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Abstract

In this paper we consider a static set of anonymous processes, i.e., they do not have distinguished
IDs, that communicate with neighbours using a local broadcast primitive. The underlying communi-
cation system is dynamic, i.e., the communication graph might change at each computational round,
changing thus neigbors of a process at each round.

In this challenging environment we investigate the problem of counting the number of processes in
the network. We study the problem by analysing increasingly complex dynamic graphs. We provide
tight bounds for networks where the distance between the leader process and a process is persistent
across rounds. Then we use tools developed in such persistent distance networks to design upper
bound for counting in dynamic networks whose only constraint is to remain connected across rounds,
namely 1-interval connected networks.

1 Introduction

We consider a static set of anonymous process |V | which exchange messages over a communication
network. Processes execute a distributed computation which proceeds by rounds. At each round a
fictional omniscient entity, namely the adversary, can change the topology of the network graph. The
adversary is able to read the local memory of each process in order to deploy the worst possible network
graph at each round to challenge the computation. The only restriction imposed to the adversary is that
the graph has to be connected. This corresponds to the 1-interval connected model proposed by [19].
In this setting, the paper investigates one of the fundamental problem in distributed computing, namely
counting the number of processes participating to the computation [18,19,23,28] when considering each
process communicates with its neighbours in the graph using a local broadcast communication primitive
without bandwidth constraint.

Under this anonymous and dynamic system model, it has been proved that the presence of a leader
process is necessary in order to compute non trivial tasks [25]. If we consider realistic computing settings
a leader is indeed present. Such as a base station in a mobile network, a gateway in a sensors network.
Also in other dynamic system models, such as population protocols [5], the use of a leader process has
been largely employed for solving non-trivial computations.

Nevertheless, anonymity and the dynamic network graph make the system model very challenging
despite of the presence of a leader. It has been indeed conjectured in [24,25] that the presence of a leader
is not sufficient to count. Moreover the only known bound on counting is the trivial Ω(D) where D is
the dynamic diameter of the network graph, that is informally the maximum time needed by a process
to disseminate a message in the whole networks.

Due to the difficulty of the environment, we studied the problem on increasingly complex dynamic
networks, by progressively relaxing some hypothesis on the relative distance between a node and the
leader across rounds. We started developing our basic tools (techniques and algorithms) by studying
anonymous dynamic networks where each node has a “Persistent Distance” (PD) from the leader, and
this distance is at most 2. We denote such networks as G(PD)2. Then we applied previous results to
analyse networks where this distance can be initially arbitrary but it is still persistent across rounds,
G(PD) ⊇ G(PD)2. Finally, we used the body of results developed in both G(PD) and G(PD)2 to tackle

∗A preliminary version of this work has been published in PODC 15 and OPODIS 15
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1-interval connected networks, denoted as G(1-IC) which are a superset of G(PD) where the distance
between a leader and a node might change from round to round.

Below you find the summary of the results presented in this paper1:

G(PD) networks We introduce a counting algorithm, namely OPT, for G(PD)2. OPT terminates in
O(log |V |) rounds. Secondly, we prove that counting in G(PD)2 networks requires O(log |V |) rounds
showing that OPT is optimal. We show that the bound for G(PD)2 is robust by using smooth
analysis [12]. Moreover, in order to reason on how to build an algorithm working on G(1-IC), we
provide a deterministic counting algorithm on G(PD) when process can leave the computation.
Detecting such condition helps recognising that a node changes the distance from the leader. This
is a necessary step for counting in G(1-IC). We extend OPT for G(PD)h networks obtaining an
algorithm that terminates in O(|V |) rounds.

G(1-IC) networks We first show that the distinguished leader process is necessary and sufficient con-
dition to implement counting on anonymous 1-interval connected networks. This closes an open
question posed in [24, 25]. The proof is carried out by constructing a deterministic terminating
counting algorithm, namely EXT. Unfortunately, EXT has en exponential complexity both in mes-
sages and in the number of rounds.

To derive counting algorithms with polynomial execution time, we introduce a reduction from a
certain class of average consensus specification and counting. Thanks to this reduction we prove
that when an upper bound on node degree is known, counting is polynomial. Interestingly, this
polynomial time is also achieved when the the network contains a stable spanning tree, G(∞-IC).
This algorithm is presented in the Appendix.

Outline In Section 2 relevant related work is investigated. In Sections 3 and 4 we formally define our
system model and the problems that we want to investigate. In Section 5 we begin the investigation
of G(PD) networks. We show the optimal algorithm for counting in G(PD)2, then we analyse lower
bounds on such networks (Sections 5.2, 5.3, 5.4). Section 5 terminates with the study of counting when
processes “halts” (Section 5.5). Then, we show a counting algorithm for G(PD) networks (Section 5.6),
In Section 6 we show the counting algorithm for G(1-IC) and in Section 6.4 we study the relationship
between average consensus and terminating counting. Conclusions are reported in Section 7.

In the Appendix we show a polynomial counting algorithm for G(∞-IC).

2 Related Work

The question concerning what can be computed on top of static anonymous networks, has been pioneered
by Angluin in [2] and it has been the further investigated in many papers [6, 7, 14, 37, 38]. In a static
anonymous network with broadcast, the presence of a leader is enough to have a terminating counting
algorithm as shown in [24].

Considering dynamic non anonymous networks, counting has been studied under several dynamicity
models. In [3, 4], dynamicity corresponds to processes churn where processes leave and join the system.
In [23, 34] dynamicity is governed by a random adversary to model peer-to-peer networks. Finally
considering the dynamicity model employed in this paper (worst-case adversary), in [19], a counting
algorithm for 1-interval connectivity has been proposed. Other results related to counting can be found
in [30] where a model similar to 1-interval connected is considered, moreover [30] contains a conjecture
similar to the one of [24] regarding the impossibility of terminating broadcast in the anonymous version
of their model. In the context of possibly disconnected adversarial network, counting has been studied
in [26]. The approaches followed by the latter works are not suitable in the model proposed by this
paper, they use the asymmetry introduced by IDs.

Counting in anonymous dynamic networks: In [18], the authors propose a gossip-based protocol
to compute aggregation function. The network graph considered by [18] is governed by a fair random
adversary, moreover the proposed approach converges to the actual count without having a terminating
condition. A similar model and strategy is also used by [17]. In the context of population protocols and

1A structured summary can be found in the Table of Figure 11 in the Conclusion Section.
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passive mobility, counting has been investigated in many papers [5, 8, 16], some sort of fairness in agent
interactions is assumed. The first work investigating the problem of terminating counting in an anony-
mous network with worst-case adversary and a leader node is [24]. They show that when a process is able
to send a different message to each neighbors, the presence of a leader is enough to have a terminating
naming algorithm. For the broadcast case, under the assumption of a fixed known upper bound on the
maximum process degree, they provided an algorithm that computes an upper bound on the network
size. Building on this result, [10] proposes an exact counting algorithm under the same assumption.
In the same model [27] proposes an algorithm that improves the performance of [10], even though the
algorithm cost is still exponential. Finally, [11] provides a counting algorithm for 1-interval connected
networks considering each process is equipped with a local degree detector, i.e. an oracle able to predict
the degree of the process before exchanging messages. Other works [19,28] have investigated leader-less
randomized approaches to obtain approximated counting algorithms. We are interested in study how
anonymity impacts the computational power of 1-interval connected networks with broadcast, for this
reason we assume that processes do not have access to a source of randomness, e.g. they cannot break
symmetry by using coin tosses.

Average Consensus in Distributed Control Theory. In the Average Consensus problem, each pro-
cess vi starts with an input value xi(0), collectively processes have to compute a variable that converges
to the average of their initial inputs. An archetypal solution, proposed in [35], is to use a local averaging
approach, where, at each round r, each process updates a local value xi(r) using a weighted average of
its previous value and the values of its neighbours

xi(r) =
∑

∀vj∈N(r,vi)∪{vi}
aij(r) · xj(r − 1)

The ε-convergence for such algorithm is usually defined as the number of rounds needed to en-
sure an upper bound of ε on some function that defines the gap between x(r) and the average, e.g.

maxvi(xi(r)−
∑
i∈V xi(0)

|V | ). Local averaging has attracted a lot of attentions in control theory: algorithm

variations, value of convergence, and upper/lower bounds on ε-convergence have been deeply investigated
in both the context of static and dynamic graphs [33].

Let us remark that given a leader and an averaging consensus algorithm with exact termination and
bounded convergence error, it is possible to obtain an exact counting algorithm: the leader starts with
input 1, the others with input 0, and the average will converge to 1

|V | , this idea has been proposed in [17].

[29] shown that local averaging, converges to the average if at each round the matrix of weights
A(r)|(A(r))ij = a(r)ij is doubly stochastic (i.e. the sum of values of each row is 1, and the sum of values
of each column is 1), and it ε-converge in O(|V |3 log( 1

ε )) rounds. If the matrix is only stochastic (i.e., the
sum of values for each row is 1) the algorithm eventually converges to a common value, solving the weaker
consensus problem, where the common value is a convex combination of initial values of processes, this
convex combination is not necessarily the average [32].

The possibility of ensuring a sequence of double stochastic weights matrix is intimately connected to
the graph topology and the weights selection. In undirected dynamic networks where an upper bound
U on node maximum degree in known, it is possible to design a fixed weight policy that leads to doubly
stochastic weight matrices [9]. Such policy ε-converges to the average in O(|V |3 log( 1

ε )) rounds. In the
same context, if a node knows its degree before the send phase, i.e. it is a perfect local degree detector
oracle as in [11], then it is possible to use Metropolis Weights [36] and this also leads to a sequence of
doubly stochastic matrices and therefore to an algorithm that ε-converges in O(|V |3 log( 1

ε )) rounds.
Always considering undirected dynamic networks, when the degree is unknown at the best of our knowl-
edge there is no Average Consensus algorithm based on local averaging.

Other works show lower bounds for convergence the average consensus [31, 39], however such lower
bound are specific for some class of local averaging algorithms.

Related Bounds: A fundamental problem that is correlated with counting in dynamic networks
with IDs is the k tokens dissemination, defined as follows [19]: each token is initially owned by a node
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belonging to V , then processes exchange tokens, the k tokens dissemination terminates when all k tokens
have been received by each node in V . [19] proved that when each node may send only one token at each
round any k token dissemination algorithm based on token forwarding 2 terminates in Ω(|V |log k) round.

In [13], the authors improved the bound to Ω( |V |klog |V | ). Starting from these results, [15] provides bounds

for different adversarial-based dynamic networks. It is well known that in network with IDs n (all-to-all)
token dissemination solves counting [1]. In the same paper, it is introduced a connection between two-
party token dissemination, a variant of k-token dissemination, and the counting problem. The authors
show a lower bound for the two-party problem is also a lower bound for counting. In anonymous dynamic
networks considered in [1], k-token dissemination can be solved by a trivial flooding algorithm in O(D)
rounds. Finally, [20] shows that in directed static network with IDs and limited bandwidth, the number
of rounds needed to solve counting is function of the network size even when D = 2.

3 Model of the computation

We consider a synchronous distributed system composed by a finite static set of processes V . Processes in
V are anonymous, they initially have no identifiers and execute a deterministic round-based computation.
Processes communicate through a communication network which is dynamic. We assume at each round
r the network is stable and represented by a graph Gr = (V,E(r)) where E(r) ⊆ V × V is the set of
bidirectional links at round r connecting processes in V .

Definition 1. A dynamic graph G = {G0, G1, . . . , Gr, . . .} is an infinite sequence of graphs one at each
round r of the computation.

Definition 2. [21] A dynamic graph is 1-interval connected, if, and only if, G ∈ G(1-IC), if ∀Gr ∈ G
we have that Gr is connected.

The neighborhood of a process v at round r is denoted by N(v, r) = {v′ : (v′, v) ∈ E(r)}. We say
that v has degree d at round r iff |N(v, r)| = d. Given a round r we denote with pv,v′ a path on Gr
between v and v′. Moreover we denote as Pr(v

′, v), the set of all paths between v, v′ on graph Gr. The
distance dr(v

′, v) is the minimum length among the lengths of the paths in Pr(v
′, v), the length of the

path is defined as the number of edges. We consider the computation proceed by exchanging messages
through synchronous rounds.

Every round is divided in two phases: (i) send where processes send the messages for the current
round, (ii) receive where processes elaborate received messages and prepare those that will be sent in the
next round. Processes can communicate with its neighbors through an anonymous broadcast primitive.
Such primitive ensures that a message m sent by process vi at the beginning of a certain round r will
be delivered to all its neighbors during round r. A process v floods message m by broadcasting it for
each round. If process receives a flooded message m then it starts the flooding of m. The flood of m
terminates when it has been received by all processes. We say that a network has dynamic diameter D
if for any v and any round r the flood of a message that starts at round r from process v terminates
by at most round r +D. Intuitively the dynamic diameter is the maximum time needed to disseminate
messages to all processes in the network.

Due to the impossibility result shown in [24], we assume any counting algorithm that works over a
dynamic graph has a leader process vl starting with a different unique state w.r.t. all the other processes.

Persistent distance dynamic graphs Let us characterize dynamic graphs according to the distances
among a process v and the leader vl.

Definition 3. (Persistent Distance over G) Consider a dynamic graph G. The distance between v and
vl over G, denoted D(v, vl) = d, is defined as follow: D(v, vl) = d iff ∀r, dr(v, vl) = d.

Let us now introduce a set of dynamic graphs based on the distance between the leader and the
processes of a graph.

Definition 4. (Persistent Distance set) A graph G belongs to Persistent Distance set, denoted G(PD) ,
iff ∀v ∈ G, ∃d ∈ N+ ::D(v, vl) = d

2Token-forwarding algorithms are not allowed to combine, split, or change tokens in any way [15].
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Figure 1: An example of a graph belonging to G(PD)2 along three rounds

Graphs in G(PD)2 Among the dynamic graphs belonging to G(PD) we can further consider the set
of graphs, denoted G(PD)h, whose nodes have maximum distance h from the leader with 1 < h ≤ |V |.
Thus, given a graph in G(PD)h we can partition its nodes in h sets, {V0, V1, . . . , Vh}, according to their
distance from the leader. The focus of this paper is on dynamic graphs belonging to G(PD)2. As an
example, figure 1 depicts a graph belonging to G(PD)2 at round 0, 1 and 2 whose dynamic diameter is
D = 4. If node v0 starts a flood at round 0, this flood will indeed reach node v3 at round 3. The task of
the leader node vl is to count nodes in V2.

4 Problems definition

Let us start by defining the convergent counting problem:

Definition 5. Convergent Counting: Given a dynamic network G with |V | processes, a distributed
algorithm A solves terminating counting on G if it exists a round r such that for each round r′ > r the
leader outputs |V |.

The previous definition can be strengthen by requiring termination:

Definition 6. Terminating Counting: Given a dynamic network G with |V | processes, a distributed
algorithm A solves terminating counting on G if it exists a round r at which the leader outputs |V | and
terminates.

5 Algorithms and Bounds for G(PD) Networks

In this section we first design OPT counting algorithm for G(PD)2 networks. The corresponding lower
bound for G(PD)2 network is proved in Subsection 5.2, and in Subsection 5.3 we show its robustness.
In Subsection 5.5 we analyse the counting problem when processes can leave the system. We study
this specific setting since it will allow us to abstract and solve some problems that arise when we
design counting algorithms for G(1-IC). Finally, an optimal algorithm OPT h for G(PD) is proposed in
Subsection 5.6.

5.1 OPT algorithm for G(PD)2

OPT initially starts a get distance phase. At the end of this phase each process is aware of its distance
from the leader. In G(PD)2 this phase takes one round and it works as follow: Each process knows if it
is the leader or not. This information is broadcast by each process (including the leader) to its neighbors
at the beginning of round 0. Thus, at the end of round 0, each process knows if it belongs either to V1

or to V2.
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Non-leader process behavior Starting from round 1, a process broadcasts its distance from the
leader (i.e., 1 or 2) and each process v in V2 builds its degree history v.H(r) with r ≥ 0 where v.H(r) is
an ordered list containing the number of neighbors of v belonging to V1 at rounds [0, . . . , r − 1]. Thus
v.H(r) = [⊥, |N(v, 1) ∩ V1|, . . . , |N(v, r − 1) ∩ V1|].
Starting from round r > 0, each v ∈ V2 broadcasts v.H(r). These histories are collected by each process
v′ ∈ V1 and sent to the leader at the beginning of round r + 1.

Leader behavior Starting from the beginning of round r ≥ 2 the leader receives degree histories from
each process in V1. The leader merges histories in a multiset denoted vl.M(r). Let us remark that
vl.M(r) may contain the same history multiple times.

Data structure : The leader uses vl.M(r) to build a tree data structure T whose aim is to obtain |V2|.
For each distinct history [A] ∈ vl.M(r) the leader creates a node t ∈ T with label [A] and two variables
< m[A], n[A] >. m[A] denotes the number of histories [A] in vl.M(r) and n[A] is the number of processes
in V2 that have sent [A]. Following the information flow, at round 2, vl.M(2) will be formed by a single
history [⊥] with multiplicity m[⊥]. The leader creates the root of T with label [⊥], value m[⊥], and
n[⊥] =? (where ? means unknown value). It is important to remark that m values are directly computed
from vl.M(r) while n values are set by the leader at a round r′ ≥ r through a counting rule that will be
explained later. The leader final target is to compute n[⊥] which corresponds to the number of processes
in V2.

At round r + 2 if the leader receives a history h = [⊥, x0, . . . , xr−2, xr−1] and n[⊥,x0,...,xr−2] =?,
then it creates a node in t ∈ T with label h and value mh, this node is a child of the node with label
[⊥, x0, . . . , xr−2]. Otherwise the leader ignores h. It is straightforward to see that the following equations
hold:

{
m[⊥,x0,...,xr−2,xr−1] =

∑|V1|
i=1 i · n[⊥,x0,...,xr−2,xr−1,i]

n[⊥,x0,...,xr−2,xr−1] =
∑|V1|
i=1 n[⊥,x0,...,xr−2,xr−1,i]

(1)

Where i ·n[⊥,x0,...,xr−2,xr−1,i] means that the leader received i copies of history [⊥, x0, . . . , xr−2, xr−1],
one for each process in V2 that at round r + 1 had history [⊥, x0, . . . , xr−2, xr−1, i].

Counting Rule : When in T there is a non-leaf node with label [⊥, x0, . . . , xr−2, xr−1, xr] such that the
leader knows the number of processes (i.e., n[A]), for each of its children but one (i.e., n[⊥,x0,...,xr−1,xr,j] =

?). Then the leader computes n[⊥,x0,...,xr−1,xr,j] usingm[⊥,x0,...,xr−2,xr−1,xr] =
∑|V1|
i=1 i·n[⊥,x0,...,xr−2,xr−1,xr,i].

When the leader knows the values n for each of the children of a non leaf-node t, it sums the children
values and sets the nt (see the second equation of Eq. 1).

Due to the fact that the number of processes is finite, eventually there will be a non-leaf node in T
with only one child (a leaf). Thanks to the counting rule, the n variables of the child and of the father
will be set. This will start a recursive procedure that will eventually set n[⊥] terminating the counting.

In Figure 2 is depicted an example run of the algorithm. In Figure 1 the detailed pseudocode for T
is provided.

Correctness proof

Lemma 1. Let us consider the algorithm OPT. Eventually vl sets a value for n[⊥] and this value is |V2|.

Proof. We first prove that eventually we reach a round in which the counting rule can be applied for any
leaf of T . Let us consider the subtree of T rooted in the node with label [A], if there is only one child
then the counting rule can be applied and n[A] can be computed. Thus let us suppose that [A] has at
least two children with labels [A, x], [A, x′] with x 6= x′. We have that n[A,x] ≥ 1 and n[A,x′] ≥ 1 because

there must be at least one sending process for each degree-history. Considering that n[A] =
∑k
j=1 n[A,j],

it follows that n[A,x] ≤ n[A] − 1. Iterating this reasoning we have that when the height of the subtree
rooted in [A] is greater than n[A]−1, then each leaf has no sibling: when there is a single process sending
a certain degree history H, in the next round there will be only one degree history with H as suffix. As
a consequence, after at most n[A] rounds, we may apply the counting rule for any leaf of the subtree
rooted in [A].
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round 0 round 1 round 2

Dynamic Graph

Data Structure Tree T

[?,1,1]

m[?] = 17, n? =?[?]

[?,1] [?,1] [?,1] [?,2] [?,2] [?,3] [?,3][?] [?] [?] [?] [?] [?] [?] [?,1,2] [?,1,2] [?,2,3] [?,2,3] [?,3,2] [?,3,1]

round 3

[?,1,1]

m[?] = 17, n? =?[?]

[?,1] [?,2] [?,3]
m[?,1] = 5 m[?,2] = 5 m[?,3] = 3

n[?,1] =? n[?,2] =? n[?,3] =?

[?,1,2]

[?,2,3]

[?,2]
n[?,2] = 2

n[?,2] =
m[?,2]

3
= 2

m[?,2] = 6

[?,3,2] [?,3,1]m[?,1,1] = 2
n[?,1,1] =?

m[?,1,2] = 3
n[?,1,2] =?

m[?,3,2] = 3

n[?,3,2] =?

m[?,3,1] = 3

n[?,3,1] =?

[?,1,1,2] [?,1,2,1] [?,1,2,2] [?,2,3,2] [?,2,3,1] [?,3,2,3] [?,3,1,3]

round 4

m[?] = 17, n? =?[?]

[?,1] [?,2] [?,3]
m[?,1] = 5 m[?,3] = 3

n[?,1] =? n[?,2] =? n[?,3] =?
m[?,2] = 6

m[?] = 17, n? =?[?]

[?,1] [?,2] [?,3]
m[?,1] = 5 m[?,2] = 5 m[?,3] = 3

n[?,1] =? n[?,2] =? n[?,3] =?

[?,1,2]

[?,2,3]

[?,2]
n[?,2] = 2

n[?,2] =
m[?,2]

3
= 2

m[?,2] = 6

[?,3,2] [?,3,1]m[?,1,1] = 2
n[?,1,1] =?

m[?,1,2] = 3
n[?,1,2] =?

m[?,3,2] = 3

n[?,3,2] =?

m[?,3,1] = 3

n[?,3,1] =?[?,1,1]
[?,1,1]

[?,1,1,2]

n[?,1,1] =
m[?,1,1]

2
= 1

n[?,1,1] = 1

n[?,1,2] = 2

n[?,1,2] =
m[?,1] � n[?,1,1]

2
= 2

n[?,1] = 3

n[?,3] =
m[?] � n[?,1] � 2n[?,2]

3
= 2

m[?] = 13 m[?] = 13

m[?] = 13
m[?] = 13

n[?,3] = 2

n[?] = 7

Figure 2: A run of OPT algorithm
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algorithm 1: Handling of T by the Leader in OPT algorithm

1 T = ⊥ ;

2 Function buildT(MultiSet Mr)
3 if r == 2 then
4 Assert(∃[⊥] ∈M1);
5 T .setRoot([⊥] :< m[⊥],⊥ >);

6 end
7 forall the [x0, . . . , xr−2, xr−1] ∈Mr do
8 vl creates a node [x0, . . . , xr−2, xr − 1] :< m[x0,...,xr−1], n|[x0,...,xr−1]| :? >;

9 t : T .findNode([x0, . . . , xr−2]);
10 if nt 6=?||t = null then
11 continue;
12 end
13 t.addChild([x0, . . . , xr−2, xr − 1]) ;

14 end
15 compute(T );
16 if T .root.n[⊥] 6=? then
17 output(T .root.n[⊥])

18 end
19 return;

20 Function COMPUTE(Tree T)
21 forall the t ∈ T starting from the level of the leaves until the root do
22 C : T.findChildren(t);
23 X ⊆ C such that [x0, . . . , xk] ∈ X iff n[x0,...,xk] 6=?;

24 if ∃!c : [y0, . . . , yk] ∈ C \X then

25 nc :
mt−

∑
∀[x0,...,xk]∈X (xk·(n[x0,...,xk]))

yk
;

26 end
27 if X = C then
28 nt :

∑
∀[x0,...,xk]∈X n[x0,...,xk] ;

29 end

30 end
31 return;

Now we prove by induction that: for each node v ∈ T if nv 6=?, then nv is equal to the number of
processes in V2 that had degree history equal to v at a given round.

Base case, leaf without siblings: Let v1 : [x0, . . . , xr+1] be a leaf without siblings and v0 : [x0, . . . , xr]
its father. vl sets, according to the counting rule, nv0 = nv1 =

mv0
xr+1

. From Eq 1 we have nv0 = nv1 which

is equal to the number of processes in V2 that had degree history [x0, . . . , xr].
Inductive case: Let us consider v0 : [x0, . . . , xr] and the set of its children Cv0 with |Cv0 | > 1.
Let introduce a set Xv0 formed by the children for which n is known and set, formally: Xv0 : {x ∈
Cv0 |nx 6=?}. If ∃!v1 : [x0, . . . , xr+1] ∈ Cv0 \ Xv0 , the leader sets (according to the counting rule)

nv1 =
mv0−

∑
∀[x0,...,xk]∈Xv0

(xk·n[x0,...,xk])

xr+1
. By inductive hypothesis we have ∀x ∈ Xv1 , nx is equal to the

number of processes in V2 with degree history equal to x. Due to Eq. 1, we have both nv1 and nv0 will
be set to the correct value.

From the previous arguments we have that after at most |V2| rounds all the leaves of [⊥] have no
siblings, thus the counting rule will be applied recursively until the value n[⊥] is set to |V2|.

Theorem 1. Let G be a dynamic graph of size |V | belonging to G(PD)2. A run of OPT on G terminates
in at most dlog2|V |e+ 3 rounds.

Proof. Let consider the algorithm OPT. The latter counts processes in V2, since the number of processes
in V1 is immediately known by vl at round 0, thus let us suppose that we are in the worst case i.e.,
|V2| = O(|V |). Let us consider the tree T , given a node [A] the maximum height of the subtree rooted
in [A] is a function hmax(n[A]). We have that hmax is non decreasing, hmax(n[A] − 1) ≤ hmax(n[A]): let
us consider the worst scheduling that the adversary uses with n[A] − 1 processes in order to obtain the
maximum height. It easy to show that the same scheduling can be created with n[A] processes, the ad-
versary will simply force two processes to follow the behavior of a single process in the old schedule. Let
us restrict to the case when [A] has only two children: [A, x], [A, x′], for the counting rule hmax(n[A]) =
min(hmax(n[A,x]), hmax(n[A,x′])))+1. Considering the second equation of Eq. 1, hmax(n[A]) can be rewrit-

ten as follows: hmax(n[A]) = 1 +min(hmax(
n[A]

2 − δ), hmax(
n[A]

2 + δ)) ≤ 1 +min(hmax(
n[A]

2 ), hmax(
n[A]

2 ))

with δ ∈ [0,
n[A]

2 ]. Thus, the optimal height can be reached by having n[A,x] = n[A,x′] =
n[A]

2 . Let us
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notice that when [A] has more than two children, the maximum height of the subtree rooted in [A] cannot
be greater than the one obtained when [A] has two children. Iterating this reasoning, in the worst case T
is a balanced tree with degree at most 2 for each non leaf node and with exactly |V | leaves. The height of
this tree is dlog2(|V |)e. Each level of T corresponds to one round of OPT, this completes the proof.

Given the Ω(log |V |) bound on G(PD)2, that we will show in Section 5.2, we have that OPT is
asymptotically optimal.

5.2 Lower bound for G(PD)2

In this section we consider the G(PD)2 set and compute a lower bound for counting time. This is done
by introducing a Dynamic Bipartite Labeled k-Multigraphs (M(DBLk)), by showing that counting on
G(PD)2 requires at least the same number of rounds as counting over M(DBLk) and by finally showing
a lower bound on the number of rounds needed to count over M(DBLk).

5.2.1 Counting in Dynamic Bipartite Labeled k-Multigraphs (M(DBLk))

Let consider a dynamic connected multigraph M defined as follows M = ∪∞r=0{({vl} ∪W,E(r), fr, lr)}
where E(r) is a set of edges at round r, W a set of nodes, fr : E(r) → {vl} ×W a function that maps
each edge to the endpoints nodes and lr : E(r) → {1, 2, . . . , k} a function labeling edges. M belongs to
M(DBLk) if for each round r the number of edges connecting a node v ∈W to vl is less than k+1, more
formally ∀r, ∀v ∈ W,Ev(r) = f−1

r (vl, v) :: 1 ≤ |Ev(r)| ≤ k; Given e′, e′′ ∈ Ev(r) we have lr(e
′) 6= lr(e

′′),
that is if two edges e′, e′′ share the same non leader node as endpoint they must have different label, as
example see edges that involve node v in Figure 3. For simplicity we will refer as Mr the instance of M
at round r. Figure 3 shows an example of a dynamic connected multigraph M at round r belonging to
M(DBL3). We assume that when a node v ∈ {vl} ∪W receives a message from a node w at round r by
edge e, it also obtains the label lr(e).

V1

V2

V0

1

1 2 2

3
1 2 3 |    | =3

|     |=4

3

v

G(PD)2

Figure 3: Trasformation, at round r, from M(DBL3) multigraph to G(PD)2.

Lemma 2. Let us consider a dynamic connected multigraph M inM(DBLk). If any counting algorithm
based on message passing takes more than T rounds to complete on M , then there exists a graph G
in G(PD)2 such that any counting algorithm based on message passing requires more than T rounds to
complete on G.

Proof. From Mr = ({vl} ∪W,E(r), fr, lr) we build an instance Gidr = (V = {(V0 = {vl}) ∪ V1 ∪ (V2 =
W )}, Eid(r)) belonging to Gid ∈ G(PD)2 such that V1 contains k nodes having unique identifiers in
[1, . . . , k], V0 contains only the leader node vl and the set of nodes V2 = W . Additionally, at round r
we have that ∃e : (v, w) ∈ Eid(r) with v ∈ V1 and w ∈ V2 where id(v) = j if and only if ∃e′ ∈ E(r)
with fr(e

′) = (vl, w), lr(e
′) = j with w ∈ W . Figure 3 shows the transformation at round r between a

dynamic graph in M(DBL3) and one in G(PD)2. Let us notice that the node with label 1 in V1 at each
Gidr is connected to the nodes in V2 that correspond to nodes in W that are connected in Mr to vl by
edges labeled with 1. As a consequence, the leader vl in M is actually the union of local memories of
processes in {vl}∪V1 in Gid. Let us assume that there not exist a message passing algorithm solving the
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counting problem in M with T rounds, then it is not possible to count nodes in V2 on Gid in T rounds
even by merging the memories of {vl} ∪ V1, by knowing the size k of V1 and by having unique IDs for
nodes in V1. Consider now the dynamic graph G derived by Gid removing the identifiers of nodes in V1.
Counting nodes in G is at least as hard as counting nodes in Gid. As an example, without identifiers
the leader cannot realize if messages of two successive rounds arrive from the same node of V1. Thus it
is not possible for the leader to count the size of G in less than T rounds.

From the lemma follows that a lower bound for counting on M(DBLk) holds also for graphs in
G(PD)2. Now we introduce some definitions on M . Let consider an instance M of the familyM(DBLk).

Definition 7. (Set of edge labels of a node at round r) Given a node v ∈ W at round r we define the
set of edge labels L(v, r) : {l1, . . . , lj} with li ∈ L(v, r) iff ∃e ∈ E(r) and lr(e) = li and fr(e) = (v, vl).

As an example in Figure 3, the edge label set of node v at round r is {1, 2, 3}.

Definition 8. (State of a non-leader process) Given a node v ∈W at round r, we define the state S(v, r)
as an ordered list S(v, r) : [(⊥), L(v, 0), . . . , L(v, r−1)] where (⊥) is the first state of any non-leader node3.

Given a list A : [L0, L1, . . . , .., Lr−1] we have that |A| denotes the number of nodes with the same
state S(v, r) = A at round r. Ref. Figure 1: we have S(v, r+ 1) = [⊥, . . . , {1, 2, 3}] and |S(v, r+ 1)| = 1
since v is the only node connected to vl by {1, 2, 3} at round r.

Definition 9. (State of a leader node at round r) Given the leader vl at round r we define the leader
state S(vl, r) as [C(vl, 0), . . . , C(vl, r−1)] where C(vl, i) with i < r is a multiset of elements, (j, S(v, i)) ∈
C(vl, i) iff it exists a node v with state S(v, i) connected to vl by an edge with label j.

As for states of local nodes, |(j, S(v, r))| denotes the number of nodes with state equal to S(v, r)
connected to vl by an edge with label j at round r. Let us remark that the state of the leader vl can be
constructed by a simple message passing protocol where at each round each node sends to the leader its
own state and where the leader node sends just a dummy message.

5.2.2 Lower Bound for M(DBLk)

We introduce some notation on vectors and matrices used in this section.

Linear algebra notation Given a vector a ∈ Zn, we denote as (a)j the j-th component of a (with

1 ≤ j ≤ n) and as
∑

a the sum of all components of a. Additionally,
∑+

a (resp.
∑−

a) denotes the

sum of only the positive (resp. negative) components of a. Given two vectors a,b we have

[
a
b

]
is the

vector obtained by appending the elements of the vector b after the last element of vector a. Given a
matrix M ∈ Zn,m we denote with (M)j its j-th row (with 1 ≤ j ≤ n) and we denote as ker(M) the set
of vectors a ∈ Zm such that Ma = 0. We also consider the set of vectors B = {a1, . . . ,a`} that form
a basis for ker(M), i.e., ker(M) = SPAN(B). Finally we denote as ar the instance of vector a at round r.

We prove the bound for the family M(DBLk) by first proving the lower bound for M(DBL2). Con-
sidering the latter proof, we first introduce a system of equations that characterizes the states of the
nodes of the multigraph at round zero. The lower bound for M(DBL2) is then proved by studying the
evolution of this system of equations through the rounds.
Consider M ∈M(DBL2) and r = 0: At the end of round 0 the leader has state S(vl, 0) : [{(1, [⊥]), (2, [⊥])}],
this leader state can be generated by many different configurations of nodes and edges in M . Such con-
figurations are determined by the number of non leader processes with states [{1}], [{2}], [{1, 2}] and
they are solutions of the following system of equations at round 0:

{
|(1, [⊥])| = |[{1}]|+ |[{1, 2}]|
|(2, [⊥])| = |[{2}]|+ |[{1, 2}]|

r=0

(2)

3For simplicity whenever not necessary we omit the presence of (⊥) as first element of S(v, r).
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with the additional constraint that any variable in the solution cannot assume a negative value. When
the leader updates its state, in successive rounds, we have a new system of equations. The system of
equations 2 can be written in a matrix form as follows:

m0 = M0s0 (3)

where M0 :

[
1 0 1
0 1 1

]
represents the matrix of coefficients of the system at round 0, m0 is the column

vector of constant terms (each component of mr represents the multiplicity of a certain element in the
state of the leader at round r) and s0 is a solution vector. Let us remark that Mr depends of the round
only while mr depends of the leader state at round r. As a consequence Mr characterizes any multigraph
of the family M(DBL2).

The matrix M0 is characterized by ker(M0) = SPAN(k0 :
[
1 1 −1

]ᵀ
). Solutions of the matrix

equation 3 are related by the following linear combination with the kernel vector k0: s′0 = s0 + tk0 with
t ∈ N and such that each component of s′0 is non negative. As a consequence, given m0 the possible
solutions of (2) are restricted to a finite discrete set of points over a segment with direction k0. From
the point of view of the leader each solution represents a distinct graph belonging to M(DBL2) with a
different number of processes:

∑
s′0 −

∑
s0 = t

∑
k0 = t.

Considering the example of Figure 4, the system of equations at round 0 for the multigraph M is the
following {

2 = |[{1}]|+ |[{1, 2}]|
2 = |[{2}]|+ |[{1, 2}]|

r=0

(4)

where m0 :
[
2 2

]ᵀ
. For such system of equations a solution is s0 :

[
0 0 2

]ᵀ
, then using the kernel

transformation another solution is s′0 = s0 + 2k0 :
[
2 2 0

]ᵀ
, these two solutions correspond to two

M,M ′ ∈M(DBL2) of different size that generate the same state S(vl, 0) as depicted in Figure 4. These
two graphs are indistinguishable from the leader at round 0 thus the leader is not able to output a correct
count.

Figure 4: Two dynamic multigraphs M,M ′ ∈ M(DBL2) of different size that are indistinguishable at
round r = 0, the relationship among M,M ′ is given by the kernel vector k0

The idea that we will use to show the lower bound is to characterize how the kernel space of Mr

evolves and under which condition of the kernel space we have an unique solution, that corresponds to
an unique size |W |.

General structure of Mr At round r, the system of equations becomes mr = Mrsr. The number of
columns of Mr is equal to the number of all possible states of non-leader nodes, at round r + 1 , which
is column(r) = 3r+1. Each row of Mr corresponds to a possible connection (j, S(v, r′)) of vl at some
round 0 ≤ r′ ≤ r. Thus the number of rows at round r is two times the number of existent states in
[0, r]: row(r) = 2

∑r
k=0 3k.
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As an example, at the end of round 1, the system contains 8 equations (2 · 30 + 2 · 31) and 9 variables
(i.e. 32 rows) and the associated matrix M1 are:





|(1, [⊥])| = ∑∀j∈{{1},{2},{1,2}} |[{1}, j]|+
∑
∀j∈{{1},{2},{1,2}} |[{1, 2}, j]|

|(2, [⊥])| = ∑∀j∈{{1},{2},{1,2}} |[{2}, j]|+
∑
∀j∈{{1},{2},{1,2}} |[{1, 2}, j]|

|(1, [{1}])| = |[{1}, {1}]|+ |[{1}, {1, 2}]|
|(1, [{2}])| = |[{2}, {1}]|+ |[{2}, {1, 2}]|
|(1, [{1, 2}])| = |[{1, 2}, {1}]|+ |[{1, 2}, {1, 2}]|
|(2, [{1}])| = |[{1}, {2}]|+ |[{1}, {1, 2}]|
|(2, [{2}])| = |[{2}, {2}]|+ |[{2}, {1, 2}]|
|(2, [{1, 2}])| = |[{1, 2}, {2}]|+ |[{1, 2}, {1, 2}]|

r=1

(5)

M1 =




1 1 1 0 0 0 1 1 1
0 0 0 1 1 1 1 1 1
1 0 1 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 1
0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1




(6)

Let us now consider how it is built the equation at round r derived from the generic leader connection
(j, [x0, . . . , xr′−1]) with j ∈ {1, 2} introduced at round r′ in the system of equations, i.e.,|(j, [x0, . . . , xr′−1])| =
|[x0, . . . , xr′−1, {j}]|+ |[x0, . . . , xr′−1, {1, 2}]. This equation at round r becomes:

|(j, [x0, . . . , xr′ ])| =
∑

∀s∈({1}|{2}|{1,2})r−r′
|[x0, . . . , xr′−1, {j}, s]|+

+
∑

∀s∈({1}|{2}|{1,2})r−r′
[x0, . . . , xr′−1, {1, 2}, s]| (7)

where ({1}|{2}|{1, 2})r−r′ is the set of all possible lists with elements in {{1}, {2}, {1, 2}} and size r−r′.
As an example see the equation associated with |(1, [⊥])| at round 0 (see Equation 2) and the equation
associated with |(1, [⊥])| at round 1 (see Equation 5).

Let notice ker(M1) = {k1 =
[
1 1 −1 1 1 −1 −1 −1 1

]ᵀ}, thus we have < k1 >= 1 with
< k1 >

+= 5, < k1 >
−= 4. Now let us consider a solution s1 with < s1 >≤ 3. It is easy to see that

s′1 = s1 + tk1 has at least one negative component for any t 6= 0: since < k1 >
−= 4 is not possible to

have a solution s1 that as at least one unitary component for each negative component of k1. Thus s′1
cannot be a solution that represents a dynamic multigraph.

This means that if n ≤ 3 is possible to obtain the count in 2 rounds, since there is only one possible
solution of the system of equations for any m1 generated by a multigraph with n ≤ 3. For n ≥ 4 we
have at least two possible solutions of different size, i.e. we have s1 =

[
0 0 1 0 0 1 1 1 0

]ᵀ

with n = 4 processes and s′ :
[
1 1 0 1 1 0 0 0 1

]ᵀ
= s1 + k1 with n = 5. It is easy to check

that m1 = M1s1 = M1s
′
1, thus we have two multigraphs of different sizes that generate the same state

m1 at vl, see Figure 5.

In order to simplify the proofs, we order columns of Mr lexicographically with respect to the state
of a process. We consider the following order among elements {1} < {2} < {1, 2}. As a consequence,
the first column of Mr will correspond to state: |[{1}, . . . {1}]|, the second column |[{1}, . . . {1}, {2}]|
and the last one |[{1, 2}, . . . , {1, 2}]|. Rows are ordered in the same way. This ordering has been used in
Equation 3 and Equation 6. Fixed this ordering we can use a connection (j, [x0, . . . , xr′−1]) to denote a
row v = (Mr)(j,[x0,...,xr′−1]) and a node state to denote a single component of a vector, i.e. (v)[x0,...,xr−1].
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round 0 round 1

(|[{1}, {1}]| |[{1}, {2}]| |[{1}, {1, 2}]| |[{2}, {1}]| |[{2}, {2}]| |[{2}, {1, 2}]| |[{1, 2}, {1}]| |[{1, 2}, {2}]| |[{1, 2}, {1, 2}]|)s =

1 2

1

2

1

1
2

1

2

1 2

round 0 round 1

2

s =
�
0 0 1 0 0 1 1 1 0

�
s0 =

�
1 1 0 1 1 0 0 0 1

�

vl has state m1 = (3 3 1 1 1 1 1 1 1)vl has state m1 = (3 3 1 1 1 1 1 1 1)

Figure 5: Two dynamic multigraph M,M ′ ∈ M(DBL2) of different size that are indistinguishable at
round r = 1, they induce the same leader state S(vl, 1) = m1, the relationship among the two is given
by the kernel vector k1

Moreover we have that the row vector (Mr)(j,[x0,...,xr′−1]) will have two trails of ones, with length 3r−r
′
,

for all columns in the form |[x0, . . . , xr′−1, {j}, s]|, |[x0, . . . , xr′−1, {1, 2}, s]| with s ∈ ({1}|{2}|{1, 2})r−r′ ,
and zero for all the other columns (as reference see Eq. 6).

In the following lemmas we specifically characterize the structure of the kernel space of Mr in order
to identify at which round there is an unique solution.

Lemma 3. Let us consider the matrix Mr of the family M(DBL2) at round r. The dimension of the
kernel space of Mr is one (i.e., ker(Mr) = SPAN(kr)).

Proof. We first show that rows of Mr are linearly independent, thus that the rank of the matrix is equal
to the number of rows. The proof is by induction:

• Base Case r = 0: M0 =

[
1 0 1
0 1 1

]
, det(M0) = 1 thus the rows are linearly independent.

• Inductive Case r: Mr can be written as Mr =

[
M′

r−1

U

]
, where M′

r−1 is the matrix obtained by

Mr−1 substituting each element 1/(0) of Mr−1 with a row vector
[
1 1 1

]
/(
[
0 0 0

]
). Now

by inductive hyp. we have that all rows of Mr−1 are linearly independent. This implies that
also the rows of M′

r−1 are linearly independent, this can be easily shown by contradiction, let us
suppose that we have (M′

r−1)s = xa(M′
r−1)a + xb(M

′
r−1)b for some rows s, a, b and two coefficient

xa, xb, this means that also if we take the subvectors v1,v2,v3 of (M′
r−1)s, (M

′
r−1)a, (M

′
r−1)b,

obtained by taking the components in position j such that jmod3 = 0, we must have v1 =
xav

2 + xbv
3 but this could be also written as (Mr−1)s = xa(Mr−1)a + xb(Mr−1)b that is clearly

a contradiction since the rows of Mr−1 are linearly independent. We now show that a row of U
cannot be expressed as linear combination of rows of M′

r−1, we have that the row Uc corresponding
to connection c : (j, [x0, . . . , xr−1]), has only two elements different from zero contained in the
subvector

[
1 0 1

]
(if j = 1) or

[
0 1 1

]
(if j = 2) positioned in the columns with the form

[x0, . . . , xr−1, ({1}|{2}|{1, 2})1]. Now, for each row (M′
r−1)i considering only the values of columns

[x0, . . . , xr−1, ({1}|{2}|{1, 2})1], we get a subvector that is either
[
1 1 1

]
or
[
0 0 0

]
. Therefore

it follows that
[
1 0 1

]
or
[
0 1 1

]
cannot be expressed as linear combination of the row vectors

of M′
r−1.

We have to show that the rows vector of U are linearly independent. If we consider the sets of 3
columns in the form [x0, . . . , xr−1, ({1}|{2}|{1, 2})1], only two rows have some elements different
from zero: they are either

[
1 0 1

]
or
[
0 1 1

]
that are linearly independent.

This implies, for the rank-nullity theorem [22], that the size of the kernel is |ker(Mr)| = column(r)−
row(r) = 3r+1 − 2

∑r
k=0 3k = 1.
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Lemma 4. Let us consider the matrix Mr of the family M(DBL2) at round r. We have
kr =

[
kr−1 kr−1 −kr−1

]ᵀ
with k−1 = 1.

Proof. The proof is done by induction:
• Base Case, round = 0. k0 =

[
1 1 −1

]ᵀ
implies 0 = M0k0.

• Inductive Case, round = r. We assume kr−1 =
[
kr−2 kr−2 −kr−2

]ᵀ
. We show a vector k such

that its product for the rows of Mr corresponding to c′ = (j, l′ : [x0, . . . , xr′−1]), with r′ < r and
j ∈ {1, 2}, is 0. Then we show that the same holds for the remaining rows of Mr that corresponds
to connection c = (j, l : [x0, . . . , xr−1]), and finally we show that k = kr =

[
kr−1 kr−1 −kr−1

]ᵀ
.

Let us consider the row-vector product (Mr−1)c′kr−1 at round r − 1, by definition of kernel we
have:

0 =
∑

∀s∈({1}|{2}|{1,2})r−r′−1

(kr−1)|[l′,{j},s]| +
∑

∀s∈({1}|{2}|{1,2})r−r′−1

(kr−1)|[l′,{1,2},s]| (8)

Let us build a vector k =
[
(kr−1)1k0 (kr−1)2k0 . . . (kr−1)3rk0

]ᵀ
and let us examine the row-

vector product (Mr)ck :

∑

∀s∈({1}|{2}|{1,2})r−r′−1

((k)|[l′,(j),s,{1}]| + (k)|[l′,(j),s,{2}]| + (k)|[l′,(j),s,{1,2}]|) +
∑

∀s∈({1}|{2}|{1,2})r−r′
(k)|[l′,{1,2},s]|

(9)
the first term of Eq. 9 can be expressed as follow

∑

∀s∈({1}|{2}|{1,2})r−r′−1

((k)|[l′,(j),s,{1}]| + (k)|[l′,(j),s,{2}]| + (k)|[l′,(j),s,{1,2}]|) =

∑

∀s∈({1}|{2}|{1,2})r−r′−1

((kr−1)|[l′,(j),s]|)((k0)1 + (k0)2 + (k0)3) =

∑

∀s∈({1}|{2}|{1,2})r−r′−1

(kr−1)|[l′,(j),s]|

The second term of Eq. 9 can be rewritten as the first term, then by applying Eq. 8, we have:

(Mr)c′k = (Mr−1)c′kr−1 = 0

Now let us consider the row c = (j, l : [x0, . . . , xr−1]) the row-vector product is (Mr)ck:

(k)|[l,{j}]| + (k)|[l,{1,2}]| = (kr−1)|[l]|((k0)j + (k0)3) = 0

Thus we have 0 = Mrk. Now we have to prove that k =
[
kr−1 kr−1 −kr−1

]ᵀ
.

For inductive hypothesis we have kr−1 =
[
kr−2 kr−2 −kr−2

]ᵀ
, moreover we have, for Lemma

3, that kr−1 =
[
(kr−2)1k0 (kr−2)2k0 . . . (kr−2)3r−1k0

]ᵀ
. This means the first 3r components

of k′ are kr−1, the same holds for the second 3r components, and the last 3r are −kr−1. This
completes the proof.

Lemma 5. Let us consider the matrix Mr of the family M(DBL2) at round r.

We have:

{
min(

∑+
kr,
∑−

kr) =
∑−

kr = 1
2 (3r + 1)− 1∑

kr = 1

Proof. Thanks to lemma 4, we have
∑+

kr = 2
∑+

kr−1 +
∑−

kr−1,
∑−

kr = 2
∑−

kr−1 +
∑+

kr−1

and
∑+

k0 = 2,
∑−

k0 = 1. We first prove, by induction, that
∑

kr = (
∑+

kr −
∑−

kr) = 1.
• Base case round=0 :

∑+
k0 −

∑−
k0 = 1.

• Inductive Case round=r: (
∑+

kr−
∑−

kr) = (2
∑+

kr−1 +
∑−

kr−1−
∑+

kr−1−2
∑−

kr−1) =
(
∑+

kr−1 −
∑−

kr−1) = 1.
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This result leads to the following recursive relation
∑+

kr = 3
∑+

kr−1 − 1 for
∑+

kr with base
condition

∑+
k0 = 2. Solving the recursive relation we obtain

∑+
kr = 1

2 (3r+1 + 1). This implies

min(
∑+

kr,
∑−

kr) = 1
2 (3r+1 +1)−1 where the last term takes into account the fact that the minimum

is always the negative component and that
∑

kr = 1.

From the previous lemma we have:

Lemma 6. Let us consider M,M ′ ∈ M(DBL2) such that their sizes are: |W | = n and |W ′| = n + 1.
Does not exist an algorithm Al that at round r ≤ blog3(2|n| + 1)c is able to distinguish if it is running
on multigraph M or M ′.

Proof. Let us suppose by contradiction that such algorithm Al exists. For lemma 5 we have
∑−

kr =
1
2 (3r+1 + 1) − 1 ≤ n. Let us consider a configuration of non leader processes represented by vector sr
with

∑
sr = n and such that (sr)j ≥ 1 for each j | (kr)j < 0 and (sr)j = 0 otherwise. This implies there

exists a dynamic multigraph M : {M1, . . . ,Mr, . . .}, of size n, obtained from sr such that the leader state
S(vl, r) at round r is represented by mr = Mrsr. Thus Al outputs n on the state S(vl, r).

Now let us consider s′r = kr + sr, by construction we have ∀j|(s′r)j > 0 thus s′r represents an
instance of dynamic multigraph M ′ : {M ′1, . . . ,M ′r, . . .}, let us denote S′(vl, r) the state of vl in M ′.
Since we have

∑
s′r =

∑
kr +

∑
sr = n + 1, let us recall that from Lemma 5 we have

∑
kr = 1, by

hypothesis Al outputs n+ 1 on the state S′(vl, r).
But by definition of kernel Mr′sr = Mrs

′
r = mr, thus S(vl, r) = S′(vl, r) therefore Al has to give

the same output on the two different instances, that is a contradiction.

From the previous lemma and considering that M(DBL2) ⊆ M(DBLk), we can state the following
theorem whose proof is straightforward.

Theorem 2. Any algorithm A cannot solve the counting on an instance M ∈ M(DBLk) at round
r < blog3(2|W |+ 1)c − 1.

From Theorem 2 and Lemma 2 the next theorem immediately follows.

Theorem 3. Given an instance G ∈ G(PD)2 any counting algorithm A on G requires Ω(log |V |) rounds.

From the previous Theorem we have the following corollary.

Corollary 1. Given a dynamic network with dynamic diameter D, where D is constant w.r.t. |V |. We
have that any counting algorithm A requires at least D + Ω(log |V |) rounds.

Proof. We create a configuration where vl is connected to two nodes v1, v2 by a static chain of D − 1
nodes. Nodes v1, v2 are connected to the remaining O(|V |) nodes mimicking a G(PD)2 network. From
this observation and Theorem 3 the next corollary follows.

5.3 Smoothed Analysis of the Bound

In this section we will show that our bound is robust to a non-constant number of adversarial and uniform
perturbations, in our model a perturbation is the addition or the removal of one edge. The smoothed
analysis of bounds in the dynamic network has been first proposed in [12], where the case of uniform
random perturbation has been investigated. We will follow their basic definitions and extend them to
define adversarial perturbations.

Give two static graphs G = (V,E), G′ = (V,E′) the edit distance between them is the minimum
number of edge additions and removals that we need to transform G in G′. Given a static graph G and
k ∈ {0, . . . ,

(
n
2

)
}, we define the set of static graphs: editdist(G, k) = {G′| if the edit distance between

G,G′ is less or equal to k }. Now we are able to define the adversarial k-smooth of a G ∈ G(PD)2

adapting the definition from [12].

Definition 10. Given G = {G1, G2, . . .} ∈ G(PD)2 the dynamic graph G′ = {G′1, G2, . . .} ∈ G(PD)2 is
the adversarial k-smooth of G if for each G′j ∈ G′ we have G′j ∈ editdist(Gj , k).
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Intuitively we allow an external adversary to add or delete at most k edges at each round, with the
restriction of generating graph always in G(PD)2. We can weak this definition allowing the addition
or deletion of up to k edges chosen uniformly random. In this case we obtain the k-smooth as defined
in [12].

Definition 11. Given G = {G1, G2, . . .} ∈ G(PD)2 the dynamic graph G′ = {G′1, G2, . . .} ∈ G(PD)2 is
the k-smooth of G if each G′j ∈ G′ is uniformly sampled from editdist(Gj , k).

Essentially, when we k-smooth G we consider that, at each round r, up to k edges of the possible(
v
2

)
edges are selected uniformly random. Each of this k edges is added, if absent in Gr, or deleted, if

present in Gr. We will show that our bound is resilient up to an adversarial O(

√
|V |

log(|V |) )-smooth and up

to an O(
√
|V |)-smooth.

Theorem 4. Consider counting on an adversarial k-smoothed G ∈ G(PD)2 graph, with k <

√
|V |

log(|V |)+2

and sufficiently large |V |. There is no counting algorithm that terminates before Ω(log(|V |))-th round.

Proof. As we did in previous proof we first prove the same result for M ∈ M(DBL2) and size |V | + 1.
Let us consider round r = c log3(|V |) where c ∈ (0, 1) is a constant that we will specialise later. Let us

consider the vector ur of size 3r+1 defined as (ur)j = |V |
3r

2 − 1
2

if (kr)j == −1 and (ur)j = 0 otherwise.

By immediate substitutions we have (ur)j > 2|V |1−c. This vector represents a dynamic multigraph
M : {M1, . . . ,Mr}. Let us consider a single round, r′ < r, adversarial 1-smooth of M . Since the smooth
operation cannot disconnect the multigraph, it corresponds to the addition or removal of some edges
between the leader and the non leader node. This operation essentially changes the state s = S(v, r′)
of one node v to s′, obtaining the dynamic multigraph M ′ represented by a vector u′r. It is easy to
see that u′r = ur + x, where x is a vector with only two components different from zero and equal
respectively to −1,+1. Where the −1 is the component corresponding to state s and +1 is the one
corresponding to state s′. Generalising this reasoning we have that an adversarial k-smooth of M is a
dynamic multigraph M ′ represented by a vector, with non negative components, u′r = ur + x where
|(x)j | ≤ k · r ≤ k · c log3(|V |). For previous Lemma (see proof of Lemma 6) we have that as long as
u′r+kr has non negative components counting is impossible. It is easy to see that the previous statement
holds if for each j such that (kr)j == −1 we have (ur)j − |(x)j | > 1, the previous inequality is true

if (ur)j − dk · c log3(|V |)e > 0. This holds if k < 2|V |1−c
c·log3(|V |)+1 setting c = 1

2 we have k < 4|V | 12
log3(|V |)+2 .

Therefore despite the adversarial k-smoothing at round r = 1
2 log3(|V |) counting is impossible.

Now we show that the same result is valid for dyn. graphs in G(PD)2. The edges that the smoothing
modifies between nodes in V1, V2 have been already considered in the analysis forM(DBL2). It remains
to analyze the effect of edges between nodes in V2. At round r an edge between two nodes in V2 allows
them to exchange their state and to record in their history the round r, therefore this can be modelled
in M(DBL2) by adding to ur a vector x that has a sum of negative component equal to −2 and 0
positive components, i.e. we consider as this two nodes are immediately counted by vl at next round.
This leads essentially to the same analysis of the previous case where we have a multiplicative factor of

2 for components of vector x. The inequality for k is now 2k < 4|V | 12
log3(|V |)+2 , that is satisfied under our

assumptions.

Theorem 5. Consider counting on k-smoothed G ∈ G(PD)2 graph, with k <
√
|V | and sufficiently large

|V |. With high probability, that is with a probability greater or equal to 1 − 1
|V | , there is no counting

algorithm that terminates before Ω(log(|V |))-th round.

Proof. In this case we have that edges introduce by the smoothing are sampled uniformly random. Let
us first prove our result for M ∈ M(DBL2) and size |V |+ 1. Let us consider round r = 1

2 log3(|V |) and
let us define vectors ur as in the proof of Theorem 4. Let u′r be the vector that represents the k-smooth
of ur. Let S : e1, . . . , er·k be the set of edges involved in the smoothing. Each ei ∈ S added/removed
corresponds to the addition of a vector xei , such vector has only two components different from zero and
equal respectively to −1,+1. For simplicity let us assume that each xei has only one component equal to
−1 and all the others equal to 0, this component is chosen uniformly random from the 3r+1 possibility.
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At round r we consider that k · r such vectors are added to ur obtaining U. Let us define as C the
event: there exists an index j for which (U)j < 1 and j ∈ J with J : {j|(kr)j == −1}, by Lemma 5 we

have |J | = |V | 12
2 − 1

2 . For previous Lemma (see proof of Lemma 6) we have that as long as (u′r)j > 1 for
j such that (kr)j == −1 counting is impossibile, it is easy to see that the probability that such event
does not hold is less or at most equal to the probability of event C.

In the following we will upper bound Pr[C]. For the union bound we have Pr[C] ≤ |V |·Pr[(U)j <

1 | j ∈ J ]. Moreover it holds Pr[(U)j < 1 | j ∈ J ] ≤Pr[|(∑∀ei∈S xei)j | > 2|V | 12 | j ∈ J ]. Let us notice that
the random variable Xj = |(∑∀ei∈S xei)j | is the sum of r · k independent Bernoulli random variables.

Therefore we have E[Xj ] = k log3(|V |)
2|J| . By applying the multiplicative form of the Chernoff Bound we

have Pr[Xj > 5E[Xj ]] < ( e
4

55 )E[Xj ] < 1
|V |2 .

It remains to prove that 5E[Xj ]] ≤ 2|V | 12 , by substitution we have 5E[Xj ]] ≤ 5k log3(|V |)
2|V | 12

and we have

5k log3(|V |)
2|V | 12

≤ 2|V | 12 if k ≤ 4
5

|V |
log3(|V |) , that for sufficiently large |V | is implied by k <

√
|V |.

From this we have Pr[not(C)] ≥ 1 − 1
|V | . Now we have to prove that the result holds for G(PD)2,

this part of the proof follows the same line of Th. 4. This leads essentially to the same analysis of the
previous case where we have a multiplicative factor of 2 for components of vector x. The inequality for

k is now 2k ≤ 4
5

|V |
log3(|V |) that is satisfied under our assumptions.

Discussion Our results shows that the Ω(log n) bound for counting in G(PD)2 is not fragile. On the
contrary it is rather robust and it resists to a substantial amount of adversarial and non-adversarial
smoothing. Intuitively, these results imply that our bound represents a rather wide set of dynamic
graphs.

5.4 Trade-Off Lower Bound on Accuracy Versus Time

The second results on dynamic networks with constant diameter is about the accuracy of counting
algorithms terminating before D+ Ω(log |V |). We consider a leader based estimation algorithm Ae that
takes as input an upper bound U on |V | and at round r vl outputs a guess on the network size and
terminates.

Theorem 6. Let Ae be any counting algorithm taking as input an upper bound U on the network size.
If vl outputs a guess on the network size nG at a certain round r with D < r < D + log3(U4 ), then there

always exists a dynamic network G of size |V | ∈ [U2 , U ] such that vl outputs nG on G at round r and

||V | − nG | ≥ U
4(3r) .

Proof. To prove the claim we need to introduce two intermediate results. We first prove in Lemma 7
that the claim of Theorem 6 holds for the family of multigraphsM(DBL2). Lemma 7 needs, in its turn,
an intermediate result (Lemma 8) showing that a system of equations ur = Mrsr with a given ur has
a set of solutions sharing a specific structure. Secondly, we introduce a corollary of Lemma 2 extending
the results obtained for M(DBL2) to the family of graphs G(PD)2.

Lemma 7. Let Ae be any counting algorithm on M(DBL2) taking as input an upper bound U on the
network size. If vl outputs a guess on the network size nG at a certain round r with D < r < D+ log3(U4 ),

then there always exists a dynamic multigraph, M ∈ M(DBL2) of size |W | ∈ [U2 , U ] such that vl outputs

nG on M at round r and ||W | − nG | ≥ U
4(3r) .

Proof. The proof is constructive. We show that the leader could get in a state S(vl, r) such that, each
multigraph of the family M(DBL2) that could generate S(vl, r) has a size that falls in the interval
[U2 , U ]. Let SET⊆ M(DBL2) be the the set of such multigraphs. SET has the following properties:

SET cardinality is U
2(3r) and each multigraph belonging to SET has a different size.

Therefore if Ae makes a choice and outputs a guess at round r, we have a multigraph M ∈SET such
that the difference between the guess and the actual size of M is at least U

4(3r) .

Without loss of generality, let us assume that U = 2(3)∆ for some ∆ ∈ N+.
We first prove an intermediate results:
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Lemma 8. Let consider the system ur = Mrqr with ur =
[
U
2

U
2

U
2(31)

U
2(31)

U
2(31) . . . U

2(3r)

]ᵀ

where ur is a vector of size
∑r
i=0 2 · 3i whose components are defined as follows:

• (ur)1 = (ur)2 = U
2 ;

• each component (ur)j with index j in the interval [
∑k−1
i=0 2 · 3i + 1,

∑k
i=0 2 · 3i] with k ∈ N+ has

value equal to U
2(3k)

(i.e. (ur)3 = U
6 we have 3 ∈ [[

∑k−1
i=0 2 · 3i + 1,

∑k
i=0 2 · 3i] with k = 1 ).

The solution vector qr of size 3r+1 has the following structure:

• if (kr)j = 1 then (qr)j = 0;

• if (kr)j = −1 then (qr)j = U
2·3r .

Proof. The proof is by induction on r:

• Base case r = 0: By substitution we immediately obtain u0 = M0q0.

• Inductive case r: Our inductive hypothesis is: ur−1 = Mr−1qr−1. Let us recall, see proof of

Lemma 3, that Mr =

[
M′

r−1

U

]
, where M′

r−1 is the matrix obtained by Mr−1 substituting each

element 1/(0) of Mr−1 with a row vector
[
1 1 1

]
/(
[
0 0 0

]
). M′

r−1 has
∑r−1
i=0 2(3)i rows.

We first show that for each row of U, we have (U)jqr = U
2(3r) . Let us recall that U has 2·3r rows and

that (ur)j = U
2(3r) for each j ∈ [2·3r−1+1, 2·3r]. For each row (U)j considering the generic subvector

vi :
[
((U)j)3i−2 ((U)j)3i−1 ((U)j)3i

]
, with i ∈ [1, 3r], we have that vi could be either

[
1 0 1

]

or
[
0 1 1

]
or
[
0 0 0

]
. Moreover there is only one vi, namely v′, different from the zero vector.

For the structure of kr, see proof of Lemma 4, we have that the groups of three components of

qr (i.e., the subvectors
[
(qr)3i−2 (qr)3i−1 (qr)3i

]
with i ∈ [1, 3r]) are either

[
U

2(3r)
U

2(3r) 0
]

or
[
0 0 U

2(3r)

]
. Therefore we have v′ ·

[
0 0 U

2(3r)

]ᵀ
= v′ ·

[
U

2(3r)
U

2(3r) 0
]ᵀ

= U
2(3r) . This

implies (U)jqr = U
2(3r) .

To complete the proof, we have to prove that (M′
r−1)jqr = (ur)j . From the structure of ur, this

is equivalent to prove that M′
r−1qr = ur−1. Let us build the vector q′ of size 3r obtained by qr in

such a way that (q)′i = (qr)3i−2 + (qr)3i−1 + (qr)3i. In the proof Lemma 4 we have shown that if
(kr−1)i = 1/(−1) then (kr)3i−2 = 1/(−1), (kr)3i−1 = 1/(−1), (kr)3i = −1/(1), from this follows:

– if (kr−1)j = 1 then (q)′j = U
2(3r) ;

– if (kr−1)j = −1 then (q)′j = 2 U
2(3r)

Therefore q′ − U
2(3r) (kr−1) = qr−1. Since kr−1 is a kernel vector, we have Mr−1qr−1 = Mr−1q

′ =

ur−1. Considering the structure of M′
r−1, we have M′

r−1qr = Mr−1q
′. This complete the proof.

(cont. Lemma 7) The construction works as follows:

• Ae outputs the guess at round r = 0. At round r = 0, the leader state is u0 =
[
U
2

U
2

]ᵀ
. The set

of possible solutions for u0 = M0s0 is given by q0 + t0k0, where t ∈ [0, U2 ], and q0 =
[
0 0 U

2

]ᵀ
.

The best strategy for Ae is to pick nG such that nG =
∑

(q0 + xk0) with x ∈ [0, U2 ]. Therefore

there exists a multigraph with size n =
∑

(q0 + xAu0
0), thus we have |n − nG | = |x − xA| ≥ U

4
which represents the error done issuing a guess at round 0.

• Ae outputs the guess at round r = 1. The leader state is u1 =
[
U
2

U
2

U
6

U
6

U
6

U
6

U
6

U
6

]ᵀ

the set of possible solutions of u1 = M1s1 is q1 + t1k1 with t1 ∈ [0, U6 ],

and q1 =
[
0 0 U

6 0 0 U
6

U
6

U
6 0

]ᵀ
. These solutions are actually the multigraphs in SET.

The number of possible solutions (i.e., the cardinality of SET ) is U
6 + 1
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Let nG be the guess of Ae, there is at least a multigraph in SET whose size is n such that
|n− nG | > U

12 which represents the error done issuing a guess at round 1.
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Figure 6: Set of possible solutions as round passes

• Ae outputs the guess at round r. The leader state is the vector
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ur =
[
U
2

U
2

U
2(31)

U
2(31)

U
2(31) . . . U

2(3r)

]ᵀ
of size

∑r
i=0 2 · 3i. The element (ur)j with j ∈

[
∑k
i=0 2 · 3i,∑k+1

i=0 2 · 3i] and k ∈ [0, . . . , r] is equal to U
2(3k)

.

The set of possible solutions of ur = Mrsr is qr + trkr with tr ∈ [0, U
2(3r) ] and qr obtained by

Lemma 8. For Lemma 5 we have
∑

qr = ( 1
2 (3r+1)−1) U

2(3r) and
∑

(qr+ U
2(3r)kr) = (1

2 (3r+1)) U
2(3r) ,

and that the difference of processes number of two adjacent solutions qr + xkr and qr + (x+ 1)kr
is 1.

These solutions are actually the multigraphs in SET. The number of possible solutions (i.e., the
cardinality of SET ) is U

2(3r) + 1.

Let nG be the guess of Ae, there is at least a multigraph in SET whose size is n such that
|n− nG | > U

4(3r) which represents the error done issuing a guess at round r.

Corollary 2. Let S(vl, r) be the state of vl, in a dynamic multigraph M ∈ M(DBL2). This state can
be generated by a set SET of dynamic multigraphs with different sizes. There exists a state S′(v′l, r) for
a leader node v′l, in a dynamic network G ∈ G(PD)2 such that (1) this state can be generated by a set
SET’ of dynamic networks with different sizes and such that (2) |SET’| ≥ |SET |.

Proof. Let us consider the transformation used in the proof of Lemma 2. Using this transformation we
have for each multigraph M ∈ M(DBL2), it exists a dynamic network Gid ∈ G(PD)2, with |V1| = 2
and |V2| = |W |, such that, at each round r, the state of vl ∈ M contains exactly the same information
contained in the union of memories of nodes in {v′l} ∪ V1. Leveraging this observation: We have that
each for each multigraph M ∈ SET that generates the state S(vl, r), there exists a Gid ∈ SET′ that
generates S′(vl, r). Therefore the claim follows.

(cont. Theorem 4) The accuracy bound obtained in Lemma 7 for M(DBL2), by Corollary 2, it also
holds for G(PD)2. From the bounds obtained on G(PD)2, the claim of the theorem follows by using the
same construction used in Corollary 1.

Discussion This trade-off lower bounds complements our lower bound of D + Ω(log |V |) rounds, by
showing that any algorithms that runs in less then D + o(log |V |) rounds has to make an error that is
function of the actual size, hence, it can be made arbitrarily big. This cannot be derived immediately
from the lower bound on counting, since it shows the impossibility to distinguish a network of size n
from a network of size n+ 1, they have a constant difference of just one process.

5.5 Counting on G(PD)2 with halting processes

In this section we consider a graph in G(PD)2 where processes in V2 may halt at some point. We say that
vi halts at round r if it has send messages for any round r′′ < r, and it does not send messages for any
r′ ≥ r. We assume that processes halt from round r ≥ 1; that is they send at least one message before
their departure. The results shown in this section point out the complexity of the counting problem in
presence of failures, i.e. crash-stop processes. Nevertheless, the counting algorithm that we propose it is
also a a tool used to solve counting in G(1-IC), (see Sec. 6).

Let us introduce the Valid Count Detection Problem:

Definition 12. VCDP Given two run R,RNC such that: in the run R no process halts; in the run
RNC there are processes that halt. An algorithm solves the Valid Count Detection Problem if at some
round r it outputs a value and terminates. The output could be either a special value NOCOUNT or a
number C = |V2|. When the algorithm is executed in R the output value has to be C, when it is executed
in RNC it could be either C or NOCOUNT.
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Lower Bound on VCDP problem One natural question is about lower bounds for the specific
VCDP problem on G(PD)2. One could ask if for this problem it holds the same lower bound that we
have shown for counting. The answer is negative, we can show that the lower bound for this problem is
exponentially worse with respect to the lower bound to solve the simple counting. In order to show this
lower bound we introduce the intermediate problem of detecting if we are in a run RNC where processes
halt starting from round 1 from a run R where processes do not halt, that is the Halt Detection
problem. An algorithm AVCDP that solves VCDP can be used to solve the Halt Detection. We just
starts two instances of AVCDP, the instance i0 at round 0 and the instance i1 at round 1. It is easy
to verify that we are in the run R if and only if the output of the two instances is the same and it is
different from NOCOUNT. On the contrary if the two instances returns different values or one of the two
outputs NOCOUNT we are in RNC .

Theorem 7. Let us consider a graph G ∈ G(PD)2, where processes in V2 may fail. If |V2| > |V1| we

have that does not exists any algorithm that solves Halt Detection in less then |V1|blog(b |V2|
|V1|c + 1)c

rounds, if |V2| ≤ |V1| the number of rounds is |V2|.

Proof. We assume that a failure happens at round r = 1, we denote as vxi that vi ∈ Vx.

• |V2| ≤ |V1|. Let us first consider the case |V2| = |V1|. We consider the G0 at round 0 in which each
process v2

j in V2 is connected to only one process v1
j in V1 and viceversa. At the end of round 0

thanks to the anonymous broadcast all processes in V2 have the same state, the same holds for all
processes in V1. At the beginning of round 1, v2

1 halts. The adversary takes process v2
2 in V2 and

connects it to v1
1 and v1

2 , for processes in v1
1 ,v1

2 this configuration is not distinguishable from the
one of the previous round, and clearly is not distinguishable for the other processes. At round r,
v2
r halts and v2

r+1 is connected to v1
1 , v

1
2 , . . . , v

1
r+1. At round r = |V2| − 1 only one process of V2 is

left v2
|V2| and it is connected to v1

1 , . . . , v
1
|V2|. For processes in V1, and thus for the leader, this run

is not distinguishable from a dynamic graph {G0, G1 = G0, . . . , G|V2|−1 = G0}. This complete the
proof for |V2| = |V1|, the case |V2| < |V1| is analogous.
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Figure 7: Halt Detection Lower bound: indistinguishability example for |V1| > |V2|.

• |V2| > |V1|. Now let us consider the case |V2| > |V1|, we consider the subset of instances in which
|V1| = x! and |V2| = x|V1| for some x ∈ N+.

Nodes in V2 are partitioned in x sets, let us define as V j2 the j-th set and as vj,2i the i-th process in

the set V j2 . In G0 we have that each vj,2i is connected only to v1
j , see Figure 7. In G1, v1,2

1 halts and

v2,2
1 is connected to v1

1 , v
1
2 . Thanks to the anonymous broadcast the memory content of v2,2

1 is equal
to the memory content of v1,1

1 thus from the point of view of v1
1 , v

1
2 this graph is not distinguishable

from G1 = G0. This strategy is iterated for the first |V1| rounds, at round j ∈ [0, |V1| − 1] the
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adversary connects vj,21 to v1
1 , . . . , v

1
j , all processes in V1 are kept in the same state, at each round

a process in V1 receives x identical messages by processes in V2, this implies that the non halted
processes in V2 are kept in an identical state. As result we have at round r = |V2|, |V j2 | = x − 1
for all j ∈ [1, |V1|]. Now at round r = |V2| the adversary uses two processes to mask the halted
process of the previous rounds, v1,2

2 is connected to v1
1 , . . . , v

1
|V1| and v2,2

2 to v1
1 , v

1
2 , since at the

beginning of round r = |V2| all processes in V2 are in the same state each process in V1 will receive
x identical messages. At round r = |V2| + 1 the adversary connects v3,2

2 to all process in V1 and
v4,2

2 to v1
1 , v

1
2 , v

1
3 , v

1
4 .

Following this strategy given a round r such that the non halted processes in V2 are |V2| −
a · |V1| − (a + 1) · j we have that V i2 with i ∈ [1, (a + 1)j] have x − (a + 1) non halted pro-
cesses and the remaining sets have x − a non halted processes, thus the adversary connects the

processes v
(a+1)j+1,2
a+1 , . . . , v

(a+1)j+(a+1),2
a+1 to all processes in V1 and the process v(a+1)(j+1)+1 to

v1
1 , . . . , v

1
(a+1)(j+1)+1.

Now we have to prove that this behaviour can be iterated for |V1|blog(b |V2|
|V1|c)c rounds. Let us

focus on the number of active processes in the system, as long as non halted processes in V2 are
[|V2| − a · |V1|, |V2| − (a+ 1) · |V1|] the adversary needs to use (a+ 1) processes, at each round, to
mask the halted processes. These processes will halt in the next round. This means that starting
from |V2| − a · |V1| non halted processes we remain with |V2| − (a + 1) · |V1| non halted processes

after |V1|
a+1 rounds. After |V1| rounds we have |V2| − |V1| non halted processes, after |V1|

2 rounds we
have |V2| − 2|V1| non halted processes, and so on until we have 0 non halted processes. The total

number of rounds is |V1|
∑ |V2|
|V1|
i=1

1
i ≥ |V1| log( |V2|

|V1| + 1). For processes in V1, and for vl, this run is

not distinguishable from a dynamic graph {G0, G1 = G0, . . . , G|V1| log(
|V2|
|V1|

+1)−1
= G0}.

Discussion Theorem 7 and the previous considerations lead to a lower bound for the solution of VCDP
problem on G(PD)2. It is interesting to notice that in this case the adversary can exploit a “chain of
halts” leading to a number of rounds that in the worst case is exponentially far from O(log(|V2|)), i.e.
Ω(|V2|). moreover the asymptotical number of rounds necessary to solve the problem depends from |V1|.
It is worth to highlight the difference with respect to G(PD)2 networks with IDs where the time needed
to count is the same time needed to detect crash stop faults, therefore this bound points out another
aspect impacted by anonymity.

5.5.1 VCD Algorithm to solve VCDP

When identifiers are present a simple broadcast algorithm solves VCDP in G(PD)2. In our model
we solve it by using an extension OPT, denoted as OPT∗. When processes halt OPT∗ has a peculiar
“overestimation” property (see Lemma 10).

Algorithm OPT∗ The algorithm OPT∗ differs from OPT in:

• Its output is considered not valid if one of the following conditions holds: (i) the value n com-
puted for some node of the tree is not in N+; (ii) if some of the Equations 1 are violated, i.e.

m[⊥,x0,...,xr−2,xr−1] ≷
∑|V1|
i=1 i · n[⊥,x0,...,xr−2,xr−1,i]; (iii) if at round r + 2 there exists a node in

T with label [⊥, x0, . . . , xr−2, xr−1, xr] and at round r + 3 does not exists a node with label
[⊥, x0, . . . , xr−2, xr−1, xr, ∗].

• Its counting rule is a restricted version of the OPT counting rule. Specifically: when in T
there is a non-leaf node with label [⊥, x0, . . . , xr−2, xr−1, xr] such that it has only one child
[⊥, x0, . . . , xr−1, xr, j] the leader computes n[⊥,x0,...,xr−1,xr,j] using:

m[⊥,x0,...,xr−2,xr−1,xr] = j · n[⊥,x0,...,xr−2,xr−1,xr,j]

When the leader knows the values n for each of the children of a non leaf-node t, it sums the
children values and sets the nt (see the second equation of Eq. 1).
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Algorithm OPT∗ has the following properties:

Lemma 9. Let R be a run produced by OPT∗. R terminates in O(|V2|) rounds.

Proof. The counting rule on leaf is applied only when the leaf has no siblings. Let x0 be a node with
at least two children x1, x2. We have by construction that the number of processes with history x is
strictly greater that the number of processes with history x1 and with history x2. Since a node x may
have more then one child if and only if the number of processes with history x is greater than one we
have that after at most O(|V2|) either each leaf has no siblings or the run R is not valid. In both cases
OPT∗ terminates.

Lemma 10. Let R be a run produced by OPT∗ that starts at round 0 and |V f2 | be the number of non-
halted processes in V2 at the end of the execution of OPT∗. If at some round r > 0 processes in V2 halt,
then if the output C of OPT∗ is valid we have C > |V f2 |.
Proof. For Lemma 9 OPT∗ terminates we have to show that its output satisfies the lemma state-
ment. Without loss of generality we consider only the case of a valid output of the algorithm. Let
l[⊥,x0,...,xr−2,xr−1,xr] be the number of processes with degree history [⊥, x0, . . . , xr−2, xr−1, xr] that halt
at round r + 1. Let us first consider the application of the counting rule on a leaf [⊥, x0, . . . , xr−1, xr, j]
of T with father [⊥, x0, . . . , xr−2, xr−1, xr]. For the counting rule of OPT∗ we have that the leaf has
no siblings. We have m[⊥,x0,...,xr−2,xr−1,xr] = L + j(n[⊥,x0,...,xr−1,xr,j] − l[⊥,x0,...,xr−1,xr,j]). Where
L =

∑
∀a:[⊥,x0,...,xr,i]|la>0 i · l[⊥,x0,...,xr,i] ≥ 0 is the number of edges from halted processes that have

been counted in m[⊥,x0,...,xr−2,xr−1,xr]. We have (n[⊥,x0,...,xr−1,xr,j]− l[⊥,x0,...,xr−1,xr,j]) > 0 otherwise the
outputs is not valid. Thus the leader computes a value for the node with label [⊥, x0, . . . , xr−1, xr, j]
that is n∗[⊥,x0,...,xr−1,xr,j]

= L
j + n[⊥,x0,...,xr−1,xr,j] ≥ n[⊥,x0,...,xr−1,xr,j]. If L > 0 the assigned value

is clearly greater w.r.t to the actual number of non-halted processes with that degree history. The
other case that we have to examine in our induction on T is when the counting rule sets the value
of a non-leaf node [⊥, x0, . . . , xr]. In this case we have that if ∃ l[⊥,x0,...,xr,y] > 0 then m[⊥,x0,...,xr] =

L+
∑|V1|

1 i(n[⊥,x0,...,xr,i]− l[⊥,x0,...,xr,i]) thus if each n[⊥,x0,...,xr,i] is not set to an overestimate of the num-

ber of processes with degree history [⊥, x0, . . . , xr, i] we would have m[⊥,x0,...,xr] >
∑|V1|

1 i(n[⊥,x0,...,xr,i]−
l[⊥,x0,...,xr,i]) leading to a non valid output. From these observations it is easy to see that each v ∈ V f2 is
counted at least once in the value associated to some leaf node. If ∃l[X] > 0 it follows, since the leader

aggregates the value of nodes in T towards the root, that n[⊥] > |V f2 |.

Informally the previous Lemma says that, if there are halted processes, the output of OPT∗ is always
an overestimate on the number of non-halted processes. The following lemma states that if no process
halts then the output is the number of processes.

Lemma 11. Let R be a run produced by OPT∗ that starts at round 0. If no process in V2 halts during
the run, then the output of OPT∗ is valid and it is the correct count of processes in V2.

Proof. For Lemma 9 OPT∗ terminates we have to show that its output satisfies the lemma statement.
When no process halts the proof of correctness follows the same step of the correctness proof of OPT
( Lemma 1): the base case is the same, the inductive case it is slightly different in the fact that the
condition to set node value has to be @v1 : [x0, . . . , xr+1] ∈ Cv0 \ Xv0 . It is straightforward that the
modification on the counting rule only impacts on counting time, i.e. O(|V2|) instead of O(log |V2|) (see
proof of Th. 1 of OPT), and not on its correctness.

Algorithm VCD The algorithm executes sequentially k runs of OPT∗ starting from round 0, for some
k > |V2|. The leader compares the output of these runs: if they are all equal and valid, then VCD
outputs the count obtained by the first run of OPT∗. Otherwise VCD outputs NOCOUNT. The value k
is computed by counting the edges connecting processes in V1 with processes belonging to V2 at round 0.
This can be done trivially by vl using messages from nodes in V1. Each node in V1 has to simply count
neighbors in V2, the sum of these partial counts is equal to k − 1. Since OPT∗ runs in O(|V2|) rounds
and k = O(|V1||V2|), we have VCD runs in O(|V |3) rounds.

Theorem 8. Algorithm VCD solves the VCDP problem.
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Proof. Let {i0, i1, . . . , ik} be k runs of VCD. Let us first consider the execution of VCD on R. In R
no process halts, thus we have for Lemma 11 that all outputs {c0, c1, . . . , ck} will be equal. Therefore
VCD terminates outputting c0 = |V2|. Let us consider the execution of VCD on RNC . Let us define as

{|V f02 |, |V f12 |, . . . , |V fk2 |} the number of non-halted processes in the system at the end of instance 1, 2, . . ..
Now two cases may arise:

• |V2| = |V f02 |, in this case for Lemma 11 we have c0 = |V2|. Therefore if all {c0, c1, . . . , ck} are equal
and valid then VCD outputs the correct count otherwise the algorithm outputs NOCOUNT. In any
case the output is correct.

• |V2| > |V f02 | in this case by using Lemma 10 we have c0 > |V f02 |. Processes in V2 are less than k,
this implies that we have at least one instance ij for which no process halts during its execution.

For Lemma 11 the instance ij outputs the value cj = |V fj−1

2 | = |V fj2 | 6= c0. Thus the algorithm
outputs NOCOUNT on RNC . That is a correct output.

5.6 Optimal Counting in G(PD): OPT h

As in OPT, OPT h begins with a get distance phase over G(PD)h where each process obtains its distance
from the leader. Using a simple flooding and convergecast algorithm this phase takes at most 2h + 1
rounds. In the first h rounds (flooding step) each process computes its distance from vl, in the h + 1
successive rounds (convergecast step) the leader computes the maximum distance h.

Non-Leader process behavior in OPT h. The code of a non-leader process in OPT h is reported
in Figure 2, the function count distance neighbors returns the number of messages in MS generated
by processes at distance distance− 1, the function get messages from distance returns only messages
generated by processes at distance distance+ 1. If there is no such message the function returns ⊥. As
in OPT, a process v updates its degree history v.H(r) by counting the number of processes in N(v, r)
whose distance is equal to v.distance− 1. Moreover v updates a multiset v.M(r) that contains messages
received by neighbors at distance v.distance+ 1, if v has not received any of these messages, it adds ⊥
to the multiset. In the sending phase, v broadcasts < v.distance, v.M(r), v.H(r) > to its neighbors.

algorithm 2: OPT h algorithm for G(PD)h: algorithm run by a non-leader process

1 M(0) = [⊥];
2 H(0) = [⊥];
3 distance = −1;

4 Procedure sending phase()
5 send(Message :< distance,M(r), H(r) >);
6 return;

7 Procedure rcv phase(MultiSet MS)
8 H(r + 1) = H(r).append(count distance neighbors(MS, distance− 1)) ;
9 M(r + 1) = M(r).append(get messages from distance(MS, distance+ 1)) ;

10 return;

Leader process behavior in OPT h. From an high level point of view the algorithm works as follow:
the leader first computes the number of processes in V1, then it executes OPT to count the processes in
V2, this count will be completed by round (2h+ 1) + (3 + log(|V2|)) (see Theorem 1). At this point, the
leader simulates an execution of OPT counting processes in V3 exploiting the information obtained by
processes in V2, the leader uses OPT to obtain the exact multiset of messages received by processes in
V2. This counting will be completed by round (2h+1)+6+ log(|V2|)+ log(|V3|). Iterating this procedure

till processes at distance h we obtain the final count in (2h+ 1) + 3h+
∑h
i=2 log2(|Vi|) rounds.

Operationally, the purpose of the leader is to reconstruct the multiset MSj of messages
< distance,M(r), H(r) > sent by processes in Vj at some round r, from MSj we have |Vj | = |MSj |.

At each round the leader receives MS1. Starting from MS1 content, OPT h iteratively reconstructs
the sets MSj for j > 1. This is done in the loop 17-30 of Figure 3. The leader uses the variable i to store
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algorithm 3: OPT h algorithm for G(PD)h: algorithm run by the leader

1 distance count[];
2 Procedure sending phase()
3 send(< leader >);
4 return;

5 Procedure rcv phase(MultiSet MS :< distance,M,H >)
6 i = 1;
7 distance count[i] = |MS|;
8 i+ +;
9 while true do

10 if i > h then
11 count =

∑
∀j|distance count[j]6=⊥ distance count[j] ;

12 output(count);

13 end
14 MS =buildLastSet (MS);
15 if MS = ⊥ then
16 break ;

17 end
18 distance count[i] = |MS|;
19 i+ + ;

20 end
21 return;

22 Function buildLastSet(MS)
23 MSlast = ⊥;
24 if OPT(MS, 0) 6= ⊥ then
25 rlast = r′|OPT(MS, r′) 6= ⊥ ∧ @r′′ > r′|OPT(MS, r′′) 6= ⊥;
26 MSlast = OPT(MS, rlast);

27 end
28 return MSlast;

the maximum distance at which processes of the network have been already counted by OPT h (initially
i = 1).

At the beginning of the loop, the leader checks if the count is over (i.e. it checks if i > h), in the
affirmative the leader outputs the count. Otherwise vl continues to execute the code in the loop (see
Lines 10-12 of Figure 3). The leader now uses the information in the last reconstructed multiset, denoted
MSi, to obtain the multiset MSi+1. Specifically vl simulates an instance of the algorithm OPT for each
element contained in MSi, i.e., if MSi contains only two different elements, namely M(r) and M ′(r),
then the leader uses two trees in order to count the exact number of processes that sent M(r) and M ′(r).
An example can be found in Figure 8.

The reconstruction is executed by the function buildLastSet.
This function calls OPT(MSi, r

′). The function takes two parameters, and it works on the set
of messages MS′ where the elements in MSi received before round r′ are removed. Therefore the
call OPT(MSi, r

′) returns either the multiset MSi+1 sent at round r′ or ⊥. The round rlast is the
most recent round at which the multiset MSi+1 can be reconstructed (see Line 25). In the worst case

rlast ≥ r − (log2(|Vi+1|) + 3) +
∑i
j=2(log2(|Vj |) + 3). Thus the function buildLastSet returns either

MSi+1 sent at round rlast or ⊥.
At line 15 of Figure 3 the leader obtains MSi+1 or ⊥. If the value obtained is ⊥, the leader exits

from the loop and it waits for the next round; otherwise it computes the count of |Vi+1|, it updates the
distance index and it starts the next iteration of the loop (lines 18-19, Figure 3).

Lemma 12. OPT h requires at most (2 · h+ 1) + 3 · h+
∑

1≤i≤h log2(|Vi|) rounds to output the count.

Proof. We consider a generic run after 2h + 1 rounds, so that each process has set my distance 6= −1.
For easy of explanation we consider that the algorithm starts at round 0 and that all processes know
their distance. Let us consider the processes in Vh, at round r = 0. They start to send their degree
history to processes in Vh−1, in the worst case at round rh = log2(|Vh|) + 3 the union of variables
of processes in Vh−1 allows to compute the multiset MSh sent at round r = 0, see Th. 1 for OPT
algorithm, thus at round rh−1 = 6 + log2(|Vh|) + log2(|Vh−1|) the multiset MSh−1 generated at round
rh can be reconstructed by the union of variables of processes in Vh−2, let us recall that MSh−1 at
round rh−1 contains the information to reconstruct MSh at round rh. By induction it is easy to show

that at round r1 =
∑h
i=2(log2(|Vi|) + 3) the multiset MS1 contains all the information to reconstruct

MS2 at round r2 =
∑h
i=3(log2(|Vi|) + 3) and so on. Thus the leader at round r1 + 1 will execute the
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Figure 8: Reconstruction of M variables sent by the set of processes Vi+1

reconstruction loop, Lines 23-28 of Figure 3, on the multiset MS1, and it will obtain the multiset MS2

sent by processes in V2 at round r′ ≥ r2, thus using MS2 it will reconstruct the multiset MS3 sent at
rounds r′ ≥ r3 =

∑h
i=4(log2(|Vi|) + 3). The leader iterates the computation till it obtains the multiset

MSh, then the leader terminates the reconstruction and the count.

Complexity discussion From the bound that we will show in the next section we can easily obtain
that a lower bound on counting time for G(PD)h is h+max∀Vi(log3(2|Vi|+ 1)). This lower bound holds
for a configuration where at each round processes at distance x could be connected to only two processes
at distance x− 1. The complexity of OPT h is upper bounded by 5h+ 1 +

∑h
i=2 log2(|Vi|). Now let us

discuss two cases:

• Case 1: If h is constant w.r.t |V |, we have 5h+1+
∑h
i=2 log2(|Vi|) ≤ 5h+1+h·max∀Vi(log3(2|Vi|+1))

that is the same order of the lower bound.

• Case 2: If h is not constant w.r.t. |V |. We have that
∑h
i=2 |Vi| ≤ |V | and that Πh

i=2|Vi| ≤ |V |
x

x
,

since the product of numbers with a given sum is maximized when all numbers are equals 4. The

maximum of |V |x
x

is obtained when x = |V |
e and thus log2(Πh

i=2|Vi|) ≤ |V |e log2(e). Since also the
lower bound is worst case O(|V |) we have our algorithm is asymptotically optimal.

6 Counting in G(1-IC)

In this section we first introduce EXT counting algorithm for G(1-IC) networks then we prove its cor-
rectness.

6.1 High level view of G(1-IC) counting algorithm

Let us introduce the underlying structure we use to build EXT. We consider networks in G(1-IC). In
such networks, at each round, processes can change their distance from the leader in [1, V − 1]. When a

4This is a well known result obtained by using the relationship between geometric and arithmetic mean.
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process changes distance we say that the process “moved” from distance x to distance y. Let us introduce
the notion of temporal subgraph G′ of G:

Definition 13. (Temporal Subgraph) Given a dynamic graph G, a dynamic graph G′ is a temporal
subgraph of G (G′ ⊆ G) if and only if G′ : [Gi1 , Gi2 , . . .] is an ordered subsequence of G : [G0, G1, G2, . . .].

We can show that in each G ∈ G(1-IC) there exists a temporal subgraph G′ that belongs to G(PD)h:

Lemma 13. Let us consider a dynamic graph G : [G0, G1, G2, . . .] ∈ G(1-IC). There exists h ∈ N+ and
∃G′ ⊆ G such that G′ is composed by an infinite sequences of graphs and G′ ∈ G(PD)h.

Proof. The proof is by contradiction. Given a G : [G0, G1, . . .] ∈ G(1-IC) let us assume that each distinct
graph Gj ∈ G appears a bounded number of times, let us say mGj ∈ N+. Now let us consider the set
X of all possible graphs of |V | processes, clearly we have that this set is finite. Now let us consider
the round x =

∑
∀Gj∈X mGj + 1 and the sub-sequence S : [G0, G1 . . . Gx] of G, let us consider the set

of distinct graphs Xs of S, we have |S| ≤ ∑∀Gj∈Xs mGj ≤
∑
∀Gj∈X mGj but |S| = x + 1 which is a

contradiction. Thus it exists at least one graph Gj ∈ G that appears in G an infinite number of times.
Let us consider the subsequence G′ = [Gr0 , Gr1 , Gr2 , . . .] of G such that each Gri = Gj . It is clear

that G′ ∈ G(PD)h for some h ≤ Diameter(Gj) and that G′ is infinite.
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Figure 9: Counting algorithm EXT and the relationship among its subalgorithms.

Now, let us define a counting algorithm InstanceCount. Such algorithm works on G ∈ G(1-IC) and it
has two properties: (P1) it terminates giving the correct count on instance G′ ∈ G(PD)h; (P2) it does
not give an incorrect count on G′ 6∈ G(PD)h. Thus, if G′ 6∈ G(PD)h it can terminate giving either a
correct count of the network or a special invalid value, namely INVCNT. The strategy of EXT is to run
a different instance of InstanceCount on each temporal subgraph of G. Due to properties (P1) and (P2),
EXT terminates correctly when an instance of InstanceCount outputs a valid count value. For the prop-
erty (P1) and for Lemma 13, one instance of InstanceCount outputs a valid count value. Consequently,
EXT is a correct terminating counting algorithm.
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Figure 10: In G(1-IC) a subset VM2 of processes in V2 may move changing the distance from the leader
invalidating thus the correct count of processes in V2. Network size is unknown therefore messages from
process v4 need an unknown number of rounds to reach the leader. We are interested in an algorithm
that detects this distance change using information from processes in V2 \ VM2 . This is equivalent to
solve the problem on a network in G(PD)2 where the subset VM2 stops sending messages after a certain
round. In the example process v4 halts at round r + 1.

InstanceCount counts as if the network is in G(PD)h. Therefore, the leader first counts processes in
V1, then processes in V2 and so on. This is done until vl counts processes of a set Vh such that no set
Vh+1 exists. The tricky part is to detect if the counting algorithm is operating on a network in G(PD)h.
In the affirmative, the count done with such strategy will be correct. The procedure that counts each set
Vj is algorithm VCD. VCD allows to detect if the count obtained for Vj is correct, returning the count
value, or if it is not possible to count Vj because some process moved during the counting, returning
NOCOUNT. See Figure 10.

6.2 InstanceCount

This algorithm assumes that the communication graph belongs to G(PD)h then if InstanceCount notices
that some process changed the distance from the leader along rounds, it invalids the count.

Non-leader process behavior (Figure 4) Each non leader process v has three variables: v.distance
indicating its distance from the leader and two lists v.M and v.H. v assigns a value to v.distance as
follows: if, at round r, v has v.distance = −1 and it is neighbor of a process with distance = r 6= −1, v
sets its distance to r+1 (Line 8). Initially, the leader is the only process with distance = 0. As in OPT, v
updates its degree history v.H(r) by counting the number of processes in N(v, r) whose distance is equal
to v.distance− 1. Moreover v updates a multiset v.M(r) that contains messages received by neighbors
at distance v.distance + 1; if v has not received any of these messages, it adds ⊥ to the multiset. In
the sending phase, v broadcasts < v.distance, v.M(r), v.H(r) > to its neighbors. This is done by using
functions count distance neighbors and get messages from distance.

A process that has distance = r adds the messages from processes with distance = −1 to M list,
let us recall that these processes with distance = −1 will set distance = r + 1 at round r. Finally at
Line 18 a process adds an INVCNT message to M if it detects that at least one its neighbor changed its
distance from the leader which implies that the communication graph is not in G(PD)h (see condition at
Line 17). In the following when we refer to the set Vh, we consider processes setting their distance from
the leader to h.

Leader process behavior (Figure 5) The leader vl first computes the number of processes in V1,
this is simply done by counting the messages received from these processes. After that, vl executes VCD
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algorithm 4: InstanceCount for G(1−IC): pseudocode for Non-Leader process

1 M(−1) = [];
2 H(−1) = [⊥];
3 distance = −1;

4 Procedure sending phase()
5 send(Message :< distance,M(r), H(r) >);
6 return;

7 Procedure rcv phase(MultiSet MS)
8 if distance == −1 ∧ ∃m ∈MS |m.distance 6= −1 ∧m.distance == r then
9 distance = m.distance+ 1;

10 end
11 if r == distance then
12 forall the m ∈MS |m.distance == −1 do
13 m.distance = distance+ 1;

14 end

15 end
16 if distance 6= −1 then
17 if r > distance ∧ ∃m ∈MS |m.distance 6∈ {distance− 1, distance, distance+ 1} then
18 M(r + 1) = M(r).append(INVCNT);

19 end
20 H(r + 1) = H(r).append(count distance neighbors(MS, distance− 1)) ;
21 M(r + 1) = M(r).append(get messages from distance(MS, distance+ 1));

22 end
23 return;

to count processes in V2. This is done (i) by receiving the multi-set of messages MS from processes in V1

(these processes are immediate neighbors of vl) and (ii) by calling at Line 18 the function buildLastSet.
This function takes the multi set MS and starts an instance of VCD to construct the multi-set MSlast
of messages sent by processes in V2. We define as VCD(MS, r) the local leader side simulation of a run
of VCD that starts at round r using the content of messages in MS. The function returns one out of
three possible values: (i) ⊥ if the messages in MS are not enough to terminate the execution of VCD;
(ii) NOCOUNT if VCD detects an halt ; (iii) A multi-set MSlast of messages sent by processes belonging
to V2 at round r.

This multi-set leads to the actual count of processes in V2 (see Line 25). This procedure is iterated:
each time the leader obtains the multi-set MS sent by processes in Vh−1, vl calls buildLastSet to
reconstruct the most recent multi-set sent by processes in Vh.

The leader returns INVCNT if either (i) there is a INVCNT message in some MS (see Lines 31) or
(ii) if one of the instances of VCD terminates returning NOCOUNT. If an halt is detected then a process
v ∈ Vj at some round had a distance from vl different than j. Additionally, at Line 8 the leader checks
if processes in V1, from which it receives messages, are stable; if this set changes the current instance is
considered INVCNT.

The leader outputs the count when it counts a set Vh such that no process in Vh has a neighbor in
Vh+1, see Line 14.

Correctness Proof

Lemma 14. Let R be a run of InstanceCount on a dynamic graph G ∈ G(PD)h. We have that vl will
never output INVCNT in R.

Proof. The leader returns INVCNT at Line 20. The line is executed either (a) if an halt is detected by
VCD, i.e. a process v ∈ Vh at some round r > h−1 is not neighbor of processes in Vh−1, or (b) if some set
MS contains a INVCNT element. The latter happens if a non leader-process v′ executes Line 18-Figure 4,
that is v′ has a neighbor with distance value that is not in {v′.distance− 1, v′.distance, v′.distance+ 1}.
By definition of G(PD)h condition (a) cannot happen on G, see Th 8 , the same holds for condition (b).
Both conditions would implies that a process v is at distance h in a graph Gj ∈ G and at distance h′ 6= h
in Gi ∈ G with i > j. Therefore the claim follows.

Lemma 15. Let R be a run of InstanceCount on a dynamic graph G ∈ G(1-IC). If Vh 6= ∅ in R, either
(1) the leader obtains the count Vh or (2) the leader outputs INVCNT.

Proof. The processes in Vh set their distance at round r = h − 1, see Line 8 of Figure 4. At the same
round an instance of VCD between processes in Vh−1, Vh is started, see Line 12 of Figure 4 where messages
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algorithm 5: InstanceCount for G(1−IC): pseudocode for Leader process 0

1 distance count[] = ⊥;
2 distance = 0;

3 Procedure sending phase()
4 send(< distance,⊥,⊥ >);
5 return;

6 Procedure rcv phase(MultiSet MS :< distance,M,H >)
7 i = 1;
8 if (distance count[i] 6= ⊥ ∧ distance count[i] 6= |MS|) ∨ (∃m ∈MS|m.distance > 1) then
9 output(INVCNT);

10 end
11 distance count[i] = |MS|;
12 i+ +;
13 while true do
14 if MS 6= ∅ ∧ (∀m ∈MS : m.M = [⊥, . . . ,⊥] ∧ size(m.M) > 1) then
15 count =

∑
∀j|distance count[j]6=⊥ distance count[j] ;

16 output(count) ;

17 end
18 MS =buildLastSet (MS) ;
19 if ∃INVCNT ∈MS then
20 output(INVCNT) ;
21 end
22 if MS = ⊥ then
23 break ;
24 end
25 distance count[i] = |MS| ;
26 i+ +;

27 end
28 return;

29 Function buildLastSet(MS)
30 MSlast = ⊥;
31 if MS.containsSymbol(INVCNT) then
32 return {INVCNT} ;

33 end
34 for r =MinRound(MS); r <MaxRound(MS); r + + do
35 if VCD(MS, r) ==NOCOUNT then
36 return {INVCNT} ;
37 end
38 if VCD(MS, r) 6= ⊥ then
39 if MSlast 6= ⊥ ∧ |MSlast| 6= | VCD(MS, r)| then
40 return {INVCNT} ;

41 end
42 MSlast = VCD(MS, r);

43 else
44 break ;
45 end

46 end
47 return MSlast ;
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from Nodes in Vh are taken into account by Nodes in Vh−1 starting from round r = h− 1.
Now we discuss how VCD could be used to reconstruct the exact multi set of memory of processes

in V2. This is equivalent to consider a case where each process v in V2 have a certain initialisation
input value iv, and where we want to compute the multiset of these values when no process in V2 halts.
Essentially, the value iv is attached to each algorithm message. The leader starts a different instance of
VCD for each of these values. Each VCD instance outputs the multiplicity of a certain value, this is due
to Th. 8.

Let us assume that processes in V0, . . . , Vh−1 do not change distance we have for Th. 8 that if no
process in Vh moves the set of processes in Vh−1 will eventually obtain the multiset MSh . Now the
multiset of messages MSh sent at round h− 1 by process in Vh will be propagated from processes in Vh
to vl during rounds [h− 1, . . . , rcounth ]. At each different frontier between distances this is done by using
other instances of VCD: between processes in Vh−1, Vh−2, processes in Vh−2, Vh−3 and so on.

Now let us consider condition (a) that is instances of VCD between processes in V0, . . . , Vh that are
propagating towards the leader MSh never detect an invalid count and no processes in V0, . . . , Vh has
an INVCNT element in its multiset of messages MS. If condition (a) holds we have that the leader will
obtains the correct count of processes in Vh by reconstructing the multiset of messages MSh sent by
process in Vh at round h− 1. This is ensured by Th. 8 of algorithm VCD and by a simple induction on
the count for each set Vi.

Otherwise if condition (a) does not hold the leader will output INVCNT. This is done either because
of Line 31 or because some instance of VCD terminated with NOCOUNT before the leader is able to
reconstruct MSh.

Lemma 16. Let R be a run of InstanceCount on a dynamic graph G ∈ G(1-IC). If vl outputs a value
distinct from INVCNT in R, then that value is |V |.

Proof. The Leader terminates at Line 14, that is the leader has reconstructed a multiset MSh from
processes in Vh such that for each M ∈MSh: M contains at least two elements and M contains only ⊥
value. The condition on the size implies that MSh has been sent at round r′ ≥ h. For Lemma 15 we
have that if this happen the leader has correctly counted processes in V0, . . . , Vh, we have to show that
when Line 14 is triggered we have V \ V0 \ . . . \ Vh = ∅.

Let us assume Line 14 is executed and that it exists v ∈ V \ V0 \ . . . \ Vh. We must have, for
connectivity assumption, that such v at round r′ is neighbor of some process in V0, . . . , Vh. If it is
neighbor of a process v1 ∈ Vj then v1 will put INVCNT in v1.M(r′). In order to reconstruct MSh the
leader will also reconstruct the multiset of messages MSj sent at round r′; two things may happen:

• (1) That the leader receives the INVCNT message thus the Line 31 will be triggered, then the leader
outputs INVCNT and the Line 14 will not be executed;

• (2) That v1, or some other process that is sending the INVCNT message to vl, is moved away. This
triggers the detection in VCD during the reconstruction of MSh therefore Line 14 is not executed.
If v is neighbor of processes in Vh and r′ > h we have the same behavior of the previous case.

The only possibility left is v neighbor of processes in Vh and r′ = h. In this case at least one process
v′ in Vh will execute Line 12 setting v′.M(h) = [⊥,¬⊥] therefore Line 14 cannot be executed.

Lemma 17. Let R be a run of InstanceCount on a dynamic graph G ∈ G(PD)h. We have that vl
terminate and it outputs |V | in R.

Proof. For Lemma 14 vl will never outputs INVCNT. This means that, see Lemma 15, the leader eventu-
ally obtains the count for each set V1, . . . , Vh. Since the set Vh+1 is empty we have that vl executes the
terminating condition when it obtains MSh, see Line 14. For Lemma 16 the leader output is correct.

6.3 EXT Counting Algorithm

EXT executes an instance of InstanceCount for each temporal subgraph of G. Let us define as PG the set of
subgraphs of G such that (i) processes execute for each G′ ∈ PG a different instance IG′ of InstanceCount
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and (ii) such instances do not interfere with each other. Let us remark that the system is synchronous
and the current round number r is known by all processes. Therefore each IG′ is uniquely identified by a
binary string that has value 1 in position j if Grj ∈ G′ and 0 otherwise. The uniqueness guarantees that
instances can run in parallel. At each new round r the number of instances is doubled, half of the new
instances will consider the messages exchanged within round r and the remaining ones will not consider
these messages. As example at the end round 0 we have two instances I1, I0. In instance I1 the counting
is started and processes have received the message exchanged in G0. In instance I0 the counting has
not been started, the messages exchanged in round 0 are ignored. At round 1 we have four instances
I11, I10, I01, I00: I11 is an instance of counting in which messages exchanged in G0, G1 are considered;
in I10 are considered only messages exchanged in G1 and ignored messages exchanged in G0; in I01 are
considered only messages exchanged in G0 and ignored messages exchanged in G1; in I00 the counting
has not been started. The pseudocode to implement the this procedure is trivial, thus it is omitted.

Theorem 9. Let R be a run of EXT on a dynamic graph G ∈ G(1-IC). Eventually, vl terminates and
it outputs the correct count in R.

Proof. For Lemma 13 there exists G′ ⊆ G with G′ ∈ G(PD)h. Therefore for Lemma 17 the leader has to
terminate correctly on IG′ . Moreover also for Lemma 16 if another instance IG′′ with G′′ ⊆ G outputs
a value, then this value is also correct. From these considerations the claim follows.

From the previous Theorem and from the impossibility of non trivial computation without a leader
presented in [24,25] we have:

Theorem 10. Let us consider an anonymous unknown 1-interval connected networks with broadcast. A
distinguished leader process is necessary and sufficient to do non trivial computations.

Besides counting and existence predicates other non-trivial problems are solvable using simple varia-
tion of EXT. Let us assume that each process has an initial input value. If this initial input is attached in
the messages of EXT the leader can compute the exact multiset of these values. Thanks to this multiset,
the leader may compute aggregation functions as average,min,max.

EXT Complexity EXT has an exponential complexity: Let us consider our G : [G0, G1, . . .] ∈ G(1−IC)
and G′ ⊆ G with G′ : [G′i0 , Gi1 , . . .] ∈ G(PD). Let compute an upper bound on maxj(|ij − ij+1|) with
Gij , Gij+1

∈ G′. If we consider that distances of each node from vl are in [1, |V |−1], then it is easy to see

that the number of possible combinations of distances over the set of nodes is upper bounded by |V ||V |,
therefore by definition of G(PD) we have maxj(|ij − ij+1|) ≤ |V ||V |. Now what we have to bound is the
number of instances of G′ needed by EXT to terminate, but this can be easily computed by considering
when counting terminates with InstanceCount on a graph G(PD). At each level i we count in at most
O(|Vi−1|2|Vi|) rounds, therefore it is easy to show that the total cost is O(|V |3). So EXT terminates in
at most O(|V ||V |+3) rounds.

6.4 Equivalence between Counting and Average Consensus

In this section we show that average consensus and a generalisation of terminating counting are equivalent
in G(1-IC) networks. Let us first define the average consensus:

Definition 14. Sum-Preserving Average Consensus: Let us consider a set of nodes V where each
vi ∈ V has an initial value x(0)i. An Average Consensus algorithm is Sum-Preserving if the following
properties hold:
• (1) At each round r > 0 each node vi ∈ V has a consensus variable x(r)i.
• (2) At each round r > 0 it holds

∑
vi∈V x(r)i =

∑
vi∈V x(0)i.

• (3) For any ε > 0 there exists a round rε such that ∀vi ∈ V it holds |
∑
vi∈V

x(0)i

|V | − x(rε)i| < ε.

We notice that any local averaging algorithm with a doubly stochastic matrix of weights satisfies the
specification of Definition 14.

We define a problem that generalise Terminating Counting:
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Definition 15. Multi-set Counting: Let us consider a set of nodes V where each vi ∈ V has an
initial value x(0)i. An algorithm satisfies Multi-set Counting if at round r the algorithm terminates and
vl outputs for each x(0)i the number of processes that initially had that value.

Multi-set counting is useful to compute commutative and associative functions. In this paper we
focus on solving Terminating Counting, however all the algorithms that we proposed can be adapted to
solve Multi-set Counting. It is trivial to see that the following observation holds

Observation 1. Any algorithm solving Multi-set Counting can be trivially adapted to solve Terminating
Counting.

One way of the reduction is straighforward, having a terminating Multi-set Counting processes can

compute
∑
vi∈V

x(0)i

|V | (Average Consensus). Let us analyze the other direction of the transformation,

having a Average Consensus Algorithm, we first show how to build a terminating counting algorithm,
then we adapt it to obtain Multi-set Counting.

Lemma 18. Given a graph G ∈ G(1-IC), a leader node vl, and a Sum-Preserving Average Consensus
Algorithm, we can build a terminating Counting algorithm.

Proof. Let us first show the reduction and then prove its correctness. Each node vi ∈ V \ {vl} starts the
avg. consensus algorithm with input 0. The leader starts with input 1. The guess of the leader for round
r is Nr = d(x(r)l)

−1c that is the nearest integer to x(r)l. At each round r each process vi broadcasts
mr :< r, (x(r)i) >. For each messages mx :< x, l > received only the one with minimal and maximal
value l for a certain x is propagated.

The leader starts a Verification Procedure for the guess Nr: it waits and collects in the set Mr the
mr messages that it receives until round r + 2Nr + 1. The leader guess is true only if ∀ < r, x >∈ Mr,
we have Nr = d(x)−1c.

We first show that the Verification Procedure always terminates correctly on interval connected
networks, the proof is by contradiction.

• Let us suppose that Nr < |V | and that the Verification Procedure is true. This implies, thanks
to interval connectivity, that there exists at least x = min(|V |, 2(Nr)) nodes with value 1

Nr− 1
2

>

x(r) > 1
Nr+ 1

2

. Thus the sum over these nodes is at least S ≥ x 1
Nr+ 1

2

. If x = 2(Nr) we have that

S > 1 that is an absurd for the condition on consensus variable. Otherwise if x = |V | we have

S ≥ |V |
Nr+ 1

2

and it must hold S = 1 therefore we have Nr + 1
2 ≥ |V |. This is a contradiction since

Nr and |V | are integers, therefore we have |V | −Nr ≥ 1

• Let us suppose that Nr > |V | and that Verification Procedure is true. This implies, thanks to
interval connectivity, that for all nodes |V | we have 1

Nr− 1
2

> x(r) > 1
Nr+ 1

2

. Thus the sum over

these nodes is at most S ≤ |V | 1
Nr− 1

2

. Since it must hold S = 1 we have |V | ≥ Nr − 1
2 . This is a

contradiction since Nr and |V | are integers, therefore we have Nr − |V | ≥ 1

It remains to prove that it exists a round r in which the Verification Procedure terminates. Let us consider
ε = 1

2|V | for the convergence condition at round rε for each x(rε)i we have that | 1
|V | − x(rε)i| < 1

2|V | . It

is easy to show that since x(r) ≤ 1, for the condition on consensus variable, we have that the previous
inequality implies 1

|V |− 1
2

> x(rε) >
1

|V |+ 1
2

. Therefore each node has the same value Nrε . This in turns

implies that the Verification Procedure for the leader terminates correctly for the guess Nrε at round
rε.

Theorem 11. Given a graph G ∈ G(1-IC), a leader node vl, and a Sum-Preserving Average Consensus
Algorithm. We can build a terminating Multiset Counting algorithm.

Proof. From Lemma 18, we can build a terminating counting algorithm obtaining the value |V |. To obtain
the number of processes with initial value x(0), that we indicate with |x(0)| we use a reduction similar
to Lemma 18. Each process with initial value x(0) starts a run of consensus with initial value 1, other
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processes with value 0. The leader computes a guess Gr as x(r)l · |V |. The mr messages and its handling
by processes is analogous to Lemma 18. For each guess Gr the leader verifies it by waiting until round
r + |V | + 1 collecting the messages mr. A guess is verified if Gr = bminx(Mr)c|V | = dmaxx(Mr)e|V |.
Let us prove by contradiction that if a guess is verified then Gr = |x(0)|. Assume that |x(0)| > G, we
have S = |x(0)| ≥ maxx(Mr)|V | > Gr < |x(0)| that is a contradiction. For |x(0)| < G the proof is
analogous.

Convergent counting In the following we will show how build a Convergent Counting Algorithm
on G(1-IC) that converges in at most O(|V |4 log(2|V |)) rounds. It is well known that a local averaging
algorithm with fixed weight q = 1

maxv,r|N(v,r)| leads to a sequence of doubly stochastic matrices, for each

possible sequence of interval connected graphs. From [29] it is possible to show that such algorithm
verifies the convergence for a fixed ε in O(|V |3 log( 1

ε )) rounds. The only difficulty is to show how to cope
with the indecision about q since its value is not known a-priori. But this can be done trivially, each node
updates its value q if it sees that its maximum degree its greater than it, and the value is used to restart
previous instances of the local averaging algorithm, the maximum value for q it is also disseminated.
Since the value of q changes at most |V | times and for our transformation, see proof of Lemma 18, we
have ε = 1

2|V | our claim on round complexity follows. The aforementioned strategy does not implement

a Sum-Preserving Average Consensus Algorithm, therefore our transformation for terminating counting
does not apply.

Discussion At the best of our knowledge in G(1-IC) when there is no bound on the maximum degree
or when there is no knowledge of node degree prior to the send phase, there is no known strategy
that implements a Sum-Preserving Average Consensus Algorithm. For this reason we cannot use our
transformation to obtain terminating counting from a Sum-Preserving Average Consensus Algorithm.

7 Conclusion

G(PD)h G(1−IC) G(∞−IC)
h = 2 h = O(|V |) Bounded Degree Unbounded Degree

Terminating Count.
O(log |V |) O(|V |) O(|V |3 log |V |) O(|V ||V |+3) O(|V |5)
(Sec. 5) (Sec. 5.6) Red. to Avg. Consensus (Sec. 6.4) (Sec. 6.3) (Appendix)

Convergent Count. O(log |V |) O(|V |)
O(|V |3 log |V |) O(|V |4 log |V |)

[9] [29] Red. to Avg. Consensus
(Sec. 6.4)

Ω(log |V |) Ω(|V |)
Lower Bound (Sec. 5.2) Trivial Bound

Figure 11: Lower Bounds and Upper Bounds for Counting Algorithms on different anonymous dynamic
networks

Terminating counting is a basic block for implementing more complex abstractions on any computation
model. Therefore, bounds on such problem have an impact on a wide set of more complex tasks that rely
on counting. The study we presented represents a wide picture of characterising results of counting over
different topologies of anonymous dynamic networks. This is done by presenting original results and by
establishing reductions to other well known problems in control theory, namely Average Consensus. Table
11 summarises this picture, it shows upper bounds for terminating counting and convergent counting
over G(PD), G(1-IC) and G(∞-IC). The table also shows a tight bounds for G(PD)2 and G(PD). As far
as G(1-IC) is concerned, we provide an exponential upper bound for terminating counting, namely EXT
Algorithm. Interestingly, the reduction to Average Consensus, shows a polynomial convergent counting
algorithm for this case. Therefore, it is a relevant open question to quantify if the price of terminating
is actually exponential.

The lower bound on G(PD)2 proves that in networks where the diameter D is fixed and constant with
respect to |V | we need D + Ω(log |V |) rounds to count the number of nodes. Interestingly this result
points out an inherent cost of the combined effect of anonymity and dynamicity. Counting on dynamic
networks with IDs requires indeed Θ(D) rounds [19], the same holds for static anonymous networks [25].
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Moreover, this marks a clear difference on anonymous dynamic graphs between the cost of disseminating
information, that can be done in O(D) rounds, and the cost of aggregating information, that requires
always a number of rounds function of the network size.
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[23] L. Massoulié, E. Le Merrer, A.-M. Kermarrec, and A. Ganesh. Peer counting and sampling in
overlay networks: Random walk methods. In PODC ’06, pages 123–132. ACM, 2006.

[24] O. Michail, I. Chatzigiannakis, and P. Spirakis. Brief announcement: Naming and counting in
anonymous unknown dynamic networks. In DISC ’12, pages 437–438. Springer, 2012.

[25] O. Michail, I. Chatzigiannakis, and P. Spirakis. Naming and counting in anonymous unknown
dynamic networks. In SSS ’13, pages 281–295. Springer, 2013.

[26] O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Causality, influence, and computation in possibly
disconnected synchronous dynamic networks. In OPODIS ’12, pages 269–283, 2012.

[27] A. Milani and M. A. Mosteiro. A Faster Counting Protocol for Anonymous Dynamic Networks.
ArXiv e-prints, September 2015.

[28] D. Mosk-Aoyama and D. Shah. Computing separable functions via gossip. In PODC’ 06, pages
113–122. ACM, 2006.

[29] A. Nedic, A. Olshevsky, A. Ozdaglar, and J.N. Tsitsiklis. On distributed averaging algorithms and
quantization effects. Automatic Control, IEEE Transactions on, 54(11):2506–2517, Nov 2009.

[30] R. O’Dell and R. Wattenhofer. Information dissemination in highly dynamic graphs. In DIALM-
POMC’ 05, pages 104–110, 2005.

[31] A. Olshevsky and J.N. Tsitsiklis. A lower bound for distributed averaging algorithms on the line
graph. Automatic Control, IEEE Transactions on, 56(11):2694–2698, Nov 2011.

[32] Alex Olshevsky and John N. Tsitsiklis. Convergence speed in distributed consensus and averaging.
SIAM J. Control Optim., 48(1):33–55, February 2009.

[33] Alex Olshevsky and John N. Tsitsiklis. Convergence speed in distributed consensus and averaging.
SIAM Review, 53(4):747–772, 2011.

[34] B. Ribeiro and D. Towsley. Estimating and sampling graphs with multidimensional random walks.
In IMC ’10, pages 390–403, New York, NY, USA, 2010. ACM.

[35] John N. Tsitsiklis. Problems in Decentralized Decision Making and Computation. PhD thesis,
Department of EECS, MIT, November 1984.

[36] Lin Xiao, Stephen Boyd, and Seung-Jean Kim. Distributed average consensus with least-mean-
square deviation. J. Parallel Distrib. Comput., 67(1):33–46, January 2007.

36



[37] M. Yamashita and T. Kameda. Computing on an anonymous network. In PODC ’88, pages 117–130.
ACM, 1988.

[38] M. Yamashita and T. Kameda. Computing on anonymous networks: Part 1-characterizing the
solvable cases. IEEE Trans. on Parallel and Distributed Systems, 7(1):69–89, 1996.

[39] Y. Yuan, G.-B. Stan, M. Barahona, L. Shi, and J. Goncalves. Decentralised minimal-time consensus.
In Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference
on, pages 4282–4289, Dec 2011.

37



Appendix

Polynomial Counting in G(∞-IC)

In this section we consider networks in G(∞−IC) which is an interesting subset of G(1−IC). A dynamic
graph G belongs to G(∞-IC) if there is a path p∞vl,v from vl to any node v on a stable spanning tree.
Under this condition, each message flooded by the leader will reach v in at most |p∞vl,v| rounds. We want
to show that cunting is polynomial in G(∞−IC) networks.

Let us define as Len(v) = |p∞vl,v| the distance of v from the leader on the stable path. The algorithm
works in epochs, the main idea is that each node v, inside a certain epoch, computes an approximation
v.length of Len(v), and communicates only with nodes that have length value equal to v.length− 1 and
the same epoch value. The counting messages are analogous to messages used in G(PD)h, thus each non
leader node v at length l has variables M,H used to compute the history degree and to collect messages
from nodes at length l+1. The counting messages are routed to vl by paths of ordered decreasing length.

When the leader detects that some node at a certain length l at some round was not able to send
messages to nodes at length l − 1, it creates a new epoch. This detection is done by executing the VCD
algorithm, between nodes at lengths l − 1, l. In the new epoch nodes compute a new approximation of
the value length and reset the data structures used in the old epoch, starting a new counting.

Let us introduce in details the strategies used by our algorithm. The algorithm for non leader node
is reported in Figure 6, the algorithm for the leader node in Figure 7.

Non-Leader Node behavior Each non leader node v starts with the following variables:

• v.epoch = −1 its current epoch number;
• v.repoch = −1 the starting round of the current epoch;
• changeepoch = false a flag that indicate if node v wants to change epoch;
• v.length = −1 its approximation of Len(v) in the current epoch;
• lists M,H used to store the counting messages as in the algorithm for G(PD)h.

During the send phase v broadcasts the content of its variables, with messages< length, repoch, epoch,M(r−
1), H(r − 1), changeepoch >.

When the leader issues the first epoch, it sends a message that contains the epoch number, stored in
the variable vl.epoch == 0, and the starting round of the epoch, variable vl.repoch == 0. This message
is flooded in the network. When v receives the message, at round r, it runs three predicates, see line 12:

• (c1) its epoch number has to be equal to vl.epoch− 1;
• (c2) its length has to be less or equal than r − vl.repoch;
• (c3) the length value, len, of the node that sends the message to v has to be equal to r−vl.repoch.

If these three predicates are verified, then v sets its epoch and length according to the content of the
message, see Lines 13-19. The predicate (c2) ensures that the length of v, namely variable v.length,
between epochs is non decreasing, details in Lemma 19; predicates (c1,c3) are done to limit the propa-
gation of the epoch on dynamic paths that are compatible with paths on MST∞.

Specifically the predicate (c1) ensures that node may only accept epochs in a strict monotonically in-
creasing order, thus if node v has v.epoch = −1 and at some round it is connected by an edge e 6∈MST∞

to a node v′ that is at epoch 1 it will discard the message waiting for epoch 0. Intuitively since v has
a neighbor u on p∞vl,v we have that v has to eventually receive a message with epoch == 0 from u, or
it receives the message from some other node by means of an edge e′ 6∈ MST∞. The predicate (c3) is
inspired by the same principles but inside the same epoch, let us assume that v is at Len(v) = 10 and
at round r′ = 2 is connected by an edge e 6∈ MST∞ to a node v′ at Len(v′) = 1, i.e. a neighbor of
vl in MST∞, then v will discard the message received by v′ because v′ cannot be its neighbor on p∞vl,v
otherwise v should have been the neighbor of v′ at round r′ = 1.

After the acceptance of an epoch ep by v, and thus after the acceptance by v of a length value
v.length, the node v will do a continuos predicate (c4) on the messages that it receives, see Line 23.
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The predicate is triggered if at some round does not exist a neighbor of v that has length value equal to
v.length − 1, if this happens node v sets the variable v.changeepoch = true and increases its length to
v.length+ 1. From now on nodes at epoch ep will not add messages from v to their M,H sets, see Lines
30-32. If the predicate (c4) is triggered then node v was not able to route its degree history over a path
of ordered decreasing length. This could happen (1) if node v sets its length by receiving a message from
a node v′ through an edge e′ 6∈ MST∞ and at some round this edge disappears or (2) if the node u s.t
(v, u) ∈MST∞ with u.length = v.length− 1 triggered its predicate (c4).

In the formal proofs we show that the combination of (c1,c3,c4) ensures two properties on nodes pair
(u, v) ∈ MST∞: (p1) if they have the same epoch value then |u.length− v.length| ≤ 1 and (p2) if one
nodes, let us say u, switches to a new epoch ep at round r before the other, let us say v, then or v switches
to ep at the same round or at the next round, Lemma 20. Based on these properties if (u, v) ∈ p∞vl,v we
also prove inductively that v.length ≤ Len(v), see Lemma 22. This and the non decreasing property
of the length value, see the predicate (c2), guarantees that v may change length at most Len(v) times,
intuitively if v.length = Len(v) than also the length of its neighbor u has u.length = Len(u) = Len(v)−1
and since v is always neighbor of u the predicate (c4) cannot be triggered anymore.

algorithm 6: Counting Algorithm for G(∞-IC): code for Non-Leader Node

1 length = −1;
2 epoch = −1;
3 repoch = −1;
4 changeepoh = false;
5 M(−1) = [];
6 H(−1) = [⊥];

7 Procedure sending phase()
8 send(< length, repoch, epoch,M(r − 1), H(r − 1), changeepoch >) ;
9 return;

10 Procedure rcv phase(MultiSet MS : {< len, rep, ep,Ms,Hs, change >})
11 forall the m ∈MS ordered by increasing ep do
12 if (epoch = ep− 1) ∧ ((r − rep) + 1 ≥ length) ∧ (len == r − rep) then

/* Predicates (c1)(c2)(c3) */
13 length = (r − rep) + 1;
14 repoch = rep;
15 epoch = ep ;
16 changeepoch = false;
17 M(r − 1) = [] ;
18 H(r − 1) = [⊥];
19 break ;

20 end

21 end
22 if ¬changeepoch ∧ epoch > −1 then
23 if (@m ∈MS | (len == length− 1 ∧ ep ≥ epoch)) then

/* Predicate (c4) */
24 changeepoch = true;
25 length = length+ 1;

26 end
27 if (∃m ∈MS | (change == true ∧ ep == epoch)) then
28 changeepoch = true ;

29 end

30 MS′ : {m ∈MS|(len == length+ 1 ∧ ep == epoch ∧ change == false)} ;
31 forall the (m ∈MS|(change == true ∧ r == length+ repoch ∧ len ≤ length ∧ ep = epoch− 1) do
32 MS′ ∪ {[⊥]}
33 end

34 M(r) = M(r − 1).append(if(MS′ 6= ∅) {{MS′}} else { ⊥}) ;
35 H(r) = H(r − 1).append(count(m ∈MS|(len == length− 1 ∧ ep == epoch)));

36 else
37 M(r) = M(r − 1), H(r) = H(r − 1);
38 end

Leader Node behavior The leader starts with the following variables: epoch = 0 the epoch counter;
repoch = 0 the round at which the current epoch is started; length count[] an array to store the count
of nodes at different lengths. The duties of the leader are to issue new epochs and to count.

During the send phase vl broadcasts the information about the current epoch, < 0, repoch, epoch,⊥,⊥ >.
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In order to create a new epoch the leader detects if a node triggered predicate (c4) by counting the
nodes at each length, for simplicity let us call with Vh nodes with length = h at the current epoch, using
the VCD algorithm, see Section 5.5.1. Let us recall that VCD outputs the count of Vh when it is executed
between two sets Vh, Vh−1 such that no node in Vh stops sending messages to nodes in Vh−1 because it is
moved to a different length. This call is done by procedure buildLastSet that is the same of Figure
5, therefore is omitted in Figure 7

Thus the leader at a certain epoch uses VCD to count iteratively and continuously nodes in V1, V2, . . ..
If the length value of nodes is enough stable, i.e. no nodes trigger (c4), then the leader eventually will
count a set Vlast such that no nodes in Vlast had a neighbor at length last + 1, when this is done it
terminates. The key point to prove the correctness of this termination procedure are: Lemma 22, in
which we show that at each round a new node has to switch to the new epoch, if this does not happen
then all nodes are in the current epoch. This ensures that if Vlast+1 = ∅ then all Vj>last+1 are empty.
Lemma 25 in which we show that if the leader updates its count for a certain Vh, see Line 15, then this
count is correct, and Lemma 26 in which we show that if Line 11 is executed then there is no node in
Vlast+1.

If the network is not stable, a node v verifies (c4); v stops routing information to the leader preventing
the correct counting. The leader will detect this by using VCD, and this detection takes at most O(|V |)
rounds. See Lemma 24. After the detection it will issue a new epoch and reset the partial count, see
Lines 23-25.

To show the termination, we leverage the bound on the length value that a node may assume, see
Lemma 21. Then we show that this leads to at most |V |2 epochs, see Lemma 29. As final part we show
that after at most O(|V |3) rounds the leader counts or it issues a new epoch, see Lemmas 23-24. This
leads to a total worst case cost of O(|V |5) rounds.

algorithm 7: Counting Algorithm for G(∞-IC): code for Leader Node

1 epoch = 0;
2 repoch = 0;
3 length count[];

4 Procedure sending phase()
5 send(< 0, repoch, epoch,⊥,⊥ >) ;
6 return;

7 Procedure rcv phase(MultiSet MS : {< len, rep, ep,Ms,Hs, change >})
8 MS′ : {m ∈MS|m.ep = epoch};
9 MS = MS′;

10 if MS 6= ∅ ∧ (∀m ∈MS : m.M = [⊥, . . . ,⊥] ∧ size(m.M) > 1) then
11 count =

∑
∀j|length count[j] 6=⊥ length count[j] ;

12 output(count) ;

13 end
14 indexlength = 1;
15 length count[indexlength] = |MS|;
16 indexlength + +;
17 while true do
18 MS =buildLastSet (MS);
19 if MS == ⊥ then
20 break;

21 end
22 if ∃INVCNT ∈MS ∨ ∃m ∈MS|m.change == true then
23 repoch = r + 1;
24 epoch+ +;
25 reset(length count);
26 break;

27 end
28 length count[indexlength] = |MS| ;
29 indexlength + +;

30 end

Correctness proof Let us begin by stating lemmas on the length variable of non-leader nodes

Lemma 19. For each node v the value v.length is not decreasing.

Proof. v.length is set at line 13 where the predicate in the if Line 23 avoid decreasing, and it is increased
at line 25.
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Lemma 20. Let us consider two nodes v0, v1 ∈ V such that (v0, v1) ∈MST∞ we have that:

• (p1): If (v0.len 6= −1 ∧ v1.len 6= −1) ∧ (v0.epoch == v1.epoch) then |v0.length− v1.length| ≤ 1

• (p2): Considered an epoch ep if v0 is the first among the two to set v.epoch = ep at round r then
also v1 sets v1.epoch = ep at round r′ ∈ {r, r + 1}

Proof. The proof is by induction on the epoch:

• base case epoch=0: Let us consider the case when node vb is the first among the two that round
r executes for the first time line 13, thus setting vb.epoch = 0 and vb.length = r + 1, then we
have that at round r + 1 node vb⊕1 receives the message from vb. Now two things may happen:
(1) that vb⊕1 executes line 12 by setting its length to vb⊕1.length = r + 2, (2) that vb⊕1 does not
execute line 12; the possibilities are: (a) that vb⊕1.length > vb.length but this is not possible since
vb⊕1.length ≤ r+1, (b) that vb⊕1.epoch == vb.epoch but this implies that vb⊕1.length = vb.length
thus the lemma holds, (c) that vb⊕1.epoch > vb.epoch but this is not possible since vb⊕1.epoch ≤ 0.
Let us consider the case when in epoch 0 one of the two executes line 25: it is easy to see that it
can be executed first by the one among the two that have the small length value, thus the lemma
still holds since both have the same length value, and at next round it could be executed by the
other one, thus the lemma still holds since the difference is at most 1. Otherwise it can be executed
at the same round r by both, but this implies that both have the same length value at round r
and r + 1, thus in any case the lemma holds.

• inductive case epoch=ep: Let us suppose that epoch ep has been issued at round rep. If v0 sets
its epoch to v0.epoch = ep and its length to v0.length = r− rep at round r then at round r− 1 we
have v0.epoch = ep− 1. For ind. hyp. we have that v1.epoch = ep− 1 at round r− 1 or r. Thus at
most at round r+1, when it receives the messages from v0, v1 will set its epoch to ep and its length
to a value l ≤ r + 1 − rep. It is easy to see that by a reasoning analogous to the base case that
execution of line 25 during epoch ep cannot force the nodes to have |v0.length− v1.length| > 1.

Lemma 21. Let us consider a node u ∈ V \ {vl} with Len(u) = k and a new epoch ep issued by the
leader at round rep. We have that at round r′ ≤ rep+ k − 1, u.epoch = ep and u.length ∈ [0, k].

Proof. The proof is by induction on Len.

• Len(u)=1: In this case we have that ∃(u, v) ∈MST∞ and v = vl it is easy to see that if vl issues
a new epoch ep we must have ep > u.epoch thus, at round rep + 1 the only reason for u to not
execute line 13 is that u.length > v.length+ 1 but u.length is set at round 0 to 1 let us recall that
u will never execute line 25 since it is always neighbor of the leader. Thus ∀u|Len(u) = 1 we have
that u.length ∈ [0, Len(u)].

• Len(u)=k: We have that exists (u, v) ∈ MST∞ and that LEN(v) = Len(u) − 1 = k − 1. Thus
let us consider the possible cases:
(1) v changes epoch before u: At round r the node v executes line 15 by setting v.epecoh = ep
for Lemma 20 we have that u will execute line 15 at round r + 1, thus we have for inductive
hypothesis that v.length = u.length+ 1 ≤ Len(u) + 1 = k.
(2) u changes epoch before v: Let us assume that u changes epoch at round r, By using the
same consideration of the previous case we have that v will change epoch at round r+ 1 setting its
length to v.length+ 1. But we have that exists (v, w) ∈MST with Len(w) = Len(v)− 1 by using
inductive hypothesis we have that w change epoch at round r′ − rep < Len(w), thus for Lemma
20 we have that r + 1 ≤ r′ + 1 this implies u.length ≤ Len(w) ≤ k − 2.

(3) u, v change epoch at the same round r: by inductive hypothesis since u.length = r− ep ≤
Len(u) we have that v.length ≤ k − 1.
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Lemma 22. Let us consider the beginning of a new epoch ep, at round rep, and the interval of rounds
r ∈ [rep, T ], where T is the first round at which some nodes vf sets changeepoch = true. Let us consider
two partition of nodes Iar , I

b
r s.t. ∀v ∈ Iar we have v.epoch = ep and |Iar | > 0 and ∀v ∈ Ibr we have

v.epoch < ep. We have that (1) |Iar+1| > |Iar | or (2) |Ibr | = 0.

Proof. Let us suppose, by contradiction, that at round r we have |Ibr | > 0 and that at round r + 1 we
have |Iar+1| = |Iar |. For hypothesis we have that at each r ∈ [rep, T ] @w ∈ V with w.changeepoch = true
and w.epoch = ep. Let us consider a node v ∈ Ibr and let us recall that ∃v1 ∈ N(v) with (v, v1) ∈MST∞

and Len(v) = Len(v1) + 1, let us suppose that v1 ∈ Iar this and Lemma 20 implies that at round r′ ≤
rep+v1.length+1 the node v has to be in Iar′ , thus we have that v 6∈ Ibr+1 this implies |Iar+1| = |Iar |. So we
must have v1 ∈ Ibr , let us consider the node v2 ∈ N(v1) s.t. (v1, v2) ∈MST∞ and Len(v1) = Len(v2)+1
we must have v2 ∈ Ibr otherwise we can reach the same contradiction, but this implies that iterating the
chain we reach a vk ∈ Ibr with Len(vk) = 0 that is a contradiction.

From the previous lemma the next observation immediately follows

Corollary 3. Let us consider the beginning of a new epoch ep at round rep, at each round r ∈ [ep, T ]
we must have that if |Ibr | 6= 0 then exist v ∈ Ibr s.t. v ∈ Iar+1.

Lemma 23. Let us consider the beginning of a new epoch ep at round rep and such that ∀r > rep no
nodes vf sets changeepoch = true. We have that after at most rep+O(|V |3) the leader terminates.

Proof. We have for Lemma 22 that after at most |V | rounds all nodes have epoch ep. If no node sets
changeepoch = true then we have that each node in Vk will have a neighbors in Vk − 1, see Line 23,
thus we are equivalent to the G(PD)h where messages are routed from nodes at length l to nodes at
length l − 1. The leader vl uses VCD to counts node at each different length. If we see line 34 - Figure
6 at round h nodes in Vh start to send their degree history, initially equal to [⊥], to nodes in Vh−1 that
will puts that histories in their variable M . Thus to count up to length x the leader employs at most
O(
∑x−1
i=1 |Vi|2|Vi+1|)) ≤ O(|V |3). Let us define as llast the maximum length assigned, we have that at

most at round rep + O(|V |3) the leader has to terminate: if llast is the maximum length then we have
that no nodes can send a message m such that a node v ∈ Vlast will add m to v.M (see Line 34- Figure
6). The terminating condition will be triggered when the leader reconstruct MS sent by nodes in Vlast
at round rep+ llast + 1.

Lemma 24. Let us consider an epoch ep, issued at round rep and the interval of rounds [rep+l+1,+∞).
Let us assume that ∀v|v.length ∈ [0, l] we have that @v that executes line 25. And let us assume that
∃vf |vf .length = l + 1 that at some round rf > rep + l executes line 25. We have that if vl does not
terminate then it will issue a new epoch at a round rn = rf +O(|V |).

Proof. Let us assume w.l.o.g that rf = rep + l + 1, we have that at round rep + l node vf sends a
message to a subset S of nodes with length = l, since we have that vl sets its length to l + 1 at round
rep + l we have that the nodes in S will execute line 32 adding these messages to M . At round rf + 1
vf executes line 25 this means that vf is not neighbor of any node with length l (see predicates at Lines
22-23 ), let us remark that from round rf and until vf .epoch = ep we have that messages coming from
vf will be not added to any set M of other nodes, see predicate at line 30. Moreover, for line 27 the
positive value for variable vf .changeepoch will be propagated from vf to other nodes with same epoch,
this implies, thanks to interval connectivity, that after at most O(|V |) rounds a message with epoch ep
and changeepoch = true will reach the leader triggering line 23.

At most at round rep+ l + 1 +O(
∑l−1
i=1 |Vi|2|Vi+1|) the leader reconstructs the set MS of messages

sent by nodes with length l at round l + 1. Starting a simulation of the VCD algorithm between nodes
with length l and l + 1 from round r = l. But there is a node vf that was present at round r = rep+ l
and that was not any more present at round r > rep + l this implies that these simulation of VCD will
terminates with a failure at most at round at round r = rep+ l+O(

∑l−1
i=1 |Vi|2|Vi+1|+ |Vl|2|Vl+1|), and

this trigger the execution of line 23. If ref > rep + l + 1 we have an analogous proof. Therefore in at
most min(O(|V |), r) the leader issues a new epoch.

Let us recall that when a node sets a new epoch its erase the content of M,H (Lines 17,18-Figure
6), the same is done by the leader (Line 25- Figure 7), moreover the messages using for counting in old
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epochs do not influence the content of the sets M,H and the messages processed by the leader (Lines
30,35-Figure 6 and Line 8-Figure 7). This is equivalent to restart the counting process at each new
epoch.

Lemma 25. Let us consider an epoch ep, issued at round rep and the interval of rounds [rep+l+1,+∞).
If we have vl.epoch = ep and the leader sets at line 28 that length count[l] = C we have that the number
of nodes that at epoch ep had length = l is equal to C.

Proof. If the leader executes line 28 then a simulation of the VCD between nodes in Vl−1, Vl terminated
without detecting an halt. Let us recall that nodes in Vl sets their length to l at round rep+ l − 1 and
that at the same round in line 32 nodes in Vl−1 detect the messages from their neighbors in Vl, by adding
the default value [⊥] for each neighbor in Vl. All the instances executed in the for loop (Lines 34,39 of
Figure 5) sj of VCD such that each sj started at round rep+ l− 1 + j with j ≥ 0 terminates in a correct
way. The various instances are obtained by shifting the starting round of 1 (for at line 34), then all have
to terminate detecting the same count; Also for VCD properties we have that this count is equal to the
number of nodes Vl that where neighbors of nodes in Vl−1 at round rep + l − 1. Let us remark that
if a node, v ∈ Vi<l, on the path of the messages from Vl to vl changes length when it is tunneling the
messages from Vl in its set M we have for the aforementioned reasons that the leader will detects this
when it compute the set of messages MS sent by nodes in Vi, this set is necessary to compute the set
MS sent by nodes in Vl. Thus, the leader will detect a failure before computing an erroneous counting
on Vl due to the delay of messages.

Lemma 26. Let us consider an epoch ep, issued at round rep and the interval of rounds [rep+l+1,+∞).
If we have vl.epoch = ep and such that the leader terminates executing line 12 when indexlength = llast+1
we have that @v with v.epoch = ep and v.length ≥ llast + 1.

Proof. If the leader terminates then, see predicate at line 10, it has reconstructed the set MS of messages
sent by nodes Vllast at round rep+ llast+1, this is enforced by the predicate that each M has to contains
at least two elements and it contains only ⊥ value. For Corollary 3 we have that if there is some node
with v.length ≥ llast + 1 then there must be at least on neighbor of a node in Vllast that sets its length
to v.length = llast + 1. This implies that exists a node in v′ ∈ Vllast that at round llast add to its list
v′.M(llast) an element different from ⊥ as second element of the list, see line 32 where a non empty
set of lists is added to M(llast). Let us recall that at round llast − 1 nodes in Vllast reset the variable
M(llast − 1) to [⊥] line 17 and line 34. For lemma 25 when the leader reconstruct the set MS sent by
nodes in Vllast it obtains the messages sent by all process thus it has to receive the messages from v′, but
this means that the terminating condition will not be triggered since v′.M(llast) = [⊥,¬⊥, . . .].

Lemma 27. Let us consider an epoch ep, issued at round rep and the interval of rounds [rep+l+1,+∞).
If the leader vl, with vl.epoch = ep terminates then it outputs the correct count.

Proof. Let us suppose that llast + 1 is the value of indexlength when the leader terminates. For Lemma
25 it has correctly counted all nodes in V0, . . . , Vlast moreover for Lemma 26 we have that there is no
node with v.length ≥ llast + 1. This implies that the leader has counted all nodes in the network.

Lemma 28. If the leader issues an epoch ep > 0 then some node vf at a certain round r with vf .ep =
ep− 1 executed line 25.

Proof. A new epoch is issued by the leader at line 24 - Figure 7. This means that the VCD algorithm
terminated detecting an halting. An halt is detected by VCD only if a node vf with v.length = h has
sent messages to nodes with length = h − 1 at rounds r < r′ and then stopped sending messages at
rounds greater than r′, that is vf executed line 25- Figure 6.

Lemma 29. We have that the maximum number of epochs in any run is at most O(|V |2)

Proof. From Lemma 28 we have that an epoch is issued only if there is node that changes its length.
For Lemmas 21-19 we have that the maximum number of length changes is bounded by V 2, that is each
node, at most, changes length |V | times from 0 to |V |.

Theorem 12. In ∞-interval connected network it is possible to count in O(|V |5) rounds.
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Proof. If the leader terminates the count is correct, see Lemma 27. For Lemma 29, we have that the
maximum number of epochs is O(|V |2). For Lemmas 23,24 we have that in the worst case the count
terminates or that a new epoch is issued after at most O(|V |3). Thus in at most O(|V |5) rounds we
reach the last epoch where the counting terminates.
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