
LCBM: Statistics-based

Parallel Collaborative Filtering

⇤

Fabio Petroni1, Leonardo Querzoni1, Roberto Beraldi1, and Mario Paolucci2

1 Department of Computer Control and Management Engineering Antonio Ruberti,
Sapienza University of Rome - petroni|querzoni|beraldi@dis.uniroma1.it

2 Institute of Cognitive Sciences and Technologies, CNR -
mario.paolucci@istc.cnr.it

Abstract. In the last ten years, recommendation systems evolved from
novelties to powerful business tools, deeply changing the internet indus-
try. Collaborative Filtering (CF) represents today’s a widely adopted
strategy to build recommendation engines. The most advanced CF tech-
niques (i.e. those based on matrix factorization) provide high quality
results, but may incur prohibitive computational costs when applied to
very large data sets. In this paper we present Linear Classifier of Beta
distributions Means (LCBM), a novel collaborative filtering algorithm
for binary ratings that is (i) inherently parallelizable and (ii) provides
results whose quality is on-par with state-of-the-art solutions (iii) at a
fraction of the computational cost.

Keywords: Collaborative Filtering, Big Data, Personalization, Recommenda-
tion Systems.

1 Introduction

Most of todays internet businesses deeply root their success in the ability to
provide users with strongly personalized experiences. This trend, pioneered by
e-commerce companies like Amazon [1], has spread in the last years to possi-
bly every kind of internet-based industries. As of today, successful players like
Pandora or StumbleUpon provide user personalized access to services like a core
business, rather than an add-on feature.

The fuel used by these companies to feed their recommendation engines and
build personalized user experiences is constituted by huge amounts of user-
provided data (ratings, feedback, purchases, comments, clicks, etc.) collected
through their web systems or on social platforms. For instance, the Twitter
micro-blogging service has surpassed 200 million active users, generating more
than 500 million tweets (micro-blog posts) per day at rates that recently (Aug
2013) peaked at 143199 tweets per second [2]. The amount of data available
to be fed to a recommendation engine is a key factor for its e↵ectiveness [3].
A further key factor in this context is represented by timeliness: the ability to
timely provide users with recommendations that fit their preferences constitutes
a potentially enormous business advantage [4].

⇤ This work has been partially supported by the TENACE PRIN Project (n.
20103P34XC) funded by the Italian Ministry of Education, University and Research.

A widely adopted approach to build recommendation engines able to cope
with these two requirements is represented by Collaborative filtering (CF) algo-
rithms. The essence of CF lies in analyzing the known preferences of a group
of users to make predictions about the unknown preferences of other users. Re-
search e↵orts spent in the last ten years on this topic yield several solutions
[5,6,7,8] that, as of today, provide accurate rating predictions, but may incur
prohibitive computational costs and large time-to-prediction intervals when ap-
plied on large data sets. This lack of e�ciency is going to quickly limit the
applicability of these solutions at the current rates of data production growth,
and this motivates the need for further research in this field.

In this paper we introduce Linear Classifier of Beta distributions Means
(LCBM), a novel algorithm for collaborative filtering designed to work in sys-
tems with binary ratings. The algorithm uses ratings collected on each item
(i.e. products, news, tweets, movies, etc) to infer a probability density function
shaped as a Beta distribution; this function characterizes the probability of ob-
serving positive or negative ratings for the item. A linear classifier is then used to
build user profiles that capture the aptitude of each user to rate items positively
or negatively. These profiles are leveraged to predict ratings users would express
on items they did not rate. Our algorithm is able to provide predictions whose
quality is on-par with current state-of-the-art solutions (based on matrix factor-
ization techniques), but in shorter time and using less computational resources
(memory occupation). Moreover, it is inherently parallelizable. Its performance
has been extensively assessed through an experimental evaluation based on well-
known public datasets (MovieLens and Netflix) and compared with those o↵ered
by open source implementations of state-of-the-art solutions.

The rest of this paper is organized as follows: Section 2 presents related works;
Section 3 defines the system model and states the problem; Section 4 presents
our solution, evaluated in Section 5; finally, Section 6 concludes the paper.

2 Related Work

Collaborative Filtering (CF) is a thriving subfield of machine learning, and sev-
eral surveys expose the achievements in this fields [9,10]. CF solutions in the
literature are often divided in two groups: memory-based and model-based [11].

Memory-based methods [12,13] are used in a lot of real-world systems be-
cause of their simple design and implementation. However, they impose several
scalability limitations that make their use impractical when dealing with large
amounts of data. The slope one algorithms [14] were proposed to make faster
prediction than memory-based algorithms, but they were unable to overcome
the scalability issues of the latter.

Model-based approaches have been investigated to overcome the shortcom-
ings of memory-based algorithms. The most successful Model-based techniques
are by far those based on low-dimensional factor models, as the Netflix Prize
(www.netflixprize.com) established, in particular those based on matrix factor-
ization (MF) [15,16,5,6]. These methods aims at obtaining two lower rank matri-
ces P and Q, for users and items respectively, from the global matrix of ratings

R, with minimal loss of information. The most popular MF solutions are Al-
ternating Least Squares (ALS) and Stochastic Gradient Descent (SGD). Both
algorithms need several passes through the set of ratings to achieve this goal.
ALS [5] alternates between keeping P and Q fixed. The idea is that, although
both these values are unknown, when the item vectors are fixed, the system can
recompute the user vectors by solving a least-squares problem (that can be solved
optimally), and vice versa. SGD [6] works by taking steps proportional to the
negative of the gradient of the error function. The term stochastic means that P
and Q are updated, at each iteration, for each given training case by a small step,
toward the average gradient descent. Some recent works aimed at increasing the
scalability of current MF solutions [7,17,8], however the asymptotic cost of these
techniques makes it di�cult to fit the timeliness requirements of real-world ap-
plications, especially when applied on large data sets. Furthermore, each update
leads to non-local changes (e.g. for each observation the user vector increment
in SGD is proportional to the item vector, and vice versa) which increase the
di�culty (i.e. the communication costs) of distributed implementations.

The binary-rating scenario we consider in this work can be considered as a
special case of the more general multi dimensional rating scenario. However it is
worth noticing that it fundamentally di↵ers from one-class collaborative filtering
[18] where only positive feedback are assumed to be available while negative
feedback are treated as absent. Contrarily, in our work negative feedback is
always considered at the same level of importance as positive feedback, but with
an opposite meaning.

Some earlier works on collaborative filtering [19,20] and reputation [21] adopted
the same statistical method (i.e. Beta distribution) to combine feedback. Ungar
and Foster [19] proposed a clustering CF approach in which the connection prob-
abilities between user and item clusters are given by a Beta distribution. The
solution is computationally expensive, as Gibbs sampling is used for model fit-
ting. Wang et al. [20] applied information retrieval theory to build probabilistic
relevance CF models from implicit preferences (e.g. frequency count). They use
the Beta distribution to model the probability of presence or absence of items
in user profiles.

3 System Model and Problem Definition

We consider a system constituted by U = (u1, · · · , uN) users and I = (i1, · · · , iM)
items. Items represent a general abstraction that can be case by case instanti-
ated as news, tweets, shopping items, movies, songs, etc. Users can rate items
with values from a predefined range. Rating values X can be expressed in several
di↵erent ways (depending on the specific system), however, in this paper we will
consider only binary ratings, thus X = {�1, 1} where the two values can be
considered as corresponding to KO and OK ratings respectively.

By collecting user ratings it is possible to build a N ⇥M rating matrix that
is usually a sparse matrix as each user rates a small subset of the available items.
The goal of a collaborative filtering system is to predict missing entries in this
matrix using the known ratings.

LCBM
Working phase

ratings

Training phase
Item rating PDF

inferenceratings per
item

User profilerratings per
user

standard
error

mean

>
predictions

threshold

Fig. 1. LCBM: algorithm block diagram.

4 The LCBM algorithm

This section introduces the LCBM algorithm for collaborative filtering and an-
alyzes its asymptotic behavior. First it describes the general structure of the
algorithm and its internal functional blocks detailing their interactions; then the
blocks are described in the following subsections.

4.1 Algorithm structure

Our solution departs from existing approaches to CF by considering items as
elements whose tendency to be rated positively/negatively can be statistically
characterized using an appropriate probability density function. Moreover, it also
considers users as entities with di↵erent tastes that rate the same items using
di↵erent criteria and that must thus be profiled. Information on items and users
represents the basic knowledge needed to predict future user’s ratings. LCBM
is a two-stage algorithm constituted by a training phase, where the model is
built, and a working phase, where the model is used to make predictions. Figure
1 shows a block diagram of LCBM that highlights its two-stage structure, its
inputs and outputs, its main functional blocks and the interactions among them.

Training phase in this first phase collected ratings are fed to both an Item
rating PDF inference block and a User profiler block. In the former case ratings
are grouped by item and the block performs statistical operations on them to
infer for each item the probability density function (PDF) of positive/negative
rating ratios. Each inferred PDF is described by two measures: the mean and
the standard error. In the latter case ratings are grouped by user and the block
uses them to profile each user’s rating behavior. It is important to note that in
order to build accurate profiles this block is also fed with the data produced by
the item’s rating PDF inference block. The output of this block for each user is
a single threshold value in the [0, 1] range. The PDF mean values and the user
thresholds represent the final output of this phase.

Working phase the second phase is in charge of producing the rating predictions.
For each couple (u, i), u 2 U, i 2 I such that the user u has not rated the item
i a comparator is used to check the PDF mean value for that item against the
user threshold and predict if that user will express a positive or negative rating.

It is important to notice that, while the flow of data between blocks in the
algorithm architecture forces a sequential execution, operations performed within
each block can be easily parallelized favoring a scalable implementation of the
algorithm. Currently, we realized a prototype implementation of LCBM where
the two blocks are implemented through multithreaded concurrent processes.
More e�cient and scalable implementations are part of our future work.

4.2 Item rating PDF inference

Items are profiled through a PDF of a single random variable, that represents
the relative frequency of positive votes that the item will obtain in the future,
given the observed ratings. We use the Beta distribution, a continuous family of
probability functions indexed by two parameters ↵ and �, to model this PDF.
Given a number of received ratings, the unknown relative frequency of OKs
an item will receive in the future has a probability distribution expressed by a
Beta function with parameters ↵ and � set to the number of OKs and KOs
incremented by one respectively: ↵ = OK + 1 and � = KO + 1.

The profile of an item consists of two values: a measure of the beta distri-
bution central tendency, the mean (MEAN), and a measure of the distribution
variability, the standard error (SE):

MEAN =
↵

↵+ �
=

OK + 1
OK +KO + 2

(1)

SE =
1

OK +KO + 2

s
(OK + 1)(KO + 1)

(OK +KO)(OK +KO + 3)
(2)

The MEAN can be interpreted as the expected value for the relative fre-
quency of OK votes that the item will obtain in the future. The SE is an estimate
of the standard deviation of the MEAN . This value is important to indicate the
reliability of an estimation. Intuitively, the more representative is the subset of
voters, the lower the SE and the more accurate the MEAN estimation.

Figure 2 shows the inferred PDF for an item that received so far 8 positive
votes and 3 negatives. This curve expresses the probability that the item will
receive a relative fraction of x positive ratings in the future. The mean of the
distribution is 0.7. This can be interpreted as the expected value for x. For
instance, the system expects that 7 of the next 10 ratings for the item will
be positive. The standard error of the distribution is roughly 0.04. Using the
Chebyshev’s inequality [22], the SE can be interpreted as saying that the system
expects that in the next 100 ratings for the item between 62 and 78 will be
positive, with probability bigger than 0.75.

4.3 User Profiler

The goal of the User profiler is to identify a single value for each user using the
votes that user expressed. We call this value the quality threshold (QT) of the
user. Users profiling starts after the items profiling procedure. Therefore in this
phase MEAN and SE values are already defined for each item.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

P
D

F

X

Fig. 2. Item profiling.
Beta function after 8 OK
and 3 KO.

0.1 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.65 0.7 0.8 0.85

discriminant function

OK errors KO errors

Fig. 3. User profiling. Linear classification in one dimen-
sion. OK represented by blue circles and KO by red di-
amonds. In this example QT = 0.4.

The algorithm uses a sorted data structure to collect all user’s ratings. With-
out loss of generality, let this structure be a sorted set of points. Every rating is
represented by a unique point p composed by two attributes: a key p.key, that
gives the point’s rank in the order, and a boolean value p.value containing the
rating. Each key lies on a [0, 1] scale and its value is determined by the item’s
PDF. In particular, we adopt a worst case estimation approach: if the rating is
positive (OK) the key is obtained by summing 2SE to the MEAN of the item
profile, if negative (KO) by subtracting 2SE from the MEAN .

A simple linear classifier is then used to find a discriminant function (i.e. a
point p⇤) for each user that separates the data with a minimal number of errors.
We consider an error a point pe with either pe.value = KO and p.key > p⇤.key
or pe.value = OK and p.key  p⇤.key.

Therefore, the discriminant point is chosen between those that minimize the
following function:

LOK(x) = {p|p.value = OK ^ p.key  x.key} (3)

RKO(x) = {p|p.value = KO ^ p.key > x.key} (4)

f(x) = |LOK(x)|+ |RKO(x)| (5)

From all the points that minimize the function f(x) the ones with the smaller
absolute di↵erence between |LOK(x)| and |RKO(x)| are selected, so that the
errors are balanced between OKs and KOs. The user QT value is the smallest
key in this set. The solution can be found in polynomial time. The simplest
approach is to pass three times over the points: one to compute |LOK(x)| for
each point; one to compute |RKO(x)| for each point; one to find the point that
minimizes f(x).

Figure 3 shows an example where an user expressed 13 votes, 7 OK (blue
circles) and 6 KO (red diamonds). The user QT value is 0.4, key of the discrim-
inant point p⇤. In fact, no other choice will deliver less than 4 errors (perfectly
balanced) in the classification task (two with smaller keys and OK values and
two with bigger keys and KO values).

The worst case estimation approach prevents inaccurate item profiles from
corrupting the classification task. Indeed, without this mechanismKO votes with
over-estimate itemMEAN would lead to over-strict QT s (OK votes with under-
estimate item MEAN values would lead to over-permissive QT s respectively).

LCBM SGD [6] ALS [5]

time to model O(X) O(X ·K · E) ⌦(K3(N +M) +K2 ·X)
time to prediction O(1) O(K) O(K)

memory usage O(N +M) O(K(N +M)) O(M2 +X)

Table 1. Algorithm cost compared with state-of-the-art solutions.

4.4 Working phase

In order to produce a prediction the algorithm simply compares QT values from
the user profiler with MEAN values from the item’s rating PDF inference block.
In particular, for each couple (u, i) without a rating it checks if the item MEAN
value is bigger than the user QT value. If this is the case the predicted user’s
rating for the item is OK, KO otherwise.

4.5 Algorithm analysis

Table 1 reports the cost of the LCBM algorithm compared with costs from other
state-of-the-art solutions. In the table X is the number of collected ratings, K is
the number of hidden features [23] and E is the number of iterations. We remark
that O(·) is an upper bound, while ⌦(·) is a lower bound for the computational
complexity.

If we consider the time needed to calculate the model, our solution performs
two passes over the set of available ratings, one for each functional block in the
training phase, thus its linear asymptotical cost. Note that this is the lowest
asymptotical cost possible to build the model (as any solution should read each
available rating at least once to build a model). Once the model is built it will
be constituted by a value for each item (its MEAN) and a value for each user
(its QT), thus the occupied memory will be O(N +M). Finally, calculating the
prediction for a single couple (u, i) requires a single comparison operation over
two values, and thus incurs a constant cost.

5 Experimental Evaluation

In this section we report the results of the experimental evaluation we conducted
on a prototype implementation of our solution. The goal of this evaluation was
to assess how much our solution is e↵ective in predicting ratings and the cost it
incurs in doing so.

5.1 Experimental Setting and Test Datasets

We implemented3 our LCBM algorithm, and evaluated it against open-source
implementations of batch based CF algorithms provided by the Apache Mahout
project (mahout.apache.org). We compared LCBM against both memory-based
and matrix factorization solutions, however, this section only reports results
from the latter as memory-based solutions have well-known scalability issues

3 Our prototype is available at http://www.dis.uniroma1.it/
~

midlab/LCBM/

http://www.dis.uniroma1.it/~midlab/LCBM/

[9], and our LCBM algorithm outperformed them both in prediction accuracy
and computational cost4. We limited our comparative evaluation to matrix fac-
torization solutions, focusing on the two factorization techniques presented in
Section 2: SGD and ALS. More precisely, we considered a lock-free and paral-
lel implementation of the SGD factorizer based on [6] (the source code can be
found in the ParallelSGDFactorizer class of the Apache Mahout library); the
algorithm makes use of user and item biases for the prediction task. These two
values indicate how much the ratings deviate from the average. This intuitively
captures both users tendencies to give higher or lower ratings than others and
items tendencies to receive higher or lower ratings than others. We also consid-
ered a parallel implementation of ALS with Weighted-�-Regularization based on
[5] (the source code can be found in the ALSWRFactorizer class of the Apache
Mahout library).

If not di↵erently specified, we set the following parameters for the above al-
gorithms: regularization factor � = 0.065 (as suggested in [5]), K = 32 hidden
features and E = 30 iterations. We defined this last parameter by noting that
30 was the lowest number of iterations needed for the prediction accuracy score
to converge on the considered datasets. Note that Apache Mahout allows you to
define additional optional parameters for the two algorithms. In our experiments
we used the default values for these variables, embedded in the corresponding
source code. The algorithms return a real value (between �1 and 1) as a prefer-
ence estimation for a couple (u, i). To discretize the prediction we adopted the
most natural strategy: if the result is positive or zero the algorithm predicts an
OK, if negative a KO.

We used three test datasets for our comparative study. The first two datasets
were made available by the GroupLens research lab (grouplens.org) and consist
of movie rating data collected through the MovieLens recommendation web-
site (movielens.org). The third one is the Netflix prize dataset (http://www.
netflixprize.com). All the ratings in these datasets were on a scale from 1 to
5, and we “binarized” them as follows [24]: if the rating for an item, by a user,
is larger than the average rating by that user (average computed over his entire
set of ratings) we assigned it a binary rating of 1 (OK), -1 (KO) otherwise.

The experiments were conducted on an Intel Core i7 2, 4GHz quad-core
machine with 20GB of memory, using a GNU/Linux 64-bit operating system.

5.2 Evaluation methodology and Performance Metrics

Similar to most machine learning evaluation methodologies, we adopted a k-fold
cross-validation approach. This technique divides the dataset in several folds
and then uses in turn one of the folds as test set and the remaining ones as
training set. The training set is used to build the model. The model is used to
predict ratings that are then compared with those from the test set to compute
the algorithm accuracy score. We randomly split the datasets in 5 folds, so that

4 We also ran comparative tests with slope one algorithms. The results are not reported
here as those algorithms showed worse performance than LCBM on all metrics.

http://www.netflixprize.com
http://www.netflixprize.com

each fold contained 20% of the ratings for each item. The reported results are
the average of 5 independent runs, one for each possible fold chosen as test set.

In general, in order to evaluate the results of a binary CF algorithm we can
identify four possible cases: either (i) correct predictions, both for OKs (TP true
positives), and KOs (TN true negatives) or (ii) wrong predictions, both if OK
is predicted for an observed KO (FP false positives) or if KO is predicted for
an observed OK (FN false negatives). These four values constitute the so called
confusion matrix of the classifier.
The Matthews correlation coe�cient (MCC)[25] measures the quality of binary
classifications. It returns a value between �1 and +1 where +1 represents a
perfect prediction, 0 no better than random prediction and �1 indicates total
disagreement between prediction and observation. The MCC can be calculated
on the basis of the confusion matrix with the following formula:

MCC =
TP ⇥ TN � FP ⇥ FNp

(TP + FP)⇥ (TP + FN)⇥ (TN + FP)⇥ (TN + FN)
(6)

To assess the load incurred by the system to run the algorithms we also cal-
culated the time needed to run the test (from the starting point until all the
possible predictions have been made) and the peak memory load during the test.
It is important to remark that running times depend strongly on the specific im-
plementation and platform, so they must be considered as relative indicators,
whose final scope is to reflect the asymptotic costs already presented in Table 1.

5.3 Evaluation Results

Figure 4 summarizes the performance of the CF algorithms over the three con-
sidered datasets, in terms of achieved prediction accuracy, time required for the
prediction and memory occupation.

From Figure 4a it is possible to observe that LCBM consistently outperforms
ALS by a large margin for all the considered datasets. Conversely, SGD outper-
forms LCBM in all datasets by a small margin whatever the value chosen for
the number of features K is. By looking at this graph we can consider LCBM
as a solution whose accuracy is very close to the accuracy o↵ered by the best
solution available in the state-of-the-art. However, the real advantages of LCBM
come to light by looking at the load it imposes on the system.

Figure 4b shows the time required to conclude both the training and the
test phases. Tests run with LCBM terminate much earlier that those run with
SGD and ALS. This was an expected result as the time complexity of SGD is
equivalent to the LCBM one only if we consider a single feature (K = 1) and a
single iteration (E = 1) (cfr. Section 4.5). Note, however, that with this peculiar
configuration SGD running time is still slightly larger than LCBM while its
prediction accuracy, in terms of MCC, drops below the LCBM one (not shown
in the graphs). The running time of ALS, as reported in the Figure, is always
larger than LCBM.

The peak memory occupation is reported in Figure 4c. Also in this plot the
gap between LCBM and MF techniques is evident. To summarize, LCBM is

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

MovieLens (105) MovieLens (107) Netflix (108)

M
C

C

number of ratings

LCBM
SGD K=256

SGD K=32
SGD K=8

ALS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

MovieLens (105) MovieLens (107) Netflix (108)

M
C

C

number of ratings

LCBM
SGD K=256

SGD K=32
SGD K=8

ALS

(a) MCC

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

MovieLens (105) MovieLens (107) Netflix (108)

tim
e

 (
s)

number of ratings

LCBM
SGD K=256

SGD K=32
SGD K=8

ALS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

MovieLens (105) MovieLens (107) Netflix (108)

tim
e

 (
s)

number of ratings

LCBM
SGD K=256

SGD K=32
SGD K=8

ALS

 0

 10

Zoom

 0

 10

Zoom

(b) Time

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

MovieLens (105) MovieLens (107) Netflix (108)

m
e

m
o

ry
 (

G
B

)

number of ratings

LCBM
SGD K=256

SGD K=32
SGD K=8

ALS

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

MovieLens (105) MovieLens (107) Netflix (108)

m
e

m
o

ry
 (

G
B

)

number of ratings

LCBM
SGD K=256

SGD K=32
SGD K=8

ALS

 0

 0.2

Zoom

 0

 0.2

Zoom

(c) Memory

Fig. 4. Collaborative filtering algorithms
performance, in terms of achieved accu-
racy, computational time required and
memory occupation. The number of iter-
ations for the matrix factorization mod-
els is set to 30. The SGD algorithm is
trained with 8, 32 and 256 features. The
number of features for the ALS algorithm
is set to 32.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 2 4 8 16 32 64 128 256 512 1024

M
C

C

number of features

SGD

LCBM

(a) MCC

 0

 100

 200

 300

 400

 500

 600

 700

 2 4 8 16 32 64 128 256 512 1024

tim
e

 (
s)

number of features

SGD
LCBM

(b) Time

 0

 0.5

 1

 1.5

 2

 2 4 8 16 32 64 128 256 512 1024

m
e

m
o

ry
 (

G
B

)

number of features

SGD
LCBM

(c) Memory

Fig. 5. LCBM vs. SGD performance
varying the numberK of hidden features,
in terms of achieved accuracy, compu-
tational time required and memory oc-
cupation. The dataset used for the ex-
periments is MovieLens with 107 ratings.
The number of iterations was set to 30.
The LCBM algorithm is agnostic to the
number of features.

competitive with existing state-of-the-art MF solutions in terms of accuracy,
but it runs faster while using less resources (in terms of memory).

The previous experiments have shown that the most performant matrix fac-
torization solution is SGD. ALS, in facts, always showed the worst performance
in our tests for all the considered metrics. Figure 5 reports the results of an
experiment conducted on the MovieLens (107) dataset varying the number of
hidden features K for the SGD factorizer. The LCBM performance are reported
for comparison, and the corresponding curves are always constant because our so-
lution is agnostic to K. Figures 5b and 5c show graphically what the asymptotic
analysis has already revealed: time and space grow linearly with the number of
features (note that the X-axis in the graphs has a logarithmic scale). The higher
timeliness and memory usage thriftiness of LCBM is highlighted by the consid-
erable gap between its curves and the SGD ones. Figure 5a reports the MCC
values. As shown before SGD provides slightly better results than LCBM, and
the gap tends to widen as the number of features grows. This, however, comes
at the cost of a longer and more space consuming training procedure.

6 Conclusions

This paper introduced LCBM, a novel algorithm for collaborative filtering with
binary ratings. LCBM works by analyzing collected ratings to (i) infer a prob-
ability density function of the relative frequency of positive votes that the item
will receive and (ii) to compute a personalized quality threshold for each user.
These two pieces of information are then used to predict missing ratings. Thanks
to its internal modular nature LCBM is inherently parallelizable and can thus be
adopted in demanding scenarios where large datasets must be analyzed. The pa-
per presented a comparative analysis and experimental evaluation among LCBM
and current solutions in the state-of-the-art that shows how LCBM is able to
provide rating predictions whose accuracy is close to that o↵ered by the best
available solutions, but in a shorter time and using less resources (memory).

References

1. Mangalindan, J.: Amazon’s recommendation secret. CNN Money http://tech.

fortune.cnn.com/2012/07/30/amazon-5/ (2012)
2. Krikorian, R.: New tweets per second record, and how! Twitter blog (https:

//blog.twitter.com/2013/new-tweets-per-second-record-and-how) (2013)
3. Halevy, A., Norvig, P., Pereira, F.: The unreasonable e↵ectiveness of data. Intel-

ligent Systems, IEEE 24(2) (2009) 8–12
4. Narang, A., Gupta, R., Joshi, A., Garg, V.: Highly scalable parallel collaborative

filtering algorithm. In: High Performance Computing (HiPC), 2010 International
Conference on. (2010) 1–10

5. Zhou, Y., Wilkinson, D., Schreiber, R., Pan, R.: Large-scale parallel collaborative
filtering for the netflix prize. In: Algorithmic Aspects in Information and Manage-
ment. Springer (2008) 337–348

6. Takács, G., Pilászy, I., Németh, B., Tikk, D.: Scalable collaborative filtering ap-
proaches for large recommender systems. The Journal of Machine Learning Re-
search 10 (2009) 623–656

http://tech.fortune.cnn.com/2012/07/30/amazon-5/
http://tech.fortune.cnn.com/2012/07/30/amazon-5/
https://blog.twitter.com/2013/new-tweets-per-second-record-and-how
https://blog.twitter.com/2013/new-tweets-per-second-record-and-how

7. Gemulla, R., Nijkamp, E., Haas, P.J., Sismanis, Y.: Large-scale matrix factorization
with distributed stochastic gradient descent. In: Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data mining. (2011)

8. Zhuang, Y., Chin, W.S., Juan, Y.C., Lin, C.J.: A fast parallel sgd for matrix fac-
torization in shared memory systems. In: Proceedings of the 7th ACM conference
on Recommender systems, ACM (2013) 249–256

9. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Ad-
vances in Artificial Intelligence 2009 (2009) 4

10. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: A survey of the state-of-the-art and possible extensions. Knowledge and
Data Engineering, IEEE Transactions on 17(6) (2005) 734–749

11. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms
for collaborative filtering. In: Proceedings of the Fourteenth conference on Uncer-
tainty in artificial intelligence, Morgan Kaufmann Publishers Inc. (1998) 43–52

12. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open
architecture for collaborative filtering of netnews. In: Proceedings of the 1994 ACM
conference on Computer supported cooperative work, ACM (1994) 175–186

13. Linden, G., Smith, B., York, J.: Amazon. com recommendations: Item-to-item
collaborative filtering. Internet Computing, IEEE 7(1) (2003) 76–80

14. Lemire, D., Maclachlan, A.: Slope one predictors for online rating-based collabo-
rative filtering. Society for Industrial Mathematics 5 (2005) 471–480

15. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback
datasets. In: Data Mining, 2008. ICDM’08. Eighth IEEE International Confer-
ence on, IEEE (2008) 263–272

16. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative
filtering model. In: Proceedings of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining, ACM (2008) 426–434

17. Teflioudi, C., Makari, F., Gemulla, R.: Distributed matrix completion. In: ICDM.
(2012) 655–664

18. Pan, R., Zhou, Y., Cao, B., Liu, N., Lukose, R., Scholz, M., Yang, Q.: One-class col-
laborative filtering. In: Data Mining, 2008. ICDM ’08. Eighth IEEE International
Conference on. (2008) 502–511

19. Ungar, L., Foster, D.P.: A formal statistical approach to collaborative filtering.
CONALD’98 (1998)

20. Wang, J., Robertson, S., de Vries, A.P., Reinders, M.J.: Probabilistic relevance
ranking for collaborative filtering. Information Retrieval 11(6) (2008) 477–497

21. Jsang, A., Ismail, R.: The beta reputation system. In: Proceedings of the 15th
bled electronic commerce conference. (2002) 41–55

22. Huber, P.J.: The behavior of maximum likelihood estimates under nonstandard
conditions. In: Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability. Volume 1. (1967) 221–233

23. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8) (2009) 30–37

24. Das, A.S., Datar, M., Garg, A., Rajaram, S.: Google news personalization: scalable
online collaborative filtering. In: Proceedings of the 16th international conference
on World Wide Web, ACM (2007) 271–280

25. Matthews, B.W.: Comparison of the predicted and observed secondary structure
of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure
405(2) (1975) 442–451

	LCBM: Statistics-based Parallel Collaborative Filtering

