperative detection and protec-
tion against network attacks using decentralized information
sharing,” Cluster Computing, vol. 13, no. 1, pp. 67–86, Mar.
2010.

[4] Y. Xie, V. Sekar, M. Reiter, and H. Zhang, “Forensic analysis
for epidemic attacks in federated networks,” in Proceedings of
the Proceedings of the 2006 IEEE International Conference
on Network Protocols, ser. ICNP ’06. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 43–53.

[5] Y. Aumann and Y. Lindell, “Security against covert adver-
saries: Efficient protocols for realistic adversaries.” Secaucus,
NJ, USA: Springer-Verlag New York, Inc., Apr. 2010, vol. 23,
no. 2, pp. 281–343.

[6] R. Baldoni and G. Chockler, Collaborative Financial Infras-
tructure Protection. Springer, 2011.

[7] S. Baker and S. Waterman, “In the crossfire: Critical infras-
tructure in the age of cyber war,” 2010.

[8] G. Lodi, L. Querzoni, R. Baldoni, M. Marchetti, M. Cola-
janni, V. Bortnikov, G. Chockler, E. Dekel, G. Laventman,
and A. Roytman, “Defending financial infrastructures through
early warning systems: the intelligence cloud approach,” in
Proceedings of the 5th Annual Workshop on Cyber Security
and Information Intelligence Research, ser. CSIIRW ’09.
New York, NY, USA: ACM, 2009, pp. 18:1–18:4.

[9] “Introduction to cisco ios netflow,” 2007.
[10] “Phorm: profiling of a person’s web surfing habits,”

http://www.phorm.com/, 2012.
[11] “Dshield: Cooperative network security community - internet

security,” http://www.dshield.org/indexd.html/, 2011.
[12] G. Vigna and R. A. Kemmerer, “Netstat: a network-based

intrusion detection system,” J. Comput. Secur., vol. 7, no. 1,
pp. 37–71, Jan. 1999.

[13] M. Allman, E. Blanton, V. Paxson, and S. Shenker, “Fighting
coordinated attackers with cross-organizational information
sharing,” in In Proc. Fifth Workshop on Hot Topics in Net-
works (HotNets-V, 2006.

[14] A. J. Lee, P. Tabriz, and N. Borisov, “A privacy-preserving
interdomain audit framework,” in Proceedings of the 5th ACM
workshop on Privacy in electronic society, ser. WPES ’06.
New York, NY, USA: ACM, 2006, pp. 99–108.

[15] P. Lincoln, P. Porras, and V. Shmatikov, “Privacy-preserving
sharing and correction of security alerts,” in Proceedings
of the 13th conference on USENIX Security Symposium -
Volume 13, ser. SSYM’04. Berkeley, CA, USA: USENIX
Association, 2004, pp. 17–17.

[16] M. Burkhart, M. Strasser, D. Many, and X. Dimitropou-
los, “Sepia: privacy-preserving aggregation of multi-domain
network events and statistics,” in Proceedings of the 19th
USENIX conference on Security, ser. USENIX Security’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 15–15.

[17] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A
framework for fast privacy-preserving computations,” in Pro-
ceedings of the 13th European Symposium on Research in
Computer Security: Computer Security, ser. ESORICS ’08.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 192–206.

[18] I. Damgård, M. Geisler, M. Krøigaard, and J. B. Nielsen,
“Asynchronous multiparty computation: Theory and imple-
mentation,” in Proceedings of the 12th International Confer-
ence on Practice and Theory in Public Key Cryptography:
PKC ’09, ser. Irvine. Berlin, Heidelberg: Springer-Verlag,
2009, pp. 160–179.

[19] A. Ben-David, N. Nisan, and B. Pinkas, “Fairplaymp: a
system for secure multi-party computation,” in Proceedings of
the 15th ACM conference on Computer and communications
security, ser. CCS ’08. New York, NY, USA: ACM, 2008,
pp. 257–266.

[20] M. J. Freedman, K. Nissim, and B. Pinkas, “Efficient private
matching and set intersection.” Springer-Verlag, 2004, pp.
1–19.

[21] L. Kissner and D. Song, “Privacy-preserving set operations,”
in IN ADVANCES IN CRYPTOLOGY - CRYPTO 2005, LNCS.
Springer, 2005, pp. 241–257.

[22] B. Applebaum, H. Ringberg, M. J. Freedman, M. Caesar,
and J. Rexford, “Collaborative, privacy-preserving data ag-
gregation at scale,” in Proceedings of the 10th international
conference on Privacy enhancing technologies, ser. PETS’10.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 56–74.

[23] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22,
no. 11, pp. 612–613, Nov. 1979.

[24] M. Naor and O. Reingold, “Number-theoretic constructions
of efficient pseudo-random functions,” vol. 51, no. 2. New
York, NY, USA: ACM, Mar. 2004, pp. 231–262.

[25] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold,
“Keyword search and oblivious pseudorandom functions,” in
Proceedings of the Second international conference on Theory
of Cryptography, ser. TCC’05. Berlin, Heidelberg: Springer-
Verlag, 2005, pp. 303–324.

[26] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Commun. ACM, vol. 51, no. 1,
pp. 107–113, Jan. 2008.

[27] “Hive,” http://wiki.apache.org/hadoop/Hive, 2011.
[28] A. Fiat, “Batch rsa,” New York, NY, USA, pp. 175–185, 1989.

