

FACULTY OF INFORMATION ENGINEERING, COMPUTER SCIENCE AND STATISTICS

Master Thesis in

ENGINEERING IN COMPUTER SCIENCE

Reverse Engineering For Malware Analysis:
Dissecting The Novel Banking Trojan ZeusVM

Candidate

Donato Dell’Atti

Student ID

1231142

Advisor

Prof. Roberto Baldoni

Assistant Advisors

Dott. Leonardo Aniello

Dott. Daniele Ucci

Academic Year 2014/2015

Contents

Abstract ... vii

1. Introduction ... 1

2. Malware Categories: Purposes and Security Techniques 3

2.1. Malware Categories: Purpose ... 3

2.1.1. Virus .. 3

2.1.2. Worm .. 4

2.1.3. Trojan .. 4

2.1.4. Spyware... 4

2.1.5. Rootkit ... 4

2.1.6. Botnet ... 5

2.2. Malware Categories: Security Techniques ... 5

2.2.1. Encrypted Malware ... 5

2.2.2. Oligomorphic Malware ... 5

2.2.3. Polymorphic Malware ... 6

2.2.4. Metamorphic Malware ... 6

2.3. Obfuscation Techniques ... 6

2.3.1. Dead Code Insertion ... 6

2.3.2. Register Reassignment .. 7

2.3.3. Subroutine Permutation ... 7

2.3.4. Instruction Substitution .. 7

2.3.5. Code Transposition ... 7

2.3.6. Code Integration ... 8

3. Reverse Engineering ... 9

3.1. Malware Analysis Techniques ... 10

3.1.1. Static Analysis ... 10

3.1.2. Dynamic Analysis .. 11

3.2. Tools for Malware Analysis ... 12

3.2.1. Hash Algorithm Based Software ... 12

3.2.2. Antivirus .. 13

3.2.3. Packer Detector .. 13

3.2.4. Header and Sections Inspector ... 14

3.2.5. String Analysis ... 14

3.2.6. Disassembler ... 15

3.2.7. Decompiler .. 15

3.2.8. Debugger ... 15

3.2.9. Registry Monitor ... 16

3.2.10. File System and Process Monitor.. 17

3.2.11. Network Monitor .. 17

3.2.12. Virtual Machine... 18

4. The Banking Trojan Zeus .. 19

4.1. Introduction .. 19

4.2. History ... 20

4.3. Toolkit ... 23

4.3.1. Config.txt ... 23

4.3.2. WebInjects.txt ... 24

4.3.3. Command & Control Server .. 25

4.3.4. The Builder .. 26

4.3.5. The Executable .. 27

4.4. How Zeus works .. 27

5. Reverse Engineering of ZeusVM 29

5.1. Case Study Environment ... 29

5.1.1. Creation of the Virtual Machines .. 30

5.1.2. Installation of the ZeusVM Control Panel ... 30

5.1.3. Creation of the ZeusVM trojan ... 31

5.1.4. Tools Setup.. 32

5.2. Analysis ... 32

5.2.1. Malware testing: Basic Static Analysis .. 33

5.2.2. Advanced Dynamic Analysis ... 36

5.2.3. Static Analysis of the Virtual Machine .. 36

5.2.4. Dynamic Analysis .. 39

5.2.5. Basic Dynamic Analysis ... 39

5.2.6. Dynamic Analysis of Dropped.exe .. 40

5.2.7. Dynamic Analysis of RC4 S-Box ... 41

5.2.8. Static Analysis of RC4 PRNG .. 43

5.2.9. Remote Debugging of Explorer.exe .. 43

5.2.10. C&C URL Decryption ... 45

5.2.11. DynamicConfig Decryption ... 46

5.2.12. Traffic Analysis .. 47

5.2.13. Dynamic Analysis of communications .. 49

5.2.14. Static Analysis of POST data .. 51

5.2.15. Multiple Malware Samples Analysis ... 52

5.3. Summary ... 54

5.3.1. Missing pieces ... 56

6. Conclusions .. 58

6.1. Future Works .. 58

7. References ... 60

List of Figures

Figure 1 - Zeus timeline ... 20

Figure 2 - Toolkit scheme .. 23

Figure 3 - Config.txt... 24

Figure 4 – Webinject.txt .. 25

Figure 5 – Builder Control Panel ... 26

Figure 6 – ZeusVM Builder .. 27

Figure 7 – Environment ... 30

Figure 8 – ZeusVM decryption overview ... 33

Figure 9 – VirusTotal analysis ... 33

Figure 10 – PEiD analysis .. 34

Figure 11 – PEview analysis .. 35

Figure 12 – BinText analysis .. 35

Figure 13 – Virtual Machine .. 37

Figure 14 – URL Decryption ... 45

Figure 15 – DynamicConfig inside JPG .. 47

Figure 16 – Communication Bot-C&C ... 48

Figure 17 – Packet Exchanged Bot-C&C .. 49

Figure 18 – Decrypted POST data ... 51

Figure 19 – Decrypted StaticConfig ... 52

Figure 20 – VM functions during execution .. 54

Figure 21 – ZeusVM execution .. 55

Figure 22 – ZeusVM .. 56

Abstract

In recent years, Internet Security has acquired a key role in Computer Science

due to the huge damages caused by security outbreaks. In particular, during the last

decades, there has been a rise of Botnets as a mechanism to steal money and sensitive

information.

In this scenario, one of the most important families of Botnet are currently

created using the Zeus toolkit, through the diffusion of the Zeus trojan or ZBot that has

been firstly discovered in 2007.

In order to fight back these threats, Reverse Engineering has become a standard

procedure in Malware Analysis. In this field, Reverse Engineering is applied in order to

understand the behaviour of a malware through the reconstruction and analysis of the

components of the software source code.

Considering the importance of this topic, this thesis focuses on the ZeusVM

v2.0.0.0. trojan, as it is one of the most recent addition to the family of Zeus-based

Botnets and a complete version of its Toolkit has been leaked on internet for free in July

2015 allowing everyone to create his or her own botnet.

In this dissertation, aiming to understand ZeusVM trojan behaviour and its

security mechanisms against detection and anti-analysis, the process of Reverse

Engineering was applied as the source code was not available. This process has been

adopted inside the Malware Analysis using the Static and Dynamic techniques, which

use both the Reverse Engineering in different ways.

As a result of this analysis, a new technique to decrypt the URL of the Command

& Control Server was found. Moreover, the role of specific indexes in the RC4

decryption, and the technique used to encrypt the traffic with the C&C were found.

This allowed the identification and classification depending on their roles of

some functions involved with the Virtual Machine during the execution of the malware.

1

1. Introduction

The name Malware stands for Malicious software, a malicious software is a software

that runs in a computer without the knowledge or the agreement of its owner.

Different types of malware exist and they can be classified depending on their

spreading technique or their purpose, which can range from monetizing the security

outbreaks, or gaining valuable information that could be sold, to damaging the hosting

machine or overloading the network.

In recent year, considered the yearly increasing spread of new malware and their

dangerousness, enhancing the defences against them has become an important need.

In this scenario, internet security has acquired a key role in order to protect sensitive

information since the most damaging attacks usually involve stealing money.

Nowadays, Botnets are mainly used to carry out these attacks. One of the most

important families of Botnet is created using the Zeus toolkit, through the diffusion of

the Zeus trojan or ZBot that has been firstly discovered in 2007.

This thesis focuses in particular on the ZeusVM v2.0.0.0 trojan as it is one of the most

recent addition to the family of Zeus based Botnets and a complete version of its

Toolkit has been leaked on internet for free in July 2015 allowing everyone to create its

own botnet.

As the source code of ZeusVM was not available, in order to understand how it works

the process of Reverse Engineering was applied.

In Software Engineering, the term Reverse Engineering stands for the process of

analysing a subject system to create representations of the system at a higher level of

abstraction (Chikofsky, et al., 1990).

The aim of this dissertation was to carry out a malware analysis of the malware

ZeusVM through a process of Reverse Engineering in order to understand its behaviour

and its security mechanisms against detection and Malware Analysis.

2

The analysis of the ZeusVM trojan was performed through the use of the Static and

Dynamic Analysis, the main techniques of Malware Analysis. Both these techniques

can be further categorized in Basic and Advanced. The Basic Analysis is a superficial

analysis which involves the appearance of the malware and its behaviour. The

Advanced Analysis is the code analysis, where there is a deep inspection of the

internals of the malware. The Advanced analysis can be called also Reverse Code

Engineering and frequently in the Software Engineering sector, it is abbreviated to

Reverse Engineering, losing its first initial meaning.

In this dissertation, mostly Reverse Code Engineering was applied to understand the

internals of the ZeusVM malware. Virtualization was used to analyse the trojan, a

Botnet was deployed to replicate the execution on an infected machine, including the

communication with a fictional server acting as the Command & Control. The ZeusVM

trojan was analysed starting from its most peculiar characteristic, the Virtual Machine,

whose components were found out. Then, a deep analysis of the configuration file of

the trojan and its decryption has been carried out as well as the traffic between the

infected machine and the server were analysed.

As a result of this analysis, a new technique adopted inside the malware to decrypt the

URL of the Command & Control Server used to download the DynamicConfig was

found. Moreover, the role of specific indexes in the RC4 decryption, and the use of the

VisualEncrypt and RC4 by ZeusVM to encrypt its traffic to the C&C were found. This

allowed the identification and classification depending on their roles of some functions

involved with the Virtual Machine during the execution of the malware.

Firstly, an initial theoretical study of the malware and of the most common techniques

applied in Reverse Engineering and Malware Analysis was carried out as shown in

chapter 2, 3 and 4. Secondly, the setup of the environment was created and the

analysis of the malware was conducted as explained in chapter 5. Limitations and

conclusions are reported in chapter 6.

3

2. Malware Categories: Purposes and Security

Techniques

During the years, Malware have changed their behaviour and purpose since also the

writers of the code have changed.

In the early years of internet, there have been many cases where the coders were

students who wanted to perform a prank, like the first internet worm, or just gain

popularity. Nowadays, the situation has heavily changed and the most powerful

malware are written by skilled programmers whose job is to develop them and their

purpose ranges from monetizing the security outbreaks gaining valuable information

that could be sold, to damaging the hosting machine.

Currently, malware can be categories depending on their purpose and spreading

techniques (Damodaran, 2015), such as trojan, worms, spyware, etc. (fig,1), or

behaviour in terms of security techniques that they use to avoid detection or to

enhance their analysis complexity such as Oligomorphic, Polymorphic malware etc.

and related obfuscation techniques (Agarwal, et al., 2013).

In this chapter, the key features of the main purpose-categories and the most common

security and related obfuscation techniques are described.

2.1. Malware Categories: Purpose

2.1.1. Virus

Generally, Malware and Virus are considered synonymous but they are not as Virus is a

sub-category of Malware. A Virus takes its name from biology, because its behaviour is

similar to its biological counterpart. As real viruses, computer viruses need to attach to

other programs to live and they self-replicate.

4

Once infected the machine, the virus replicates itself and infects all the machines

connected to the source of the infection. Once infected the system, it is modified and

the vital functions to execute programs are destroyed.

Viruses are a primitive form of malware. They were firstly developed in the pre-

internet era and the main vehicles of transmission were physical devices such as pen

drive, etc... With the advent of internet, they were developed in order to spread

through the network. At the same time, new forms of malware such as worms, with

more advanced and sophisticated characteristics, were created.

2.1.2. Worm

A Worm is similar to a Virus as it is a self-replicating malware but it differs from a virus,

as it does not need to attach to other programs to survive. For this reason, it is defined

a stand-alone program. It mainly propagates through networks.

2.1.3. Trojan

This type of malware takes its name from the wooden horse used to enter Troy during

the Troy war. As the Troy horse, a trojan is apparently an innocuous artefact that has

access through the front door besides it contains a malicious element hidden inside it.

Its definition recalls its characteristics, as its installation requires user’s consent. On the

contrary, of viruses and worms, it does not self-replicate.

2.1.4. Spyware

This category is relatively recent and refers to that malwares, that as the name itself

states, spy the user tracking, monitoring and reporting users’ online activities without

their consent. These malwares are capable of collecting a wide range of information

including cookies, credentials, credit card numbers, etc. They differ depending on how

intrusive they are.

2.1.5. Rootkit

Rootkit is not a malicious software but it can be used for malicious activity. Its goal is to

hide itself inside the system and provides a privileged access to the system for the

5

attacker. A rootkit can coexist with other malware and has the role of concealing their

malicious activity so that they cannot be detected.

2.1.6. Botnet

A Botnet is a network of infected machine with a particular Bot. A bot is a malicious

code that infects a machine connected to internet. This bot allows the owner of the

botnet, also known as bot master, to remotely control every machine inside the

botnet. The botnet can be used to perform spam activity through emails or through a

spyware component that can collect bank credentials or other valuable information.

2.2. Malware Categories: Security Techniques

It is possible to categorize malware in terms of the security techniques that they use to

avoid detection or to enhance their analysis complexity. The most common categories

are encrypted, oligomorphic, polymorphic and metamorphic malware.

2.2.1. Encrypted Malware

Encryption is a technique that hides the content of a malware from a static analysis,

which is an analysis that does not execute the code and does not have the possibility

to run the decryption function to decrypt the malware. Once discovered the

decryption function, the malware is vulnerable, since it is composed of the encrypted

part and of a decryption function, which is always the same. The encryption avoids the

detection from a signature based scan. This technique can be combined in multiple

levels of different encryption to make the malware more dangerous and less

vulnerable.

2.2.2. Oligomorphic Malware

An Oligomorphic malware is essentially a slight modification of an Encrypted malware

where the decryption function is not fixed and easily identifiable. For each different

sample, a different decryption function is created, this makes the malware always

virtually different. In real cases, the combinations of the decryption functions are

6

limited, so it is possible to take the sign of every different decryption function and

identify them through a signature based analysis.

2.2.3. Polymorphic Malware

The Polymorphic malware is an evolution of the Oligomorphic malware. In this case,

the code of the malware takes a mutation from its original source and the malware

generates a real infinite number of different decryption functions through obfuscation

techniques, so each sample is different from the others and needs to be specifically

analysed. Besides this, the encrypted malware is always the same as well as the

decryption function.

2.2.4. Metamorphic Malware

A Metamorphic Malware is a type of malware which uses the most complex security

technique compared to a polymorphic malware. In this case, the malware is rewritten

every time but it does not need to use encryption, since all the body of the malware is

changed at each rewriting. The functionality of the malware remains the same but

through different practices, the outcome is always different. The Malware contains a

mutation engine that has the role of creating the new mutated sample.

2.3. Obfuscation Techniques

Code Obfuscation is a legitimate technique used by many software developers to hide

the source code of their works or to make it harder to recreate the source code

through reverse code engineering. Malware writers adopt the same strategies to hide

their malicious software from the researcher.

Those methods are used also in polymorphic and metamorphic malware.

2.3.1. Dead Code Insertion

Dead code insertion is a simple technique that adds some operations that are not

needed for the program, like NOP instructions that do not change the behaviour of the

program. Antivirus could check for a series of NOP operation and could delete them, so

7

also other dead code could be inserted to slightly modify the program, like the

subsequent increment and decrement of a variable. The dead code could be never

executed or even if executed it would have no effects on the functionality of the

original form of the malware.

2.3.2. Register Reassignment

Register Reassignment or Renaming is a technique that changes the used register from

one generation of the malware to another. The behaviour and the functionality of the

program remain untouched. It is to reassign a register that is never used inside the

program, otherwise it is a technique more complex to adopt.

2.3.3. Subroutine Permutation

Subroutine Permutation exchanges the order of the malware routine in a random

combination. This technique could create a n! possible combinations of a malware

with n subroutines. The order of the subroutines could be different for each sample.

2.3.4. Instruction Substitution

Instruction Substitution changes the code of the program with equivalent operations

that logically have the same results but that are executed in a different way. This is a

complex obfuscation technique since it is needed a dictionary of all the possible

substitutions than could occur for each operation to detect it.

2.3.5. Code Transposition

Code transposition is a technique where the order of the instructions is changed from

the original source of the malware. Blocks of code that are not dependent, they are

rearranged in order to change the resulting code of the malware without changing the

behaviour of those blocks of codes. This technique is hard to implement because it is

complex to find independent blocks of code. Another possible way to achieve a similar

result is to randomly rearrange the instructions and reconstruct the right order

inserting conditional and unconditional jumps inside the code.

8

2.3.6. Code Integration

Code Integration is a sophisticated technique. In this case, the virus inserts its code

into another executable program. In order to do it, it firstly disassembles the host

program then copies itself inside it and recompiles the program to generate a new

executable.

9

3. Reverse Engineering

Reverse Engineering is the process of extracting information from a software

program's binary code by analysing its components and behaviour and without any

knowledge about its internals and any information about its creation.

Reverse Engineering is a field that can be applied to every Forward engineering sector,

it is comparable to a scientific research with the difference that the analysis is

computed on a man-made product and not a natural phenomenon.

In Software Engineering, the term reverse engineering is the process of analysing a

subject system to create representations of the system at a higher level of abstraction

(Chikofsky, et al., 1990) .

Reverse Engineering is a process opposed to the traditional waterfall model, in which

the aim is to produce the source code of the software. It only examines the provided

software to gain information without writing the source code even if available.

There are mainly two possible fields in which reverse engineering could be useful

(Eilam, 2005).

The first field is in software development where the source code is available but it is

poorly documented and there is the needed to do interoperability with this

undocumented or proprietary piece of code (Eilam, 2005).

The other main field is related to software security, where the source code is not

available and the object of the reverse engineering is to reconstruct the source code of

the software analysed (Eilam, 2005).

In Software Security, reverse engineering can be applied also to the research of

security flaws inside software, for the analysis of cryptographic algorithms or to break

the security layer of software protected by digital rights management.

10

This field includes Malware Analysis since usually malware developer do not share

their source code and as a consequence malware analysts need to understand the

behaviour of the malware trying to reconstruct the source code of the desired aspects

that they want to analyse.

3.1. Malware Analysis Techniques

Malware Analysis is the study of a malware by dissecting its components to

understand its behaviour. There are mainly two possible Malware Analysis techniques,

each one has its advantages and disadvantages. These techniques are Static Analysis or

also called code analysis, and Dynamic Analysis or behaviour analysis. Both techniques

can also be categorized in basic and advance, so there are four categories Basic Static

Analysis, Advanced Static Analysis, Basic Dynamic Analysis and Advanced Dynamic

Analysis. (Sikorski, et al., 2012)

3.1.1. Static Analysis

The procedure of analysing code without executing it is called static analysis. This is

the first analysis that should be taken on an executable to understand its behaviour.

Static Analysis has the main advantage that does not execute the code of the malware

so it is not harmful for the system that runs the analysis (Singhal, et al., 2014). As

previously mentioned, Static Analysis can be divided in Basic and Advanced.

Basic Static Analysis

Basic Static Analysis consists of an analysis of the malware without viewing the

machine level instruction of the file. There are programs that could be used to gain

some information, firstly an antivirus scan could reveals the malicious essence of the

file. An hash signature verification could be performed to see if the file is known. The

structure of the file could be dissected to see if the program is a portable executable or

if it has been packed.

11

Advanced Static Analysis

Advanced Static Analysis has the role of inspecting the code of the malware with a

proper disassembler. An example of disassembler is IDA Pro (Hex-Rays) which stands

for Interactive Disassembler Professional and is usually the first choice for malware

analysts. It can also be used as a debugger.

Generally, a disassembler is a tool that reconstructs the assembly code of the malware.

Through this analysis, it is possible to see all the possible instructions that the malware

could execute on the computer. Moreover, it is possible to identify specific function

inside the code that has a known implementation or a specific digital signature. For

example, it is possible to identify functions that do encryption or perform obfuscation.

The problem with this kind of analysis is that analysing the binary all the data

structures and variables are not available, so it is hard to understand the behaviour of

the program. (Gandotra, et al., 2014)

This technique has some limitations since malwares have implemented a lot of

techniques to hinder this kind of analysis for security researchers, like the obfuscation

or the encryption of some parts of the malware, which cannot be read (Gadhiya, et al.,

2013).

3.1.2. Dynamic Analysis

Dynamic Analysis is a complementary approach to the Static Analysis, as it is the

analysis of a software during its execution in a controlled environment. Since the

software could be malicious, and Malware Analysis is about malicious software, the

environment where the analysis is taken should be safe. Dynamic Analysis is

performed under safe environment that cannot infect the machine of the security

researcher. This environment is based on Virtual Machine or Sandbox.

The problem with Dynamic Analysis is that malware are aware of this technique and

have implemented countermeasure, a malware that can identify a hostile ambient

could act in a different way from its standard execution.

12

One of the main problem with Dynamic Analysis, it is that it is based on a single

execution of a malware, which means that not all the paths of that program can be

identified in a single run. Finding all the possible executions of the malware could be

time consuming, depending on the nature of the malware.

Basic Dynamic Analysis

Basic Dynamic Analysis is the execution of a malware and the study of its effects on

the system. This analysis can be taken with the help of software that monitor the

system to see accesses to function calls, the creation of new files, the exchanges of

internet packets, the accesses to the register or any possible information that could be

gain from the observation of the environment before and after the execution of the

malware.

Advanced Dynamic Analysis

Advanced Dynamic Analysis is the execution of the malware with a debugger software

such as IDA Pro or OllyDbg (Yuschuk).

A debugger allows the execution of one operation of code at the time, so it possible to

do a deep inspection of each function that the malware executes. Through a Dynamic

Analysis compare to a Static Analysis, it is possible for the security researcher to find

the values assigned to variables during the runtime execution.

The problem with this approach is that many security checks have been implemented

inside malware to identify the execution inside a debugger or a virtual machine.

3.2. Tools for Malware Analysis

In this section, an overview of the software that can be used for static and Dynamic

Analysis is presented.

3.2.1. Hash Algorithm Based Software

Hashing is a common technique used to identify malware. Malware that does not

change their executable maintains a static sign, or fingerprint. This can be checked

13

with algorithms like Message Digest Algorithm 5 (Rivest, 1992) or Secure Hash

Algorithm 1 (Eastlake, et al., 2001) that are the most popular and commonly used

algorithm for malware identification.

3.2.2. Antivirus

The main software that can be used to identify a malicious software is an antivirus.

Scanning a file with an antivirus could give some initial information about it as the file

could be a well-known malware that has some specific characteristics.

For this purpose, there are online services that provide a free scan for uploaded file.

Any file can be submitted to a virus company that will test it. The most important and

famous online scanner is VirusTotal, but there are also other companies that provide

this service like Jotti Malware Scan and many others. Those services provide a report

with the result of the analysis on the file.

3.2.3. Packer Detector

The first thing to do with a malware file is to understand if it is an executable. There

are a lot of software that can analyse the structure of a portable executable but that

software will fail if the software is packed (Sikorski, et al., 2012).

Malware authors use packing technique to hide the content of the executable, packed

programs are programs in which the malware has been compressed and it is not

possible to analyse the program with a static analysis. A packer always takes in input

an executable and outputs an executable that has the same functionality but has been

transformed with either encryption or compression techniques. This procedure makes

the reverse engineering of that malware more complex. In the past, this technique was

used also to reduce the size of the malware, a packer can be applied numerous times

to an executable to encrypt it multiple times.

Those kind of malware needs to be unpacked prior to be analysed. There are software

such as PEiD (aldeid) or Exeinfo PE (A.S.L) that identify if an executable is packed and

which is the packer that has been used.

14

PEiD has been discontinued from its creators but it is still considered the best software

in this field (Sikorski, et al., 2012).

In order to avoid the detection from these software, malware authors can implement

custom packers. In this case, it could be needed to do a manual unpacking to gain the

original form of the malware executable.

3.2.4. Header and Sections Inspector

Almost all the windows executable objects are in the file format of Portable Executable

[PE]. PE file has information in its header that could be of great value for malware

analysts.

Once unpacked a malware executable, it can be analysed with software that inspect

the header of the file and its structures to gain information. One of the tools that can

be used is PEview (Radburn). Using this software it is possible to identify the structure

inside the PE. Usually, four sections are identifiable: .text, .rdata, .data, and .reloc.

Those information about the sections are written inside the header with also other

interesting elements such as import export functions, time of compilation and others.

Usually .text section contains the instructions that are executed by the CPU; .rdata

contains the import/export information, and read-only data used by the program.

.data contains the program global date, while local data are not stored in this section.

.reloc section contains information for the relocation of library files.

Actually, the name of the section is relatively important as sometimes it can be

obfuscated to make analysis more complex.

There are many software to do the header and section inspection such as PE.Explorer

(HeavenTools) and others.

3.2.5. String Analysis

String Analysis is the research of readable text embedded inside a malware. This can

help to find some valuable information. Embedded strings could be easily extracted

through software like Bintext (McAfee), which has specifically only this role or using

15

more complex software such as IDA Pro which have this same feature. This kind of

analysis is not very useful for a malware, which encrypts its strings.

3.2.6. Disassembler

The Disassembler is one of the most important software in reverse engineering and in

particular for the Advanced Static Analysis. The disassembler is a software that takes in

input an unreadable executable binary file and generates an output of the same code

into, a human readable, assembly language code.

Assembly is machine dependent, since the instruction sets are different from one

architecture family to another. The disassembler should be capable of understanding

the different types of architecture and adapts to them.

Usually malware are written for Windows x86 architecture, but there also many other

architectures x64, ARM, and others that could be a target for malware. The most

famous and powerful disassembler is IDA Pro. It usually comes in two versions, and

only the most complete and expensive one supports all the architectures.

Another popular free disassembler is OllyDbg but it supports only x86 instructions.

3.2.7. Decompiler

A Decompiler is a software that transforms a series of assembly instructions into a high

level of instructions, frequently in a C-like language. It has the role to reconstruct the

source code of the analysed application, but actually it does not exist a software which

makes a complete reconstruction. The Hex-Rays Decompiler is a plugin for IDA Pro and

it is the only one which gives some useful results decompiling portions of code.

3.2.8. Debugger

The Debugger is the most important software for Advanced Dynamic Analysis. It is a

computer program that runs another program to study it and detect errors. The

debugging phase is a common phase for every software development. The debugger is

usually inside the integrated development environment and it is a source level

debugger which can take breakpoints directly inside the source code of the software.

16

In Malware Analysis, the debugger has a slightly different role since the source code is

not available, so it is needed an assembly debugger, also called, low level debugger.

This kind of debugger works directly on assembly code and allows the researcher to

analyse one instruction of the program at a time.

A debugger shows the current state of registers and memory during the execution.

Frequently disassembler and debugger are included in the same software, this is the

case also of for IDA Pro and OllyDbg.

3.2.9. Registry Monitor

The Windows registry is used to store settings and options of the software installed in

the system and of the configurations of the Operative System for each user. Analysing

the register could provide useful information about the behaviour of the malware and

its functionality.

Malware often uses the registry for persistence or configuration data. Once inserted

inside the registry a malware can run automatically at every start-up of the system.

The registry is split into the following five root keys:

• HKEY_LOCAL_MACHINE (HKLM) Stores settings that are global to the local

machine

• HKEY_CURRENT_USER (HKCU) Stores settings specific to the current user

• HKEY_CLASSES_ROOT Stores information defining types

• HKEY_CURRENT_CONFIG Stores settings about the current hardware

configuration, specifically differences between the current and the standard

configuration

• HKEY_USERS Defines settings for the default user, new users, and current users

The two most commonly used root keys are HKLM and HKCU. These keys are

commonly referred to by their abbreviations. (Sikorski, et al., 2012).

17

The software RegShot (Buecher) allows taking a registry snapshot that can be stored

and later compared with another one. Taking a snapshot prior and after the execution

of a malware can underline the changes executed inside the register.

Another software for monitoring registry was RegMon, now discontinued and

integrated inside Process Monitor.

3.2.10. File System and Process Monitor

Process Monitor is a tool for Windows that shows Registry, file system and

process/thread activity for an advanced monitoring. It shows event properties such

session IDs and user names, full thread stack, reliable process information and much

more. Process Monitor is a core utility for troubleshooting and malware hunting for its

uniquely powerful features.

The Process Explorer display consists of two sub-windows. The first window shows a

list of the active processes. The second can shows the handles that the process

selected in the first window has opened. Otherwise, if Process Explorer is in DLL mode

it will shows the DLLs and memory-mapped files that the process has loaded.

The unique capabilities of Process Explorer make it useful for tracking handle and DLL

errors, and provide insight into the way Windows and applications work.

The software are both integrated inside the Sysinternals Suite (Microsoft).

3.2.11. Network Monitor

Network monitoring is a key sector for understanding the behaviour of a malware. The

presence or not of network activity can rapidly identify the kind of malware that has

been analysed.

The information that can be gained is the amount of traffic that is generated and the

types of traffic. It is possible to see what is the payload of the messages exchanged,

and if it is encrypted or not.

18

This kind of network analysis can be performed with a software like Wireshark, and it is

not even needed that this software is installed on the infected machine. Wireshark can

monitor all the traffic exchanged inside a network if it can physically reach the packets.

Network monitor can be performed also on the infected machine to see which are the

processes that are opening new malicious connections and on which port. This kind of

analysis is performed also with process monitor, or other specific software.

3.2.12. Virtual Machine

A Virtual Machine is a software useful for dynamic analysis. This software allows the

creation of a virtualized physical machine inside the host system where it is installed.

This virtual machine can be seen as another separate entity from the OS of the host

machine. On each virtual machine can be deployed an independent OS. Since

everything is virtualized it is easy to make a memory snapshot of the entire system. A

snapshot can be restored in a successive period of time to have back the status of the

virtual machine in that moment. Those snapshots can be incremental which creates an

history of the points in time that can be recovered.

This is very useful in Malware Analysis were the malware creates irreversible damage

or modification to a machine. Recovering a not infected snapshot allows a more easy

execution of the dynamic analysis.

The drawback of using a virtual machine for malware analysis is that malware have

been implemented anti-virtual machine techniques which can detect if the malware is

running on a virtual machine and change its behaviour. Those techniques hinder the

works of the security researchers.

The most famous software that allows the creation of Virtual Machines is VMWare

Workstation (VMware).

19

4. The Banking Trojan Zeus

4.1. Introduction

Zeus or Zbot is a banking trojan, it was created to steal information such as banking

details, login credentials and other sensitive information from the infected computer

and send them back to the author of the attack.

Zbot is mainly focused on stealing bank related information, since these are the most

profitable data in the short period, but it can also steal any credential that is

considered useful.

In 2007, the first version of Zeus was detected. Since then, almost every year a minor

update version of the original malware, Zeus v1.0, has been released such as v1.1,

v1.2, etc... In 2010, the first major update known as Zeus v2 was released while in

2011, the source code of the Zeus v2.0.8.9 was leaked allowing the development of

numerous forks over the years (fig.1) (Wontok Safe Central).

This malware creates a network of infected machines. Each machine is part of the

Botnet and its owner is not aware of the critical situation, since the trojan runs silently

in the background of the infected computer.

Once infected the zombie machine will automatically send the stolen information to a

C&C server that gather all the data and is controlled by the owner of the botnet. The

owner of the botnet can also issue commands to control all the zombie machines

simultaneously, and can update the list of the website that have to be monitored to

steal the data from the bot.

Zeus was initially sold on underground forums in a ready-to-use kit. At the time, the

cost of the kit reached also several thousands of dollars. In order to avoid

unauthorized copies of the kit, some initial versions of the kit were sold with a

hardware license, so that only the purchaser could run it on his computer and build the

20

executable, this was the first time that this kind of security technique was applied to a

malware. (Stevens, et al., 2010)

In the following sections, Zeus evolution since 2007 and its main features are analysed.

Figure 1 - Zeus timeline

4.2. History

During the years, Zeus has constantly evolved, from its first public detection in 2007 to

the most recent versions.

Zeus was probably originally created in 2006 by a Russian developer, known as Slavik.

Since then, many developers have tried to create software that could be in

competition with Zeus.

The first one of this kind was SpyEye in 2009. The biggest merit of SpyEye was having a

much lower price than Zeus. Moreover, its creator, the malware developer

21

Gribodemon, gave a specific function to the program, “kill Zeus”. This function had the

objective of removing Zeus trojan from the infected system and infects it with SpyEye.

This could also be considered a marketing feature.

The war with SpyEye lasted for a couple of years, during which Zeus maintained always

the leadership of the sector. In October 2010, Zeus author announced his retirement

on an underground forum, and his will of giving for free the source code of the

software to the creator of SpyEye,

The announce of his retirement was actually a trick, since Slavik was actually

developing a new version of Zeus and he deceived the abandon of the malware scene

aiming to target the interest of the police to another element (Maurits, 2015). In

addition to the source code, Slavik gave the ownership of all the kit customers to

Gribodemon and put him in charge of the customers support.

Once got the source code of Zeus, Gribodemon claimed also the realization of a new

powerful malware that was supposed to be a combination of both SpyEye and Zeus,

but this was never released (Krebs, 2010).

In the year following these events, a major episode happened in Zeus history. In march

2011, someone started selling on underground forums the complete source code of

the latest version of Zeus toolkit (Kruse, 2011). Rapidly, the source code was available

for everyone on the internet, for free.

The free availability of a source code that was used to be sold for many thousands of

dollars raised the interest of many people, from the least experts to the most skilled

malware developers.

The leak of the source code kicked off the creation of many Zeus forks, and many

malware have been inspired by those source codes.

Since then, many versions of the malware have been developed but some of the most

important and famous Zeus forks are ICE-IX, Citadel, ZeusVM/KINS and GameOver

Zeus.

22

Reconstructing the Zeus history after the leak is much more complex due to the quick

spread of new versions and related developers.

In the meanwhile, Slavik developed a different version of Zeus that did not rely on C&C

architecture. This version was known as Murofet/Licat. In September 2011, this Zeus

variant morphed into peer-to-peer Zeus or also called GameOver Zeus (GOZ). The

name of this morphed version was due to the fact that in one of the first version was

found a link to a C&C drop zone called gameover2.php (Sandee, 2015).

Starting from this point, there has been a double Zeus related development, one based

on the classical C&C architecture and one based on a distributed P2P architecture.

As Botnet started to be a serious treat, in March 2012, Microsoft launched an

operation that disrupted a lot of Botnet based on Zeus/ICE-IX/SpyEye but this

operation had no effects on the distributed entity of the botnet based on GameOver.

Differently from all the previous versions, GameOver Zeus was not sold in kit but it was

exclusively used by one crime gang, leaded by Slavik.

In May 2014, another operation which specifically targeted GameOver Zeus was

carried out, Operation Tovar. It was a conjunct operation which involved many

different actors, from the FBI and the U.S. Department of Justice to the Europol and

many security companies and universities.

 At the end of the operation GameOver Zeus Botnet was disrupted, until then this

botnet has made an estimated damage of 100M $. (FBI, 2014)

FBI confirmed that Zeus was originally created from the Russian developer Evgeniy

Mikhailovich Bogachev, known as Slavik. In February 2015, FBI put him in the first

position of the most wanted cybercrime list of criminals with a bounty of 3M$ for is

capture.

In parallel with the development of P2P Zeus, also each one of the C&C based forks

evolved during the years. In particular, KINS v1 source code was leaked in October

23

2013 and caused the creation of a newer version, KINS v2. This version was created in

2014 and it is currently one of the most recent versions of a Zeus-based trojan.

Recently, in June 2015, the Builder and the control panel of KINS v2.0.0.0 were leaked

on internet, this event gave the opportunity to anyone of creating and using a botnet

of a newer and updated version of Zeus.

The long running of Zeus over the years is principally due to the fact that it was well

designed and to the leak of its source code in March 2011.

4.3. Toolkit

The Zeus toolkit is composed of several components. A scheme of all the elements is

reported in figure 2.

Figure 2 - Toolkit scheme

4.3.1. Config.txt

The file config.txt is the configuration file of the trojan (fig.3). It contains two parts the

StaticConfig and the DynamicConfig.

The StaticConfig is read from the Builder and is embedded inside the binary of the

malware. It contains the name of the botnet, the URL of the C&C server to download

24

the Encrypted_DynamicConfig and a key to do the encryption. It encloses also other

fields like a backup URL if the server is not responding and timing options for the

connection with the C&C server.

The DynamicConfig is used when the Builder needs to create the

Encrypted_DynamicConfig, which is a different operation from the creation of the

executable. It contains two URLs to the C&C server, the first is for the download of the

latest version of the malware executable, and the second is a link to the drop zone of

the stolen data.

The most important field in the DynamicConfig is the file_webinjects entry, which is the

location where is placed the webinject file. It is essential for the creation of the

Encrypted_DynamicConfig. It contains also other parameters irrelevant for the

discussion.

Figure 3 - Config.txt

4.3.2. WebInjects.txt

The webinjects.txt is an external file which contains the HTML code (fig.4). This is the

core of the Encrypted_DynamicConfig as this file contains all the rules and the website

that the malware will attack. It specifies an URL for each piece of code that needs to be

injected and the position of the code inside the page.

25

This file is completely customizable from the owner of the botnet so he can decide

which website to attack.

There is a small sample in figure 4 that log username and password from the website

of the Italian bank Bancoposta.it. The file can contain an almost infinite number of

rules. An underground market for gaining new and updated webinjects exists.

Figure 4 – Webinject.txt

4.3.3. Command & Control Server

The botnet is controlled from a server, it has principally the role of sending the

Encrypted_DynamicConfig and gathering all the stolen information from the bot.

To accomplish those works, the C&C has a control panel installed which is written in

PHP and with a MySQL database to store the data.

The control panel is composed of two pages, the cp.php and gate.php.

The cp.php (fig. 5) is the page used from the owner of the botnet to check the status of

the botnet, to issue commands and to read the results of the data stealing, while the

gate.php is the page where the Bots connect to upload the information.

26

Figure 5 – Builder Control Panel

4.3.4. The Builder

The most important component is the builder. The builder is a windows executable

program (fig. 6), with a user friendly interface and which supports a double language

English and Russian. The builder has the main role of creating the malware executable

of the Zeus trojan and the encrypted dynamic configuration file.

The builder takes in input the config.txt that contains the characteristics of that

particular trojan to create the executable.

The other main function of the builder is the creation of the Encrypted_DynamicConfig,

which is an operation that always takes in input the config.txt but is parallel to the

creation of the executable and could be done just to update the

Encrypted_DynamicConfig. The encryption is done with the Key provided in the

StaticConfig.

The builder has also the function of checking if a computer is infected providing the

decryption key, and a routine to delete the trojan from the infected computer.

27

Figure 6 – ZeusVM Builder

4.3.5. The Executable

The binary file is built by the builder and it is the trojan that will be executed on the

victim machine. Each version of the executable created from the same builder is

identical to the others in terms of functionalities but is different for the StaticConfig

embedded encrypted inside it.

4.4. How Zeus works

A brief overview of how most of the Zeus versions work is reported in this section.

Since its creation in 2006, Zeus was designed to mainly work on Windows XP operating

systems. During its evolution, the support for more updated OS has been

implemented, like Windows Vista and Windows 7.

28

Generally, Zeus needs to be executed on the system to infect it. After the execution,

even if the installation process does not succeed the binary executed is automatically

deleted from the system.

During the installation process, the trojan creates a copy of itself into a specific folder

and creates a persistence key in the register to be executed at every reboot of the

system. Then this new copy of the malware is executed and takes care of injecting

itself inside the running process of the system. During the process, it also downloads

the DynamicConfig to gather the updated information and the C&C information. At this

point Zeus is ready to steal the data, the main features that has every Zeus trojan is the

Man-in-the-browser. This technique uses the browser and injects piece of html code

inside web pages, only for the website present inside the DynamicConfig. Through this

technique, it is possible to create new form that could foolish the user to insert more

personal data and track the data inserted. The websites that are most frequently

involved with the injection are bank websites or other websites useful for social

engineering.

Once harvested, the data are sent to the C&C URL specified in the DynamicConfig and

are collected inside a database for future utilization.

29

5. Reverse Engineering of ZeusVM

This study focuses on the version of Zeus known as KINS/ZeusVM v2.0.0.0. This

research examines this particular version of the trojan Zeus, since it is one of the most

recent versions currently available and because the toolkit, containing the builder and

the control panel, was leaked and made accessible online to everyone in June 2015

(Malware Must Die, 2015).

The study was carried out through a Static Analysis of the malware executable and the

investigation of its behaviour.

According to these premises, the analyses performed in this research were based on

the previous study about ZeusVM. In particular, the recent study of Dennis Schwarz, an

employee of the security company Arbor Networks who published in August 2015 a

document with technical details of ZeusVM. Although this document was written by a

security expert and was published recently, it is not an official and peer reviewed

research paper, so the aim of this thesis is also to verify if what is written corresponds

to reality.

All the analyses were conducted on a Windows 7 machine with an Intel i7 processor

and 10GB of RAM.

5.1. Case Study Environment

In the creation of the case study environment, 4 steps can be identified as reported
below:

1. Creation of the virtual machines

2. Installation of the Control Panel

3. Creation of the Malware

4. Tools setup

30

5.1.1. Creation of the Virtual Machines

Initially, a software that allows the creation of several instances of virtual machines

was installed, the VMware workstation. Each virtual machine created by the software

was logically separated from the others. Three virtual machines were created in total

(fig. 7). The first virtual machine was a Windows 7 machine used to run the server.

Then, the second and the third virtual machines with Windows XP sp3 were created.

All the machines were connected through a virtual network provided by VMware.

Figure 7 – Environment

5.1.2. Installation of the ZeusVM Control Panel

The Windows 7 machine was selected to be the C&C server of the Botnet. In order to

turn it into the C&C server of the Botnet, a software that creates the web server with

at least PHP and MySQL was needed. The software selected for this purpose was

XAMPP for Windows (Apache Friends), a famous cross platform tools that allows the

creation of a webserver with few easy steps.

Once installed the Apache web server and the MySQL compatible server, the system is

ready to install the Zeus control panel.

31

The control panel is provided in the same package with the leaked builder of the

malware. All the components of the control panel are placed on the web server, and

they are installed in the system with the install.php page which is located into an install

folder. To run the installation the access to the .php page hosted on the server with a

browser is needed. In order to complete the installation, it is required to complete the

prompted form from the php pages to setup the database and a password for the

control panel.

Once installed the control panel is ready to use through the access to the page cp.php.

5.1.3. Creation of the ZeusVM trojan

After the installation of the control panel, the following step is the creation of the

malware through the builder.

1. Config.txt

Firstly, the config.txt was modified to be suitable for this installation. Inside the

StaticConfig, the entries url_config, url_reserve_config with the proper URL to the

dynamic config located in the C&C server and the encryption_key with a string were

compiled.

Inside the DynamicConfig, the url_loader and url_server were modified the first with a

URL to a copy of the malware hosted on the C&C and the second with a URL to the

gate.php page installed previously in the server. All the other fields except the

webinjects were commented with the character “;” since they were optional and not

necessary.

2. Webinjects.txt

The Webinjects file was modified to do some basics functions and mostly to test the

effects of the injection. In particular, a function that steals the information inserted in

the website of the bank BancoPosta was added and a popup with an incremental

number to track the updates was created.

32

3. Builder

After this step, the builder was executed to create the malware executable and the

encrypted configuration file. The malware binary was created through the function

Build bot executable providing in input the config.txt.

Then is executed the function Build bot configuration that prompted a window to

select an image .jpg to inject inside the Encrypted_DynamicConfig.

Once created, both the files were placed on the server in the paths specified by the

static and dynamic configuration.

5.1.4. Tools Setup

On both the XP SP3 machines, software to do static and dynamic analysis were

installed. The disassembler and debugger IDA Pro the SysInternalSuite with the

software Process Monitor, Process Explorer and others. Moreover have been installed

an hex-editor WinHex (X-Ways), and the browser Firefox.

At this point, a static IP to every machine was assigned so that each machine could

always be reached with the same address. Once assigned the addresses, the malware

executable was downloaded from the C&C to the Windows XP virtual machine

selected for the infection, renamed to XP_TEST. The other virtual machine was

renamed XP_CLEAN.

This second XP machine was not originally planned and was a later addition to the

network. Its purpose was the Remote Debugging of a process inside the infected

machine. The IDA Pro installation folder of XP_CLEAN was shared in the network in

order to allow the remote debugging.

5.2. Analysis

The analysis of the malware was performed following some steps, according to the

Static and Dynamic types of the analysis.

33

In figure 8, an overview of the aspects researched during the analysis knowing the

works done before the starting is illustrated.

Figure 8 – ZeusVM decryption overview

5.2.1. Malware testing: Basic Static Analysis

Once created the malware, it was tested with various antiviruses.

The malware was copied from the virtual machine into another one that was security

protected from the antivirus Avira Antivir. This procedure immediately raised a virus

alert.

Proceeding the analysis with the antivirus, the file was uploaded to the website

VirusTotal (VirusTotal) that performs a much more complete analysis between 54

different antiviruses. In this case, the malware was detected from the majority of the

antiviruses, with a detection rate of 47/54 from all the antiviruses (fig. 9).

Figure 9 – VirusTotal analysis

34

These results confirmed the malicious behaviour of the created trojan but also that it

could be easily detected in systems provided with an updated antivirus.

Secondly, an analysis of the malware executable with PEiD (aldeid) was executed. This

test (fig. 10) revealed that the malware was not packed and the outcome was double-

checked using also another software, PE.Explorer (HeavenTools).

Figure 10 – PEiD analysis

These outcomes revealed that the builder does not have an automatic packer

implemented inside it, and that the packing of the malware is an optional step left to

each creator which can be carried out using other software, also because a common

packing technique for all the sample would be more identifiable.

Proceeding the basic Static Analysis with a Header inspector like PEview (Radburn)

(fig.11) revealed the structure of the malware, which is divided in 4 section, .text,

.rdata, .data, .reloc.

35

Figure 11 – PEview analysis

At this point, the malware was analysed using the software Bintext (McAfee) (fig. 12)

to research some valuable strings but it did not provide relevant information. This was

due to the fact that the malware was encrypted or obfuscated.

Figure 12 – BinText analysis

Although, most of the strings were encrypted, some interesting values were detected.

Some strings in plain that revealed the use of http/https and the execution of a .bat

file, but neither the URL or the .bat file were completely in clear (fig. 12).

36

5.2.2. Advanced Dynamic Analysis

The Advanced Static Analysis of the malware was performed, the selected tool used in

this process is IDA Pro. Once opened with IDA Pro the malware is analysed

automatically and the sectors inside it and the entry point of the malware are

identified. The malware is automatically divided from IDA Pro in 4 sections: .text,

.idata, .rdata, .data.

Inside the .idata, it is possible to see the static import that the malware does. It

imports kernel32.dll and user32.dll and also the imported functions from those

libraries. The .text section contains all the assembly code operation of the malware,

while in .rdata and .data there are the data of the malware, with the first section.

The malware is disassembled and an automatic meaningless name with few small

exceptions is assigned to all the functions inside it. In order to move inside the

assembly code of the malware, the software provides a link for call and jump with a

click on the address of the function.

5.2.3. Static Analysis of the Virtual Machine

Starting from this point instead of doing a blind search of information, the available

data about Zeus were used as starting point. The published documents that were

available for ZeusVM were analysed to identify its most peculiar feature, the virtual

machine.

As stated by Schwarz (2015) and previously by Bijl (2013) the virtual machine is

identifiable through a MOV operation of 0x1000 bytes. It is possible to search a series

of byte in hexadecimal representation. The search gave many results, the second MOV

0x1000 it has a structure corresponding to the researched function.

A comparison of the structure of the function with that identified in the

aforementioned analysis revealed many similarities. The variables of that function

were renamed according to what was known about them. Moreover in Schwarz

(2015), a pseudocode representation of the code of the virtual machine was present,

37

through a reconstruction of it using the decompiler plugin it resulted very similar to

the pseudocode representation even if not identical.

At this point, the inspection of the portions of code called from the Virtual machine

revealed three main sections.

The first was the 4096byte loaded as the first operation of the virtual machine, the

second was the encrypted code of the StaticConfig and the third one was a list of

offsets called inside a while loop. It was interesting to notice that both the Virtual

machine code and the Encrypted_StaticConfig were inside the .rdata sector of the

malware, and they were one subsequent to the other.

Figure 13 – Virtual Machine

Through an analysis of the while loop (fig. 13), it was possible to see that the functions

points to a memory area composed of 69 memory offsets of 4 bytes inside the .data

sector. Each offset points to a different function inside the .text section. All the

functions were grouped together in a compact memory space even if they were not in

the same order as in the .data section.

Summarising, the Virtual Machine resulted composed of four parts. The first part is

composed from the bytecode of the virtual machine and is always 4096 bytes. The

38

second part is the data over which the virtual machine has to work, which is the

Encrypted_StaticConfig. The third part is a loop which scans the opcodes of the virtual

machine and call the right handler while the fourth part are the operations of the

virtual machine that are called from the handler, those operations are almost all basic

operation ADD, SUB, MOVE, etc.

Once identified this first part of ZeusVM malware it was possible to observe that the

first function identified was not equal to that showed from Schwarz (2015), neither

from Bijl (2013). Going back to the research of the MOV 0x1000 bytes of the

initialization of the Virtual machine, it arose that there are 14 different functions,

which have the same identical initialization phase. Analysing the assembly and the

decompiled code of those functions, the function responsible for the decryption of the

RC4 (Rivest, et al., 2014) key embedded in the StaticConfig was found (Schwarz, 2015).

Once identified the function, it was named get_rc4_key and all the other functions

were renamed with a name from VM1 to VM13 according to the order they were

found in the .text section of the code.

The Encrypted_StaticConfig as presumable has fixed size for each sample created from

the same builder.

In figure 13 it possible to see the function sizeOf(StaticConfig) that denotes the

variable size of the configuration. In order to have this kind of visualization, that is an

automatic function from IDA Pro, the Struct which composes the StaticConfig had to

be defined. By going into the Stack of the selected function, it is possible to manually

select the bytes which form the Struct and assign them a name and a type. The

software does not allow the creation of the Struct from a selection of bytes if the first

and the last byte are undefined, that is the standard status of each byte of the Stack

function. The Struct was defined corresponding to the StaticConfig starting from the

byte pointed from the memcopy, the size was stated by the function that in this case

was 888 bytes.

39

5.2.4. Dynamic Analysis

Once defined the Struct, the field corresponding to the RC4 key was defined as shown

in figure 13. Once performed this first part of Advanced Static Analysis, the information

gathered were verified through an Advanced Dynamic Analysis with IDA Pro which was

carried out using the “Local Win32 debugger”. Prior to the beginning of the analysis, a

snapshot of the virtual machine was taken so that it was possible to revert the analysis

to a clean status of the system.

In order to do the analysis, a breakpoint was placed in the Start function, the first

instruction of the malware, and another one in the get_rc4_key. Starting the debug,

the modules loaded on the right panel, gdi32.dll, kernel32.dll, ntdll.dll, user32.dll, are

the first things that appear. Running the debugger to the next breakpoint, it

surprisingly never hits and the malware finishes its execution after some seconds in

which log other modules in the output window and IDA Pro closes the debugging

window.

5.2.5. Basic Dynamic Analysis

In order to understand some of the behaviour of the malware, a Basic Dynamic

Analysis was executed. The malware was executed on a clean snapshot of the system,

with Process Monitor and Process Explorer running in the background. The execution

of the malware was too fast for Process Explorer to view useful information since the

program can show only the living process. Instead Process Monitor logs every action

performed by each executable so reading the log it was possible to see that the

malware created another executable fytoh.exe in a folder %AppData%\Maule then an

instance of the command prompt is opened and it is executed a bat file.

All those operations seemed to be familiar for the Zeus family analysis, the executed

malware was deleted probably through the execution of the Bat file and another copy

of the malware was installed in the system. Using Process Monitor, it is possible to see

also many Registry activities but those are not clearly readable in this form.

Aiming to analyse the register, the software RegShot was used.

40

Firstly, a snapshot of a clean status of the system was created as well as a snapshot

after the execution of the trojan.

As expected many differences between the two snapshots were detected. The most

important one is the persistence key inserted from the malware inside the registry in

HKU\ \Software\Microsoft\Windows\CurrentVersion\Run\epuz.exe: ""C:\Documents

and Settings\Administrator\Dati applicazioni\Ewas\epuz.exe"".

This persistence key allows the execution of the malware also after the reboot of the

system.

Comparing the two executable with a software that highlights the differences of the

binary, like WinDiff, the original bot.exe and the new dropped.exe resulted identical,

except for a block of code at the end of the file that had a size of 496 bytes.

This behavior was detected also in Wyke (2011) for the version 1 and 2 of Zeus.

5.2.6. Dynamic Analysis of Dropped.exe

At this point, there were two executables to analyze, the dropper bot.exe and the

dropped.exe. Running the debugging phase several times, it was observed that the

dropped.exe has always a different name and a different folder inside the %AppData%

path of the selected user. A copy of this file and folder was made in a safe environment

to take a sample of the dropped.exe to analyze; in particular the executable is

\Maule\fytoh.exe.

Then the Dynamic Analysis has been moved to the dropped executable, to see which

functions were called from it.

Firstly, it was checked if the “get_rc4_key” was executed inside fytoh.exe. Starting

from a clean environment, the dropped executable was placed inside its folder in

%AppData%\Maule\fytoh.exe and has been launched the debugger with IDA Pro. The

debugger had almost the same result, it did not hit the breakpoint and crashed at the

end of the execution. The same anomalous behavior was detected also for the process

Explorer.exe.

41

Aiming to understand this behavior, some tests were performed.

It resulted that running directly the dropped from a clean environment inside its

folder, it launched correctly the ZeusVM trojan even if the dropper is not executed.

Nevertheless, executing the dropped from a debugger like IDA Pro and setting up some

breakpoints made the program crash without installing the trojan. The first thought

was that there could be some anti-virtual machine techniques or anti-debugging

techniques.

Since the executable was working outside the debugger and there was no problem

with VMware, the problem was identified in the debugger. This was probably due to

the presence of some timing check since there were accesses to the sleep function.

In addition, it was found out that the problem does not rise and the debugger does

not crashes exchanging the type of breakpoints to hardware and tracing the first four

functions . It was possible to trace all the program execution without a crash of the

program, so there were no timing checks.

The problem with the hardware breakpoints was that they are limited to 4. The

presence of a function that performs a CRC32 (Walma, 2007) check was found, it is

identifiable searching the peculiar number involved in the computation of the

algorithm 0xEDB88320. Since this function is called many times maybe it is not a

security check for the anti-debugging.

The answer for the crash is that the insertion of a breakpoint changes a byte inside the

code. The change is revealed by the CRC32 hash function check, this creates some

anomalies inside the structure of the program that brings it to not working. These

kinds of problems are very time consuming.

5.2.7. Dynamic Analysis of RC4 S-Box

The analysis continued with the other functions called from the bot.exe which have

the initialization of the Virtual Machine, a breakpoint was placed on each function and

the debugger was launched, everything in a VMware snapshot of a clean environment.

42

The functions executed were: VM3, VM1 and VM4 several times. Then the analysis of

the operations behind the virtual machine was started beginning from the function

VM1. Since each virtual machine was initialized with the same code, on the same

portion of data, they could perform the same operations.

The Virtual Machine, during the initialization, copies the content of the

Encrypted_StaticConfig inside the Stack and saves the address as a pointer in a global

variable. This global variable is the same for each Virtual Machine initialization found in

the VM functions.

After this phase, the Virtual Machine was executed through the while loop. At the end

of the execution of the Virtual Machine, the global variable points to the

Encrypted_StaticConfig. At this point, it was possible to analyze the data decrypted and

if all the functions are equivalent, it should be possible to find the RC4 S-box key inside

it. The Decrypted_StaticConfig was saved in hexadecimal, through the export function

in the Hex-view window of IDA Pro. Aiming to verify the presence of the RC4 S-box key,

a python implementation of the KSA algorithm was used to generate the S-box starting

from the encryption key that was provided to the builder.

Once generated the S-box, it was compared with WinHex to see if there was a

matching. A matching was fund at the offset 0x15F, the S-Box generated externally,

with the same seed, corresponded to the 256 bytes which were present inside the

Decrypted_StaticConfig.

The same correspondence was found inside the StaticConfig Struct defined in IDA Pro,

the offset 0x15F referred to the first byte of the RC4 S-boxes. This proved that even if

the function involved is different from that stated by Schwarz (2015) the configuration

is still decrypted in the same way and the RC4 S-box is the same.

It was interesting to find out that the RC4-Sbox was only of 256 bytes while what was

loaded from the StaticConfig is always a series of 258 bytes, this is due to the fact that

the last two bytes loaded for the decryption are the indexes “i” and “j” of the RC4-

43

PRNG algorithm. Those bytes although are always loaded are set to zero in every

sample analyzed created from this builder.

5.2.8. Static Analysis of RC4 PRNG

Among the instructions of the Virtual Machine, the instruction that implements the

RC4 algorithm, the instruction_22, was found. Inside its body, it was possible to

identify the 2 main parts of the RC4 algorithm, the KSA algorithm to create the S-Box

and the PRNG algorithm that performs the XOR operations (Rivest, et al., 2014). Once

identified a function, with the command X of IDA Pro, it is possible to see all the

references inside the malware to that function. Starting the analysis of the PRNG

function, it is possible to see that it was referenced by two still known functions, VM4

and VM13.

In particular, the VM13 was analyzed since the size of the bytes used in the PRNG

function corresponded to what Schwarz (2015) says about the decryption of the C&C

URL.

Inside the VM13 function, two PRNG very similar decryption function were found. Both

the functions decrypt 101 bytes of a different offset inside the Encrypted_StaticConfig

through a key that is mapped to the same local variable. The image inserted inside

(Schwarz, 2015) seems to refer to the second function. Running the Dynamic Analysis

should confirm it.

5.2.9. Remote Debugging of Explorer.exe

Since the function VM13 was never called inside the dropper, the functions called

inside the dropped.exe were analyzed, but it was not called in that executable too.

Running Process Monitor, it is possible to verify that during the execution of the

malware, portions of code are injected inside Explorer.exe, the presence of an

<unknown> object is visible inside the Stack Summary of the process.

At this point, an Advanced Dynamic Analysis of the process Explorer.exe was required.

As the problems with the debugging of Explorer.exe are that if the process is paused,

44

the system becomes unusable, in order to avoid working in a frozen system, it is

possible to work with a remote debugger.

The remote debugging is the procedure of debugging a process from another machine.

At this stage, another instance of a Window XP to accomplish the role of remote

debugger was created with VMWare.

IDA Pro provides all the necessary for the remote debugging inside its program folder.

In order, to start the remote debugging, the infected machine and the debug machine

need to share the folder dbgsrv of IDA Pro installed in the debug machine.

Aiming to start the remote debugging, the infected machine has to launch

win32_remote.exe and once executed, the machine starts to listen incoming debug

connections.

At this point, it is possible to start the remote debugging. In particular, it is needed to

select the Remote Windows debugger inside IDA Pro and setup the IP of the target

machine. Once completed the setup, it is possible to debug a remote application or

attach to a remote process.

In order to continue the analysis, +the remote debug of the Explorer.exe process was

started through the attach function.

Once started the debug, since it was a new executable, all the previous defined

functions were lost. Moreover, the position of the injection was not known.

An easy way to find where the code was injected is starting a signature based search of

the function of interest. A binary search of the hex code “68 00 10 00 00 68 F0 43”,

that corresponds to the “PUSH 1000” which is the initialization of the virtual machine,

was performed.

After a while of searching through the file, the desired sign was found. Going to the

location pointed by the search, a section of the process marked as Data was identified.

At this point, this section was manually converted to Code with the command C of IDA

45

Pro and an automatic analysis. After having converted all the VM functions, a

breakpoint was placed on each one.

5.2.10. C&C URL Decryption

The first hit breakpoint is inside the function VM13. Following its execution, it was

possible to see that the PRNG (fig. 14) function executed is the first and not the

second. Moreover, it was found that the decryption function adopted was not the RC4

S-Box as stated by Schwarz (2015) but instead it was the reverse array of the RC4 S-

Box.

It was observed, that the function prior the PRNG loads the 256 bytes of the S-Box

starting from the last to the first. The second PRNG function was not encountered

during this phase of the debugging. In a second moment, it was discovered that it was

the function that decrypts the url_reserve_config. In this second case, the URL is

decrypted with the RC4 S-Box.

Figure 14 – URL Decryption

46

5.2.11. DynamicConfig Decryption

Continuing the analysis of the VM functions executed, it was possible to see that the

VM11 function was executed. It was noticed that this function, differently from the

others, after the decryption of the StaticConfig calls another function that loads a

different offset instead of that of the RC4 S-box.

Following this function, it was fund that there was a memcopy of 176 bytes inside it

from the decrypted StaticConfig. As stated by Schwarz (2015), this is the RC6 (Rivest, et

al., 1998) key expansion output of the Key Schedule Algorithm of RC6, even if the

function is different from that reported in the report. The function that copies the RC6

key simply calls another function.

Analyzing the execution of this function using the debugger, it was shown that there

was a while loop with a XOR operation that runs inside it.

Analyzing the Hex-view of the memory locations XORed, it was possible to see in clear

text the decrypted DynamicConfig.

Analyzing in details the while loop it was observed that it performs the RollingXOR

Algorithm, also called VisualEncrypt/Decrypt, which is the final step of the decryption

of the DynamicConfig. The other decryption functions have to be between the

acquisition of the key and the RollingXOR algorithm.

The function that executes the RC6 decryption is called before the rolling XOR and it

creates the decrypted code in a memory area by executing that algorithm on a

memory space that should be the Encrypted_DynamicConfig. To verify this, the

Encrypted_DynamicConfig has to be analyzed.

The Encrypted_DynamicConfig was downloaded from the C&C server through an

image file config.jpg, but it was known that inside this image there is the

Encrypted_DynamicConfig since the file was modified through the builder to embed

inside it the dynamic configuration.

47

Opening the config.jpg with the editor WinHex, it was possible to see clearly that there

is a data field appended at the end of the file. This data field is inserted as a comment

inside the .jpg. The comment is identifiable from the standard marker “FF FE” and

finishes with the marker “FF D9”. The size of the comment is a 4 bytes field which is

placed 10 bytes after the comment marker. Then there is the comment, and observing

its ASCII representation inside WinHex it is possible to recognize that it is encoded in

Base64 (Josefsson, 2006) as also stated by Schwarz (2015).

Figure 15 – DynamicConfig inside JPG

It is generally possible to decode the content of the comment with a tool. Moreover,

many free online tools that encode directly the data in Hex exist.

The decoded comment inside the config.jpg was compared with the data buffer

involved in the decryption with RC6. It was observed, that they corresponded and had

the same bytecodes. Through the identification of the decryption function, it was

possible to confirm that the involved key and encrypted data corresponded.

5.2.12. Traffic Analysis

Once obtained those encryption keys, an analysis of the TCP packets exchanged

between the C&C and the infected machine was performed.

The packets were sniffed through the well-known software Wireshark. As previously

mentioned, many messages were exchanged. This was due to the fact that during the

48

creation of the malware inside the StaticConfig, the timing options were set to

1minute. This means that every minute the Bot issues a HTTP GET request to obtain a

new configuration and then perform a HTTP POST operation to send stolen data to the

C&C drop zone (fig.16).

Figure 16 – Communication Bot-C&C

This standard communication is implemented by the functions VM13, VM11 and VM5.

This happen when there are no new information.

As it is possible to see in figure 17, also the size of exchanged packets is always the

same.

49

Figure 17 – Packet Exchanged Bot-C&C

5.2.13. Dynamic Analysis of communications

The behavior of the execution of the functions injected in Explorer.exe during the

creation of the data to post was analyzed. A trace was placed on each VM function,

and the functions which were triggered during the execution were analyzed.

In order to test the update of the configuration, a new file was created with the

builder. This file was almost identical to the previous one, but with an incremented

number to show the difference. By visiting a selected website, it will prompt on screen

a number representing the updated configuration to check the effectiveness of the

update.

50

The update process was monitored both on IDA Pro and Wireshark. On Wireshark, it

was possible to see that the packets have been transferred and that the Server replied

with a 200 OK message, so the transfer was completed. Moreover, it was possible to

inspect the reassembled packet with the ASCII content of the image.

On IDA Pro, a new function was triggered during the process of the acquisition of the

new config.jpg: the VM12. After the update of the configuration, in the next time

period the behavior of the program was back to its normal course. By opening with a

browser the webpage with the incremental number injected, the success of the update

was enlightened.

A similar process was performed for the upload of stolen information. Inside the

webinject.txt it was implemented a real functioning malicious webinject found online,

to steal the data from the Italian bank BancoPosta.

By visiting the selected website, inserting username and password, and requesting to

login, the upload process was started. Even if the data inserted in the fields were not

correct for the login, they are uploaded. However, this depends from the structure of

the webinejct.

Probably due to the debugger, the loading of the webpage was very slow respect to its

normal behavior. The browser used to do the test was Internet Explorer v6, the

browser preinstalled on the system. It was possible to notice that the SSL layer was not

compromised during the injection. Doing the same test with the latest version

available of Firefox, v43, the pages were loaded more quickly and the webinject was

executed correctly.

With Wireshark it was possible to see the new packets exchanged with the HTTP POST,

and their size resulted different from the previous one. The content of the packets

were saved for further analysis.

Watching the trace windows of IDA Pro, like in the previous case, it was possible to see

a new function used in the execution: VM3.

51

5.2.14. Static Analysis of POST data

The packets extracted with Wireshark were analyzed. The content was not in clear text

so it was probably encrypted or obfuscated.

Since for the DynamicConfig the RC6 algorithm was used, this was the first attempt. As

decrypting the packet with the RC6 algorithm did not give any result. Then the

decryption with the RC4 algorithm was tested. Performing the decryption with RC4 key

inserted inside the builder, or directly with the corresponding S-Box gave some results.

The data seemed to have a structure inside it, so the code should be still obfuscated.

Since during the decryption of the DynamicConfig, the use of the RollingXOR algorithm

or VisualEncrypt/Decrypt was discovered, this algorithm was the first one to be tested

for the deobfuscation.

In order to perform those operations, a python script was created, mainly to apply the

RC4 decryption and the RollingXOR algorithm of the data inserted in the packet. The

result of the deobfuscation was a readable text (fig. 18).

In the first rows of the documents, there was a data structure but the fields were

readable. What kind of structure was used was not further investigated.

In the corps of the document it is possible to read the username and password used

for the login and all the other information.

Figure 18 – Decrypted POST data

52

5.2.15. Multiple Malware Samples Analysis

Once the behavior of the malware was understood, other samples were created to

gain new information from the possible differences.

Firstly, a new sample with an identical config.txt was created, and the two files were

compared with a tool that analyzes the binaries, WinDiff. Three sections of different

code were found, one is at the beginning and the other two are at the end. The first

modified section is the Virtual Machine code section and the Encrypted_StaticConfig,

but neither the content of the operations nor their structure were modified. The other

two sections were not been analyzed.

Series of samples were created to identify other sections of the StaticConfig that had

not been analyzed.

Through the comparison of the Decrypted_StaticConfig of each new executable sample

with that one used the previous analysis, some new elements were discovered.

The first field modified in the StaticConfig, was the botnet_name, the input string in

this field can be maximum 20characters. After running the decryption through a

Dynamic Analysis of the involved sample, it was found out that the botnet_name was a

field readable in clear after the decryption.

Previously this field was left blank in the config. In my sample, the offset of this field

was 112 (fig. 19). A research was done to see which functions called this particular

offset. The only function identified was VM5, which is involved in the process of

uploading stolen data.

Figure 19 – Decrypted StaticConfig

53

The second field analyzed was the timing options, and repeating the same process

allowed to identify them at the offsets 0x148 and 0x14A. They were contiguous and

had a size of 4 bytes. The values were expressed in hexadecimal, and in this case (fig.

19), they corresponded to the decimal values 51, and 34. In comparison with the

config.txt file, the values were swapped in their position. Analyzing the functions,

those values were called only inside the VM10 function.

Continuing the analysis, the next fields were the URLs configurations. Since the main

URL of the C&C server had already been analyzed, only the second one was analyzed.

In the config.txt taken as a sample, those values were identical, so it was harder to

understand the differences. Changing the second URL, it has been observed that the

maximum allowed size in the input of the config.txt is 100chars. Decrypting the

StaticConfig enlightened a difference at the field 3D, the URL was not in clear as in the

previous version. The field 3D was used in the VM13 function, through the analysis of

the point where it was executed, it was possible to see that, similarly to the first URL, it

was decrypted trough the RC4 S-Box key, which was not reversed in this case. At this

point, it was clear that Schwarz (2015) refer to this URL when it talks about its

decryption but usually this field is not used so it could be left blank or it could be used

to point to a wrong address with the aim of foolishing the security analysts. The main

URL address is the first that should be analyzed.

Continuing the analysis it was found out the presence of the remove_certs and

disable_tcpserver contiguous at the offset 0x38. Those field where used in the

functions VM6 and VM7 but they were not analyzed.

The last sample created is also the most different, since the encryption key was

changed. The executable maintained the same structure as in the previous cases, and

nothing seemed different from the base case sample.

By analyzing the decrypted StaticConfig it was possible to see the differences. Since

the configurations are equal and only the encryption keys was changed, the different

sections involved in the differences were relative to the decryption key. It was possible

54

to see three portions of code, the first containing both the encrypted URLs, and the

other two sections containing the RC4 S-box and the RC6 key expansion output. All the

other sections of the StaticConfig were the same so they were not related to the

encryption key.

5.3. Summary

The execution of the malware was analyzed in its three phases and the functions

related to the Virtual Machine were monitored.

During the execution of the Bot.exe or what it could be called the “installation phase”,

the VM related functions were VM1, VM3 and VM4, all involved with the use of the

RC4 S-box key.

By executing only the dropper in a clean environment, and using the hardware tracing,

the functions used during the injection phase were VM1, VM2, VM3 and VM4. As in

the previous case, the only element extracted from the StaticConfig was the RC4 S-

box.

During the execution inside the injected process Explorer.exe, the functions used

during the analysis were VM3, VM4, VM5, VM10, VM11, VM12 and VM13.

As it can be seen in figure 20, there is a clear separation between the functions used

during the process.

Figure 20 – VM functions during execution

55

Some of the analyzed functions were never executed during the observation of the

system. This could be due to the fact that they are generally used only in specific

situations not triggered during all the examined executions.

Moreover, it is possible to state that the functions VM6 and VM7 extract from the

StaticConfig the not analyzed parameters remove_certs and disable_tcpserver, while

the functions VM8 and VM9 extract a field at the offset 0x154 which is always 0 which

could be an optional hidden parameter of the configuration. The other function never

encountered is VM0 or get_rc4_key, this should only extract the RC4 key, and maybe it

is just not used.

The main phases of the execution of the trojan are depicted in figure 21.

Figure 21 – ZeusVM execution

56

The dropper runs into the system, creates the persistence key and creates the

droppped. Then launches a .bat to delete the dropper and executes the dropped. The

dropped does an injection of itself inside the system process Explorer.exe and then

exits. Inside the injected code the malware downloads the C&C configuration and

uploads stolen data to the drop zone. To steal data, also the browsers are infected

with malicious code to run the webinject. This aspect has not been analyzed.

In figure 22, there is a summary of the aspects discovered during all the analyses, with

a merge of the information known from the previous works.

Figure 22 – ZeusVM

5.3.1. Missing pieces

The differences among the instructions of the Virtual Machine were not confirmed

through the analysis. No differences were found among the samples. This could be due

to the fact that only samples generated from the same builder were used.

57

Differences among each operation of the Virtual Machine exist, since in the

comparison with Schwarz (2015) there is a different “sign”, but those differences could

be only between different versions of the malware, or different compiled versions of

the builder. Since only one precompiled version of the builder was available, these

aspects are still unclear.

The UCL compression or the bintext structure of the decrypted DynamicConfig have

not been investigated

The URL decryption stated in Schwarz (2015) is relative only to the decryption of the

reserve URL and it does not work for the primary URL of the C&C. This difference in the

decryption is not mentioned.

58

6. Conclusions

The Zeus family is very rich of samples, K.I.N.S/ZeusVM 2.0.0.0 is one of the most

interesting new additions to this malware family. This trojan took its name from its

most unconventional peculiarity, the Virtual Machine.

In this thesis, the structure of this Virtual Machine has been analysed. The polymorphic

nature of this trojan has been confirmed, due to the fact that the decryption process

realized through this Virtual Machine is always different.

The functions related to the use of the Virtual Machine have been analysed. Those

functions are related to the StaticConfig, this has been deeply analysed to understand

its fields and which role they had during the execution of the malware, with respect to

the use of the Virtual Machine. In particular, it was found out an unknown scheme to

decrypt the C&C URL which is encrypted and embedded inside the malware during its

creation. In addition, the DynamicConfig has been analysed, together with the phases

of its decryption through the use of the Virtual Machine. The traffic between the

infected system and the Command & Control server has been analysed and its

encryption scheme based on RC4 and RollingXOR algorithm has been understood.

All those results have been obtained through the application of the Reverse

Engineering, in particular through the use of the Static and Dynamic Analysis. Those

methods combined proved to be the best process to understand an unknown

malware. In particular, the Dynamic Analysis is a required process to understand and

decrypt the malware that encrypt themselves and their traffic.

6.1. Future Works

For future works, the reverse engineering of this malware could be enhanced and be

performed more in depth, starting from the knowledge acquired. Other aspects of the

malware could be analysed to point out new information about the behaviour of the

ZeusVM trojan.

59

In particular, the main aspect that has not been analysed in this thesis and that could

be of great interest for the future developments of web browsers is the Man-in-the-

browser technique. This is due to the fact that it is still a valid technique to alter the

content of a web page, and also the most popular updated browsers are affected by

such flaw. The researcher could investigate also the process of the injection, to fully

understand where and how the injection can be performed to running processes by

this malware. This has not been investigated since it is a known technique, but every

malware has its own different peculiarities.

This work could be continued in the study of other Botnets created from other trojans

similar to ZeusVM, or Zeus. One of this trojan could be the trojan ZBerp, to enlighten

the differences between those versions.

60

7. References

A.S.L Exeinfo PE [Online]. - http://exeinfo.atwebpages.com/.

Agarwal Shiv Kumar and Shrivastava Vishal BASIC: Brief Analytical Survey on
Metamorphic Code [Journal] // International Journal of Advanced Research in
Computer and Communication Engineering. - September 2013. - 9 : Vol. 2.

aldeid PEiD [Online]. - https://www.aldeid.com/wiki/PEiD.

Apache Friends XAMPP [Online]. - https://www.apachefriends.org/.

Bijl Joost Analysis of the KINS malware [Online] // Fox-IT. - 2013. - http://blog.fox-
it.com/2013/07/25/analysis-of-the-kins-malware/.

Buecher M. regshot [Online] // sourceforge. -
http://sourceforge.net/projects/regshot/.

Chikofsky E.J. and Cross J.H. Reverse engineering and design recovery: A taxonomy
[Journal] // Software, IEEE. - 1990. - 1 : Vol. 7.

Combs Gerald [Online] // Wireshark. - https://www.wireshark.org/.

Damodaran A. Combining Dynamic and Static Analysis for Malware Detection
[Report] / Master's Projects ; San Jose State University. - 2015. - p. 6.

Eastlake D. and Jones P. US Secure Hash Algorithm 1 (SHA1) [Online] // The Internet
Engineering Task Force. - 2001. - https://tools.ietf.org/html/rfc3174.

Eldad E. Reversing: Secrets of Reverse Engineering. [Book]. - Indianapolis : Wiley
Publishing, Inc. 10475, 2005. - Vol. 1.

FBI GameOver Zeus Botnet Disrupted [Online] // FBI. - 2014. -
https://www.fbi.gov/news/stories/2014/june/gameover-zeus-botnet-disrupted.

Gadhiya S. and Bhavsar K. Techniques for Malware Analysis [Article] // International
Journal of Advanced Research in Computer Science and Software Engineering
Research. - April 2013. - 4 : Vol. 3.

Gandotra Ekta, Bansal Divya and Sofat Sanjeev Malware Analysis and Classification: A
Survey [Journal] // Journal of Information Security. - 5 2014. - pp. 56-64.

HeavenTools PE.Explorer [Online]. - http://www.heaventools.com/overview.htm.

Hex-Rays IDA Pro [Online]. - https://www.hex-rays.com/products/ida/.

Josefsson S RFC4648: The Base16, Base32, and Base64 data encodings [Online] //
https://tools.ietf.org/html/rfc4648.txt. - 2006.

61

Krebs Brian SpyEye v. ZeuS Rivalry Ends in Quiet Merger [Online] // Krebs on Security. -
2010. - http://krebsonsecurity.com/2010/10/spyeye-v-zeus-rivalry-ends-in-quiet-
merger/.

Kruse Peter Complete ZeuS sourcecode has been leaked to the masses [Online] //
CSIS. - 05 2011. - http://www.csis.dk/en/csis/blog/3229/.

Malware Must Die MMD-0036-2015 - KINS (or ZeusVM) v2.0.0.0 tookit (builder &
panel source code) leaked. [Online] // Malware Must Die. - 5 7 2015. -
http://blog.malwaremustdie.org/2015/07/mmd-0036-2015-kins-or-zeusvm-
v2000.html.

Maurits Lucas A Short History of Attacks on Finance [Online] // RSA Conference. -
2015. - https://www.rsaconference.com/writable/presentations/file_upload/stu-w2-a-
short-history-of-attacks-on-finance.pdf.

McAfee BinText [Online] // Intel Security. -
http://www.mcafee.com/it/downloads/free-tools/bintext.aspx.

Microsoft Sysinternals Suite [Online]. - https://technet.microsoft.com/en-
us/sysinternals/bb842062.

Radburn Wayne J. Utilities [Online]. - http://wjradburn.com/software/.

Rivest R. The MD5 Message-Digest Algorithm [Online] // The Internet Engineering Task
Force. - MIT Laboratory for Computer Science and RSA Data Security, Inc., 1992. -
https://www.ietf.org/rfc/rfc1321.txt.

Rivest Ronald L. [et al.] The RC6 Block Cipher [Report]. - 1998.

Rivest Ronatld L. and Schuldt Jacob C. N. Spritz a spongy RC4-like stream cipher and
hash function [Report]. - 2014.

Sandee Micheal GameOver ZeuS Background on the Badguys and the Backends
[Conference] // Blackhat US 2015. - 2015.

Schwarz Dennis ZeusVM: Bits and Pieces [Online] // Arbor Networks. - 08 2015. -
https://asert.arbornetworks.com/zeusvm-bits-and-pieces/.

Sikorski M. and Honig A. Practical Malware Analysis: The Hands-on Guide to Dissecting
Malicious Software [Book]. - [s.l.] : No Starch Press, 2012.

Singhal A. and Shlok G. Reverse Engineering [Journal] // International Journal of
Computer Applications. - December 2014. - 9 : Vol. 108.

Stevens Kevin and Jackson Don ZeuS Banking Trojan Report [Online] // Dell
SecureWorks. - 3 2010.

VirusTotal [Online]. - https://www.virustotal.com/.

62

VMware VMware Workstation Pro [Online] // VMware. -
http://www.vmware.com/it/products/workstation/.

Walma M. Pipelined Cyclic Redundancy Check (CRC) Calculation [Conference] //
Proceedings of 16th International Conference on Computer Communications and
Networks. - 2007.

Wontok Safe Central The Evolution of Financial Malware 2007-2014 [Report].

Wyke J. What is Zeus? [Report] : Technical Paper / SophosLabs UK. - 2011.

X-Ways WinHex: Computer Forensics & Data Recovery Software, [Online] // X-Ways. -
http://www.x-ways.net/winhex/.

Yuschuk Oleh [Online] // OllyDbg. - http://www.ollydbg.de/.

	Abstract
	1. Introduction
	2. Malware Categories: Purposes and Security Techniques
	1.
	2.
	2.1. Malware Categories: Purpose
	2.1.1. Virus
	2.1.2. Worm
	2.1.3. Trojan
	2.1.4. Spyware
	2.1.5. Rootkit
	2.1.6. Botnet

	2.2. Malware Categories: Security Techniques
	2.2.1. Encrypted Malware
	2.2.2. Oligomorphic Malware
	2.2.3. Polymorphic Malware
	2.2.4. Metamorphic Malware

	2.3. Obfuscation Techniques
	2.3.1. Dead Code Insertion
	2.3.2. Register Reassignment
	2.3.3. Subroutine Permutation
	2.3.4. Instruction Substitution
	2.3.5. Code Transposition
	2.3.6. Code Integration

	3. Reverse Engineering
	3.
	3.1. Malware Analysis Techniques
	3.1.1. Static Analysis
	Basic Static Analysis
	Advanced Static Analysis

	3.1.2. Dynamic Analysis
	Basic Dynamic Analysis
	Advanced Dynamic Analysis

	3.2. Tools for Malware Analysis
	3.2.1. Hash Algorithm Based Software
	3.2.2. Antivirus
	3.2.3. Packer Detector
	3.2.4. Header and Sections Inspector
	3.2.5. String Analysis
	3.2.6. Disassembler
	3.2.7. Decompiler
	3.2.8. Debugger
	3.2.9. Registry Monitor
	3.2.10. File System and Process Monitor
	3.2.11. Network Monitor
	3.2.12. Virtual Machine

	4. The Banking Trojan Zeus
	4.
	4.1. Introduction
	4.2. History
	4.3. Toolkit
	4.3.1. Config.txt
	4.3.2. WebInjects.txt
	4.3.3. Command & Control Server
	4.3.4. The Builder
	4.3.5. The Executable

	4.4. How Zeus works

	5. Reverse Engineering of ZeusVM
	5.
	5.1. Case Study Environment
	5.1.1. Creation of the Virtual Machines
	5.1.2. Installation of the ZeusVM Control Panel
	5.1.3. Creation of the ZeusVM trojan
	5.1.4. Tools Setup

	5.2. Analysis
	5.2.1. Malware testing: Basic Static Analysis
	5.2.2. Advanced Dynamic Analysis
	5.2.3. Static Analysis of the Virtual Machine
	5.2.4. Dynamic Analysis
	5.2.5. Basic Dynamic Analysis
	5.2.6. Dynamic Analysis of Dropped.exe
	5.2.7. Dynamic Analysis of RC4 S-Box
	5.2.8. Static Analysis of RC4 PRNG
	5.2.9. Remote Debugging of Explorer.exe
	5.2.10. C&C URL Decryption
	5.2.11. DynamicConfig Decryption
	5.2.12. Traffic Analysis
	5.2.13. Dynamic Analysis of communications
	5.2.14. Static Analysis of POST data
	5.2.15. Multiple Malware Samples Analysis

	5.3. Summary
	5.3.1. Missing pieces

	6. Conclusions
	6.
	6.1. Future Works

	7. References

