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Abstract

A replication logic is the set of protocols and mechanisms implementing a software
replication technique. A three-tier approach to replication consists in separating the
replication logic from both clients and servers by embedding such logic in a mid-tier.
This novel approach allows (i) to design thin client (embedding the presentation code
and some redirection/retransmission mechanism), (ii) to let servers replicas (the end-
tier) be accessed by common request/response asynchronous invocation, and then (iii)
to deploy server replicas on an asynchronous distributed system without the burden of
managing complex distributed protocols (this improves scalability and simplifies replica
management). In this paper we also present the Interoperable Replication Logic (IRL)
architecture which is a Fault Tolerant CORBA compliant infrastructure exploiting a three-
tier approach to replicate CORBA objects. We finally present an extensive performance
study of an IRL prototype.
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1 Introduction

Active [24], passive [5], semi-passive [7] and quorum replication [18] are well-known approaches

to build fault-tolerant services in distributed systems by using software replication. These

approaches are inherently two-tiers in the sense that independent clients (client-tier) interact

with a set of server replicas (the end-tier) which implement the fault-tolerant service.

In these approaches server replicas implement both the service they provide as well as

mechanisms, protocols and data structures necessary to handle a replication scheme (i.e., the

replication logic). As examples, in passive replication each replica has to monitor the state

(correct/failed) of the primary and to maintain an agreement on the membership of the group

composed by server replicas. In active replication, server replicas must be equipped with a

total order multicast primitive that hides a consensus protocol run among replicas to let them

agree on the order of message deliveries. These mechanisms impose tight coupling among

server replicas that leads such replicas (i) to explicitly know each other, (ii) to communicate

directly and (iii) to play an active role in handling their replication.

The basic idea behind our study is to decouple the aspects related to replication from the

actual service implementation by encapsulating the replication logic in a software tier external

to the service. From an operational viewpoint, such software tier undertakes the burden of

dealing with the service replication, i.e. of maintaining consistency among the server replicas.

As a consequence the resulting architecture is three-tier, where the replication logic acts as

a mid-tier between clients and server replicas. Clients send requests to the mid-tier that

forwards them to the end-tier. Note that in this scenario, clients are expected to be thin

(embedding at most a retransmission/redirection mechanism) and each server replica com-

municates only with the mid-tier on a point-to-point basis following a simple request/response

message pattern. A server replica receives requests from the mid-tier, processes them and

return replies. In this sense replicas play a passive role in handling replication. This simple

message pattern allows to disseminate replicas across the Internet while keeping the entities

managing the replication logic in a system with a higher level of synchrony, e.g. a LAN. From

the end-tier point of view, this makes the replication much more flexible and lightweight than

previous schemes.

In the remainder of this paper we first give an overview of three-tier replication (Section

2), then we introduce the Interoperable Replication Logic (IRL) design, which is a CORBA
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infrastructure compliant with the recent FT-CORBA specification [22] and adopting a three-

tier approach to replication (Section 3). In Section 4 we present the IRL prototype that has

been developed, tested and evaluated in our department. Hence, Section 5 shows a compre-

hensive performance analysis carried out on such prototype. Finally, Section 6 concludes the

paper.

2 Three-tier Replication

Distributed architectures have been usually built as two-tiers: clients and servers. Clients

embed the presentation part of an application, servers embed application data and the appli-

cation logic is usually split between clients and servers. In recent years, increasing require-

ments of software modularity pushed application logic in a specific software tier. The result

are three-tier software architectures, in which the client code only concerns the presentation

logic, the mid-tier embeds the application logic possibly without containing any part of the

application state, which should be completely managed by independent servers accessed by

standard interfaces ([12]).

The basic idea behind this paper is to embed the replication logic (i.e., the the set of

protocols, mechanisms and data structures that allow to implement a software replication

technique by enforcing linearizability [14] on executions of a set of server replicas.) within a

mid-tier, actually getting an three-tier replication architecture.

Three-tier replication decouples the replication logic from the functionality provided by

the server replicas. In other words, it separates the protocols and data structures handling

consistency of stateful server replicas from the servers themselves. This allows to design

services almost independently from replication-related issues, to simplify replica deployment,

and to simplify replication of services not designed having high availability in mind. Figure

1 illustrates the basic architecture.

In this basic architecture, clients are very thin entities that implement only a simple

retransmision mechanism in order to cope with mid-tier failures, while replicas can at most

implement simple functionality (e.g. request logging and duplicate filtering) other than the

ones declared in their interface. Note that server replicas are independent, i.e. they do not
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Figure 1: A Basic Architecture for Three-tier Replication

exchange messages among them. They only exchange messages with the replication logic on

a point-to-point basis and following a simple request/reponse message pattern1. Therefore a

replica is not aware of the existence of other replicas and it is also not aware of the replication

scheme (e.g. active, passive or semi-passive replication) used by the replication logic to

manage end-tier replicas [2].

It is easy to see that the availability of the end-tier replica functionality passes through

the availability of the mid-tier. Therefore, even the mid-tier has to be fault tolerant in order

to avoid single points of failure. This implies that, in the most general case, the replication

logic implements both a mid-tier replication and an end-tier replication protocol.

The mid-tier replication protocol involves only mid-tier components and is used to main-

tain consistency on information about client/server interactions. In this way if a mid-tier

component fails while carrying out a client/server interaction, another mid-tier component

has to take over and conclude the job in a correct way, with respect to end-tier execution

linearizability.

During a failure-free client/server interaction, the end-tier replication protocol involves

(at least) a mid-tier element (the one that carries out the client/server interaction) and end-

tier replicas. This protocol is based on a simple request/response message pattern in which

the mid-tier component issues a set of requests, one for each replica, each replica processes

the request and replies to the component. As replicas play a passive role in this interaction,

the end-tier protocol can be easily implemented in asynchronous distributed systems, thus

allowing for example to disseminate server replicas across the Internet. On the other hand,

the mid-tier protocol could be implemented in other distributed system contexts (e.g. LANs,
1This enables this basic architecture to work with technologies based on TCP as well as on IIOP and SOAP

(e.g. CORBA, Microsoft .NET etc).
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workstation clusters etc.) and benefit of computation models with higher degrees of synchrony

(e.g. partially synchronous distributed systems [6], timed asynchronous distributed systems

[11]) leading to a simplification of the mid-tier protocol itself.

This flexibility and the fact that server replicas are completely independent (allowing for

example simplified dynamic changes in end-tier membership) represent the main advantages

of three-tier replication with respect to classical (two-tiers) replication. The price to pay

is one additional hop in the client/server request invocation path with respect to classical

two-tier replication.

Let us final remark that three-tier replication is not an alternative to classical two-tiers

software replication, e.g. [5, 7, 10, 13, 18, 24] . It is rather an architectural solution when facing

software replication in asynchronous distributed systems. Three-tier replication actually needs

two-tier software replication to make the replication logic resilient to failures. The result is an

architecture in which (i) asynchronous aspects are handled by a simple request/response point-

to-point protocol between the mid-tier and the server replicas and (ii) two-tier replication is

confined in a well-defined ”box” that can even adopt, for example, a group communication

toolkit to manage the mid-tier replication protocol. The selection of the mid-tier software

replication technique mainly depends on the degree of synchrony of the distributed system

underlying the box, which actually influences the complexity of the mid-tier protocol, and on

the expected system performance with respect, for example, to failure-reaction and response

times.

3 IRL FT-CORBA Compliant Design

In this section we first summarize the FT-CORBA specification and then we present IRL

FT-CORBA compliant design.

3.1 Overview of FT-CORBA Specification

The FT-CORBA standard addresses the problem of increasing the availability of deterministic

CORBA objects failing by crashing. FT-CORBA achieves fault tolerance through CORBA

object redundancy, fault detection and recovery. Replicas of a CORBA object are deployed on

different hosts of a fault tolerance domain2 (FT-domain). Replicas of an object are collected
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into an object group, which is a logical addressing facility allowing clients to transparently

access the object group members as if they were a singleton, non-replicated object ([4]). If the

replicated object maintains an internal state (i.e. it is stateful), strong replica consistency3

has to be enforced among the states of the object group members.

To identify and address object groups, FT-CORBA introduces Interoperable Object Group

References (IOGRs). Roughly speaking, an IOGR is a CORBA Interoperable Object Refer-

ence (IOR, [23]) composed by multiple profiles, each profile pointing either (i) to an object

group member (in the cases of passive and stateless replication) or (ii) to a gateway orches-

trating accesses to the object group members (in the case of active replication). IOGRs are

used by FT-CORBA compliant client ORBs in order to allow client applications to uniformly

access stateless and stateful object groups while benefiting of replication and failure trans-

parency. This is achieved by modifying client ORBs to implement the transparent client

reinvocation and redirection mechanisms4.

On the server side, FT-CORBA extends the CORBA standard and the server ORBs with

new mechanisms and architectural components organized into the three main features, namely

replication management, fault management and recovery management.

Replication management consists in the creation and management of object groups and

of object group members. The ReplicationManager component is responsible for carrying

out such activities. In particular, when requested for object group creation, Replication-

Manager exploits local factories5 to create the members, collects the members’ references

and returns the object group reference. For stateful object groups, a replication technique

(e.g. active or passive) can be selected. It is also possible to specify whether its up to the

application or to the infrastructure to maintain the group membership information and the

consistency among the replicated states, i.e. ReplicationManager can be requested to

create application/infrastructure controlled membership/consistency object groups. Finally,
2A fault tolerance domain is collection of hosts interconnected by a non partitionable computer network.
3Formally, strong replica consistency of a deterministic object consists in the linearizability [14] of the

request execution histories of the replicated object.
4In [3], we provide a solution based on CORBA Portable Interceptors ([21]) that lets non FT-CORBA

compliant client ORBs benefit of failure and replication transparency.
5Local factories are provided by application developers. A distinct local factory has to be developed for

each distinct object type and deployed on each host of the FT-domain.
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ReplicationManager can be requested to monitor that a minimum number of members is

alive inside a given object group and to perform recovery actions after object group members’

failure in order to maintain such minimum number of members.

Fault Management concerns the detection of object group members’ failures, the creation

and the notification of fault reports and the fault report analysis. These activities are respec-

tively carried out by the FaultDetectors, FaultNotifier and FaultAnalyzer components.

A replicated object can be monitored for failures by a FaultDetector if it implements the

PullMonitorable interface, i.e. it is monitorable. FaultNotifier lets clients request to monitor

monitorable objects and subscribe for receiving object fault reports. Hence, FaultNotifier

receives object fault reports from the FaultDetectors and propagates fault notifications to

the ReplicationManager and other subscribed clients6.

Recovery Management is based on two mechanisms, i.e. logging and recovery that

exploit two IDL interfaces (Checkpointable and Updateable) that recoverable application ob-

jects implement to let logging and recovery mechanisms read and write their internal state.

More specifically, the logging mechanism periodically stores on a log information (i.e. state,

state update, served requests, generated replies) of recoverable objects while the recovery

mechanism retrieves this information from the log when, for example, spawning a new member

to consistently set its initial internal state.

In a FT-domain, one logical instance of the ReplicationManager and one of the Fault-

Notifier components must be created.

To get compliance, a subset of aforementioned features must be implemented. Different

approaches can be adopted, e.g. by exploiting either a group communication toolkit (as in

the case of the Eternal System [19]) or state-logging tools (as in the case of the DOORS

System [20]). No matter of how it is implemented, the software infrastructure spread over

the FT-domain which handles object groups and provides interfaces for their management is

commonly referred to as a fault tolerance infrastructure(FT-infrastructure).

6FaultAnalyzer receives all the fault reports from the FaultNotifier and generates condensed fault

reports. However, it is an optional component that we do not consider in this paper.
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3.2 IRL Architectural Overview

IRL FT-infrastructure is made up of a set of components implemented as standard CORBA

objects. The main idea underlying IRL design is to use three-tier replication in order (i) to

allow independent stateful CORBA objects to be replicated and managed, (ii) to decouple

the replication logic from the replicated CORBA object functionality and (iii) to let clients

and CORBA objects exploit the standard CORBA Internet Inter ORB Protocol (IIOP, [23])

to interact with the mid-tier in order to get interoperability. Figure 2 illustrates the main

IRL FT-infrastructure components.
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Figure 2: IRL Architecture

As the figure shows, clients of a stateful object group interact with a replicated mid-tier

(IRL OGH component) through standard CORBA invocations as well as the mid-tier does

with the object group members7. Therefore IRL results interoperable, as IRL components

and replicated objects managed by IRL can run on ORBs from distinct vendors. This allows

to overcome the FT-CORBA vendor dependence limitation [22].

Figure 2 also shows the IRL RM (ReplicationManager) and FN (FaultNotifier) compo-

nents that implement standard FT-CORBA interfaces. OGH, RM and FN interact through

standard CORBA invocations. However, they can also implement an intra-component mes-

sage bus, which component replicas exploits in order to synchronize their internal state, i.e.

maintain replica consistency. To preserve infrastructure portability, we allow intra-component

message bus implementations exploiting technologies different from IIOP as far as they lay

upon the underlying TCP/IP protocol stack, upon which also IIOP lays.

In the following, we present a short description of IRL components. The description is

functional, in the sense that it is independent from the replication techniques adopted to

replicate IRL components, which will be summarized in Section 4. Interested readers can
7For consistency with the FT-CORBA specification, hereafter we refer to end-tier server replicas as object

group members and to IRL component replicas as replicas.
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refer to [16] for further details.

IRL Object Group Handler (OGH). An IRL Object Group Handler component is as-

sociated with each stateful object group. OGH stores the IORs of the members and the

information about their availability. OGH is mainly responsible for enforcing strong replica

consistency among its group members’ states. In particular, OGH acts as the mid-tier of a

three-tier replication protocol. By exploiting IOGRS and CORBA DII and DSI mechanisms,

it receives all the requests addressed to its object group, imposes a total order on them, for-

wards them to every object group member, gathers the replies and finally returns one of them

to the client (see Section 4.3)8.

IRL Replication Manager (RM). This component is a FT-CORBA compliant Replica-

tionManager. In particular, when RM is requested to create a new object group, it spawns

new object group members invoking FT-CORBA compliant local factories and returns an

object group reference. Note that in the case of infrastructure controlled consistency, RM

also spawns a replicated mid-tier (composed by a fault-tolerant IRL OGH component) and

the object group reference returned by RM points to such a mid-tier. IRL RM allows the

management of stateless and statefull object groups with application/infrastructure controlled

membership and consistency.

IRL Fault Notifier (FN). As FT-CORBA compliant FaultNotifier, the IRL Fault Notifier

receives object fault reports from IRL Local Failure Detectors (LFDs), i.e. FT-CORBA

compliant FaultDetectors and subscriptions for failure notifications by clients. Upon receiv-

ing an object fault report from a LFD, FN forwards it to RM and to clients that subscribed

for the faulty object. In addition to this, FN implements host failure detection by receiving

heartbeats from LFDs. Upon not receiving an heartbeat within a predefined timeout value,

FN creates an host fault-report that pushes to RM as well as to every client that subscribed

for objects running on the faulty host.

To run IRL in a given FT-domain, it suffices to install on each FT-domain host the IRL

Factory component that is able to launch on its host new IRL OGH, RM, FN and LFD

component replicas.
8IRL also support stateless replication. In this case, no OGH is interposed between clients and object group

members. According to FT-CORBA specification, a client simply uses IOGR profiles to directly connect to a

server replica.
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4 The IRL Prototype

The current IRL prototype is written in Java and runs on three different Java-CORBA plat-

forms: JacORB freeware platform [17] and IONA’s [15] ORBacus and Orbix 2000 for Java.

Note that IRL design can be implemented is different ways, which mainly differ for (i) the

mid-tier and end-tier replication protocols (see Section 2) embedded in the OGH component

and (ii) for the techniques and technology adopted to implement the intra-component message

bus, i.e. to achieve infrastructure fault tolerance. Therefore in this section we introduce the

techniques adopted in the current IRL prototype in order not to introduce single points of fail-

ure in the FT-infrastructure9. The choice of the replication technique for each IRL component

is based on the state it maintains (if any) and on its deployment and fault-tolerance require-

ments. To simplify the explanation, we identify two classes of components, Host-Specific IRL

Components (LFD and IRL Factory) and Domain-Specific IRL Components (OGH, RM and

FN).

4.1 Host-Specific IRL Components.

LFD and IRL Factory components are installed on each host of the FT-domain and their

activities are related only to the host they run on (i.e. LFD monitors objects running on its

host, IRL Factory creates objects on its host). As a consequence, host-specific components

do not need to survive to their host crash. However, being subject to software failures, they

are replicated and their replication is efficiently performed on a local basis (i.e. with no

message exchange among different hosts). In particular, IRL Factory is stateless and it is

simply replicated on the host it runs on by launching two separate instances that exchange

I’m alive messages to recreate the partner upon a replica failure. On the other hand, LFD

maintains a simple state composed by the references of the monitorable object running on its

host. For this reason, it is replicated using cold passive replication and monitored for failures

by IRL Factory, that starts a new LFD replica upon detecting a failure.

9Here we give just an overview of the techniques, for further details see [16].
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4.2 Domain-Specific IRL Components.

IRL RM, FN and OGH components implement functionality that must survive to host fail-

ures. Therefore, domain specific components are replicated with replicas running in a separate

process of distinct hosts of the FT-domain. The replication of OGH will be explained in the

next subsection while the current prototype does not support FN replication10. So here we

sketch the basic idea underlying RM replication. RM can execute outgoing invocations to local

factories upon receiving a request. This makes RM nondeterministic, and then its replication

necessarily follows a passive scheme. To achieve this, a singleton RM instance implement-

ing the Checkpointable and Updateable interfaces is wrapped by a Wrapper CORBA object.

Wrapper implements the intra-component message bus exploiting the Jgroup toolkit [1]. Note

that the outgoing invocations executable by RM (e.g. create object, delete object, invoked to

create and delete object groups) can be executed multiple times (e.g. upon receiving a re-

quest reinvocation due to a previous primary RM failure) without affecting the overall system

external behaviour. This semantic knowledge allowed us to simplify RM replication, without

dealing with duplicate filtering of requests outgoing from RM. Additional details about RM

replication can be found in [16].

4.3 The IRL Prototype Three-tier Replication Protocol

As pointed out before, interactions of clients with a stateful object group are mediated by

the IRL OGH component associated with the group. In the current IRL prototype, OGH

implements passive replication as mid-tier replication protocol and active replication as end-

tier replication protocol (see Section 2). We support static groups of both OGH and object

group members11. Object group members have to be deterministic and can not perform

outgoing invocations.

The mid-tier passive replication protocol implemented by OGH is based on perfect failure

detection [6], i.e. FN does not make mistakes when detecting host crashes12. This assumption

allows to simplify the mid-tier replication protocol implemented by OGH.
10We are working on a fault tolerant version of FN based on an active replication scheme, in order to let the

infrastructure quickly react to object and host failures even upon FN replica crashes.
11A group is static when its initial membership changes (reduces) over the time only because of member

failures.
12We experimentally evaluate the conditions under which this assumption is verified in Section 5.
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Deployment and Initialization.

Client-tier. In order to let client applications benefit of transparent client reinvocation

even on non FT-CORBA compliant client ORBs, client applications are augmented with the

IRL Object Request Gateway (ORGW) component [3]. In short, ORGW is a CORBA Client

Request Portable Interceptor [21] that (i) intercept requests addressed to object groups (i.e.

using an IOGR), (ii) uniquely identifies them as the FT-CORBA standard prescribes and (iii)

iteratively tries to send the request to a correct member, until either it receives a reply (that

it returns to the client application) or it has tried all of the IOGR profiles without receiving

a reply13.

End-tier. Each stateful object group member is transparently wrapped by the IRL In-

coming Request Gateway Component (IRGW) that implements a basic FT-CORBA logging

mechanism. In short, IRGW adopts the same interface (by exploiting the Dynamic Skeleton

Interface and the Interface Repository) and receives all the requests of the member it wraps.

Upon receiving a request, IRGW first checks if the request is a reinvocation (exploiting the

FT-CORBA compliant unique request identifier). If it is the case, IRGW returns the result

that it has previously logged. Otherwise it (i) forwards the request to the member, (ii) waits

until a result is produced, (iii) logs the request/reply pair and (iv) it finally returns the result

to the client. To perform garbage collection of outdated request/reply pairs, IRGW exploits

the FT-CORBA request expiration time contained in the unique request identifier.

In order to let OGH perform state synchronization, we assume object group members to

implement at least the Checkpointable and optionally the Updateable FT-CORBA interfaces.

Mid-Tier. When IRL RM creates a new stateful object group, it starts a set of OGH replica

(each running on a distinct host), other than object group members. Each OGH replica

reads the interface of its object group member type from the CORBA Interface Repository

in order to parse incoming requests on behalf of its object group members by exploiting a

Dynamic Skeleton Interface. Moreover, each replica receives from IRL RM two initial views,

i.e. a view containing the identifiers of the OGH replicas (vOGH) and the view containing the

identifiers of the object group members (vmembers). Views are dynamically updated by OGH

upon receiving object and host fault reports from IRL FN, to which each OGH subscribes as
13In this case, ORGW throws a NO RESPONSE exception to the client application, in strict compliance of

the FT-CORBA standard.
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consumer for the objects contained in vOGH ∪ vmembers.

The Protocol.

The IRL three-tier prototype protocol is illustrated in Figure 3. In Scenario 1 (Figure 3(a))

client C1 issues request req1 that reaches the primary OGH1. Upon receiving the request,

OGH1 piggybacks onto req1 a local sequence number (increased for each served request) and

forwards the request to every member Ri ∈ vmembers. Each IRGW wrapping a member, upon

receiving a request stores the sequence number and then forwards the request to its replica.

Then it waits for the result, logs the request and the result and returns the reply to OGH1.

Once OGH1 has received the results from all Ri ∈ vmembers, it returns the reply to the client.

Note that if OGH1 receives another request req2 before completing a request processing (e.g.

req1), then req2 is queued until rep1 is sent to C1. This preserves request ordering at object

group members in absence of primary failures. When a member crashes (e.g. R3 in Figure

3(a)), FN forwards a fault report to every OGH ∈ vOGH , allowing the primary OGH not

to undefinitevely block by waiting a reply from a crashed member. Scenario 2 (Figure 3(a))
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(b) Scenario 2

Figure 3: The IRL Prototype Three-tier Replication Protocol

illustrates how a primary OGH crash is handled14. When OGH1 crashes, FN notifies each

backup of the fault. Hence, each OGH updates its local copy of vOGH and decides if it is the

new primary. In Scenario 2, OGH2 is the new primary as its id appears as the first element of

vOGH , whose elements are ordered basing on replica identifiers. As a primary can fail during
14Backup OGH crashes are simply notified by FN to every OGH that updates vOGH .
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the processing of a request without updating all the members of vmember (e.g. OGH1), OGH2

performs a recovery protocol before starting to serve client requests. Recovery is needed to

ensure update atomicity on the members of vmembers after primary failures. To achieve this,

OGH2 first determines if all the members are in the same state by invoking the IRGW get last

method15. This method takes as input parameter the new primary identifier16 and returns the

sequence number of the last request received by IRGW. If all the members return the same

sequence number, then they are in a consistent state and OGH2 starts serving client requests.

Conversely, i.e. if some member executed an update not executed by some other members,

OGH2 gets a state update from one of the most updated members and set the update to the

least updated ones. Incremental updates are executed exploiting the FT-CORBA Updateable

interface methods (if implemented). Otherwise the Checkpointable interface methods are

exploited, performing full state transfers. Then OGH2 starts serving client requests as the new

primary, having ensured update atomicity on object group members. As clients implement

request retransmission (e.g. by ORGW), C1 reinvokes req1 onto OGH2. In this situation,

members are already updated and then the IRGW wrapping each member returns the logged

result without repeating the member invocation and preserving the CORBA at-most-once

request invocation semantic.

5 Performance Analysis

In this section we show the performance analysis we carried out on the IRL prototype. In

particular, we first introduce the testbed platform and the set of experiments we carried out.

Then we show a wide set of latency and throughput measurements that show the feasibility

of the IRL approach to software replication.

5.1 Testbed Platform and Preliminary Experiments

Our testbed environment consists in six Intel Pentium II 600 workstations that run Microsoft

Windows NT Workstation 4.1 sp6 as operative system and are equipped with the Java Devel-

opment Kit v.1.3.1. On each workstation two Java ORBs have been installed and configured:
15Actually, this invocations would be not necessary if the FT-CORBA get update (get state) method would

return an update (state) sequence number along with their current result.
16The new primary identifier allows IRGW to filter out outdated request coming from crashed primaries.
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JacORB v1.3.21 [17] and IONA’s ORBacus v.4.1 [15]17. The workstation are interconnected

by a 10Mbit Ethernet LAN configured as a single collision domain.

As we assume perfect host failure detection on mid-tier elements (OGH), we first evaluated

the system conditions that actually makes FN behave perfectly. Therefore we fixed the LFD

host heartbeating period and varied the network load from 0% up to 100% using an UDP

multicast based traffic generator. Heartbeats have been sent exploiting both UDP multicast

and TCP. Moreover, to evaluate sensibility to processor load, we varied the processor load

on the host running the primary FN replica. Results are shown in Figure 4(a), which plots

the minimum percentage increment (%∆T) to apply to LFD heartbeating period in order to

obtain a safe FN host failure detection timeout as a function of network load. A safe FN host

failure detection timeout allows FN to avoid false suspicions. As examples, with a maximum

network load of 4Mbit/sec, having set LFD host heartbeating period to 1sec., the value to

set FN host failure detection timeout is roughly either 1,05 sec. if heartbeating exploits UDP

or TCP on a lightly loaded processor and 1,2 sec. if TCP/IP is used on a highly loaded

processor.
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(a) FN Accuracy

Parameter Description Values

FR TRUE iff the test implies a mid-tier fault T/F

FM TRUE iff the test implies a member fault T/F

C # of concurrent clients 1,2,4,8,16

M membership size 2,3,4

S request size 1,5,10,20K

(b) Experimental Parameters

Figure 4: FN Accuracy and Experimental Parameters

All the experiments were carried out in the safe zone depicted in Figure 4(a).

In the experiment suite, we let vary the parameters described in Figure 4(b) and measure

IRL average client latency and system throughput18 by using a simple single-threaded “hello”
17We plan to run our test suite also on the IONA’s Orbix 2000 for Java ORB and to include the results in

a revised version of this paper.
18Averages are evaluated by letting each client invoke 10 times a batch of 50.000 requests.
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server that accepts requests of variable size (S) and immediately replies19.

IRL Latency and throughput must be compared with the results of the basic benchmarks

we took, i.e. the average latency and throughput of a simple client server interaction with

no fault tolerance. We vary the number of concurrent clients invoking on a singleton hello

server instance. Results for the two platforms are shown in Table 1. In the following, we

Client Latency (msec) Overall System Throughput (requests/sec)

Clients (C) 1 2 4 8 16 Clients (C) 1 2 4 8 16

JacORB 1,28 1,37 2,30 4,34 8,30 JacORB 769 1458 1741 1841 1926

ORBacus 1,30 1,38 2,23 3,47 7,08 ORBacus 729 1448 1808 2308 2262

Table 1: Basic Benchmarks

report results of latency measurement as the ratio between the latency value measured in the

experiments and the corresponding simple client/server interaction latency value. We refer

to this ratio as L∗.

5.2 Stateless Replication Performance

In this replication scheme, object group members are directly accessed by clients that embeds

an IRL ORGW component in order to cope with member failures20. Figure 5(a) shows L∗

values obtained by setting C=1, M=2, S=1K in both the failure-free (FM=F) and faulty-

member (FM=T) scenarios. Note that ORGW introduces little delay in failure-free runs

(about 13% on JacORB, 31% on ORBacus) and it triplicates latency upon transparently

reinvoking after a member failure. Figure 5(b) compares the stateless object group throughput

in failure-free runs with the throughput measured in the basic basic benchmarks (C=1), i.e.

with no fault tolerance. The throughput decrement is due to the presence of ORGW.

5.3 Stateful Replication Performance

In the following experiments we measure the performances of the IRL prototype three-tier

replication protocol for stateful object groups described in Section 4.3. Therefore, C clients
19This is the same server we replicate for testing stateful replication, then it also implements the Check-

pointable and Updateable interfaces. State and updates are always empty.
20As ORGW is a CORBA Client Request Portable Interceptor, its performance are strictly related to

Portable Interceptor Performance.
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Figure 5: Stateless Replication Performance

are equipped with IRL ORGW and invoke requests of size S on the primary OGH replica

that forwards them to an object group composed by M members. Each member is equipped

with a co-located IRL IRGW component. In the following experiments, we vary C, M and S.

We only consider primary OGH object failures (FM=T, FR varies) as the delay introduced

by member failures is similar to the one depicted in Figure 5(a). We neither deal with host

failures, as they simply introduce a delay proportional to the FN host heartbeating timeout

(Figure 4(a)). Moreover, we let negligible the delay introduced by LFD and FN in order to

detect OGH (object) failures.

Experiment 1. In this experiment we evaluated client latency and the throughput of a

stateful object group as a function of the object group membership size in both failure-free

and non failure-free runs. Therefore we set FM=F, C=1, S=1K and vary FR from true to

false and M in {2, 3, 4}. Figure 6 shows the experimental results. In particular, Figure 6(a)

shows the L∗ ratio values as a function of M in the failure-free (FR=F) and mid-tier failure

(FR=T) scenarios. As the OGH recovery protocol carried out by a new primary has a best

and a worst case (respectively: members are consistent after a primary OGH failure or it

exists a single most updated member, see also Figure 3(b)), we draw both the minimum

and maximum delays introduced by the recovery protocol. Figure 6(a) points out that, with

respect to a basic benchmark (Table 1, C=1) and depending on the membership size (M), IRL

takes roughly from 3 to 6 times to complete a client interaction with a stateful object group in

17



2,82 3,19 3,79 4,42 5,31 5,77

11,21

6,70 6,62
8,32 8,50

10,78

20,42

15,87

12,4613,90

18,21

23,78

0

5

10

15

20

25

jaco
(2 rep)

orbj 
(2 rep)

jaco
(3 rep)

orbj 
(3 rep)

jaco
(4 rep)

orbj 
(4 rep)

L*

without fault (FR=F) fault (FR=T) - best case fault (FR=T) - worst case

M=2 M=3 M=4

FM=F, C=1, S=1K

(a) Client Latency

0

60

120

180

240

300

2 3 4 M

re
q

u
es

ts
/s

ec

jacorb orbacusFR=F, FM=F, C=1, S=1K

(b) Stateful Object Group Throughput

as a Function of M

Figure 6: Stateful Replication Performance as a Function of the Membership Size (M)

failure free runs. Differences in the costs of the recovery phases between the two platforms are

mainly due to JacORB not optimizing invocations between co-located objects (i.e. IRGW

and the member it wraps). Concerning throughput, Figure 6(b) shows the overall object

group throughput of the stateful object group. It results that throughput roughly reduces of

70% on ORBacus and of 60% on Jacorb if M=2 and of 80% on both platforms if M=4 with

respect to the basic benchmarks shown in Table 1 (C=1).

Figure 7 shows the percentage incidence of each IRL component in a failure-free client/server

interaction with a stateful object group, as well as the absolute time values (in msec.) took by

each component to perform its functionality. As predictable, the time employed by a primary
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Figure 7: Percentage Incidence of IRL Components in a Client Server Interaction with a

Stateful Object Group

OGH to complete an invocation linearly grows with M. Figure 7 also points out that JacORB
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Portable Interceptors outperform the ORBacus ones (see ORGW times), while JacORB does

not optimize co-located invocations, conversely to ORBacus (see IRGW times).

Experiment 2. In this experiment we measured the throughput of a stateful object group as

a function of the number of concurrent clients. Therefore we set FM=FR=F, M=2 (minimum

fault tolerance), S=1K and we vary C in {2, 4, 8, 16}. The overall stateful object group

throughput is depicted in Figure 8(a). By comparing these results with the basic benchmarks

(Table 1), it follows (i) that throughput increases until the underlying ORB platform allows

for this, and then reaches a plateau and (ii) that the throughput decreases of roughly 70%

with respect to the basic benchmarks (no fault-tolerance).
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Figure 8: Stateful Replication Performance as a Function of the Client Number (C) and

Request Size (S).

Experiment 3. In this experiment we measured stateful object group throughput as a

function of the request size. Therefore we set FM=FR=F, M=2 (minimum fault tolerance),

C=1 and we vary S in {1K, 5K, 10K, 20K}. The overall stateful object group throughput is

depicted in Figure 8(b), in which we also plot the throughput of a simple client server interac-

tion (no fault tolerance) while varying the client request size. As for the previous experiment,

it follows (i) that throughput decreases with the request size as the underlying ORB platform

does and (ii) that the throughput still decreases of roughly 70% with respect to the basic

benchmarks (no fault-tolerance).
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Experiments 2 and 3 shows the main implication of the IRL “above the ORB” design

approach: stateful IRL object groups scale in the number of client and on the request size

exactly as the underlying ORB platform does. As a consequence, performance improvements

of the underlying ORB platform as well as newly available services can be easily exploited in

the IRL framework.

6 Conclusions and Future Work

In this paper we have presented the three-tier approach to software replication which decou-

ples the replication logic from both clients and servers allowing, thus, a simple deployment

of server replicas on an asynchronous distributed system. Then we have presented the Inter-

operable Replication Logic (IRL) which is a Fault Tolerant CORBA compliant infrastructure

exploiting the three-tier approach to replicate stateful CORBA objects. IRL is portable and

interoperable, as it runs on several CORBA compliant ORBs and clients and server replicas

lay on standard ORBs implementing only the standard IIOP protocol. We finally presented

an extensive performance study of an IRL prototype, that implements a simple three-tier

replication protocol based on perfect failure detection.

Concerning future work, we plan work out IRL prototype along with the following direc-

tions:

(1) using user-configurable semantic knowledge [8], in a way similar to [9], in order to enhance

stateful object group performance;

(2) developing a suite of three-tier replication protocols working on partially synchronous

distributed systems and on a timed asynchronous system model;

(3) introducing support for handling nondeterministic object group replicas (in a way similar

to [7]) by adding a synchronization phase carried out by OGH at the end of each invocation

[2].

As a consequence IRL is becoming an interesting platform for testing and evaluating

software replication protocols.
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