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ABSTRACT
Matrix completion latent factors models are known to be
an effective method to build recommender systems. Cur-
rently, stochastic gradient descent (SGD) is considered one
of the best latent factor-based algorithm for matrix comple-
tion. In this paper we discuss GASGD, a distributed asyn-
chronous variant of SGD for large-scale matrix completion,
that (i) leverages data partitioning schemes based on graph
partitioning techniques, (ii) exploits specific characteristics
of the input data and (iii) introduces an explicit parame-
ter to tune synchronization frequency among the computing
nodes. We empirically show how, thanks to these features,
GASGD achieves a fast convergence rate incurring in smaller
communication cost with respect to current asynchronous
distributed SGD implementations.

Categories and Subject Descriptors
G.4 [Mathematics of Computing]: Mathematical Soft-
ware — Parallel and vector implementations

Keywords
Recommender system; Matrix completion; Stochastic gradi-
ent descent; Distributed computing; Graph partitioning

1. INTRODUCTION
Many of todays internet businesses strongly base their suc-

cess in the ability to provide personalized user experiences.
This trend, pioneered by e-commerce companies like Ama-
zon [8], has spread to many different sectors. As of today,
personalized user recommendations are commonly offered by
internet radio services, social networks, media sharing plat-
forms (e.g. YouTube) and movie rental services.
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Building user recommendations can be abstracted as a
matrix completion problem; given a set of users and a set of
available items (e.g. songs, movies, tweets, etc.), these can
be mapped to rows and columns of a rating matrix whose
values represent preferences expressed by users on items.
Building recommendations boils down to estimate, as pre-
cisely as possible, all missing values in this matrix.

Recent experiences in this field [4, 2] has promoted algo-
rithms based on latent factors as the best approach to the
matrix completion problem. These algorithms map users
and items to a latent feature space and define their affinity
as the product of their latent feature vectors. The basic idea
is that latent features, albeit non clearly definable, contain
useful information on user and item similarity and can thus
be exploited to predict missing ratings. Stochastic Gradi-
ent Descent (SGD) [7, 12] is considered, as of today, the
best latent factor based algorithm for matrix completion in
all settings where the rating matrix is huge (e.g. millions
of users with hundreds of thousands items and billions of
available ratings). The SGD success stems from the avail-
ability of efficient parallel implementations [16, 9, 10] that
make it possible to efficiently exploit modern multi-processor
and multi-core computing architectures. However, as the
problem size grows to massive scale the memory occupa-
tion of such algorithms become the limiting factor: the cost
of computing infrastructures skyrockets, while the perfor-
mance tend to grow non linearly due to more frequent con-
tention on data shared among running processes. Thereby,
the research trend is now focussed on distributed SGD imple-
mentations whose aim is to make the analysis of huge data
sets feasible on possibly large clusters of cheap commodity
machines. The shift toward distributed implementations is
a key move to make recommendation algorithms a service
easily and cheaply available through cloud platforms.

Recent proposals [13, 5] represent important steps in the
right direction, but still suffer from some limitations that
hinder their performance. Firstly, all these solutions divide
the input dataset among the available SGD instances lever-
aging, at best, randomized partitioning approaches; parti-
tioning is performed by subdividing the rating matrix in
blocks of the same size; however, no attention is payed to
the amount of data (user preferences) in each block, even if
this value drives the real load of the SGD instance that will
compute on that matrix block; as a consequence, this“blind”
approach to partitioning, albeit easily applicable, can cause
skewed load on the computing nodes. Furthermore, it is in-
efficient as it does not appropriately exploit some intrinsic
characteristics of the input data. Secondly, all these solu-



tions employ a bulk synchronous processing approach where
shared data values are concurrently updated on local copies
and then periodically resynchronized. The synchronization
frequency is a fundamental parameter for these solutions as
it regulates a crucial tradeoff between the convergence rate
of the algorithm toward the solution and the communica-
tion cost incurred during its functioning. To the best of our
knowledge, none of the existing works in this field explored
and leveraged this tradeoff.

Our proposal is to address the aforementioned problems
with three distinct contributions. On one side we mitigate
the load imbalance among SGD instances by proposing an
input slicing solution based on graph partitioning algorithms
(contribution 1). This approach looks at the input data as
a graph where each node represents either a user or an item
and each edge represents a rating expressed by the former
on the latter. The graph is then greedly partitioned edge
by edge thus providing a substantially more balanced load
among the available computing nodes. A better balanced
load has a positive impact on the overall efficiency of the
system as less loaded processes will not wait idly while more
loaded processes delay the bulk data synchronization phase
(assuming homogeneous computing nodes).

On the other side we attack the efficiency problem with
two distinct solutions:

1. By properly leveraging known characteristics of the in-
put dataset, i.e. the fact that it is bipartite (users can
only express ratings on items) and with skewed degree
distributions (i.e. the user base is usually order of mag-
nitude larger than the item base and the distribution
of user ratings expressed on items follows a power-law)
we show how to reduce the number of shared data val-
ues among SGD instances (contribution 2).

2. By tuning the frequency used by SGD instances to
start the bulk synchronization phase during the com-
putation we show how to leverage the tradeoff between
communication cost and algorithm convergence rate
to improve system performance without affecting the
overall quality of the final result (contribution 3).

All our three contributions nicely integrate with the cur-
rent state of the art as they don’t require modifications to ex-
isting asynchronous distributed SGD algorithms, but rather
complement them. In particular, contributions 1 and 2 are
integrated in a input partitioner that must be used to pre-
process input data before running the SGD algorithm, while
contribution 3 is provided as an empirical evaluation on well
known publicly-available data traces.

In the following we will first introduce the reader to the
the matrix completion problem (Section 2) and then detail
the SGD algorithm with its parallel and distributed vari-
ants (Section 3). Our novel input partitioner included in
GASGD is then described in Section 4, followed by an ex-
perimental evaluation (Section 5) that backups our claims.
Section 5 also contains a description of contribution 3. Fi-
nally, an analysis of the related work (Section 6), and some
final remarks (Section 7) will conclude this paper.

2. THE MATRIX COMPLETION PROBLEM
We consider a system constituted by U = (u1, · · · , un)

users and X = (x1, · · · , xm) items. Items represent a gen-
eral abstraction that can be case by case instantiated as

news, tweets, shopping items, movies, songs, etc. Users can
rate items with values from a predefined range. Without
loss of generality, here we assume that ratings are repre-
sented with real numbers. By collecting user ratings it is
possible to build a n×m rating matrix R that is usually a
sparse matrix as each user rates a small subset of the avail-
able items. Denote by O ⊆ {1, ..., n} × {1, ...,m} the set of
indices identifying observed entries in R; (i, j) ∈ O implies
that user ui rated item xj with vote rij . The training set is
defined as T = {rij : (i, j) ∈ O}. The goal of a matrix com-
pletion algorithm is to predict missing entries r̂ij in R using
ratings contained in the training set. As demonstrated by
the Netflix competition [2] and the KDD-Cup 2011 [4], col-
laborative approaches (i.e., collaborative filtering techniques
[11]) based on latent factors are today considered the best
models for large-scale recommender systems.

Denote by k � min(n,m) a rank parameter. These kind
of solutions aim at finding an n × k row-factor matrix P ∗

(user vectors matrix) and an k × m column-factor matrix
Q∗ (item vectors matrix) such that R ≈ P ∗Q∗. The ap-
proximation is performed by minimizing an application de-
pendent error function L(P,Q), that measures the quality
of the reconstruction. We call pi, the i-th row of P , the
k-dimensional vector of user ui and qj , the j-th column of
Q, the k-dimensional vector of item xj . Unobserved entries
r̂ij ∈ R, (i, j) /∈ O are predicted by multiplying the corre-
sponding user and item vectors piqj . There exists a wide
range of objective functions for matrix completion and fac-
torization. The most used error function is the regularized
squared loss [7, 12, 13, 16]:

L(P,Q) =
∑

(i,j)∈P

(rij − piqj)2 + λ(||P ||2F + ||Q||2F ) (1)

where || · ||F is the Frobenius norm and λ ≥ 0 is a regulariza-
tion coefficient used to avoid overfitting. In accordance with
[13], we observe that Equation 1 is in summation form as it
is expressed as a sum of local losses Lij for each element in
R:

Lij(P,Q) = (rij − piqj)2 + λ

r∑
k=1

(P 2
ik +Q2

kj) (2)

The most popular techniques to minimize the objective
function are Alternating Least Squares (ALS) and Stochastic
Gradient Descent (SGD). ALS [15] alternates between keep-
ing P and Q fixed. The idea is that, although both these
values are unknown, when the item vectors are fixed, the
system can recompute the user vectors by solving a least-
squares problem (that can be solved optimally), and vice
versa. In this paper we will focus on SGD [7, 12], since it
has been shown that it performs better on large-scale data
[13]. SGD, in fact, was the approach chosen by the top three
solutions of KDD-Cup 2011 [4].

3. STOCHASTIC GRADIENT DESCENT
SGD works by iteratively updating current estimations of

P and Q with values proportional to the negative of the
gradient of the error function. The term stochastic means
that P and Q are updated, at each iteration, by a small
step for each given training case toward the average gradient
descent. For each observed entry (i, j) ∈ O, the objective
function is expressed by Equation 2 and the variables are



updated proportionally to the sub-gradient over pi and qj :

pi ← pi + µ(εijqj − λpi) (3)

qj ← qj + µ(εijpi − λqj) (4)

where εij = rij − piqj is the error between the real and
predicted ratings for the (i, j) entry, and µ is the learning
rate. Therefore, in each SGD step only the involved user
and item vectors are updated.

The algorithm proceeds performing several iterations
through the available ratings until a convergence criterion
is met. We refer to a single iteration over the data as an
epoch.

The SGD algorithm is, by its nature, inherently sequen-
tial; however, sequential implementations are usually con-
sidered poorly scalable as the time to convergence for large-
scale problems may quickly grow to significant amounts.
Parallel versions of SGD have been designed to overcome this
problem by sharing the computation among multiple pro-
cessing cores working on shared memory. A straightforward
approach [10] to manage concurrent updates of shared vari-
ables is to lock, before processing training point (i, j) ∈ O,
both row pi and column qj . However, lock-based approaches
are known to adversely affect concurrency and, in the end,
limit the scalability of the algorithm. HogWild [9] proposed
a lock-free version assuming an highly sparse rating matrix.
Recently, Zhuang et al. [16] proposed FPSGD, a fast paral-
lel SGD implementation for shared memory systems. They
tackled similar problems to our: (i) how to reduce the cost
that the algorithm faces when retrieving data and (ii) how
to ensure that all the threads will process the same amount
of data. The algorithm partitions the training data into
several blocks (more than the available threads) and uses
a task manager to distribute the load among the threads.
Beside these recent improvements, parallel SGD algorithms
are hardly applicable to large-scale datasets, since the time-
to-convergence may be too slow or, simply, the input data
may not fit into the main memory of a single computer.
Storing training data on disk is inconvenient because the
two-dimensional nature of the rating matrix R will force
non-sequential I/O making disk-based SGD approaches un-
practical and poorly performant, although technically fea-
sible. These problems recently motivated several research
efforts toward distributed versions of SGD.

Distributed SGD Algorithms.
This kind of algorithms [13, 3, 1] are designed for very

large scale instances of the matrix completion problem.
DSGD [5] exploits the fact that some blocks of the rating

matrix R are mutually independent (i.e., they share neither
any row nor any column) so that the corresponding user
and item vectors can be updated concurrently. For each
epoch, several sequences of independent blocks of equal size
(that constitute a stratum) are selected to cover the entire
available data set. Then the algorithm proceeds by elabo-
rating each stratum sequentially, assigning each block to a
different computing node, until all the input data have been
processed; at that point a new epoch starts. It is important
to notice that with this solution a processing node must
have complete knowledge of the rating matrix R in order to
decompose it in blocks and strata, but this is unfeasible if
the input data does not fit in the main memory of a single
machine.

To cope with such massive scale, current solutions dis-

tribute the rating matrix R among the set of computing
nodes C, so that each of them only owns a slice of the in-
put data. A problem with such approach is that, in general,
the input partitioner is forced to assign ratings expressed
by a single user (resp. received by a single item) to differ-
ent computing nodes, in order to maintain the load in the
system balanced. Thereby, user and item vectors must be
concurrently updated, during the SGD procedure, by multi-
ple nodes. A common solution is to replicate vectors on all
the nodes that will work on them, forcing synchronization
among the replicas via message exchange.

The main challenge faced by distributed SGD algorithms
is thus how to effectively partition the data across multiple
processing node, in such a way that: (i) all the computing
nodes are approximately fed with the same load and (ii) the
communication between the computing nodes is minimized
(iii) without compromising the quality of the result.

Given that each node has a local view of the vectors it
works on, the algorithm needs to keep vector replicas on
different nodes from diverging. This is achieved in two pos-
sible ways: either by maintaining replicas always in synch
by leveraging a locking scheme (synchronous approach), or
by letting nodes concurrently update their local copies and
then periodically resynchronizing diverging vectors (asyn-
chronous approach). Synchronous distributed SGD algo-
rithms all employ some form of locking to maintain vector
copies synchronized. This approach is however inefficient,
because computing nodes spend most of their time in re-
trieving and delivering vector updates in the network, or
waiting for lock to be released. The strictly sequential com-
putation order imposed by this locking approach on shared
vector updates negatively impacts the performance of such
solutions.

Distributed Asynchronous SGD.
Differently from synchronous algorithms, in distributed

asynchronous SGD (ASGD) algorithms computing nodes are
allowed to concurrently work on shared user/item vectors,
that can therefore deviate inconsistently during the compu-
tation. The system defines for each vector a unique mas-
ter copy and s ∈ [0, |C|) working copies. In the following
we will refer to the node that store the master copy of a
vector as master node. Each computing node updates only
the local working copy of pi and qj

1 while processing train-
ing point (i, j) ∈ O. The synchronization between working
copies and master is performed periodically according to the
Bulk Synchronous Processing (BSP) model [13]. Initially all
the vector copies are synchronized with their corresponding
masters. The synchronization procedure is then repeated f
times during each epoch. We refer to the parameter f as
the synchronization frequency of the algorithm.

In this study we considered the following ASGD algo-
rithm. At the beginning of an epoch, each node shuffles the
subset data that it owns and divides it in f folds of equal
size. Consequently, each epoch is divided in f steps. Each
step y consists of: (i) a computation phase, where each node
updates the local working copy of user and item vectors us-
ing data in the y-th fold; (ii) a global message transmission
phase, where each node sends all the vector working copies
that have been updated in the previous phase to the corre-
sponding masters; (iii) a barrier synchronization, where each

1Also the vector master node updates a local working copy.



master node collects all the vector working copies, compute
the new vector values, and sends back the result. New vec-
tor values, computed in phase (iii), are obtained by perform-
ing a weighted average of the received working copies. The
weight is given by the number of training points in the y-th
fold that lead to the update of the vector (i.e., the number
of ratings in the y-th fold expressed by the user or received
by the item). In [14] an exhaustive theoretical study of the
convergence of ASGD is presented.

Current ASGD state-of-the-art implementations synchro-
nize vector working copies either continuously during the

epoch (f = |T |
|C| , each fold contains a single rating) or once

after every epoch (f = 1) [13]. Obviously, the first ap-

proach (f = |T |
|C| ) guarantees a convergence rate, defined as

the speed at which the objective function approaches its
lower limit with respect to the epochs passing, almost equal
to the centralized version of SGD, since every update is from
time to time notified to the entire system. This, however,
comes at the cost of a huge number of messages that have
to be exchanged in the system (i.e. large communication
cost). Conversely, the second alternative (f = 1) incurs in
the minimum communication cost, but its convergence rate
can be quite slow. In Section 5 we will report on our empir-
ical study of f that shows the tradeoff between convergence
rate and communication cost, and how this can be leveraged
to improve the efficiency of ASGD algorithms.

Another problem of current implementations is how to
balance the load among the computing nodes. A known
problem of the BSP approach, namely the curse of the last
reducer [1], is that the slowest machine determines the run-
time of each step. This shortcoming can be mitigated, as-
suming homogeneous computing resources, by perfectly bal-
ancing the load among the available nodes.

The problem is that, in general, the input ratings are not
uniformly distributed in R. A common approach to input
data partition is to grid the rating matrix R in |C| blocks
and then assign each block to a different computing node
[13]. This partitioning approach clearly cannot guarantee
a balanced number of ratings for each block, thus can pos-
sibly cause strong load imbalance among computing nodes.
The authors of [13] proposed to mitigate this problem by
applying some random permutations of columns and rows.
While this approach improve the load balancing aspect, it
still lead to non negligible skews in the rating distributions
(See Section 5 for an empirical evaluation of this aspect).
Furthermore, a second problem of the grid partitioning ap-
proach is that the communication cost between the com-
puting nodes is not considered as a factor to be minimized.
Matrix blocking, in fact, is performed without considering
the relationships connecting users with items in R. As a con-
sequence, the number of replicas for each user/item vector
can possibly grow to the number C of available nodes.

In the next section we introduce a novel input splitter
based on a graph partitioning approach that aims at solving
both these problems.

4. INPUT PARTITIONER
Our partitioner treats input data as a graph, where users

and items represent nodes and ratings represent edges. It
works by assigning each edge in exactly one of C partitions
(i.e. subgraphs of the input graph), each managed by a
different computing node. As a baseline to our graph parti-

tioning scheme we follow [6, 1]. In particular, we perform a
balanced |C|-way vertex-cut partitioning of the graph, that
aims both at minimizing the number of shared vertices and
at balancing the load among the computing nodes.

The motivation behind the vertex-cut approach, with re-
spect to the classical edge-cut one, is that SGD stores and
exchanges data (i.e., user and item vectors) that are associ-
ated with vertices rather than edges. Moreover, one charac-
teristic of real preference datasets is their skewed power-law
degree distribution: most vertices have relatively few con-
nections while a few have many. Figure 1 shows this char-
acteristics from three popular datasets, namely MovieLens,
Netflix and Yahoo! (see Section 5). It has been shown [6]
that the vertex-cut approach performs better than edge-cut
in these scenarios. Intuitively, by replicating the few very
high degree vertices it is possible to quickly partition the
graph, while maintaining a balanced load among the avail-
able computing nodes.

Given a weighted undirected graph G = (V,E) that rep-
resents a rating matrix R, where V = U ∪X and ei,j ∈ E iff
(i, j) ∈ O, the input partitioner puts each edge ei,j , together
with the vertices vi and vj it connects, in one of the C avail-
able nodes. At the end of this operation, each edge will be
stored exactly in one node, while some vertices will be repli-
cated in more than one node. Note that, if a vertex resides
in a single node (i.e. it has only one replica) no synchro-
nization is needed for him in ASGD. However, in the gen-
eral case, the storage overhead and the communication cost
incurred by ASGD at runtime depend on the vertex replica-
tion factor, defined ad the average number of vertex replicas
(i.e., RF = #replicas/#vertices). The goal of the input
partitioner is thus twofold: (i) minimizing the replication
factor (RF ) and (ii) balance as much as possible the edge
load among the available computing nodes. This objective
is formalized by the balanced Ω-way vertex-cut problem [6],
where Ω is the number of partitions (in our case |C|). Each
edge ei,j ∈ E is assigned to a single node A(e) ∈ C. Each
vertex v is then replicated on the set of nodes A(v) ⊆ C that
contain its adjacent edges. The balanced |C|-way vertex-cut
objective function is defined as follows:

min
1

|V |
∑
v∈V

|A(v)| (5)

s.t. max
c∈C
|{ei,j ∈ E|A(e) = c}| < σ

|E|
|C| (6)

where σ ≥ 1 is a small constant that defines the system
tolerance to load imbalance.

For each vertex v with multiple replicas, one of the replicas
is randomly selected as the one which maintains the master
vector associated with the vertex. All remaining replicas of
v maintain a working copy of the vector.

Greedy Vertex-Cut Streaming Algorithm.
Since we are here assuming that the input data doesn’t fit

in main memory, the algorithm used to partition it among
the available nodes must work in a streaming fashion, re-
quiring only a single pass over the input data. A limitation
of this approach is that the assignment decision taken on an
input element (i.e. an edge) can only be based on previously
analyzed data and cannot be later changed.

A simple solution is given by the hashing algorithm that
pseudo-randomly assigns each edge to a partition. This solu-
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Figure 1: The items and users degree distributions
in the considered datasets (log-log scale).

tion achieves nearly perfect load balance on large graphs, but
provides results with very high replication factors. A bet-
ter solution is represented by a greedy approach [6, 1] that
breaks the randomness of the hashing solution by maintain-
ing some global status information. In particular, the system
stores the set of computing nodes A(v) to which each already
observed vertex v has been assigned2. The algorithm, when
processing edge ei,j ∈ E operates as follows:

Case 1 If neither ui nor xj have been assigned to a node,
then ei,j is assigned to the least loaded node cl ∈ C.
cl becomes the master node of ui and xj .

Case 2 If only one of the two vertices has been already
assigned (without loss of generality assume that ui is
the assigned vertex) then ei,j is placed in the least
loaded cl ∈ A(ui). cl becomes the master node of xj .

Case 3 If A(ui) ∩A(xj) 6= ∅, then the edge ei,j is assigned
to the least loaded node cl ∈ A(ui) ∩A(xj).

Case 4 If A(ui) 6= ∅, A(xj) 6= ∅ and A(ui)∩A(xj) = ∅, then
ei,j is assigned to the least loaded node cl ∈ A(ui) ∪
A(xj). Without loss of generality assume cl ∈ A(ui),
then cl becomes a working node for xj .

We implemented the above procedure in a parallel fashion.
In particular, the input data is randomly divided between
the computing threads/nodes. All the threads/nodes have

2The memory footprint needed to run such algorithm is or-
ders of magnitude smaller than the input data.
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Figure 2: Replication factor and load RSD achieved
by the various partitioning schemes (log-log scale).

access to a shared key-value storage that maintains as key
the id of the vertex v and as value A(v). To manage concur-
rent access we define fine-grained locks, one for each entry.

The novelty of our solution lies on the idea to exploit the
bipartite nature of the considered graph. A bipartite graph
is a graph where the vertex set V can be split in two disjoint
subsets W1 and W2 such that all edges connect vertices
placed in distinct subsets: if {v, w} ∈ E, either v ∈W1 and
w ∈W2 or v ∈W2 and w ∈W1. Such graphs are natural in
the area of recommender systems, where vertices represent
distinct classes of objects, e.g. users and items.

Bipartite Aware Greedy Algorithm.
Our algorithm exploits the fact that in real word datasets

the size of the two sets constituting the bipartite graph are
often significantly skewed: one of the two sets is much bigger
that the other. If this is the case, by perfectly splitting the
bigger set it is possible to achieve an average replication
factor smaller than the one obtained through the greedy
approach (although we will show in Section 5 that this is not
always enough to achieve a smaller communication cost).

It is therefore possible to identify two dual approaches:

• item partitioned strategy. Vectors for all items xj ∈ X
always reside in a single node while vectors for users
ui ∈ U are replicated as necessary.

• user partitioned strategy. Vectors for all users ui ∈ U
always reside in a single node while vectors for items
xj ∈ X are replicated as necessary.



Dataset MovieLens Netflix Yahoo!
n 69878 480189 1000990
m 10677 17770 624961
|E| 10000054 100480507 252800275
k 50 50 50
λ 0.05 0.05 1
µ 0.015 0.015 0.0001

Table 1: Statistics and parameters for each dataset.

To achieve this result we modify Case 4 of the greedy
algorithm, that is the only case where replicas are gener-
ated. Assume without loss of generality a user partitioned
strategy, so |A(ui)| = 1, ∀ui ∈ U .

Case 4 If A(ui) /∈ A(xj) then ei,j is assigned to A(ui), and the
unique node in A(ui) creates a working copy for xj .

5. EVALUATION
In this section we report the results of the experimental

evaluation we conducted on a prototype implementation of
GASGD. The goal of this evaluation was to show how the
GASGD characteristics provide a solution able to reach high
quality results in an efficient manner.

Experimental Settings and Test Datasets.
We used three datasets for the experiments: MovieLens

10M3, Netflix [2] and Yahoo! [4]. Dataset statistics as well
as simulation parameters are synthesized in Table 1. The re-
ported learning rate µ only represents the starting value, as
we adopted an adaptive mechanism called bold driver [13] to
automatically vary the parameter during the computation.
Furthermore, in our implementation each computing node
shuffles the training points it analyzes before each epoch.

We implemented five different input partitioning scheme:
grid, hashing, greedy, greedy - item partitioned (GIP), greedy
- user partitioner (GUP). The grid partitioner, commonly
used by DSGD (Section 3), simply shuffles rows and columns
of the rating matrix R, and then divides it in |C| identical
blocks. The other four schemes are based on graph parti-
tioning techniques (Section 4). As a baseline for comparison
we used the solution obtained by running SGD on a sin-
gle machine. For this centralized approach we employed the
parallel-SGD algorithm (with locks) described in Section 3.

Partitioning quality.
We begin our experimental analysis by studying the qual-

ity of the various partitioning schemes, in terms of achieved
replication factor (average number of copies for each vec-
tor) and load balancing (expressed as the Relative Standard
Deviation (RSD) of the load among the nodes). Figure 2
reports the obtained results. As expected GUP achieves the
smallest RF in those scenarios where the number of users
is much bigger than the number of items (MovieLens and
Netflix), sporting, moreover, a perfect load balance among
the computing nodes. However, in the Yahoo! dataset users
and items are comparable in number and the classical greedy
solution outperforms its user partitioned variant. Interest-
ingly, the grid solution always outperforms the greedy ap-
proach in RF , even if its load balancing performance are
inferior. Intuitively, by shuffling rows and columns of R

3http://grouplens.org/datasets/movielens
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(f) Yahoo! - f = 100, |C| = 4

Figure 3: Algorithms convergence rate (loss vs
epochs), with f = 1 and f = 100 (y-axis in log-scale).

and then grouping them in blocks, grid achieves the same
objective of greedy, that is to replicate users or items with
high degree, but does so in a more effective way, since it
has complete knowledge of the rating matrix R while greedy
processes the training set in a streaming fashion.

Overall SGD performance.
To assess the quality of the solution obtained from the

asynchronous distributed SGD variants, we compare the
convergence curves of the objective function expressed by
Equation 1. Note that here our goal was not to assess the
absolute solution quality achieved by the algorithm (i.e.,
RMSE), but rather to show how fast the solutions provided
by the distributed solutions approach the centralized one.
Figure 3 shows the loss curves for the various algorithms,
applying two different synchronization frequencies: f = 1
and f = 100. In general, by increasing f the ASGD curves
tend to reproduce the centralized SGD trend, while with
f = 1 the distributed convergence rates are quite far from
the centralized one. This was expected, since with f = 1
all the vector copies are free to diverge during the compu-
tation of an epoch while with f = 100 they are frequently
synchronized, closely reproducing the behavior of a central-
ized implementation. The worst performance, with small
synchronization frequencies, is provided by the grid solu-
tion: by shuffling R, in fact, grid uniformly distributes the
ratings of an entity (i.e. user or item) among the available
nodes, thereby favoring the divergence of vector copies.

To synthesize these results we used an aggregate value
for the convergence curves difference: the sum of squared
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Figure 4: SSE between ASGD variants and SGD convergence curves (log-log scale), in the top half. Com-
munication cost varying synchronization frequency (x-axis in log scale), in the bottom part.

errors (SSE) between the ASGD curve points and the cen-
tralized ones (limited to the first 30 epochs). The top half
of Figure 4 (Figures 4a, 4b and 4c) reports the obtained
SSE values varying the synch frequency f . In datasets with
significantly more users than items (MovieLens and Netflix)
the GUP strategy convergence curve quickly approaches the
centralized one (respectively with f = 8 and f = 16) while
other solutions achieve the same result with larger frequen-
cies. Furthermore, while increasing the number of nodes
degrades the performance of both greedy and grid (dashed
lines in the figures), the GUP solution is not affected by this
problem; it actually sports a performance improvement to
its convergence rate in the Netflix dataset (Figure 4b). Also
in the Yahoo! dataset the GUP approach outperforms the
other variants in convergence rate (Figure 4c).

Communication Cost.
The GUP loss curve is the one more quickly approaching

the centralized SGD curve for the smallest value of f . Now
we will show how, at that frequency f , the GUP solution is
also the least expensive with respect to communication cost.
We express the communication cost (CC) as the total num-
ber of messages that the system exchanges in an epoch. This
cost depends on three factors: the number |C| of processing
nodes, the synchronization frequency f and the replication
factor (RF ). We remark that RF is a weighted average of
the replication factor of item (RFX) and user (RFU ) vectors.

More formally, each node c ∈ C owns a slice T c of the

training set T , where |T c| = |T |
|C| assuming perfect load bal-

ance. At the beginning of each epoch all computing nodes
shuffle the content of their slice T c and cut it in f folds
such that T c = {Kc

1 ∪ ... ∪ Kc
f}. Each fold Kc

y contains

roughly |T
c|
f

ratings. We define Uc
y = {ui ∈ U : ∃rij ∈ Kc

y}
(resp. Xc

y = {xj ∈ X : ∃rij ∈ Kc
y}) the set of users (resp.

items) with at least a rating in the fold. We denote with

Uy = {U1
y ∪ ... ∪ U

|C|
y } (resp. Xy = {X1

y ∪ ... ∪ X
|C|
y }) the

set of users (resp. items) with at least one rating in the y-th
fold on any computing node. The communication cost for
an epoch is then defined as:

CC ≈
∑
c∈C

f∑
y=1

(|Uc
y |+ |X

c
y|) +

f∑
y=1

(
∑

u∈Uy

|A(u)|+
∑

x∈Xy

|A(x)|) (7)

The first part of Equation 7 considers messages that the
working copies send to the master, while the second one
considers messages that the vector master copies send to
all the replicas after the update. For the sake of simplicity
the equation does not consider the fact that working and
master copies overlap on master nodes, and so they don’t
need a messages exchange.

The bottom half of Figure 4 (Figures 4d, 4e and 4f) shows
the CC incurred by the various solutions varying f . To
better understand the charts we show what happens to CC
for the extreme values of f : f = 1, single synchronization at

the end of each epoch, and f = |T |
|C| , vectors are synchronized

after each observation.

f = 1→ CC ≈ 2(|U |RFU + |X|RFX) = 2|V |RF (8)

f =
|T |
|C| → CC ≈ |T |(2 +RFU +RFX) (9)

By looking at (8), it is clear that, at low frequencies, the
solution with the smallest RF achieves the lowest CC (i.e.
GUP in MovieLens and Netflix, grid in Yahoo!). The sit-
uation changes by increasing f , since, for instance, in the



Netflix dataset (Figure 4e) the GUP solution gradually be-
comes the most expensive. This behavior is explained by
Equation 9. At high frequencies, in fact, the CC basically
depends on the sum of RFU and RFX . The GUP strategy,
by partitioning the user set, is forced to highly replicate all
items. This behavior has a small impact on RF , as the num-
ber of users is larger than the number of items; however,
GUP sports large RFX and thus incurs highly expensive
synchronization phases for high sync frequencies.

The positive aspect highlighted by these tests is that it’s
not necessary to massively increase f in order to achieve a
convergence rate similar to a centralized implementation. A
dozen synchronizations per epoch, in fact, are enough for
GUP to reach this goal in both the MovieLens and Netflix
datasets (Figures 4a and 4b), and at such frequency it is the
most efficient solution (Figures 4d and 4e). For the Yahoo!
case, instead, a slightly higher frequency is required for GUP
to reach the centralized convergence rate (Figure 4c). At
that frequency, GUP is just a bit more expensive in CC than
grid (Figure 4f), but with the advantage of (i) an almost
perfect load balance and (ii) the streaming implementation,
that makes it applicable to huge input data (i.e. exceeding
the memory capacity of a single node).

6. RELATED WORK
The scalability of collaborative filtering algorithms is a

research topic that was recently interested by a huge growth
of contributions from the scientific community [13, 5, 16,
9, 10]; we already discussed most of them in Section 3 as
they represent a cornerstone for the work proposed in this
paper, so this section is devoted to a short description of a
few further works that are connected to this paper.

The vertex-cut distributed graph placement problem is
addressed by PowerGraph [6], a distributed graph-parallel
computation paradigm, in which each vertex in parallel exe-
cutes some software, respecting the Gather-Apply-Scatter
(GAS) programming model. We already described their
greedy partitioning algorithm in Section 4.

In the context of graph factorization, [1] proposes an asyn-
chronous SGD version where the global explicit synchroniza-
tion phase is eliminated. Vector copies, indeed, are synchro-
nized continuously (a thread loops in local memory) in an
asynchronous fashion and independently. We think that also
in this case it’s possible to tune the frequency of the synchro-
nization, in a fine-grained fashion, and we leave this idea as
part of our future work.

7. CONCLUSIONS
In this paper we described three distinct contributions

aimed at improving the efficiency and scalability of Asyn-
chronous distributed SGD algorithms. In particular, we
proposed a novel input slicing solution based on graph par-
titioning approach that mitigates the load imbalance among
SGD instances (i.e. better scalability), while, at the same
time, providing lower communication costs during the algo-
rithm execution (i.e. better efficiency) by exploiting specific
characteristics of the training dataset. The paper also in-
troduces a synchronization frequency parameter driving a
tradeoff that can be accurately leveraged to further improve
the algorithm efficiency.
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