A SAPIENZA

UNIVERSITA DT ROMA

FACULTY OF INFORMATION ENGINEERING, COMPUTER SCIENCE AND STATISTICS

Master Thesis in

ENGINEERING IN COMPUTER SCIENCE

Reverse Engineering For Malware Analysis:
Dissecting The Novel Banking Trojan ZeusVM

Candidate Advisor
Donato Dell’Atti Prof. Roberto Baldoni
Student ID Assistant Advisors

1231142 Dott. Leonardo Aniello

Dott. Daniele Ucci

Academic Year 2014/2015

Contents

P\ 0 13 1 - Lot SR 1 |
R 10} oo Yo [V 13 4 o) o R |

2. Malware Categories: Purposes and Security Techniques.....3

2.1, Malware Categories: PUMPOSE.....ccoccivieeiiee e eeeeiitreeeeee e eeesirreereseeeeeseanrreneeeeees 3
2.0 10 ViMUS ettt ettt b e st b et et esabe e b e st e bee s 3
2.1.2. WOTM (it e e 4
2.1.3. B I o= [P 4
2.1.4.]) A | £ T T U TP 4
2.1.5. ROOEKIT. ..ottt st 4
2.1.6. BOtNEL ..oviiiiie 5

2.2. Malware Categories: Security TEChNIQUESccvvveveeeiiiiiiiiiieeeee e, 5
2.2.1. Encrypted MalWare........uueiiiiieeeeeee ettt 5
2.2.2. OligomOorphic MalWarecooevciiiieeiiee e 5
2.2.3. Polymorphic MalWare......cccuvveeeeiieiieicireeeee e e e 6
2.2.4, Metamorphic MalWareoocvieeiiiieiecciiee e 6

2.3, Obfuscation TEChNIQUESccocuiiiiiiiiieeeieee ettt 6
2.3.1. Dead Code INSErtioNceivviiiiiiiiiieeeieeeee e 6
2.3.2. Register Reassignment........coooeiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeee e 7
2.3.3. Subroutine Permutationcoceeiiiiiiieiee e 7
2.3.4. INStruction SUBSEITUTIONeeeiiiiiiiee e 7
2.3.5. (00 Yo LI W= 1o 1 o Yo 1 1 o] o TN 7

2.3.6. (0oTe [l [0 =T ={ - A [e] o WU UPPPPTIPPP 8

3. Reverse ENgineering.....c.ccoiceieiieiieieieinincncnciesiesiesrasnenees 9

3.1. Malware Analysis TEChNIQUES......ccccvreieiiee et eeeeeeirreee e e e e e searreeeeeeees 10
3.1.1. STALIC ANGIYSIS 1rvriieiiiiiiiireeeee e e e e e e e e eaarrees 10
3.1.2. DYNAMIC ANAIYSIS w.vviiiiiiiieeeeiiee ettt e s bae e s e 11

3.2. Tools for Malware ANalYsis.......ooocvrrreiiieiiiiiiiiiieeeec e 12
3.2.1. Hash Algorithm Based SOftWarecccvveveeeeeiiiicirieeeeec e e e 12
3.2.20 ANTIVITUS ettt st e 13
3.2.3. PACKEr DELECTON ittt 13
3.2.4, Header and Sections INSPECLOr........uvvvveviiiiieiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeee e 14
3.2.5. SEFING ANAIYSIS cnneviieeiiiiee et 14
3.2.6. DiSASSEMBIET 15
3.2.7. D T=Tole] 27011 (=] U OO UTURRUPP PPN 15
3.2.8. L] o 10T =0T OO OPPUPRRRN 15
3.2.9. T A I A VA Y/ (o] T o GO 16
3.2.10. File System and Process MONITOr.........cccevviieiiireeiieeeeiieiireeeeeeeeeeeseannnees 17
3.2.11. NetWOrk MONITOr ..c.ei i 17
3.2.12. Virtual Machineg.......coooiiiiiieeieeceeeee e 18

4. The Banking Trojan Zeuscccieieveiienciniennieciensencrncennnes 19

4.1, INTrOAUCTION e 19
A o 113 o Y U 20
A3, TOOIKIT .ttt ettt et be e st ne e s ae e 23
4.3.1. (000 01 7=3 0 SRS 23
4.3.2. V=] o1 Y =Tol £ o OO URURRRRPP 24
4.3.3. Command & CONtrol SEIVEN.......c.uiiiiiiiiieeieeeeee e 25
A.3.4. The BUIIET ..oiiiiiieie ettt e 26

4.3.5.

LI TN S G L =] o L= 27

4.4, HOW ZBUS WOTKS ..ottt ettt ettt e e et e e e e taee s s e taaessetaeesesannns 27

5. Reverse Engineering of ZeusVMcccceeerecrecrecrenrecrecenees. 29

5.1. Case Study ENVIFONMENT........uuuuiuiiiiaaeeaesaasssasaaassaasnssnassnnnnsnnes 29
5.1.1. Creation of the Virtual Machines........ccccceeviiiiniiiiniiiineeeeeees 30
5.1.2. Installation of the ZeusVM Control Panel..........ccccoeveeniieiiiniinnicnee 30
5.1.3. Creation of the ZeUSVM trojaneeeieeeeecciiereeeieeieecireeeee e 31
5.1.4. Lo To] Y= (U o JO PRSPPI 32

5.2, ANAIYSIS i e et e e e rae e e e naaes 32
5.2.1. Malware testing: Basic Static ANalySiS.....ccveeivieciurreeieeiieiiiirieeeeeee e, 33
5.2.2. Advanced Dynamic ANAIYSISccovvuvieiiiiiiiieeiniieeeerieee e 36
5.2.3. Static Analysis of the Virtual Maching.......ccccceevviiieeiinivieeieeee, 36
5.2.4. DYNAMIC ANGIYSIS 1evvriiieiiiieiiiiieiiee et eeeeserrreee e e e e e e eearraeereeeeeeennns 39
5.2.5. Basic DYNaMIC ANGIYSIS c.cccvrrrieiieeieiieiiiieeeee et e e e eearreeere e e e e eeans 39
5.2.6. Dynamic Analysis Of Dropped.eXeccoccveeeirrireeeiniiieeeeniieeeesieee e 40
5.2.7. Dynamic Analysis Of RCA S-BOX.......cccevrurereieeiiiiiirieeeeee e eeeirreeeeeeee e 41
5.2.8. Static Analysis Of RC4A PRNG........cccovvveiiieiiiiiireeeeee e 43
5.2.9. Remote Debugging of EXplOrer.eXe.....occveeeveiiieeiiniiiee e 43
5.2.10. C&C URL DECIYPLION ..cuviiiiiiiiiiieiiieeeee ettt e e e e eiiiere e e e e e s s 45
5.2.11. DynamicConfig DeCryplionccoccvvreeiieiiiiiiiiiireeeee e e e e 46
5.2.12. Traffic ANQIYSIS c.uviiiiiiiiiee e 47
5.2.13. Dynamic Analysis of communicationscccceeevviiieeenniiiee e, 49
5.2.14. Static Analysis of POST data......ccccvvereeeiiiiiiiiiiieeeeee e e e e 51
5.2.15. Multiple Malware Samples ANalYsiS.......cccceevvrveeiieeieiiiiiirireeeee e, 52

D 3 SUMIMIAIY e 54
5.3.1. MISSING PIECES .ttt e e e e e e e e e e e eeeeeeeees 56

6. CONCIUSIONS...c.eeieieiereririnierreressaceseressssssesesessssssssesesssssssess DS

6.1. FUTUNE WOTKS ettt et ettt et e e e ettt e e e e taae s s e ta e s s etaessesannss 58

Y 3 (=] (=] (=] 1 Lo = R o1

List of Figures

Figure 1 - ZEUS timMeliNecccueeeiiiiiiieiieiiieeeeiiee et ee st e e s e s s siaa e e s s saae e e s sanaeeas 20
Figure 2 - TOOIKIt SCHEMIE.....coiiiireeeiie ettt e e e s e bbaa e e e e e e e eenans 23
FIiQUIE 3 = CONFIG.EXT...uvveeeeeiieiieeeeitieeeie e e e e ceeittee e e e e e e estbraeeeeeeeeesebbbbaeeaeseessesssbeseeeseeesnnnns 24
Figure 4 — WebiNECE. EXT.......eeeiviiieiieeiiiee ettt et s et e e s s e s s saae e e s s saae e e s sasaees 25
Figure 5 — Builder CONErol PANEooocueeiiiiiieiiiniiiieeeeieeesesieee e esreee s e e sanaee s 26
Figure 6 — ZeUSVIM BUIIAETuvveeeeeiiiiieiiiieeeeee et e e eesestveee e s e e s sesetbeaeeeaeeeeenans 27
FiQUIE@ 7 — ENVIFONMENT ... eeeeeeeeeee e eeettteee e e e e e e ettt eee e e e e e e seaaaae e e e e eeseesanaeeaeas 30
Figure 8 — ZeusVIM deCryption OVEIVIEWuuuuurnuuunnniiiiiinnssnsnsnsnsssssssssnsssssssssanes 33
Figure 9 — ViruSTOtAl QNAIYSISccccueiiiviiiiiiiiiiiiiei sttt e s e e s saaaee s 33
Figure 10 — PEID GNQAIYSISueeeiviiiiiiieiiiie ettt sttt esttee st e e s bae e s s st e e s s steeeessanaeeas 34
Figure 11 — PEVIEW GNGAIYSIS «..ccccvvveeiieiieiieiiitieeeeee e e eesciivveeeeeeeeesssasreeeseseessessssreseessesssnnans 35
Figure 12 — BinTeXt ANAIYSIS........uvveeeiiieeiieiiiieeeeee e eeecesiteeeeeeeeeeesesirreeeseseessessssreseesseeesesans 35
Figure 13 — Virtual MACRINE..............cccuuiiiiiiiiiiieiiie ettt e e s saae e e s s aaaee s 37
Figure 14 — URL DECIYPTION ... 45
Figure 15 — DynamicConfigq inSidle JPGeeueeeeeeeeeiiiuveeieeeeiiieiiiireeeeeseessesisireseeesesssnnns 47
Figure 16 — Communication BOt-CECcceeeveiiiiiiiiiiiiiinnnnnnnnnnnnnsnnnnnsnssnnnnnsnnsasnsnns 48
Figure 17 — Packet EXChANGed BOt-C&C..........euueeeeeeeieiirreeeieeeieiiecirveeeeeseessesiireeeesseessennns 49
Figure 18 — Decrypted POST AQLQcceiveuuiiiieiiiieiesiiee e esiieee st et e s e e s sanaee s 51

Figure 19 — Decrypted StatiCCONSIG.........couuvuuiiiniiiieeiriiiee e esiieeeeesraee e e sireee s s sraeeessnaaaeeas 52

Figure 20 — VM functions during @XECULIONc..cceevcuvieiieiieeeisiiieeeenieeesssieeeesssinaeens

Figure 21 — ZeusVM execution

Figure 22 — ZeusVM

Abstract

In recent years, Internet Security has acquired a key role in Computer Science
due to the huge damages caused by security outbreaks. In particular, during the last
decades, there has been a rise of Botnets as a mechanism to steal money and sensitive

information.

In this scenario, one of the most important families of Botnet are currently
created using the Zeus toolkit, through the diffusion of the Zeus trojan or ZBot that has

been firstly discovered in 2007.

In order to fight back these threats, Reverse Engineering has become a standard
procedure in Malware Analysis. In this field, Reverse Engineering is applied in order to
understand the behaviour of a malware through the reconstruction and analysis of the

components of the software source code.

Considering the importance of this topic, this thesis focuses on the ZeusVM
v2.0.0.0. trojan, as it is one of the most recent addition to the family of Zeus-based
Botnets and a complete version of its Toolkit has been leaked on internet for free in July

2015 allowing everyone to create his or her own botnet.

In this dissertation, aiming to understand ZeusVM trojan behaviour and its
security mechanisms against detection and anti-analysis, the process of Reverse
Engineering was applied as the source code was not available. This process has been
adopted inside the Malware Analysis using the Static and Dynamic techniques, which

use both the Reverse Engineering in different ways.

As a result of this analysis, a new technique to decrypt the URL of the Command
& Control Server was found. Moreover, the role of specific indexes in the RC4

decryption, and the technique used to encrypt the traffic with the C&C were found.

This allowed the identification and classification depending on their roles of

some functions involved with the Virtual Machine during the execution of the malware.

1. Introduction

The name Malware stands for Malicious software, a malicious software is a software
that runs in a computer without the knowledge or the agreement of its owner.
Different types of malware exist and they can be classified depending on their
spreading technique or their purpose, which can range from monetizing the security
outbreaks, or gaining valuable information that could be sold, to damaging the hosting

machine or overloading the network.

In recent year, considered the yearly increasing spread of new malware and their
dangerousness, enhancing the defences against them has become an important need.
In this scenario, internet security has acquired a key role in order to protect sensitive

information since the most damaging attacks usually involve stealing money.

Nowadays, Botnets are mainly used to carry out these attacks. One of the most
important families of Botnet is created using the Zeus toolkit, through the diffusion of

the Zeus trojan or ZBot that has been firstly discovered in 2007.

This thesis focuses in particular on the ZeusVM v2.0.0.0 trojan as it is one of the most
recent addition to the family of Zeus based Botnets and a complete version of its
Toolkit has been leaked on internet for free in July 2015 allowing everyone to create its

own botnet.

As the source code of ZeusVM was not available, in order to understand how it works

the process of Reverse Engineering was applied.

In Software Engineering, the term Reverse Engineering stands for the process of
analysing a subject system to create representations of the system at a higher level of

abstraction (Chikofsky, et al., 1990).

The aim of this dissertation was to carry out a malware analysis of the malware
ZeusVM through a process of Reverse Engineering in order to understand its behaviour
and its security mechanisms against detection and Malware Analysis.

1

The analysis of the ZeusVM trojan was performed through the use of the Static and
Dynamic Analysis, the main techniques of Malware Analysis. Both these techniques
can be further categorized in Basic and Advanced. The Basic Analysis is a superficial
analysis which involves the appearance of the malware and its behaviour. The
Advanced Analysis is the code analysis, where there is a deep inspection of the
internals of the malware. The Advanced analysis can be called also Reverse Code
Engineering and frequently in the Software Engineering sector, it is abbreviated to

Reverse Engineering, losing its first initial meaning.

In this dissertation, mostly Reverse Code Engineering was applied to understand the
internals of the ZeusVM malware. Virtualization was used to analyse the trojan, a
Botnet was deployed to replicate the execution on an infected machine, including the
communication with a fictional server acting as the Command & Control. The ZeusVM
trojan was analysed starting from its most peculiar characteristic, the Virtual Machine,
whose components were found out. Then, a deep analysis of the configuration file of
the trojan and its decryption has been carried out as well as the traffic between the

infected machine and the server were analysed.

As a result of this analysis, a new technique adopted inside the malware to decrypt the
URL of the Command & Control Server used to download the DynamicConfig was
found. Moreover, the role of specific indexes in the RC4 decryption, and the use of the
VisualEncrypt and RC4 by ZeusVM to encrypt its traffic to the C&C were found. This
allowed the identification and classification depending on their roles of some functions

involved with the Virtual Machine during the execution of the malware.

Firstly, an initial theoretical study of the malware and of the most common techniques
applied in Reverse Engineering and Malware Analysis was carried out as shown in
chapter 2, 3 and 4. Secondly, the setup of the environment was created and the
analysis of the malware was conducted as explained in chapter 5. Limitations and

conclusions are reported in chapter 6.

2. Malware Categories: Purposes and Security

Techniques

During the years, Malware have changed their behaviour and purpose since also the

writers of the code have changed.

In the early years of internet, there have been many cases where the coders were
students who wanted to perform a prank, like the first internet worm, or just gain
popularity. Nowadays, the situation has heavily changed and the most powerful
malware are written by skilled programmers whose job is to develop them and their
purpose ranges from monetizing the security outbreaks gaining valuable information

that could be sold, to damaging the hosting machine.

Currently, malware can be categories depending on their purpose and spreading
techniques (Damodaran, 2015), such as trojan, worms, spyware, etc. (fig,1), or
behaviour in terms of security techniques that they use to avoid detection or to
enhance their analysis complexity such as Oligomorphic, Polymorphic malware etc.

and related obfuscation techniques (Agarwal, et al., 2013).

In this chapter, the key features of the main purpose-categories and the most common

security and related obfuscation techniques are described.

2.1. Malware Categories: Purpose

2.1.1. Virus

Generally, Malware and Virus are considered synonymous but they are not as Virus is a
sub-category of Malware. A Virus takes its name from biology, because its behaviour is
similar to its biological counterpart. As real viruses, computer viruses need to attach to

other programs to live and they self-replicate.

Once infected the machine, the virus replicates itself and infects all the machines
connected to the source of the infection. Once infected the system, it is modified and

the vital functions to execute programs are destroyed.

Viruses are a primitive form of malware. They were firstly developed in the pre-
internet era and the main vehicles of transmission were physical devices such as pen
drive, etc... With the advent of internet, they were developed in order to spread
through the network. At the same time, new forms of malware such as worms, with

more advanced and sophisticated characteristics, were created.

2.1.2. Worm

A Worm is similar to a Virus as it is a self-replicating malware but it differs from a virus,
as it does not need to attach to other programs to survive. For this reason, it is defined

a stand-alone program. It mainly propagates through networks.

2.1.3. Trojan

This type of malware takes its name from the wooden horse used to enter Troy during
the Troy war. As the Troy horse, a trojan is apparently an innocuous artefact that has
access through the front door besides it contains a malicious element hidden inside it.
Its definition recalls its characteristics, as its installation requires user’s consent. On the

contrary, of viruses and worms, it does not self-replicate.

2.1.4. Spyware

This category is relatively recent and refers to that malwares, that as the name itself
states, spy the user tracking, monitoring and reporting users’ online activities without
their consent. These malwares are capable of collecting a wide range of information
including cookies, credentials, credit card numbers, etc. They differ depending on how

intrusive they are.

2.1.5. Rootkit

Rootkit is not a malicious software but it can be used for malicious activity. Its goal is to
hide itself inside the system and provides a privileged access to the system for the

4

attacker. A rootkit can coexist with other malware and has the role of concealing their

malicious activity so that they cannot be detected.

2.1.6. Botnet

A Botnet is a network of infected machine with a particular Bot. A bot is a malicious
code that infects a machine connected to internet. This bot allows the owner of the
botnet, also known as bot master, to remotely control every machine inside the
botnet. The botnet can be used to perform spam activity through emails or through a

spyware component that can collect bank credentials or other valuable information.

2.2. Malware Categories: Security Techniques

It is possible to categorize malware in terms of the security techniques that they use to
avoid detection or to enhance their analysis complexity. The most common categories

are encrypted, oligomorphic, polymorphic and metamorphic malware.

2.2.1. Encrypted Malware

Encryption is a technique that hides the content of a malware from a static analysis,
which is an analysis that does not execute the code and does not have the possibility
to run the decryption function to decrypt the malware. Once discovered the
decryption function, the malware is vulnerable, since it is composed of the encrypted
part and of a decryption function, which is always the same. The encryption avoids the
detection from a signature based scan. This technique can be combined in multiple
levels of different encryption to make the malware more dangerous and less

vulnerable.

2.2.2. Oligomorphic Malware

An Oligomorphic malware is essentially a slight modification of an Encrypted malware
where the decryption function is not fixed and easily identifiable. For each different
sample, a different decryption function is created, this makes the malware always

virtually different. In real cases, the combinations of the decryption functions are

limited, so it is possible to take the sign of every different decryption function and

identify them through a signature based analysis.

2.2.3. Polymorphic Malware

The Polymorphic malware is an evolution of the Oligomorphic malware. In this case,
the code of the malware takes a mutation from its original source and the malware
generates a real infinite number of different decryption functions through obfuscation
techniques, so each sample is different from the others and needs to be specifically
analysed. Besides this, the encrypted malware is always the same as well as the

decryption function.

2.2.4. Metamorphic Malware

A Metamorphic Malware is a type of malware which uses the most complex security
technique compared to a polymorphic malware. In this case, the malware is rewritten
every time but it does not need to use encryption, since all the body of the malware is
changed at each rewriting. The functionality of the malware remains the same but
through different practices, the outcome is always different. The Malware contains a

mutation engine that has the role of creating the new mutated sample.

2.3. Obfuscation Techniques

Code Obfuscation is a legitimate technique used by many software developers to hide
the source code of their works or to make it harder to recreate the source code
through reverse code engineering. Malware writers adopt the same strategies to hide

their malicious software from the researcher.
Those methods are used also in polymorphic and metamorphic malware.

2.3.1. Dead Code Insertion

Dead code insertion is a simple technique that adds some operations that are not
needed for the program, like NOP instructions that do not change the behaviour of the

program. Antivirus could check for a series of NOP operation and could delete them, so

6

also other dead code could be inserted to slightly modify the program, like the
subsequent increment and decrement of a variable. The dead code could be never
executed or even if executed it would have no effects on the functionality of the

original form of the malware.

2.3.2. Register Reassignment

Register Reassignment or Renaming is a technique that changes the used register from
one generation of the malware to another. The behaviour and the functionality of the
program remain untouched. It is to reassign a register that is never used inside the

program, otherwise it is a technique more complex to adopt.

2.3.3. Subroutine Permutation

Subroutine Permutation exchanges the order of the malware routine in a random
combination. This technique could create a n!/ possible combinations of a malware

with n subroutines. The order of the subroutines could be different for each sample.

2.3.4. Instruction Substitution

Instruction Substitution changes the code of the program with equivalent operations
that logically have the same results but that are executed in a different way. This is a
complex obfuscation technique since it is needed a dictionary of all the possible

substitutions than could occur for each operation to detect it.

2.3.5. Code Transposition

Code transposition is a technique where the order of the instructions is changed from
the original source of the malware. Blocks of code that are not dependent, they are
rearranged in order to change the resulting code of the malware without changing the
behaviour of those blocks of codes. This technique is hard to implement because it is
complex to find independent blocks of code. Another possible way to achieve a similar
result is to randomly rearrange the instructions and reconstruct the right order

inserting conditional and unconditional jumps inside the code.

2.3.6. Code Integration

Code Integration is a sophisticated technique. In this case, the virus inserts its code
into another executable program. In order to do it, it firstly disassembles the host
program then copies itself inside it and recompiles the program to generate a new

executable.

3. Reverse Engineering

Reverse Engineering is the process of extracting information from a software
program's binary code by analysing its components and behaviour and without any

knowledge about its internals and any information about its creation.

Reverse Engineering is a field that can be applied to every Forward engineering sector,
it is comparable to a scientific research with the difference that the analysis is

computed on a man-made product and not a natural phenomenon.

In Software Engineering, the term reverse engineering is the process of analysing a
subject system to create representations of the system at a higher level of abstraction

(Chikofsky, et al., 1990) .

Reverse Engineering is a process opposed to the traditional waterfall model, in which
the aim is to produce the source code of the software. It only examines the provided

software to gain information without writing the source code even if available.

There are mainly two possible fields in which reverse engineering could be useful

(Eilam, 2005).

The first field is in software development where the source code is available but it is
poorly documented and there is the needed to do interoperability with this

undocumented or proprietary piece of code (Eilam, 2005).

The other main field is related to software security, where the source code is not
available and the object of the reverse engineering is to reconstruct the source code of

the software analysed (Eilam, 2005).

In Software Security, reverse engineering can be applied also to the research of
security flaws inside software, for the analysis of cryptographic algorithms or to break

the security layer of software protected by digital rights management.

This field includes Malware Analysis since usually malware developer do not share
their source code and as a consequence malware analysts need to understand the
behaviour of the malware trying to reconstruct the source code of the desired aspects

that they want to analyse.

3.1. Malware Analysis Techniques

Malware Analysis is the study of a malware by dissecting its components to
understand its behaviour. There are mainly two possible Malware Analysis techniques,
each one has its advantages and disadvantages. These techniques are Static Analysis or
also called code analysis, and Dynamic Analysis or behaviour analysis. Both techniques
can also be categorized in basic and advance, so there are four categories Basic Static
Analysis, Advanced Static Analysis, Basic Dynamic Analysis and Advanced Dynamic

Analysis. (Sikorski, et al., 2012)

3.1.1. Static Analysis

The procedure of analysing code without executing it is called static analysis. This is
the first analysis that should be taken on an executable to understand its behaviour.
Static Analysis has the main advantage that does not execute the code of the malware
so it is not harmful for the system that runs the analysis (Singhal, et al., 2014). As

previously mentioned, Static Analysis can be divided in Basic and Advanced.

Basic Static Analysis

Basic Static Analysis consists of an analysis of the malware without viewing the
machine level instruction of the file. There are programs that could be used to gain
some information, firstly an antivirus scan could reveals the malicious essence of the
file. An hash signature verification could be performed to see if the file is known. The
structure of the file could be dissected to see if the program is a portable executable or

if it has been packed.

10

Advanced Static Analysis

Advanced Static Analysis has the role of inspecting the code of the malware with a
proper disassembler. An example of disassembler is IDA Pro (Hex-Rays) which stands
for Interactive Disassembler Professional and is usually the first choice for malware

analysts. It can also be used as a debugger.

Generally, a disassembler is a tool that reconstructs the assembly code of the malware.
Through this analysis, it is possible to see all the possible instructions that the malware
could execute on the computer. Moreover, it is possible to identify specific function
inside the code that has a known implementation or a specific digital signature. For

example, it is possible to identify functions that do encryption or perform obfuscation.

The problem with this kind of analysis is that analysing the binary all the data
structures and variables are not available, so it is hard to understand the behaviour of

the program. (Gandotra, et al., 2014)

This technique has some limitations since malwares have implemented a lot of
techniques to hinder this kind of analysis for security researchers, like the obfuscation
or the encryption of some parts of the malware, which cannot be read (Gadhiya, et al.,

2013).

3.1.2. Dynamic Analysis

Dynamic Analysis is a complementary approach to the Static Analysis, as it is the
analysis of a software during its execution in a controlled environment. Since the
software could be malicious, and Malware Analysis is about malicious software, the
environment where the analysis is taken should be safe. Dynamic Analysis is
performed under safe environment that cannot infect the machine of the security

researcher. This environment is based on Virtual Machine or Sandbox.

The problem with Dynamic Analysis is that malware are aware of this technique and
have implemented countermeasure, a malware that can identify a hostile ambient

could act in a different way from its standard execution.

11

One of the main problem with Dynamic Analysis, it is that it is based on a single
execution of a malware, which means that not all the paths of that program can be
identified in a single run. Finding all the possible executions of the malware could be

time consuming, depending on the nature of the malware.

Basic Dynamic Analysis

Basic Dynamic Analysis is the execution of a malware and the study of its effects on
the system. This analysis can be taken with the help of software that monitor the
system to see accesses to function calls, the creation of new files, the exchanges of
internet packets, the accesses to the register or any possible information that could be
gain from the observation of the environment before and after the execution of the

malware.

Advanced Dynamic Analysis

Advanced Dynamic Analysis is the execution of the malware with a debugger software

such as IDA Pro or OllyDbg (Yuschuk).

A debugger allows the execution of one operation of code at the time, so it possible to
do a deep inspection of each function that the malware executes. Through a Dynamic
Analysis compare to a Static Analysis, it is possible for the security researcher to find

the values assigned to variables during the runtime execution.
The problem with this approach is that many security checks have been implemented

inside malware to identify the execution inside a debugger or a virtual machine.

3.2. Tools for Malware Analysis

In this section, an overview of the software that can be used for static and Dynamic

Analysis is presented.

3.2.1. Hash Algorithm Based Software

Hashing is a common technique used to identify malware. Malware that does not

change their executable maintains a static sign, or fingerprint. This can be checked

12

with algorithms like Message Digest Algorithm 5 (Rivest, 1992) or Secure Hash
Algorithm 1 (Eastlake, et al., 2001) that are the most popular and commonly used

algorithm for malware identification.

3.2.2. Antivirus

The main software that can be used to identify a malicious software is an antivirus.
Scanning a file with an antivirus could give some initial information about it as the file

could be a well-known malware that has some specific characteristics.

For this purpose, there are online services that provide a free scan for uploaded file.
Any file can be submitted to a virus company that will test it. The most important and
famous online scanner is VirusTotal, but there are also other companies that provide
this service like Jotti Malware Scan and many others. Those services provide a report

with the result of the analysis on the file.

3.2.3. Packer Detector

The first thing to do with a malware file is to understand if it is an executable. There
are a lot of software that can analyse the structure of a portable executable but that

software will fail if the software is packed (Sikorski, et al., 2012).

Malware authors use packing technique to hide the content of the executable, packed
programs are programs in which the malware has been compressed and it is not
possible to analyse the program with a static analysis. A packer always takes in input
an executable and outputs an executable that has the same functionality but has been
transformed with either encryption or compression techniques. This procedure makes
the reverse engineering of that malware more complex. In the past, this technique was
used also to reduce the size of the malware, a packer can be applied numerous times

to an executable to encrypt it multiple times.

Those kind of malware needs to be unpacked prior to be analysed. There are software
such as PEiD (aldeid) or Exeinfo PE (A.S.L) that identify if an executable is packed and

which is the packer that has been used.

13

PEiD has been discontinued from its creators but it is still considered the best software

in this field (Sikorski, et al., 2012).

In order to avoid the detection from these software, malware authors can implement
custom packers. In this case, it could be needed to do a manual unpacking to gain the

original form of the malware executable.

3.2.4. Header and Sections Inspector

Almost all the windows executable objects are in the file format of Portable Executable
[PE]. PE file has information in its header that could be of great value for malware

analysts.

Once unpacked a malware executable, it can be analysed with software that inspect
the header of the file and its structures to gain information. One of the tools that can
be used is PEview (Radburn). Using this software it is possible to identify the structure
inside the PE. Usually, four sections are identifiable: .text, .rdata, .data, and .reloc.
Those information about the sections are written inside the header with also other

interesting elements such as import export functions, time of compilation and others.

Usually .text section contains the instructions that are executed by the CPU; .rdata
contains the import/export information, and read-only data used by the program.
.data contains the program global date, while local data are not stored in this section.

.reloc section contains information for the relocation of library files.

Actually, the name of the section is relatively important as sometimes it can be

obfuscated to make analysis more complex.

There are many software to do the header and section inspection such as PE.Explorer

(HeavenTools) and others.

3.2.5. String Analysis

String Analysis is the research of readable text embedded inside a malware. This can
help to find some valuable information. Embedded strings could be easily extracted

through software like Bintext (McAfee), which has specifically only this role or using

14

more complex software such as IDA Pro which have this same feature. This kind of

analysis is not very useful for a malware, which encrypts its strings.

3.2.6. Disassembler

The Disassembler is one of the most important software in reverse engineering and in
particular for the Advanced Static Analysis. The disassembler is a software that takes in
input an unreadable executable binary file and generates an output of the same code

into, a human readable, assembly language code.

Assembly is machine dependent, since the instruction sets are different from one
architecture family to another. The disassembler should be capable of understanding

the different types of architecture and adapts to them.

Usually malware are written for Windows x86 architecture, but there also many other
architectures x64, ARM, and others that could be a target for malware. The most
famous and powerful disassembler is IDA Pro. It usually comes in two versions, and

only the most complete and expensive one supports all the architectures.
Another popular free disassembler is OllyDbg but it supports only x86 instructions.

3.2.7. Decompiler

A Decompiler is a software that transforms a series of assembly instructions into a high
level of instructions, frequently in a C-like language. It has the role to reconstruct the
source code of the analysed application, but actually it does not exist a software which
makes a complete reconstruction. The Hex-Rays Decompiler is a plugin for IDA Pro and

it is the only one which gives some useful results decompiling portions of code.

3.2.8. Debugger

The Debugger is the most important software for Advanced Dynamic Analysis. It is a
computer program that runs another program to study it and detect errors. The
debugging phase is a common phase for every software development. The debugger is
usually inside the integrated development environment and it is a source level
debugger which can take breakpoints directly inside the source code of the software.

15

In Malware Analysis, the debugger has a slightly different role since the source code is
not available, so it is needed an assembly debugger, also called, low level debugger.
This kind of debugger works directly on assembly code and allows the researcher to

analyse one instruction of the program at a time.

A debugger shows the current state of registers and memory during the execution.
Frequently disassembler and debugger are included in the same software, this is the

case also of for IDA Pro and OllyDbg.

3.2.9. Registry Monitor

The Windows registry is used to store settings and options of the software installed in
the system and of the configurations of the Operative System for each user. Analysing
the register could provide useful information about the behaviour of the malware and

its functionality.

Malware often uses the registry for persistence or configuration data. Once inserted
inside the registry a malware can run automatically at every start-up of the system.

The registry is split into the following five root keys:

e HKEY_LOCAL_MACHINE (HKLM) Stores settings that are global to the local

machine
e HKEY_ CURRENT_USER (HKCU) Stores settings specific to the current user
e HKEY_CLASSES ROOT Stores information defining types

e HKEY_CURRENT_CONFIG Stores settings about the current hardware
configuration, specifically differences between the current and the standard

configuration

HKEY_USERS Defines settings for the default user, new users, and current users

The two most commonly used root keys are HKLM and HKCU. These keys are

commonly referred to by their abbreviations. (Sikorski, et al., 2012).

16

The software RegShot (Buecher) allows taking a registry snapshot that can be stored
and later compared with another one. Taking a snapshot prior and after the execution

of a malware can underline the changes executed inside the register.

Another software for monitoring registry was RegMon, now discontinued and

integrated inside Process Monitor.

3.2.10. File System and Process Monitor

Process Monitor is a tool for Windows that shows Registry, file system and
process/thread activity for an advanced monitoring. It shows event properties such
session IDs and user names, full thread stack, reliable process information and much
more. Process Monitor is a core utility for troubleshooting and malware hunting for its

uniquely powerful features.

The Process Explorer display consists of two sub-windows. The first window shows a
list of the active processes. The second can shows the handles that the process
selected in the first window has opened. Otherwise, if Process Explorer is in DLL mode

it will shows the DLLs and memory-mapped files that the process has loaded.

The unique capabilities of Process Explorer make it useful for tracking handle and DLL

errors, and provide insight into the way Windows and applications work.

The software are both integrated inside the Sysinternals Suite (Microsoft).

3.2.11. Network Monitor

Network monitoring is a key sector for understanding the behaviour of a malware. The
presence or not of network activity can rapidly identify the kind of malware that has

been analysed.

The information that can be gained is the amount of traffic that is generated and the
types of traffic. It is possible to see what is the payload of the messages exchanged,

and if it is encrypted or not.

17

This kind of network analysis can be performed with a software like Wireshark, and it is
not even needed that this software is installed on the infected machine. Wireshark can

monitor all the traffic exchanged inside a network if it can physically reach the packets.

Network monitor can be performed also on the infected machine to see which are the
processes that are opening new malicious connections and on which port. This kind of

analysis is performed also with process monitor, or other specific software.

3.2.12. Virtual Machine

A Virtual Machine is a software useful for dynamic analysis. This software allows the
creation of a virtualized physical machine inside the host system where it is installed.
This virtual machine can be seen as another separate entity from the OS of the host
machine. On each virtual machine can be deployed an independent OS. Since
everything is virtualized it is easy to make a memory snapshot of the entire system. A
snapshot can be restored in a successive period of time to have back the status of the
virtual machine in that moment. Those snapshots can be incremental which creates an

history of the points in time that can be recovered.

This is very useful in Malware Analysis were the malware creates irreversible damage
or modification to a machine. Recovering a not infected snapshot allows a more easy

execution of the dynamic analysis.

The drawback of using a virtual machine for malware analysis is that malware have
been implemented anti-virtual machine techniques which can detect if the malware is
running on a virtual machine and change its behaviour. Those techniques hinder the

works of the security researchers.

The most famous software that allows the creation of Virtual Machines is VMWare

Workstation (VMware).

18

4. The Banking Trojan Zeus

4.1. Introduction

Zeus or Zbot is a banking trojan, it was created to steal information such as banking
details, login credentials and other sensitive information from the infected computer

and send them back to the author of the attack.

Zbot is mainly focused on stealing bank related information, since these are the most
profitable data in the short period, but it can also steal any credential that is

considered useful.

In 2007, the first version of Zeus was detected. Since then, almost every year a minor
update version of the original malware, Zeus v1.0, has been released such as v1.1,
v1.2, etc... In 2010, the first major update known as Zeus v2 was released while in
2011, the source code of the Zeus v2.0.8.9 was leaked allowing the development of

numerous forks over the years (fig.1) (Wontok Safe Central).

This malware creates a network of infected machines. Each machine is part of the
Botnet and its owner is not aware of the critical situation, since the trojan runs silently

in the background of the infected computer.

Once infected the zombie machine will automatically send the stolen information to a
C&C server that gather all the data and is controlled by the owner of the botnet. The
owner of the botnet can also issue commands to control all the zombie machines
simultaneously, and can update the list of the website that have to be monitored to

steal the data from the bot.

Zeus was initially sold on underground forums in a ready-to-use kit. At the time, the
cost of the kit reached also several thousands of dollars. In order to avoid
unauthorized copies of the kit, some initial versions of the kit were sold with a

hardware license, so that only the purchaser could run it on his computer and build the

19

executable, this was the first time that this kind of security technique was applied to a

malware. (Stevens, et al., 2010)

In the following sections, Zeus evolution since 2007 and its main features are analysed.

5
SOURCE CODE LEAKED b _m
H

2007-2009 2010-2011 20012-2013 2014+

Figure 1 - Zeus timeline

4.2. History

During the years, Zeus has constantly evolved, from its first public detection in 2007 to

the most recent versions.

Zeus was probably originally created in 2006 by a Russian developer, known as Slavik.
Since then, many developers have tried to create software that could be in

competition with Zeus.

The first one of this kind was SpyEye in 2009. The biggest merit of SpyEye was having a

much lower price than Zeus. Moreover, its creator, the malware developer

20

Gribodemon, gave a specific function to the program, “kill Zeus”. This function had the
objective of removing Zeus trojan from the infected system and infects it with SpyEye.

This could also be considered a marketing feature.

The war with SpyEye lasted for a couple of years, during which Zeus maintained always
the leadership of the sector. In October 2010, Zeus author announced his retirement
on an underground forum, and his will of giving for free the source code of the

software to the creator of SpyEye,

The announce of his retirement was actually a trick, since Slavik was actually
developing a new version of Zeus and he deceived the abandon of the malware scene
aiming to target the interest of the police to another element (Maurits, 2015). In
addition to the source code, Slavik gave the ownership of all the kit customers to

Gribodemon and put him in charge of the customers support.

Once got the source code of Zeus, Gribodemon claimed also the realization of a new
powerful malware that was supposed to be a combination of both SpyEye and Zeus,

but this was never released (Krebs, 2010).

In the year following these events, a major episode happened in Zeus history. In march
2011, someone started selling on underground forums the complete source code of
the latest version of Zeus toolkit (Kruse, 2011). Rapidly, the source code was available

for everyone on the internet, for free.

The free availability of a source code that was used to be sold for many thousands of
dollars raised the interest of many people, from the least experts to the most skilled

malware developers.

The leak of the source code kicked off the creation of many Zeus forks, and many

malware have been inspired by those source codes.

Since then, many versions of the malware have been developed but some of the most
important and famous Zeus forks are ICE-1X, Citadel, ZeusVM/KINS and GameOver
Zeus.

21

Reconstructing the Zeus history after the leak is much more complex due to the quick

spread of new versions and related developers.

In the meanwhile, Slavik developed a different version of Zeus that did not rely on C&C
architecture. This version was known as Murofet/Licat. In September 2011, this Zeus
variant morphed into peer-to-peer Zeus or also called GameOver Zeus (GOZ). The
name of this morphed version was due to the fact that in one of the first version was

found a link to a C&C drop zone called gameover2.php (Sandee, 2015).

Starting from this point, there has been a double Zeus related development, one based

on the classical C&C architecture and one based on a distributed P2P architecture.

As Botnet started to be a serious treat, in March 2012, Microsoft launched an
operation that disrupted a lot of Botnet based on Zeus/ICE-IX/SpyEye but this

operation had no effects on the distributed entity of the botnet based on GameOver.

Differently from all the previous versions, GameOver Zeus was not sold in kit but it was

exclusively used by one crime gang, leaded by Slavik.

In May 2014, another operation which specifically targeted GameOver Zeus was
carried out, Operation Tovar. It was a conjunct operation which involved many
different actors, from the FBI and the U.S. Department of Justice to the Europol and

many security companies and universities.

At the end of the operation GameOver Zeus Botnet was disrupted, until then this

botnet has made an estimated damage of 100M $. (FBI, 2014)

FBI confirmed that Zeus was originally created from the Russian developer Evgeniy
Mikhailovich Bogachev, known as Slavik. In February 2015, FBI put him in the first
position of the most wanted cybercrime list of criminals with a bounty of 3MS$ for is

capture.

In parallel with the development of P2P Zeus, also each one of the C&C based forks

evolved during the years. In particular, KINS vl source code was leaked in October

22

2013 and caused the creation of a newer version, KINS v2. This version was created in

2014 and it is currently one of the most recent versions of a Zeus-based trojan.

Recently, in June 2015, the Builder and the control panel of KINS v2.0.0.0 were leaked
on internet, this event gave the opportunity to anyone of creating and using a botnet

of a newer and updated version of Zeus.

The long running of Zeus over the years is principally due to the fact that it was well

designed and to the leak of its source code in March 2011.

4.3. Toolkit

The Zeus toolkit is composed of several components. A scheme of all the elements is

reported in figure 2.

DynamicConfig

— % Botnet name
Static Timer values
Config.txt Config URL
Server page to Encryption key
_h Dynamic post to e
— List of targeted sites: Update: bat:url
pr— Auction
Banks
/ Webinject.txt |, Emails 0110¢
Social 1011
, 1111 @
. Tookit EXE g
Encrypted

o[- . .
2| - User runs install script

C&C server

Figure 2 - Toolkit scheme

4.3.1. Config.txt

The file config.txt is the configuration file of the trojan (fig.3). It contains two parts the

StaticConfig and the DynamicConfig.

The StaticConfig is read from the Builder and is embedded inside the binary of the
malware. It contains the name of the botnet, the URL of the C&C server to download

23

the Encrypted_DynamicConfig and a key to do the encryption. It encloses also other
fields like a backup URL if the server is not responding and timing options for the

connection with the C&C server.

The DynamicConfig is used when the Builder needs to create the
Encrypted_DynamicConfig, which is a different operation from the creation of the
executable. It contains two URLs to the C&C server, the first is for the download of the
latest version of the malware executable, and the second is a link to the drop zone of

the stolen data.

The most important field in the DynamicConfig is the file_webinjects entry, which is the
location where is placed the webinject file. It is essential for the creation of the
Encrypted_DynamicConfig. It contains also other parameters irrelevant for the

discussion.

sversion: 2.0.0.0

entry "staticconfig”
botnet "donato_botnetl”
timer_session 1 1
url_config "http://192.168.133.130/prova,/test/config. jpg"
url_reserve_config "http://192.168.133.130/prova,/test/config. jpg”
yremove_certs 1
idisable_tcpserver 0
encryption_key "donato”
end

entry "DynamicConfig”
url_Tloader "http: 3;’192. 168.133.130/prova/test/bot. exe"”
jurl_module_wvnc "http://192.168.133.130/prova,/test/mod_vnc. bin"
jurl_module_spam "http://192.168.133.130/prova/test,/mod_spm. bin"
url_server "http://192.168.133.130/prova/Fanel /gate. php”

file_webinjects "webinjects.txt”
entry "Advancedconfigs

Figure 3 - Config.txt

4.3.2. Weblnjects.txt

The webinjects.txt is an external file which contains the HTML code (fig.4). This is the
core of the Encrypted_DynamicConfig as this file contains all the rules and the website
that the malware will attack. It specifies an URL for each piece of code that needs to be

injected and the position of the code inside the page.

24

This file is completely customizable from the owner of the botnet so he can decide

which website to attack.

There is a small sample in figure 4 that log username and password from the website
of the Italian bank Bancoposta.it. The file can contain an almost infinite number of

rules. An underground market for gaining new and updated webinjects exists.

F B

J webinjects - Blocco note | S e

File Modifica Formato Visualizza 7

set_url https://bancopostaonline.poste.it/bpol/bancoposta/formslogin.asp GP
data_before

NAME="Password"*</tr:

data_end

data_inject

<tr bgcolor="#ffffff">

<td bgcolor="#e8f404" class="b10" height="35" valign="middle"><label for="#
<td=<input id="NomeUtente" NAME="codice" maxlength ="50"></td>

data_end

data_after

data_end

data_before

href="javascript:

data_end

data_inject

if (document.frmrRegister.codice.value. length<5){alert(Inserisci la Codice’);}¢
data_end

data_after

data_end -

4 e 3

Figure 4 — Webinject.txt

4.3.3. Command & Control Server

The botnet is controlled from a server, it has principally the role of sending the

Encrypted_DynamicConfig and gathering all the stolen information from the bot.

To accomplish those works, the C&C has a control panel installed which is written in

PHP and with a MySQL database to store the data.

The control panel is composed of two pages, the cp.php and gate.php.

The cp.php (fig. 5) is the page used from the owner of the botnet to check the status of
the botnet, to issue commands and to read the results of the data stealing, while the

gate.php is the page where the Bots connect to upload the information.

25

CP :: Bots

Information:

Current user: root
GMT date: 01.12.2015 . -
e Bots: NAT status: Outside NAT =
Statistics: Botnets: Only enline bots: Yes :E
Only new bots: -
Summary IP-addresses: T \; = =
sed status: -
0s Countries: IR - =
Botnet: -
— gots
Scripts
Repurhs Result (1):
Search in database
Bots action: | Full information ->>
Search in files = -
[a] oo onet—Jverso s Jcounonioe el sencomme
SIEKE [1XP_7875768F7ADB1440 -- default - 2.0.0.0 192.168.133.133 - 00:20:54 2.834 -
Information

Options
User
Users

Logout

Figure 5 — Builder Control Panel

4.3.4. The Builder

The most important component is the builder. The builder is a windows executable
program (fig. 6), with a user friendly interface and which supports a double language
English and Russian. The builder has the main role of creating the malware executable

of the Zeus trojan and the encrypted dynamic configuration file.

The builder takes in input the config.txt that contains the characteristics of that

particular trojan to create the executable.

The other main function of the builder is the creation of the Encrypted_DynamicConfig,
which is an operation that always takes in input the config.txt but is parallel to the
creation of the executable and could be done just to update the
Encrypted_DynamicConfig. The encryption is done with the Key provided in the
StaticConfig.

The builder has also the function of checking if a computer is infected providing the

decryption key, and a routine to delete the trojan from the infected computer.

26

r N
@ KLNS. Builder ool [

Ynimanie! Avtory i sellery ne nesut otvetstvennost za nelegalnoe ispolzovanie dannogo PO. Otvetstvennost za
nelegalnoe ispolzovanie PO izlojena v statjah 273, 273 UK RF.

Information Builder
Bot's source configuartion file:

Settings

C:Wsers'\Donato\DesktopWINS 2.0.0.0%config. td [Browse. ..] [Edit...]

Actions

l Build bot configuration l l Build bot executable l
Building the bat... -
Loading configuration. ..
botnet=

timer _session=1min, 1min

encryption_key=0K

url_reserve_config=http://192. 168. 133. 130 prova/testfconfig.jpg
url_fake_config=http://bzfdcp. comjcfg.bin

url_config=http: /{192, 168. 133. 130 /provaftest/config.jpg
remowve_certs=1

disable_tcpserver=0

Creating executable file...

Size of output file is 167936 bytes.

BUILD SUCCEEDED! |

Figure 6 — ZeusVVM Builder

4.3.5. The Executable

The binary file is built by the builder and it is the trojan that will be executed on the
victim machine. Each version of the executable created from the same builder is
identical to the others in terms of functionalities but is different for the StaticConfig

embedded encrypted inside it.

4.4. How Zeus works

A brief overview of how most of the Zeus versions work is reported in this section.

Since its creation in 2006, Zeus was designed to mainly work on Windows XP operating
systems. During its evolution, the support for more updated OS has been

implemented, like Windows Vista and Windows 7.

27

Generally, Zeus needs to be executed on the system to infect it. After the execution,
even if the installation process does not succeed the binary executed is automatically

deleted from the system.

During the installation process, the trojan creates a copy of itself into a specific folder
and creates a persistence key in the register to be executed at every reboot of the
system. Then this new copy of the malware is executed and takes care of injecting
itself inside the running process of the system. During the process, it also downloads
the DynamicConfig to gather the updated information and the C&C information. At this
point Zeus is ready to steal the data, the main features that has every Zeus trojan is the
Man-in-the-browser. This technique uses the browser and injects piece of html code
inside web pages, only for the website present inside the DynamicConfig. Through this
technique, it is possible to create new form that could foolish the user to insert more
personal data and track the data inserted. The websites that are most frequently
involved with the injection are bank websites or other websites useful for social

engineering.

Once harvested, the data are sent to the C&C URL specified in the DynamicConfig and

are collected inside a database for future utilization.

28

5. Reverse Engineering of ZeusVM

This study focuses on the version of Zeus known as KINS/ZeusVM v2.0.0.0. This
research examines this particular version of the trojan Zeus, since it is one of the most
recent versions currently available and because the toolkit, containing the builder and
the control panel, was leaked and made accessible online to everyone in June 2015

(Malware Must Die, 2015).

The study was carried out through a Static Analysis of the malware executable and the

investigation of its behaviour.

According to these premises, the analyses performed in this research were based on
the previous study about ZeusVM. In particular, the recent study of Dennis Schwarz, an
employee of the security company Arbor Networks who published in August 2015 a
document with technical details of ZeusVM. Although this document was written by a
security expert and was published recently, it is not an official and peer reviewed
research paper, so the aim of this thesis is also to verify if what is written corresponds

to reality.

All the analyses were conducted on a Windows 7 machine with an Intel i7 processor

and 10GB of RAM.

5.1. Case Study Environment

In the creation of the case study environment, 4 steps can be identified as reported
below:

1. Creation of the virtual machines
2. Installation of the Control Panel
3. Creation of the Malware

4. Tools setup

29

5.1.1. Creation of the Virtual Machines

Initially, a software that allows the creation of several instances of virtual machines
was installed, the VMware workstation. Each virtual machine created by the software
was logically separated from the others. Three virtual machines were created in total
(fig. 7). The first virtual machine was a Windows 7 machine used to run the server.
Then, the second and the third virtual machines with Windows XP sp3 were created.

All the machines were connected through a virtual network provided by VMware.

i?_\&

Windows XP infected VM

5

Windows XP Debugger

CE&C Server

(192.168.133.0/24 §

Figure 7 — Environment

5.1.2. Installation of the ZeusVM Control Panel

The Windows 7 machine was selected to be the C&C server of the Botnet. In order to
turn it into the C&C server of the Botnet, a software that creates the web server with
at least PHP and MySQL was needed. The software selected for this purpose was
XAMPP for Windows (Apache Friends), a famous cross platform tools that allows the

creation of a webserver with few easy steps.

Once installed the Apache web server and the MySQL compatible server, the system is

ready to install the Zeus control panel.

30

The control panel is provided in the same package with the leaked builder of the
malware. All the components of the control panel are placed on the web server, and
they are installed in the system with the install.php page which is located into an install
folder. To run the installation the access to the .php page hosted on the server with a
browser is needed. In order to complete the installation, it is required to complete the
prompted form from the php pages to setup the database and a password for the

control panel.

Once installed the control panel is ready to use through the access to the page cp.php.

5.1.3. Creation of the ZeusVM trojan

After the installation of the control panel, the following step is the creation of the

malware through the builder.

1. Config.txt

Firstly, the config.txt was modified to be suitable for this installation. Inside the
StaticConfig, the entries url _config, url_reserve_config with the proper URL to the
dynamic config located in the C&C server and the encryption_key with a string were

compiled.

Inside the DynamicConfig, the url_loader and url_server were modified the first with a
URL to a copy of the malware hosted on the C&C and the second with a URL to the
gate.php page installed previously in the server. All the other fields except the

webinjects were commented with the character “;” since they were optional and not

necessary.

2. Webinjects.txt

The Webinjects file was modified to do some basics functions and mostly to test the
effects of the injection. In particular, a function that steals the information inserted in
the website of the bank BancoPosta was added and a popup with an incremental

number to track the updates was created.

31

3. Builder

After this step, the builder was executed to create the malware executable and the
encrypted configuration file. The malware binary was created through the function

Build bot executable providing in input the config.txt.

Then is executed the function Build bot configuration that prompted a window to

select an image .jpg to inject inside the Encrypted_DynamicConfig.

Once created, both the files were placed on the server in the paths specified by the

static and dynamic configuration.

5.1.4. Tools Setup

On both the XP SP3 machines, software to do static and dynamic analysis were
installed. The disassembler and debugger IDA Pro the SysInternalSuite with the
software Process Monitor, Process Explorer and others. Moreover have been installed

an hex-editor WinHex (X-Ways), and the browser Firefox.

At this point, a static IP to every machine was assigned so that each machine could
always be reached with the same address. Once assigned the addresses, the malware
executable was downloaded from the C&C to the Windows XP virtual machine
selected for the infection, renamed to XP_TEST. The other virtual machine was

renamed XP_CLEAN.

This second XP machine was not originally planned and was a later addition to the
network. Its purpose was the Remote Debugging of a process inside the infected
machine. The IDA Pro installation folder of XP_CLEAN was shared in the network in

order to allow the remote debugging.

5.2. Analysis

The analysis of the malware was performed following some steps, according to the

Static and Dynamic types of the analysis.

32

In figure 8, an overview of the aspects researched during the analysis knowing the

works done before the starting is illustrated.

0110¢ a
10110 H
1111¢ VM Decryated
Encrypted StaticConfig Tam JPG
StaticConfig a B | =
T —
Encrypted.url A CRC url GE = @
C&C server
RC4 - 5-Box key N Encn‘mhed
s oo decode SUAnECE
e e i b &
»
Botnet Name
Obfuxated@ visual - Dcc?rg:dﬁs©
amicConfi namic Config.
Fake.url 2 é decrypt

Figure 8 — ZeusVVM decryption overview

5.2.1. Malware testing: Basic Static Analysis

Once created the malware, it was tested with various antiviruses.

The malware was copied from the virtual machine into another one that was security
protected from the antivirus Avira Antivir. This procedure immediately raised a virus

alert.

Proceeding the analysis with the antivirus, the file was uploaded to the website
VirusTotal (VirusTotal) that performs a much more complete analysis between 54
different antiviruses. In this case, the malware was detected from the majority of the

antiviruses, with a detection rate of 47/54 from all the antiviruses (fig. 9).

2 total

SHA256 039caeb2133bd4538afc0ac1dS4al1bTi207e6a384ee068a671819e77ed3300e
Nome del file ZeusVM.exe :

=1
Rapporto rilevamento 47/ 54 .f 0 O
Data analisi- 2016-01-03 15:07:51 UTC (0 minuti fa)

Figure 9 — VirusTotal analysis

33

These results confirmed the malicious behaviour of the created trojan but also that it

could be easily detected in systems provided with an updated antivirus.

Secondly, an analysis of the malware executable with PEiD (aldeid) was executed. This
test (fig. 10) revealed that the malware was not packed and the outcome was double-

checked using also another software, PE.Explorer (HeavenTools).

15 PEID v0.95

File: | C:\Docurments and Settings|administrator Deskbop BOTI ZeusYM, exe

Entrypoint: | 000D0SCDCS EP Section: | .kext ﬂ
File OFfset: | DODOS1CS First Bytes: [55,8B,EC,83 | = |
Linker Info: | 10.0 Subsyskem: |Win32 GUI ﬂ

Mathing found [Overlay] *

Mulki Scan | Iask'u'iewer| Cptions

[v Stay on top

Figure 10 — PEiD analysis

These outcomes revealed that the builder does not have an automatic packer
implemented inside it, and that the packing of the malware is an optional step left to
each creator which can be carried out using other software, also because a common

packing technique for all the sample would be more identifiable.

Proceeding the basic Static Analysis with a Header inspector like PEview (Radburn)
(fig.11) revealed the structure of the malware, which is divided in 4 section, .text,

.rdata, .data, .reloc.

34

PEview - C:\Documents and Settings\Administrator\Deskiop\BOTAZeusVM. exe

File Wiew Go Help

Y0000 (Mt |[w==

= Zeusvhl.exe pFile Data Description Walue
IMAGE_DOS_HEADER 00000108 2E 74 B5 78 Name At
MS-DOS Stub Program 000001DC 74 00 00 00
= IMAGE_WT_HEADERS 000001E0 OO021AE8 Wirtual Size
Signature 000001 E4 00001000 RWA
IMAGE_FILE_HEADER 0oooo1Es 00021C00 Size of Raw Data

IMAGE_OPTIONAL HEADER 000001EC 00000400 Painter to Raw Data

_ TION _HEADER tex 000001 Fo 00000000 Pointer to Relocations

IMAGE_SECTION_HEADER .rdata 000001 F4 00000000 Pointer to Line Murmbers

IMAGE_SECTION_HEADER .data 000001 Fa 0ooo Mumber of Relocations

IMAGE_SECTION_HEADER .reloc 000001FA 0aoo Murnber of Line Mumbers

SECTION .text 000001FC BOODOOZ0 Characteristics
SECTION .rdata 00000020 IMAGE_SCM_CNT_CODE

SECTION data 20000000 IMAGE_SCN_MEM_EXECUTE
SECTION .reloc 40000000 IMAGE_SCM_MEM_READ

< ¥

‘iewing IMAGE_SECTION_HEADER. .text

Figure 11 — PEview analysis

At this point, the malware was analysed using the software Bintext (McAfee) (fig. 12)
to research some valuable strings but it did not provide relevant information. This was

due to the fact that the malware was encrypted or obfuscated.

7 BinText 3.0.3

Search | Fiter | Help |

File to scan |E: “Dacuments and Setiingsi\administratorsDesktophBOT'ZeusvM . exe Brawse Go

v Advanced view Time taken: 0.030 sece Text size: 6498 bytes [6.35K)
File pos | Mem pos | D | Text |A
A 000000024DAC 000000425DAC O http: 44

A 000000024DB4 0000004250EB4 O https: /¢

A 000000024DC0 000000425DC0 0 Content-Type

A 000000024000 000000425000 0 Authorization

A 000000024DED 000000425DEC O HTTPA.

A 0000000Z4DES 000000425DES O Transfer-Encoding

A 000000024DFC 000000425DFC O chunked

A 000000024E04 000000425E04 i Connection

A 000000024E10 000000425E10 i close

A 000000024E18 000000425E18 i] Prowp-Connection

A 000000024E44 000000425E 44 i Accept-Encoding

A 000000024E54 000000425E54 1] identity

A 000000024E64 000000425E64 i Ii-Modified-Since w
A ONONNAATIAC T ANNNNNAIRE 7 n amlibm D mlmns

Ready AM: TR UM 17 RS5:0 Find Save

Figure 12 — BinText analysis

Although, most of the strings were encrypted, some interesting values were detected.
Some strings in plain that revealed the use of http/https and the execution of a .bat

file, but neither the URL or the .bat file were completely in clear (fig. 12).

35

5.2.2. Advanced Dynamic Analysis

The Advanced Static Analysis of the malware was performed, the selected tool used in
this process is IDA Pro. Once opened with IDA Pro the malware is analysed
automatically and the sectors inside it and the entry point of the malware are
identified. The malware is automatically divided from IDA Pro in 4 sections: .text,

.idata, .rdata, .data.

Inside the .idata, it is possible to see the static import that the malware does. It
imports kernel32.dll and user32.dll and also the imported functions from those
libraries. The .text section contains all the assembly code operation of the malware,

while in .rdata and .data there are the data of the malware, with the first section.

The malware is disassembled and an automatic meaningless name with few small
exceptions is assigned to all the functions inside it. In order to move inside the
assembly code of the malware, the software provides a link for call and jump with a

click on the address of the function.

5.2.3. Static Analysis of the Virtual Machine

Starting from this point instead of doing a blind search of information, the available
data about Zeus were used as starting point. The published documents that were
available for ZeusVM were analysed to identify its most peculiar feature, the virtual

machine.

As stated by Schwarz (2015) and previously by Bijl (2013) the virtual machine is
identifiable through a MOV operation of 0x1000 bytes. It is possible to search a series
of byte in hexadecimal representation. The search gave many results, the second MOV

0x1000 it has a structure corresponding to the researched function.

A comparison of the structure of the function with that identified in the
aforementioned analysis revealed many similarities. The variables of that function
were renamed according to what was known about them. Moreover in Schwarz

(2015), a pseudocode representation of the code of the virtual machine was present,

36

through a reconstruction of it using the decompiler plugin it resulted very similar to

the pseudocode representation even if not identical.

At this point, the inspection of the portions of code called from the Virtual machine

revealed three main sections.

The first was the 4096byte loaded as the first operation of the virtual machine, the
second was the encrypted code of the StaticConfig and the third one was a list of
offsets called inside a while loop. It was interesting to notice that both the Virtual
machine code and the Encrypted StaticConfig were inside the .rdata sector of the

malware, and they were one subsequent to the other.

2| DA view- Pseudocode-C

1ichar _ stdcall get_rcld Key{char =rch key)

2K

3| struct s916 static_config; // [sp+8h] [bp-3D4h]E@2
4 int vm_code; // [sp+388h] [bp-5Ch]@2 HMAPDST

5| int v5; /7 [sp+3B4h] [bp-5Bh]E2

6] int w6; /Ff [sp+388h] [bp-5hh]@2

7| int uw¥; /7 [sp+3D4h] [bp-8h]E1

8
9

um code = strdup_like{&vuirtual machine_ code, 4896);
18| vf = vm_code;
11| if { um code)

120 4

13 v = B;

14 qmemcpy{&static_config, &encrypted_base_config, sizeof{static_config));
15 u5 = &static _config;

16 base_config_puntatore = &static_config;

17 wvhile { {virtual machine_instructions[=um code])}{&um code}) }

18 H

19 free_like{u7};

28, %

21 qmemcpy{rch key, &static _config.rch_key, 258u);
22| return B;

Figure 13 — Virtual Machine

Through an analysis of the while loop (fig. 13), it was possible to see that the functions
points to a memory area composed of 69 memory offsets of 4 bytes inside the .data
sector. Each offset points to a different function inside the .text section. All the
functions were grouped together in a compact memory space even if they were not in

the same order as in the .data section.

Summarising, the Virtual Machine resulted composed of four parts. The first part is

composed from the bytecode of the virtual machine and is always 4096 bytes. The

37

second part is the data over which the virtual machine has to work, which is the
Encrypted_StaticConfig. The third part is a loop which scans the opcodes of the virtual
machine and call the right handler while the fourth part are the operations of the
virtual machine that are called from the handler, those operations are almost all basic

operation ADD, SUB, MOVE, etc.

Once identified this first part of ZeusVM malware it was possible to observe that the
first function identified was not equal to that showed from Schwarz (2015), neither
from Bijl (2013). Going back to the research of the MOV 0x1000 bytes of the
initialization of the Virtual machine, it arose that there are 14 different functions,
which have the same identical initialization phase. Analysing the assembly and the
decompiled code of those functions, the function responsible for the decryption of the

RC4 (Rivest, et al., 2014) key embedded in the StaticConfig was found (Schwarz, 2015).

Once identified the function, it was named get_rc4_key and all the other functions
were renamed with a name from VM1 to VM13 according to the order they were

found in the .text section of the code.

The Encrypted_StaticConfig as presumable has fixed size for each sample created from

the same builder.

In figure 13 it possible to see the function sizeOf(StaticConfig) that denotes the
variable size of the configuration. In order to have this kind of visualization, that is an
automatic function from IDA Pro, the Struct which composes the StaticConfig had to
be defined. By going into the Stack of the selected function, it is possible to manually
select the bytes which form the Struct and assign them a name and a type. The
software does not allow the creation of the Struct from a selection of bytes if the first
and the last byte are undefined, that is the standard status of each byte of the Stack
function. The Struct was defined corresponding to the StaticConfig starting from the
byte pointed from the memcopy, the size was stated by the function that in this case

was 888 bytes.

38

5.2.4. Dynamic Analysis

Once defined the Struct, the field corresponding to the RC4 key was defined as shown
in figure 13. Once performed this first part of Advanced Static Analysis, the information
gathered were verified through an Advanced Dynamic Analysis with IDA Pro which was
carried out using the “Local Win32 debugger”. Prior to the beginning of the analysis, a
snapshot of the virtual machine was taken so that it was possible to revert the analysis

to a clean status of the system.

In order to do the analysis, a breakpoint was placed in the Start function, the first
instruction of the malware, and another one in the get_rc4_key. Starting the debug,
the modules loaded on the right panel, gdi32.dll, kernel32.dll, ntdll.dll, user32.dll, are
the first things that appear. Running the debugger to the next breakpoint, it
surprisingly never hits and the malware finishes its execution after some seconds in
which log other modules in the output window and IDA Pro closes the debugging

window.

5.2.5. Basic Dynamic Analysis

In order to understand some of the behaviour of the malware, a Basic Dynamic
Analysis was executed. The malware was executed on a clean snapshot of the system,
with Process Monitor and Process Explorer running in the background. The execution
of the malware was too fast for Process Explorer to view useful information since the
program can show only the living process. Instead Process Monitor logs every action
performed by each executable so reading the log it was possible to see that the
malware created another executable fytoh.exe in a folder %AppData%\Maule then an

instance of the command prompt is opened and it is executed a bat file.

All those operations seemed to be familiar for the Zeus family analysis, the executed
malware was deleted probably through the execution of the Bat file and another copy
of the malware was installed in the system. Using Process Monitor, it is possible to see

also many Registry activities but those are not clearly readable in this form.

Aiming to analyse the register, the software RegShot was used.

39

Firstly, a snapshot of a clean status of the system was created as well as a snapshot

after the execution of the trojan.

As expected many differences between the two snapshots were detected. The most
important one is the persistence key inserted from the malware inside the registry in
HKU\ \Software\Microsoft\Windows\CurrentVersion\Run\epuz.exe: ""C:\Documents

and Settings\Administrator\Dati applicazioni\Ewas\epuz.exe"".

This persistence key allows the execution of the malware also after the reboot of the

system.

Comparing the two executable with a software that highlights the differences of the
binary, like WinDiff, the original bot.exe and the new dropped.exe resulted identical,

except for a block of code at the end of the file that had a size of 496 bytes.
This behavior was detected also in Wyke (2011) for the version 1 and 2 of Zeus.

5.2.6. Dynamic Analysis of Dropped.exe

At this point, there were two executables to analyze, the dropper bot.exe and the
dropped.exe. Running the debugging phase several times, it was observed that the
dropped.exe has always a different name and a different folder inside the %AppData%
path of the selected user. A copy of this file and folder was made in a safe environment
to take a sample of the dropped.exe to analyze; in particular the executable is

\Maule\fytoh.exe.

Then the Dynamic Analysis has been moved to the dropped executable, to see which

functions were called from it.

Firstly, it was checked if the “get rc4_key” was executed inside fytoh.exe. Starting
from a clean environment, the dropped executable was placed inside its folder in
%AppData%\Maule\fytoh.exe and has been launched the debugger with IDA Pro. The
debugger had almost the same result, it did not hit the breakpoint and crashed at the
end of the execution. The same anomalous behavior was detected also for the process

Explorer.exe.

40

Aiming to understand this behavior, some tests were performed.

It resulted that running directly the dropped from a clean environment inside its
folder, it launched correctly the ZeusVM trojan even if the dropper is not executed.
Nevertheless, executing the dropped from a debugger like IDA Pro and setting up some
breakpoints made the program crash without installing the trojan. The first thought
was that there could be some anti-virtual machine techniques or anti-debugging

techniques.

Since the executable was working outside the debugger and there was no problem
with VMware, the problem was identified in the debugger. This was probably due to

the presence of some timing check since there were accesses to the sleep function.

In addition, it was found out that the problem does not rise and the debugger does
not crashes exchanging the type of breakpoints to hardware and tracing the first four
functions . It was possible to trace all the program execution without a crash of the

program, so there were no timing checks.

The problem with the hardware breakpoints was that they are limited to 4. The
presence of a function that performs a CRC32 (Walma, 2007) check was found, it is
identifiable searching the peculiar number involved in the computation of the
algorithm OxEDB88320. Since this function is called many times maybe it is not a

security check for the anti-debugging.

The answer for the crash is that the insertion of a breakpoint changes a byte inside the
code. The change is revealed by the CRC32 hash function check, this creates some
anomalies inside the structure of the program that brings it to not working. These

kinds of problems are very time consuming.

5.2.7. Dynamic Analysis of RC4 S-Box

The analysis continued with the other functions called from the bot.exe which have
the initialization of the Virtual Machine, a breakpoint was placed on each function and

the debugger was launched, everything in a VMware snapshot of a clean environment.

41

The functions executed were: VM3, VM1 and VM4 several times. Then the analysis of
the operations behind the virtual machine was started beginning from the function
VM1. Since each virtual machine was initialized with the same code, on the same

portion of data, they could perform the same operations.

The Virtual Machine, during the initialization, copies the content of the
Encrypted_StaticConfig inside the Stack and saves the address as a pointer in a global
variable. This global variable is the same for each Virtual Machine initialization found in

the VM functions.

After this phase, the Virtual Machine was executed through the while loop. At the end
of the execution of the Virtual Machine, the global variable points to the
Encrypted_StaticConfig. At this point, it was possible to analyze the data decrypted and
if all the functions are equivalent, it should be possible to find the RC4 S-box key inside
it. The Decrypted_StaticConfig was saved in hexadecimal, through the export function
in the Hex-view window of IDA Pro. Aiming to verify the presence of the RC4 S-box key,
a python implementation of the KSA algorithm was used to generate the S-box starting

from the encryption key that was provided to the builder.

Once generated the S-box, it was compared with WinHex to see if there was a
matching. A matching was fund at the offset Ox15F, the S-Box generated externally,
with the same seed, corresponded to the 256 bytes which were present inside the

Decrypted_StaticConfig.

The same correspondence was found inside the StaticConfig Struct defined in IDA Pro,
the offset Ox15F referred to the first byte of the RC4 S-boxes. This proved that even if
the function involved is different from that stated by Schwarz (2015) the configuration

is still decrypted in the same way and the RC4 S-box is the same.

It was interesting to find out that the RC4-Sbox was only of 256 bytes while what was
loaded from the StaticConfig is always a series of 258 bytes, this is due to the fact that

the last two bytes loaded for the decryption are the indexes “i” and “j” of the RC4-

42

PRNG algorithm. Those bytes although are always loaded are set to zero in every

sample analyzed created from this builder.

5.2.8. Static Analysis of RC4 PRNG

Among the instructions of the Virtual Machine, the instruction that implements the
RC4 algorithm, the instruction_22, was found. Inside its body, it was possible to
identify the 2 main parts of the RC4 algorithm, the KSA algorithm to create the S-Box
and the PRNG algorithm that performs the XOR operations (Rivest, et al., 2014). Once
identified a function, with the command X of IDA Pro, it is possible to see all the
references inside the malware to that function. Starting the analysis of the PRNG
function, it is possible to see that it was referenced by two still known functions, VM4

and VM13.

In particular, the VM13 was analyzed since the size of the bytes used in the PRNG
function corresponded to what Schwarz (2015) says about the decryption of the C&C
URL.

Inside the VM 13 function, two PRNG very similar decryption function were found. Both
the functions decrypt 101 bytes of a different offset inside the Encrypted_StaticConfig
through a key that is mapped to the same local variable. The image inserted inside
(Schwarz, 2015) seems to refer to the second function. Running the Dynamic Analysis

should confirm it.

5.2.9. Remote Debugging of Explorer.exe

Since the function VM13 was never called inside the dropper, the functions called

inside the dropped.exe were analyzed, but it was not called in that executable too.

Running Process Monitor, it is possible to verify that during the execution of the
malware, portions of code are injected inside Explorer.exe, the presence of an

<unknown> object is visible inside the Stack Summary of the process.

At this point, an Advanced Dynamic Analysis of the process Explorer.exe was required.

As the problems with the debugging of Explorer.exe are that if the process is paused,

43

the system becomes unusable, in order to avoid working in a frozen system, it is

possible to work with a remote debugger.

The remote debugging is the procedure of debugging a process from another machine.
At this stage, another instance of a Window XP to accomplish the role of remote

debugger was created with VMWare.

IDA Pro provides all the necessary for the remote debugging inside its program folder.
In order, to start the remote debugging, the infected machine and the debug machine

need to share the folder dbgsrv of IDA Pro installed in the debug machine.

Aiming to start the remote debugging, the infected machine has to launch
win32_remote.exe and once executed, the machine starts to listen incoming debug

connections.

At this point, it is possible to start the remote debugging. In particular, it is needed to
select the Remote Windows debugger inside IDA Pro and setup the IP of the target
machine. Once completed the setup, it is possible to debug a remote application or

attach to a remote process.

In order to continue the analysis, +the remote debug of the Explorer.exe process was

started through the attach function.

Once started the debug, since it was a new executable, all the previous defined

functions were lost. Moreover, the position of the injection was not known.

An easy way to find where the code was injected is starting a signature based search of
the function of interest. A binary search of the hex code “68 00 10 00 00 68 FO 43",
that corresponds to the “PUSH 1000” which is the initialization of the virtual machine,

was performed.

After a while of searching through the file, the desired sign was found. Going to the
location pointed by the search, a section of the process marked as Data was identified.

At this point, this section was manually converted to Code with the command C of IDA

44

Pro and an automatic analysis. After having converted all the VM functions, a

breakpoint was placed on each one.

5.2.10. C&C URL Decryption

The first hit breakpoint is inside the function VM13. Following its execution, it was
possible to see that the PRNG (fig. 14) function executed is the first and not the
second. Moreover, it was found that the decryption function adopted was not the RC4
S-Box as stated by Schwarz (2015) but instead it was the reverse array of the RC4 S-

Box.

It was observed, that the function prior the PRNG loads the 256 bytes of the S-Box
starting from the last to the first. The second PRNG function was not encountered
during this phase of the debugging. In a second moment, it was discovered that it was
the function that decrypts the url_reserve_config. In this second case, the URL is

decrypted with the RC4 S-Box.

IE D4 View-ETP [I__El Pseudocode-G IE Pseudocode-H IE Pseudocode-E IE Pseudocode-F

buq159:A23EBABA
bug15%:823EBABA loc_23EBABNA: ; CODE
bug159:823EBABB inc [ebp+var_1]
bug159:023EBAB3 movzx esi, [ebp+var_1]
bug159:823EBABY mow dl, [esi+eax]
buqg159:A23EBABA add [ebp+var_2], dl
bug152:823EBABD mowzx ecx, [ebp+var_2]
bug159:823EBACT mov bl, [ecx+eax]
bug159:023EBACL mow [esi+teax], bl
bug159:823EBACY mow [ecx+eax], dl
bug159:823EBACA movzx esi, byte ptr [esi+eax]
bug152:823EBACE mow ecx, [ebp+arg_8a]
bug159:823EBADT movzx edx, dl
bug159:023EBADL add esi, edx
bug15?:823E8ADG and esi, BFFh
buqg159:A23EBADC mow dl, [esi+eax]

a— bug159:823EBADF xor [ecx+edi], dl
bug159:823EBAE2 inc edi
bug159: 823EBAE3 cmp edi, [ebprarg_u]
bug159: 823EBAES jb short loc_23EBAB@
bug159:823EBAES pop esi
bug159:823EBAE? pop ebx
buq159:A23EBAEA
bug15%2:823EBAEA loc_23EBAER: ; CODE
UNENOWH 0Z3E0ADF: EC4_PENGA Decryptt4F
<

@ Hex Wigw-1

92F2F594 8C 12 OF 56 92 EA CB 3F BB 7A A2 EF 75 37 D8 5F 1. .WaD-7.267u7l_
02F2F5A4 6E 11 DE 58 BF 4D CF E7 61 A9 21 €O F3 22 D6 56 n.iP+hsp.@r+% v
82F2F5B4 SE 92 12 66 OF D4 F7 52 F6 BA B4 73 D2 BB 1C 7E “#.f.E R:llsE).™
62F2F5CH E4 59 2D B5 77 B3 FB BA 16 6B 9F 19 5E A5 FD 1C &¥-Auwj') kE."Hz.
02F2F5D4 68 74 74 76 3A 2F 2F 31 39 32 2E 31 36 38 2E 31 http://192.168.1
92F2FSEY4 33 33 2E 31 33 30 2F 78 72 6F 76 61 2F 74 65 73 33.138/prova/tes
02F2F5Fy 74 2F [B) 6F 6E 66 69 67 2E 6A 70 67 08 63 6A ES t/config.jpg.cjfl

ROCOCLZAL Dh DE LA OF AT LA DA CF AC OC 94 AR BT 24 00 Do TARTA 11 2RAAmT =il

Figure 14 — URL Decryption

45

5.2.11. DynamicConfig Decryption

Continuing the analysis of the VM functions executed, it was possible to see that the
VM11 function was executed. It was noticed that this function, differently from the
others, after the decryption of the StaticConfig calls another function that loads a

different offset instead of that of the RC4 S-box.

Following this function, it was fund that there was a memcopy of 176 bytes inside it
from the decrypted StaticConfig. As stated by Schwarz (2015), this is the RC6 (Rivest, et
al., 1998) key expansion output of the Key Schedule Algorithm of RC6, even if the
function is different from that reported in the report. The function that copies the RC6

key simply calls another function.

Analyzing the execution of this function using the debugger, it was shown that there

was a while loop with a XOR operation that runs inside it.

Analyzing the Hex-view of the memory locations XORed, it was possible to see in clear

text the decrypted DynamicConfig.

Analyzing in details the while loop it was observed that it performs the RollingXOR
Algorithm, also called VisualEncrypt/Decrypt, which is the final step of the decryption
of the DynamicConfig. The other decryption functions have to be between the

acquisition of the key and the RollingXOR algorithm.

The function that executes the RC6 decryption is called before the rolling XOR and it
creates the decrypted code in a memory area by executing that algorithm on a
memory space that should be the Encrypted_DynamicConfig. To verify this, the

Encrypted_DynamicConfig has to be analyzed.

The Encrypted _DynamicConfig was downloaded from the C&C server through an
image file config.jpg, but it was known that inside this image there is the
Encrypted_DynamicConfig since the file was modified through the builder to embed

inside it the dynamic configuration.

46

Opening the config.jpg with the editor WinHex, it was possible to see clearly that there
is a data field appended at the end of the file. This data field is inserted as a comment
inside the .jpg. The comment is identifiable from the standard marker “FF FE” and
finishes with the marker “FF D9”. The size of the comment is a 4 bytes field which is
placed 10 bytes after the comment marker. Then there is the comment, and observing
its ASCIl representation inside WinHex it is possible to recognize that it is encoded in

Base64 (Josefsson, 2006) as also stated by Schwarz (2015).

config,jpg |
offset 0 1 2 3 4 5 & 7 8 5 A B ¢ D E F

00001ESO 28 A2 8A 00 28 A2 BA 00 28 A2 8A 00 28 A2 8A 00 (¢85 (¢§ (<8
00001EAD |28 A2 8A 00 28 AZ B8A 00 28 A2 8A 00 28 AZ 8A 00 | (¢§ (¢ (<8
00001EBO 28 A2 SA 00 28 A2 BA 00 28 A2 SR 00 28 A2 BA 00 (<3 (¢85 (¢S
00001ECO |28 A2 8A 00 28 AZ 8A 00 28 A2 8A 00 28 AZ 8A 00 | (¢§ (¢ (<8
00001EDO 28 A2 SA 00 28 A2 BA 00 28 A2 SA 00 28 A2 BA 00 (¢f (¢ (¢S
00001EE0 28 A2 8A 00 28 A2 BA 00 28 A2 B8A 00 28 AZ BA 00 (<& (¢ (<3
00001EF0O |28 A2 8A 00 28 AZ BA 00 28 A2 SA 00 28 AZ B8A 00 | (¢3 (¢3 (<3
00001F00 28 A2 8A 00 28 A2 BA 00 28 A2 B8R 00 28 AZ B8A 00 (<& (¢ (<8
00001F10 |28 A2 8A 00 28 AZ BA 00 28 A2 SA 00 28 AZ BA 00 | (¢3 (¢35 (&3
00001F20 (28 A2 8A 00 [F FE 3F 10 00 00 50 FF 70 BS EC 08 (¢85 yb? Pyppi

00001F30 |00 00 39 37 6D 32 53 44 43 56 65 S5A 2B 36 4B 73 97m2SDCVeZ+6Ks
00001F40 (55 52 2B 32 54 4FE 65 34 6C 54 47 48 4C 33 69 46 UR4ZTNed4lTGHL3LF
00001F50 31 2F 72 47 4F 79 3% 6D 74 45 79 72 4E 4E 73 30 1/rGOySmtEyrNNsO
00001F60 41 52 48 67 46 6R 35 56 4E 62 42 6D 4E 47 74 57 RRHQF]SVNbBmNGtW
00001F70 69 43 49 34 4D 36 71 33 35 6D 55 57 5% 62 38 6C iCT4M6g3SmUWYbAL

coooo0 0000
B¢ Dne Goe Dne D0 Doe Dne D0 D0

Figure 15 — DynamicConfig inside JPG

It is generally possible to decode the content of the comment with a tool. Moreover,

many free online tools that encode directly the data in Hex exist.

The decoded comment inside the config.jpg was compared with the data buffer
involved in the decryption with RC6. It was observed, that they corresponded and had
the same bytecodes. Through the identification of the decryption function, it was

possible to confirm that the involved key and encrypted data corresponded.

5.2.12. Traffic Analysis

Once obtained those encryption keys, an analysis of the TCP packets exchanged

between the C&C and the infected machine was performed.

The packets were sniffed through the well-known software Wireshark. As previously
mentioned, many messages were exchanged. This was due to the fact that during the

47

creation of the malware inside the StaticConfig, the timing options were set to
Iminute. This means that every minute the Bot issues a HTTP GET request to obtain a

new configuration and then perform a HTTP POST operation to send stolen data to the

2

Bot C&C Server

C&C drop zone (fig.16).

GET DynamicConfig.jpg

ok/ not modified

POST Exfiltred Data

1 minutes

Acknowledgment

Figure 16 — Communication Bot-C&C

This standard communication is implemented by the functions VM13, VM11 and VM5.

This happen when there are no new information.

As it is possible to see in figure 17, also the size of exchanged packets is always the

same.

48

File Modifica Visualizza Vai Cattura Analizza Statistiche Telefonia Wireless Strumenti Aiuto

mae RE QewEFs_BaqaarE
[] (ip-addr eq 192.168.133.130 and ip.addr eq 192.168.133.133) and http [x] ~| Espressione... +
[Preferenze di risoluzione dei nomi...] Indirizzo: [m Nome: 0K [m]
Time Source Destination Protocol Lengtt Info i

99.4.. 192.168.133.133 192.168.133.13@ HTTP 279 GET /prova/test/config.jpg HTTP/1.1
99.4.. 192.168.133.130 1592.168.133.133 HTTP 224 HTTP/1.1 384 Not Modified =
99.4.. 192.168.133.133 192.168.133.130 HITP 573 POST /prova/Panel/gate.php HTTP/1.1
100... 192.168.133.130 192.168.133.133 HTTP 316 HTTP/1.1 200 OK (text/html)

160... 192.168.133.133 192.168.133.130@ HTTP 279 GET /prova/ftest/config.jpg HTTP/1.1
160... 192.168.133.130 192.168.133.133 HTTP 224 HTTP/1.1 3@4 Not Modified

160... 192.168.133.133 192.168.133.13@ HTTP 573 POST /prova/Panel/gate.php HTTP/1.1
160... 192.168.133.130 192.168.133.133 HTTP 316 HTTP/1.1 280 OK (text/html)

220... 192.168.133.133 192.168.133.130@ HTTP 279 GET /prova/test/config.jpg HTTP/1.1
220... 192.168.133.130 192.168.133.133 HITP 224 HTTP/1.1 304 Not Modified

220... 192.168.133.133 192.168.133.130 HTTP 573 POST /prova/Panel/gate.php HTTP/1.1
220... 192.168.133.130 192.168.133.133 HTTP 316 HTTP/1.1 200 OK (text/html)

280... 192.168.133.133 192.168.133.130@ HTTP 279 GET /provaftest/config.jpg HTTP/1.1
280... 192.168.133.130 192.168.133.133 HTTP 224 HTTP/1.1 384 Not Modified

280... 192.168.133.133 192.168.133.13@ HTTP 573 POST /prova/Panel/gate.php HTTP/1.1
281... 192.168.133.130 192.168.133.133 HTTP 316 HTTP/1.1 200 OK (text/html)

[Group: Sequence] -
Request Method: GET
Request URI: /prova/test/config.ijpg
Request Version: HTTP/1.1
Accept: */*\r\n

Pe38 fa @ 12 b5 @0 00 47 45 54 20 2'F 70 72 6f 76 ! GE T [igalE
LD+ 74 65 73 74 2f 63 6f 6e 66 69 67 2e ba 70 6 /test/co nfig.jpg
PE50 20 48 54 54 50 2f 31 2e 31 @d @a 41 63 63 65 70 HTTP/1. 1..Accep
PO60 74 3a 20 2a 2f 2a @d @a 43 61 63 68 65 2d 43 6f t: */*.. Cache-Co
0a7 6e 74 72 6f 6c 3a 20 6e o6f 2d 63 61 63 68 65 @d ntrol: n o-cache.

020 @a 49 66 2d de 6f 6e 65 2d 4d 61 74 63 68 3a 20 .If-None -Match: -
O ¥ HTTP Request-URI (http.request.uri), 22 byte Pacchetti: 1714 - visualizzati: 82 (4.8%) - ignorati: 2 (0.1%)|| Profilo: Default -

»

[|

Figure 17 — Packet Exchanged Bot-C&C

5.2.13. Dynamic Analysis of communications

The behavior of the execution of the functions injected in Explorer.exe during the
creation of the data to post was analyzed. A trace was placed on each VM function,

and the functions which were triggered during the execution were analyzed.

In order to test the update of the configuration, a new file was created with the
builder. This file was almost identical to the previous one, but with an incremented
number to show the difference. By visiting a selected website, it will prompt on screen
a number representing the updated configuration to check the effectiveness of the

update.

49

The update process was monitored both on IDA Pro and Wireshark. On Wireshark, it
was possible to see that the packets have been transferred and that the Server replied
with a 200 OK message, so the transfer was completed. Moreover, it was possible to

inspect the reassembled packet with the ASCII content of the image.

On IDA Pro, a new function was triggered during the process of the acquisition of the
new config.jpg: the VM12. After the update of the configuration, in the next time
period the behavior of the program was back to its normal course. By opening with a
browser the webpage with the incremental number injected, the success of the update

was enlightened.

A similar process was performed for the upload of stolen information. Inside the
webinject.txt it was implemented a real functioning malicious webinject found online,

to steal the data from the Italian bank BancoPosta.

By visiting the selected website, inserting username and password, and requesting to
login, the upload process was started. Even if the data inserted in the fields were not
correct for the login, they are uploaded. However, this depends from the structure of

the webinejct.

Probably due to the debugger, the loading of the webpage was very slow respect to its
normal behavior. The browser used to do the test was Internet Explorer v6, the
browser preinstalled on the system. It was possible to notice that the SSL layer was not
compromised during the injection. Doing the same test with the latest version
available of Firefox, v43, the pages were loaded more quickly and the webinject was

executed correctly.

With Wireshark it was possible to see the new packets exchanged with the HTTP POST,
and their size resulted different from the previous one. The content of the packets

were saved for further analysis.

Watching the trace windows of IDA Pro, like in the previous case, it was possible to see

a new function used in the execution: VM3.

50

5.2.14. Static Analysis of POST data

The packets extracted with Wireshark were analyzed. The content was not in clear text

so it was probably encrypted or obfuscated.

Since for the DynamicConfig the RC6 algorithm was used, this was the first attempt. As
decrypting the packet with the RC6 algorithm did not give any result. Then the
decryption with the RC4 algorithm was tested. Performing the decryption with RC4 key
inserted inside the builder, or directly with the corresponding S-Box gave some results.
The data seemed to have a structure inside it, so the code should be still obfuscated.
Since during the decryption of the DynamicConfig, the use of the RollingXOR algorithm
or VisualEncrypt/Decrypt was discovered, this algorithm was the first one to be tested

for the deobfuscation.

In order to perform those operations, a python script was created, mainly to apply the
RC4 decryption and the RollingXOR algorithm of the data inserted in the packet. The

result of the deobfuscation was a readable text (fig. 18).

In the first rows of the documents, there was a data structure but the fields were

readable. What kind of structure was used was not further investigated.

In the corps of the document it is possible to read the username and password used

for the login and all the other information.

1 T 2D 3 ISYNK

2k [CAN] CAN] XP_TEST 7875768F7A0B1440

3k [STX [F"SH G5

TRT INAK] [NAK XP TEST\AdministratorFeR "

94" ZE ZEA https://bancopostaonline.poste.it/bpol/bancoposta/Logon.fcc

10 User input:https://bancopostaonline.poste.it/bpol/bancoposta/formslogin.aspxdonatodonato
11 Request:

13 POST /hpol/bancoposta/Logon.fce HITR/1.1

14 Accept: image/gif, image/x-xhitmap, image/Jjpeg, image/pjpeg, application/xz-ghockwave-flas
15 Referer: https://bancopostaonline.poste.it/bpol/bancoposta/formslogin.aspx

16 Accept-Language: it

17 Content-Type: application/z-www-form-urlencoded

18 Accept-Encoding: gzip, deflate

20 USER=donato&Password=donato&dep=version%253D%2026pm%255Ffpua%253Dmozi11a%252F4%202E0%252(

Figure 18 — Decrypted POST data

51

5.2.15. Multiple Malware Samples Analysis

Once the behavior of the malware was understood, other samples were created to

gain new information from the possible differences.

Firstly, a new sample with an identical config.txt was created, and the two files were
compared with a tool that analyzes the binaries, WinDiff. Three sections of different
code were found, one is at the beginning and the other two are at the end. The first
modified section is the Virtual Machine code section and the Encrypted_StaticConfig,
but neither the content of the operations nor their structure were modified. The other

two sections were not been analyzed.

Series of samples were created to identify other sections of the StaticConfig that had

not been analyzed.

Through the comparison of the Decrypted_StaticConfig of each new executable sample

with that one used the previous analysis, some new elements were discovered.

The first field modified in the StaticConfig, was the botnet_name, the input string in
this field can be maximum 20characters. After running the decryption through a
Dynamic Analysis of the involved sample, it was found out that the botnet name was a

field readable in clear after the decryption.

Previously this field was left blank in the config. In my sample, the offset of this field
was 112 (fig. 19). A research was done to see which functions called this particular
offset. The only function identified was VM5, which is involved in the process of

uploading stolen data.

Offset 0 1 2 3 4 5 & 1 8 %8 A B C D E F

00000DO 48 70 B4 36 61 87 AF 3% 5% C2 F6 25 DD 3F 40 B8C Hp’ 6ai S™As377RGE
0D0000EOD A2 4A BA FC A5 8E 31 6D D7 2A 99 D3 69 8B B9 3D ¢JouEZimx*=0i¢ 1=
00000F0 BC E4 7B AD 2B CB FD 27 1F F8 DE 54 05 EF F7 AB Ei{—+Ey' 20T iz«
0000100 98 2C 6C C1 20 07 2E 4D 16 E6 51 18 6A SF 46 SE ;11A .M =Q j¥FZ
0000110 86 C5 64 00 6F 00 6E 00 &1 00 74 00 6F 00 5F 00 tAEd o n a t o _
0000120 €2 00 eF 00 74 00 eE 00 &5 00 74 00 31 00 00 00 b o t n e 1
0000130 CA 4D C1 1E CD 9D 07 ES DB 81 8a 11 86 3B 56 05 EMA I &@ t:v
0000140 E5 AR 96 DO 20 68 5A D6 33 00 22 00 DF DB 6F C6 &«-D hzd3 " BloE

0000150 77 76 B3 FB 00 00 00 00 CS AD 05 A6 7% ’ﬁ 4 wvid E- i»ADd
0000160 D4 DO 4B 8E 94 70 B8 15 54 96 E1 DF 7 6BK2"pA T-4R8 " 5—

t
g

Figure 19 — Decrypted StaticConfig

52

The second field analyzed was the timing options, and repeating the same process
allowed to identify them at the offsets 0x148 and 0x14A. They were contiguous and
had a size of 4 bytes. The values were expressed in hexadecimal, and in this case (fig.
19), they corresponded to the decimal values 51, and 34. In comparison with the
config.txt file, the values were swapped in their position. Analyzing the functions,

those values were called only inside the VM10 function.

Continuing the analysis, the next fields were the URLs configurations. Since the main

URL of the C&C server had already been analyzed, only the second one was analyzed.

In the config.txt taken as a sample, those values were identical, so it was harder to
understand the differences. Changing the second URL, it has been observed that the
maximum allowed size in the input of the config.txt is 100chars. Decrypting the
StaticConfig enlightened a difference at the field 3D, the URL was not in clear as in the
previous version. The field 3D was used in the VM13 function, through the analysis of
the point where it was executed, it was possible to see that, similarly to the first URL, it
was decrypted trough the RC4 S-Box key, which was not reversed in this case. At this
point, it was clear that Schwarz (2015) refer to this URL when it talks about its
decryption but usually this field is not used so it could be left blank or it could be used
to point to a wrong address with the aim of foolishing the security analysts. The main

URL address is the first that should be analyzed.

Continuing the analysis it was found out the presence of the remove certs and
disable_tcpserver contiguous at the offset 0x38. Those field where used in the

functions VM6 and VM7 but they were not analyzed.

The last sample created is also the most different, since the encryption key was
changed. The executable maintained the same structure as in the previous cases, and

nothing seemed different from the base case sample.

By analyzing the decrypted StaticConfig it was possible to see the differences. Since
the configurations are equal and only the encryption keys was changed, the different

sections involved in the differences were relative to the decryption key. It was possible

53

to see three portions of code, the first containing both the encrypted URLs, and the
other two sections containing the RC4 S-box and the RC6 key expansion output. All the
other sections of the StaticConfig were the same so they were not related to the

encryption key.

5.3. Summary

The execution of the malware was analyzed in its three phases and the functions

related to the Virtual Machine were monitored.

During the execution of the Bot.exe or what it could be called the “installation phase”,
the VM related functions were VM1, VM3 and VM4, all involved with the use of the
RC4 S-box key.

By executing only the dropper in a clean environment, and using the hardware tracing,
the functions used during the injection phase were VM1, VM2, VM3 and VM4. As in
the previous case, the only element extracted from the StaticConfig was the RC4 S-

box.

During the execution inside the injected process Explorer.exe, the functions used

during the analysis were VM3, VM4, VM5, VM10, VM11, VM12 and VM13.
As it can be seen in figure 20, there is a clear separation between the functions used
during the process.

dropper.exe
VM3 VM1 VM4

dropped.exe

VM3 VM1 VM4
explorer.exe
VM13 VM12
VM10 VM4 VM3
VM5 VM11

Figure 20 — VM functions during execution

54

Some of the analyzed functions were never executed during the observation of the
system. This could be due to the fact that they are generally used only in specific

situations not triggered during all the examined executions.

Moreover, it is possible to state that the functions VM6 and VM7 extract from the
StaticConfig the not analyzed parameters remove_certs and disable_tcpserver, while
the functions VM8 and VM9 extract a field at the offset 0x154 which is always O which
could be an optional hidden parameter of the configuration. The other function never
encountered is VMO or get_rc4_key, this should only extract the RC4 key, and maybe it

is just not used.

The main phases of the execution of the trojan are depicted in figure 21.

delete creates persistence key

dropper
/ Dropper.exe

°
drop ZeusVM - "
HE

Execute .bat

Registry
Dropped.exe
) S
Inject &} terminates -
Download o
GET/POST
- » C&CServer
control
: = communication
DynamicConfig.jpg Explorer.exe and updates

Figure 21 — ZeusVM execution

55

The dropper runs into the system, creates the persistence key and creates the
droppped. Then launches a .bat to delete the dropper and executes the dropped. The
dropped does an injection of itself inside the system process Explorer.exe and then
exits. Inside the injected code the malware downloads the C&C configuration and
uploads stolen data to the drop zone. To steal data, also the browsers are infected

with malicious code to run the webinject. This aspect has not been analyzed.

In figure 22, there is a summary of the aspects discovered during all the analyses, with

a merge of the information known from the previous works.

functions VMO-VYM13
getStaticConfig

113 getURL

m Config.JPG

reverse
f RCE . Encrypted '

DynamicConfig

a1t Decrypted
VM5 get 'M10 whileLoop DynamicConfig
Botnet Name Obfuscated
DynamiConfig
LoaderURL
Webinjects
VM12 getDynamicConfig GateURL

POST

C&C Server
gate.php

Figure 22 — ZeusVM

5.3.1. Missing pieces

The differences among the instructions of the Virtual Machine were not confirmed
through the analysis. No differences were found among the samples. This could be due

to the fact that only samples generated from the same builder were used.

56

Differences among each operation of the Virtual Machine exist, since in the
comparison with Schwarz (2015) there is a different “sign”, but those differences could
be only between different versions of the malware, or different compiled versions of
the builder. Since only one precompiled version of the builder was available, these

aspects are still unclear.

The UCL compression or the bintext structure of the decrypted DynamicConfig have

not been investigated

The URL decryption stated in Schwarz (2015) is relative only to the decryption of the
reserve URL and it does not work for the primary URL of the C&C. This difference in the

decryption is not mentioned.

57

6. Conclusions

The Zeus family is very rich of samples, K.I.N.S/ZeusVM 2.0.0.0 is one of the most
interesting new additions to this malware family. This trojan took its name from its

most unconventional peculiarity, the Virtual Machine.

In this thesis, the structure of this Virtual Machine has been analysed. The polymorphic
nature of this trojan has been confirmed, due to the fact that the decryption process

realized through this Virtual Machine is always different.

The functions related to the use of the Virtual Machine have been analysed. Those
functions are related to the StaticConfig, this has been deeply analysed to understand
its fields and which role they had during the execution of the malware, with respect to
the use of the Virtual Machine. In particular, it was found out an unknown scheme to
decrypt the C&C URL which is encrypted and embedded inside the malware during its
creation. In addition, the DynamicConfig has been analysed, together with the phases
of its decryption through the use of the Virtual Machine. The traffic between the
infected system and the Command & Control server has been analysed and its

encryption scheme based on RC4 and RollingXOR algorithm has been understood.

All those results have been obtained through the application of the Reverse
Engineering, in particular through the use of the Static and Dynamic Analysis. Those
methods combined proved to be the best process to understand an unknown
malware. In particular, the Dynamic Analysis is a required process to understand and

decrypt the malware that encrypt themselves and their traffic.

6.1. Future Works

For future works, the reverse engineering of this malware could be enhanced and be
performed more in depth, starting from the knowledge acquired. Other aspects of the
malware could be analysed to point out new information about the behaviour of the

ZeusVM trojan.

58

In particular, the main aspect that has not been analysed in this thesis and that could
be of great interest for the future developments of web browsers is the Man-in-the-
browser technique. This is due to the fact that it is still a valid technique to alter the
content of a web page, and also the most popular updated browsers are affected by
such flaw. The researcher could investigate also the process of the injection, to fully
understand where and how the injection can be performed to running processes by
this malware. This has not been investigated since it is a known technique, but every

malware has its own different peculiarities.

This work could be continued in the study of other Botnets created from other trojans
similar to ZeusVM, or Zeus. One of this trojan could be the trojan ZBerp, to enlighten

the differences between those versions.

59

7. References

A.S.L Exeinfo PE [Online]. - http://exeinfo.atwebpages.com/.

Agarwal Shiv Kumar and Shrivastava Vishal BASIC: Brief Analytical Survey on
Metamorphic Code [Journal] // International Journal of Advanced Research in
Computer and Communication Engineering. - September 2013. -9 : Vol. 2.

aldeid PEiD [Online]. - https://www.aldeid.com/wiki/PEiD.
Apache Friends XAMPP [Online]. - https://www.apachefriends.org/.

Bijl Joost Analysis of the KINS malware [Online] // Fox-IT. - 2013. - http://blog.fox-
it.com/2013/07/25/analysis-of-the-kins-malware/.

Buecher M. regshot [Online] // sourceforge. -
http://sourceforge.net/projects/regshot/.

Chikofsky E.J. and Cross J.H. Reverse engineering and design recovery: A taxonomy
[Journal] // Software, IEEE. - 1990. -1 : Vol. 7.

Combs Gerald [Online] // Wireshark. - https://www.wireshark.org/.

Damodaran A. Combining Dynamic and Static Analysis for Malware Detection
[Report] / Master's Projects ; San Jose State University. - 2015. - p. 6.

Eastlake D. and Jones P. US Secure Hash Algorithm 1 (SHA1) [Online] // The Internet
Engineering Task Force. - 2001. - https://tools.ietf.org/html/rfc3174.

Eldad E. Reversing: Secrets of Reverse Engineering. [Book]. - Indianapolis : Wiley
Publishing, Inc. 10475, 2005. - Vol. 1.

FBI GameOver Zeus Botnet Disrupted [Online] // FBI. - 2014. -
https://www.fbi.gov/news/stories/2014/june/gameover-zeus-botnet-disrupted.

Gadhiya S. and Bhavsar K. Techniques for Malware Analysis [Article] // International
Journal of Advanced Research in Computer Science and Software Engineering
Research. - April 2013. -4 : Vol. 3.

Gandotra Ekta, Bansal Divya and Sofat Sanjeev Malware Analysis and Classification: A
Survey [Journal] // Journal of Information Security. - 5 2014. - pp. 56-64.

HeavenTools PE.Explorer [Online]. - http://www.heaventools.com/overview.htm.
Hex-Rays IDA Pro [Online]. - https://www.hex-rays.com/products/ida/.

Josefsson S RFC4648: The Basel6, Base32, and Base64 data encodings [Online] //
https://tools.ietf.org/html/rfc4648.txt. - 2006.

60

Krebs Brian SpyEye v. ZeuS Rivalry Ends in Quiet Merger [Online] // Krebs on Security. -
2010. - http://krebsonsecurity.com/2010/10/spyeye-v-zeus-rivalry-ends-in-quiet-
merger/.

Kruse Peter Complete ZeuS sourcecode has been leaked to the masses [Online] //
CSIS. - 05 2011. - http://www.csis.dk/en/csis/blog/3229/.

Malware Must Die MMD-0036-2015 - KINS (or ZeusVM) v2.0.0.0 tookit (builder &
panel source code) leaked. [Online] // Malware Must Die. -5 7 2015. -
http://blog.malwaremustdie.org/2015/07/mmd-0036-2015-kins-or-zeusvm-
v2000.html.

Maurits Lucas A Short History of Attacks on Finance [Online] // RSA Conference. -
2015. - https://www.rsaconference.com/writable/presentations/file_upload/stu-w2-a-
short-history-of-attacks-on-finance.pdf.

McAfee BinText [Online] // Intel Security. -
http://www.mcafee.com/it/downloads/free-tools/bintext.aspx.

Microsoft Sysinternals Suite [Online]. - https://technet.microsoft.com/en-
us/sysinternals/bb842062.

Radburn Wayne J. Utilities [Online]. - http://wjradburn.com/software/.

Rivest R. The MD5 Message-Digest Algorithm [Online] // The Internet Engineering Task
Force. - MIT Laboratory for Computer Science and RSA Data Security, Inc., 1992. -
https://www.ietf.org/rfc/rfc1321.txt.

Rivest Ronald L. [et al.] The RC6 Block Cipher [Report]. - 1998.

Rivest Ronatld L. and Schuldt Jacob C. N. Spritz a spongy RC4-like stream cipher and
hash function [Report]. - 2014.

Sandee Micheal GameOver ZeuS Background on the Badguys and the Backends
[Conference] // Blackhat US 2015. - 2015.

Schwarz Dennis ZeusVM: Bits and Pieces [Online] // Arbor Networks. - 08 2015. -
https://asert.arbornetworks.com/zeusvm-bits-and-pieces/.

Sikorski M. and Honig A. Practical Malware Analysis: The Hands-on Guide to Dissecting
Malicious Software [Book]. - [s.l.] : No Starch Press, 2012.

Singhal A. and Shlok G. Reverse Engineering [Journal] // International Journal of
Computer Applications. - December 2014. - 9 : Vol. 108.

Stevens Kevin and Jackson Don Zeu$S Banking Trojan Report [Online] // Dell
SecureWorks. - 3 2010.

VirusTotal [Online]. - https://www.virustotal.com/.

61

VMware VMware Workstation Pro [Online] // VMware. -
http://www.vmware.com/it/products/workstation/.

Walma M. Pipelined Cyclic Redundancy Check (CRC) Calculation [Conference] //
Proceedings of 16th International Conference on Computer Communications and
Networks. - 2007.

Wontok Safe Central The Evolution of Financial Malware 2007-2014 [Report].
Wyke J. What is Zeus? [Report] : Technical Paper / SophosLabs UK. - 2011.

X-Ways WinHex: Computer Forensics & Data Recovery Software, [Online] // X-Ways. -
http://www.x-ways.net/winhex/.

Yuschuk Oleh [Online] // OllyDbg. - http://www.ollydbg.de/.

62

	Abstract
	1. Introduction
	2. Malware Categories: Purposes and Security Techniques
	1.
	2.
	2.1. Malware Categories: Purpose
	2.1.1. Virus
	2.1.2. Worm
	2.1.3. Trojan
	2.1.4. Spyware
	2.1.5. Rootkit
	2.1.6. Botnet

	2.2. Malware Categories: Security Techniques
	2.2.1. Encrypted Malware
	2.2.2. Oligomorphic Malware
	2.2.3. Polymorphic Malware
	2.2.4. Metamorphic Malware

	2.3. Obfuscation Techniques
	2.3.1. Dead Code Insertion
	2.3.2. Register Reassignment
	2.3.3. Subroutine Permutation
	2.3.4. Instruction Substitution
	2.3.5. Code Transposition
	2.3.6. Code Integration

	3. Reverse Engineering
	3.
	3.1. Malware Analysis Techniques
	3.1.1. Static Analysis
	Basic Static Analysis
	Advanced Static Analysis

	3.1.2. Dynamic Analysis
	Basic Dynamic Analysis
	Advanced Dynamic Analysis

	3.2. Tools for Malware Analysis
	3.2.1. Hash Algorithm Based Software
	3.2.2. Antivirus
	3.2.3. Packer Detector
	3.2.4. Header and Sections Inspector
	3.2.5. String Analysis
	3.2.6. Disassembler
	3.2.7. Decompiler
	3.2.8. Debugger
	3.2.9. Registry Monitor
	3.2.10. File System and Process Monitor
	3.2.11. Network Monitor
	3.2.12. Virtual Machine

	4. The Banking Trojan Zeus
	4.
	4.1. Introduction
	4.2. History
	4.3. Toolkit
	4.3.1. Config.txt
	4.3.2. WebInjects.txt
	4.3.3. Command & Control Server
	4.3.4. The Builder
	4.3.5. The Executable

	4.4. How Zeus works

	5. Reverse Engineering of ZeusVM
	5.
	5.1. Case Study Environment
	5.1.1. Creation of the Virtual Machines
	5.1.2. Installation of the ZeusVM Control Panel
	5.1.3. Creation of the ZeusVM trojan
	5.1.4. Tools Setup

	5.2. Analysis
	5.2.1. Malware testing: Basic Static Analysis
	5.2.2. Advanced Dynamic Analysis
	5.2.3. Static Analysis of the Virtual Machine
	5.2.4. Dynamic Analysis
	5.2.5. Basic Dynamic Analysis
	5.2.6. Dynamic Analysis of Dropped.exe
	5.2.7. Dynamic Analysis of RC4 S-Box
	5.2.8. Static Analysis of RC4 PRNG
	5.2.9. Remote Debugging of Explorer.exe
	5.2.10. C&C URL Decryption
	5.2.11. DynamicConfig Decryption
	5.2.12. Traffic Analysis
	5.2.13. Dynamic Analysis of communications
	5.2.14. Static Analysis of POST data
	5.2.15. Multiple Malware Samples Analysis

	5.3. Summary
	5.3.1. Missing pieces

	6. Conclusions
	6.
	6.1. Future Works

	7. References

