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Abstract

In this paper we present a scalable causality-tracking
protocol, called k-Dependency Vectors, which piggybacks
on each application message a constant number k of inte-
gers (with k � n). These integers are selected from a vector
of size n which is local at each process. By reducing the size
of the piggybacked information, only a subset of the causal
dependencies can be “on-the-fly” detected by the checker.
The other dependencies need an extra computation time to
be rebuilt (detection delay). This delay is influenced by the
adopted selection strategy. In the paper, several selection
strategies are proposed and evaluated with respect to the
detection delay experienced by the checker.

1 Introduction

Many dependability problems, such as consistent global
state selection [2, 9], detection of obsolete data [11], repli-
cated data management [13] and distributed debugging [5],
require the capability to detect the concurrency or the
causal dependency of events forming a distributed computa-
tion, concurrently with the execution of the computation. A
well-known approach to answer the question “given a pair
of events e and e0, does e causally precede e0 1?” is (i) to
use a timestamping protocol to timestamp the events of the
distributed computation and (ii) to place a checker process
that receives the timestamps of the events and provides the
answer [7].

If the set of these timestamps can be structured as a par-
tial order isomorphic to the one of the computation, we say
that the protocol characterizes causality. Moreover, if the
checker can detect a causality relation between two events

�This work is partially supported by a grant of the EU in the context of
the IST project ”EU-PUBLI.com”.

1This question actually corresponds to the detection of the happened-
before relation [10] between two events of a computation.

e and e0 as soon as it receives their timestamps we say
that a protocol characterizes causality on-the-fly. A proto-
col characterizes causality not on-the-fly when the checker
needs to receive the timestamps from other events (distinct
from e and e0) to detect the causality relation between them.
This additional overhead at the checker produces, as most
visible effect, a delay in perceiving a causality relation (de-
tection delay).

A system of Vector Clocks (V C) [4, 12], also called
Transitive Dependency Vectors, is an example of a time-
stamping protocol characterizing causality on-the-fly. More
precisely, the vector clock local at a process Pi is a vector
of n integers (one entry per process) such that the entry j
counts the number of relevant events produced by the pro-
cess Pj which causally precede the current event produced
by Pi. To adhere to their semantic, during the computation,
each application message carries a vector clock as a control
information. The timestamp of an event produced by a pro-
cess is the current value of the vector clock of the process.
As proved in [3], unfortunately, vector clocks are not sca-
lable as their size is equal to the number of processes. As,
nowadays, local memory is cheap and available on-board in
large quantity, the scalability issue does not concern vec-
tors stored in local memory (at least if n is in a reasonable
range). In a distributed setting, scalability is critical with
respect to the control information attached to messages.
Having a bounded, possibly fixed, control information size,
would help protocol designers to develop efficient protocols
for tracking causal dependencies.

In the paper we present k-Dependency Vectors, a sca-
lable protocol for causality-tracking which associates each
event e with a dependency vector k-DV of size n. To this
aim each process Pi is equipped with a vector of size n,
k-DVi, and each time Pi sends a message, the component
k-DVi[i] plus k � 1 (1 � k � n) distinct entries of the
local dependency vector k-DVi, selected according to some
strategy, are piggybacked on the message as a control in-
formation. It is interesting to remark that when k = n,
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k-dependency vectors become vector clocks. When k = 1,
k-dependency vectors boil down to a timestamping proto-
col, namely Direct Dependencies, proposed by Fowler and
Zwaenepoel in [5] in the context of distributed debugging.
Thus this scalable protocol exploits a tradeoff between the
size k of the piggybacked information and the detection de-
lay (DTD). More precisely, DTD corresponds to the inter-
val of time elapsed between the time the checker receives
the information related to a pair of events e and e0 and the
time it is able to give the correct answer about the causality
relation between e and e0.

We present several strategies to select the k�1 entries of
local k-DVs. These strategies have a strong impact on DTD.
We point out that when using a specific strategy, namely the
Fixed-Set strategy, where each process piggybacks the same
k�1 entries on each message (the Fixed-Set), all the causa-
lity relations e ! e0 such that e has been produced by one
of the k � 1 processes in the Fixed-Set, are on-the-fly de-
tectable by a checker, i.e. DTD is zero as for vector clocks.
If no constraint is imposed on the causality relations to be
detected, we show that when each processPi piggybacks on
messages the k � 1 entries of the local k-dependency vec-
tor related to the last k � 1 distinct processes from which
Pi received a message (Most-Recently-Received strategy),
DTD is very small even for small values of k. Simulations
show that 2-dependency vectors yield a reduction of 90%
of the average value ofDTD with respect to 1-dependency
vectors (i.e. direct dependencies). On the contrary, if each
process selects the k�1 entries randomly, then DTD is very
close to the one of 1-dependency vectors.

The remaining of this paper is structured in 5 sections.
Section 2 introduces the computational model. Section 3
presents a framework for timestamping protocols. Exam-
ples of causality-tracking protocols are introduced in Sec-
tion 4. Section 5 introduces k-Dependency Vectors and sur-
veys methods used in the literature to obtain a system of
bounded dependency vectors. Section 6 concludes the pa-
per.

2 Computation Model

A distributed computation consists of a finite set of n
sequential application processes fP1; : : : ; Png without a
commonmemory and communicating solely by exchanging
messages. Each ordered pair of processes is connected by
a reliable directed logical channel. Transmission delays are
unpredictable but finite. The execution of each process Pi
produces a totally ordered set of events Ei. An event may
be either internal or it may involve communication (send or
receive event). We denote by E the set of all the events of
the computation, that is E = [n

i=1Ei.
Following Lamport [10], we say that an event e locally

precedes e0 (e�le
0) if e precedes e0 on the same process.

Moreover, each message m can be associated with its send
and receive events denoted by send(m) and receive(m),
respectively. Such a pair of events can be ordered by a re-
lation of message precedence �m. The causality ordering
of events is based on Lamport’s relation called happened-
before or causality relation, and denoted by!, defined as
the transitive closure of the relation �l [ �m. It is well
known that (E;!) is a partial order of events. Two events
e and e0 are concurrent, denoted ejje0, if :(e ! e0) and
:(e0 ! e).

The causal past P(e) of an event e is defined as the set
P(e) = fe0 2 E j e0 ! eg [ feg.

Moreover, given two distinct events e and e0 with e! e0,
we say that a sequence of messages < m1; : : : ;mh > is a
causal path from e to e0, denoted by CP e

0

e , if:

1. e �l send(m1) or e = send(m1)

2. 8i = 1; : : : ; h� 1 receive(mi) �l send(mi+1)

3. receive(mh) �l e
0 or e0 = receive(mh)

We note that more than one causal path may exist between
two distinct events e and e0 such that e! e0.

3 Causality-Tracking between Events

3.1 Timestamping protocols

To design efficient distributed algorithms one needs to
track causal dependencies during the computation. Methods
used to track these dependencies are based on timestamps of
events produced by the execution of a timestamping proto-
col, which assign on-the-fly, that is during the evolution of
the computation, to each event e, a value �(e) (called ti-
mestamp of e) of a suitable domain (D;<) whose relation
<� D � D is antisymmetric. A timestamping protocol is
usually characterized by:

(i) a timestamping function � which establishes a corre-
spondence between the events of a computation and
the timestamps inD, and

(ii) a set of rules implementing the protocol which decide
the control information piggybacked by messages used
to update the timestamps.

We will denote asD(E) the set of the timestamps assigned
by the timestamping protocol to the events, i.e. D(E) =
f�(e) j e 2 Eg.

The aim is to assign values inD to the events so that the
transitive closure of (D(E); <) of the timestamps assigned
to the events may be an isomorphic embedding of (E;!
). This can be formalized by requiring that the function �
characterizes causality, i.e., � is injective and

8e; e0 2 E; �(e) <+ �(e0), e! e0; (1)
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being<+ a partial order, that is the transitive closure of the
relation < on the set D(E).

The Checker Process. We consider an additional ob-
server process (i.e., the checker), whose role is to detect
if a couple of events is causally related or concurrent only
analyzing timestamps. Namely, each time an event e is gen-
erated by a process Pi, the checker receives a pair (e; �(e))
being �(e) the timestamp associated with e. Its role is to
detect the causal dependency or the concurrency between
events just by analyzing the received timestamps. The
checker can correctly detect dependencies only if the pro-
tocol characterizes causality.

3.2 Detection Delay

To answer the question “given a pair of events e and
e0, does e causally precede e0?”, the checker needs to re-
ceive the timestamps associated with the events belonging
to P(e0). From an operational point of view, as the network
can reorder messages, it is not sure that all these timestamps
will be received by the checker before the receipt of the
messages related to e0. If the checker requires a timestamp
which has not yet been received, it waits until it has received
the required information. This waiting actually creates a va-
riable delay, namelyDeTection Delay (DTD), defined as the
time elapsed between the receipt of (e; �(e)) and (e0; �(e0))
and the answer returned by the checker. The detection delay
is influenced only by the late arrival at the checker of some
events that belong either to the causal past of e or to the one
of e0.

On-the-fly Causality-Tracking. We say that the time-
stamping function � characterizes causality on-the-fly if
� characterizes causality, and the suborder of timestamps
(D(E); <) is already transitively closed (i.e., <+�<).
When the protocol characterizes causality on-the-fly, the
checker can “on-the-fly” detect the causal dependency or
the concurrency between events only comparing their time-
stamps, i.e. DTD = 0, as the structure of causality is repre-
sented in an isomorphic way by the suborder of timestamps
(D(E); <). On the contrary, let us remark that when prop-
erty (1) is satisfied, but the suborder (D(E); <) is not tran-
sitively closed, � characterizes causality, but not on-the-fly,
i.e., the checker might experience a delay in detecting a cau-
sality relation.

4 Causality-Tracking Protocols

Vector Clocks. In a system of vector clocks, introduced
independently by Fidge and Mattern [4, 12], each event
e is associated with a timestamp �(e), denoted e:V C and

called vector clock, which is a vector of n integers (where
n is the number of processes of the computation) such that
e:V C[i] = P(e) \ Ei, that is e:V C[i] = x when the x-th
event of process Pi causally precedes e. During the com-
putation, each application message carries a vector clock as
control information.

Fidge and Mattern showed that this protocol character-
izes causality on-the-fly (DTD = 0), that is given two vec-
tors e:V C and e0:V C associated with the events e and e0,
respectively:

e! e0 , e:V C < e0:V C (2)

where e:V C < e0:V C iff 8i = 1; : : : ; n; e:V C[i] �
e0:V C[i] ^ e:V C 6= e0:V C.
Moreover, ejje0 iff :(e:V C < e0:V C) ^ :(e0:V C <

e:V C).
From an operational point of view the protocol works as

follow: each process Pi endows a vector V Ci of n integers,
where V Ci[j] represents the index of the most recent event
of process Pj known by Pi. Then, the value of V Ci repre-
sents actually the timestamp of the event currently produced
by Pi. During the computation, each application message
carries the whole local vector clock as control information.

The vector V Ci is updated according to following rules:

1. when Pi starts its execution, each component of V Ci

is initialized to zero;

2. when an event is generated on process Pi: V Ci[i] =
V Ci[i] + 1;

3. when a messagem is sent byPi, a copy of V Ci (V Cm)
is piggybacked onm;

4. when a message m sent by process Pj is re-
ceived by Pi: 8h = 1; : : : ; n; V Ci[h] =
max(V Ci[h]; V Cm[h]).

The major drawback of vector clocks lies in the fact that
they have poor scalability. In fact, its implementation re-
quires an entry for each one of the n processes in the com-
putation. In [3] it is proved that given a distributed compu-
tation with n processes, there is always a possible combina-
tion of events occurring in the computation whose causality
can only be detected on-the-fly by vector clocks with n en-
tries.

Answers to scalability issue. As far as we know, two ap-
proaches have been proposed to tackle the problem of the
size of piggybacked information. Each one relies on a spe-
cific tradeoff:

� Trading piggybacked information (Ip) for local me-
mory overhead (Il). This class includes “efficient im-
plementations of vector clocks” presented in [8, 15].
These implementations try to move locally as much as
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possible the complexity of managing a vector clocks
system while maintaining the on-the-fly characteriza-
tion of causality;

� Trading Ip and Il for missing some concurrencies be-
tween events (i.e., concurrent events can be perceived
as ordered). This tradeoff is exploited by plausible
clocks [17]. This system of clocks actually bounds the
size of Ip and Il to some integer k less than n. As
a consequence plausible clocks does not characterize
causality, i.e., the property (1) is not necessarily sati-
sfied;

� Trading Ip for a delay in detecting a causality relation.
This tradeoff is captured by the protocol proposed in
this paper and it has Direct Dependencies protocol [5]
as a particular case when considering k equal to one.
k-dependency vectors actually bounds the size of Ip to
some integer k less than n. They characterize causality
but not on-the-fly.

Efficient implementations of vector clocks. In [8, 15],
it has been proposed efficient implementations of vector
clocks that address the reduction of the size of control in-
formation, i.e., they do their best to piggyback timestamps
whose size is less than n as control information. These are
based on this idea: when Pi sends a message to Pj , it may
piggyback only the entries that have been modified since its
last sending to this process Pj .

A system of vector clocks adopting this technique does
not add extra delay to detect the concurrency or the causa-
lity relation between two events. These improvements are
expected to save communication bandwidth at the cost of a
local memory overhead. On the other hand, the amount of
control information is variable and, in the worst case, it can
grow up to n.

Plausible vector clocks. Torres and Ahamad [17] pro-
posed a simple mechanism, called Plausible Vector Clocks
(sometimes also called approximate vector clocks), that al-
lows to manage vectors of k integers, with k < n. The
implementation is similar to the vector clocks one, but each
process locally maintains a vector of size k and piggybacks
this vector upon messages. In this case two events could be
perceived as dependent while they are actually concurrent.
More formally, if e:PC and e0:PC are the two timestamps
associated with two events e and e0, then

e! e0 ) e:PC < e0:PC:

This method can be used in some applications in which
one could be interested in capturing the causality between
events not their concurrency. As plausible clocks may vio-
late concurrency, they are useful in systems where ordering
of concurrent events impacts performance not correctness.

When k 6= n, the protocol does not characterizes causality,
as the transitive closure of timestamps suborder is an ex-
tension (not an isomorphic embedding) of the computation
(E;!). When k = 1 the resulting protocol is the Lam-
port’s scalar clock system [10], while when k = n we get
classical vector clocks.

5 k-Dependency Vectors

In this section we introduce k-dependency vectors which
is a general scheme for causality-tracking exploiting the
tradeoff between the size of the control information pig-
gybacked on messages and the detection delay. Next, we
present two interesting properties on these vectors. This
section also presents effective strategies that reduce the de-
tection delay at a checker for those causality relations which
are not on-the-fly detectable. The section finally presents a
simulation study comparing different dependency vectors
systems with respect to the detection delays.

Basic idea. The idea behind k-dependency vector time-
stamping protocol is the following: each time a process
sends a message m, it attaches to the message k entries of
the local dependency vector selected as follows (for each set
of eventsX , let Xi be the set X \ Ei):

� a coding of P(send(m))sender(m);

� k � 1 (k < n) codings of distinct sets
P(send(m))`1 ; : : :P(send(m))`k�1 (with `j 6= i)
selected according to some strategy (see Section 5.2),
where each P(send(m))li is the largest prefix-closed
subset of P(send(m))li known to the sender (i.e.,
P(send(m))li � P(send(m))li ).

In the following we denote as P(e)jm (with P(e)jm �
P(e) � P(e)) the set of events P(send(m))sender(m) [

P(send(m))`1 [ : : :[P(send(m))`k�1 whose codings are
piggybacked by a process ontom just before sending it.

As k < n, the sender transfers a coding of a part of what
it knows about its causal past. As a consequence, let e be
an event, the set [h=1;:::nP(e)h, denoted P(e), is a subset
of P(e) as depicted in Figure 1. If k = n, we obtain a
system of vector clocks and P(e)jm = P(e) = P(e).

The protocol From an operational point of view, each
process Pi maintains a k-dependency vector of n integers,
k-DVi, which represents the timestamp of the event e cur-
rently produced by Pi (e:k-DV ). Each time a process Pi

sends a message m to process Pj , it selects according to
some policy k � 1 entries `1; : : : `k�1 from its local de-
pendency vector plus the i-th entry, and then it piggybacks
only this information, which corresponds to the coding of
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P(e)jm, onto m. k-DVi is updated according to the follo-
wing rules (rules 1 and 2 are omitted as they are similar to
the ones of V C):

300. when a message m is sent by Pi to Ph, a set Im of k
pairs (process index; k-DVi[process index]) is pig-
gybacked onm. Im is composed of:

� the pair (i; k-DVi[i]);

� k � 1 pairs (`j ; k-DVi[`j ]); j = 1; 2; : : : ; k �
1 and `j 6= i, where `1; : : : ; `k�1 are distinct
indices selected according to some policy.

400. when a messagem is received by Pi:

8(`; h) 2 Im; k-DVi[`] = max(h; k-DVi[`])
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f(1; 1); (3; 3); (4; 2)g

P(e)1

P(e)3

P(e)4
e

P5

e.k-DV = [1; 1; 3; 2; 0]

P(e)
m

P(e)

Figure 1. Example of k-Dependency Vectors

As an example, Figure 1 shows a computation using 3-
dependency vectors. When process P3 sends message m
(event e), it piggybacks onm the pair (3; DV3[3]) plus two
selected pairs which correspond, in this case, to the ones
relative to P1 and to P4 (the selected entries are underlined
in the figure). In [1, 14] it has been shown that the checker is
able to reconstruct the vector clocks associated with e and e0

by recursively exploring direct dependencies of the events
in the causal past of e and e0. As k-dependency vectors al-
ways piggyback the direct dependency, they can reconstruct
the vector clock associated with each event as the direct de-
pendencies protocol.

5.1 Properties

As k-dependency does not transfer all the causal past of
the sending event to the receiver, there can be cases in which
a causality relation e! e0 cannot be detected on-the-fly by
the checker. The following property states the condition in
which a checker can detect the correct causality relation be-
tween two events e and e0 as soon as it receives their time-
stamps.

Property 1 Let e be an event produced by Pi. We have:

e:k-DV[i] � e0:k-DV[i]) e! e0

Proof. If e:k-DV[i] � e0:k-DV[i], then the e:k-DV[i]-th
event of Pi, that is e, locally precedes or coincides with the
e0:k-DV[i]-th event of Pi. Since this one causally precedes
e0, one has e! e0. �

There can be cases in which e ! e0 and e:DV [i] >

e0:DV [i]. This implies that several events can be “on-the-
fly” perceived as concurrent by a checker, when they are
actually causally ordered2. The following property states
the condition in which a causality relation is detected on-
the-fly by a checker.

Property 2 Let e and e0 be two events of a distributed com-
putation (E;!) which adopts the k-dependency vectors
protocol to timestamp its events. A checker process is able
to detect on-the-fly e ! e0 iff a causal path CP e0

e =<
m1; : : : ;mh > exists such that:

e 2

h\

i=1

P(send(mi))jmi
: (3)

Proof. Let e be an event produced by process Pi and
CP e0

e =< m1; : : : ;mh > be a causal path from e to
e0 that satisfies the property (3), i.e., each send(mj), for
j = 1; : : : ; h, piggybacks the coding of P(send(mj))i. By
Property 1, to prove that a checker process can detect on-
the-fly e ! e0, it is sufficient to prove that e:k-DV[i] �
e0:k-DV[i]. This thesis is a direct consequence of following
considerations:

� e:k-DV[i] � send(m1):k-DV[i], as e �l send(m1) or
e = send(m1) (by definition of causal path);

� send(mj):k-DV[i] � receive(mj):k-DV[i] (i =
1; : : : ; h) (by rule 4” of k-dependency vectors proto-
col);

� receive(mj):k-DV[i] � send(mj+1):k-DV[i] (i =
1; : : : ; h � 1), as receive(mj) �l send(mj+1) (by
definition of causal path);

� receive(mh):k-DV[i] � e0:k-DV[i], as
receive(mh) �l e0 or e0 = receive(mh) (by
definition of causal path).

Let us now suppose that a checker process is able to de-
tect e! e0 as soon as it receives their timestamps. Clearly,
if there were no causal path from e to e0 satisfying property
(3), it would be e:k-DV[i] > e0:k-DV[i]. In this case, the
checker would not be able to detect on-the-fly the causal de-
pendency. So, we can conclude that such a causal path must
exist. �

As an example, in Figure 2 the checker is able to detect
on the fly the relation e1 ! e0, but it is not able to detect the

2Let us remark that when considering vector clocks Property 1 keeps
also in the other direction.
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e2 ! e0 one. In fact, in the first case there is the causal path
CP e

0

e1
=< m1;m2;m3 > such that e1 2

T
3

i=1
P(e1)jmi

,
while in the other one e2 62 P(e3)jm3

.

����

���� ����

��������

��������

����

����
P4

[0; 0; 1; 0]
P3

P1

P2

f(3; 1); (4; 0)g

[2; 0; 1; 0][1; 0; 1; 0]

[2; 2; 1; 0]

[0; 3; 1; 3]

m3

e3

e0

f(2; 3); (3; 1)g

[2; 3; 1; 0]

e1

e2

m2

f(1; 2); (3; 1)gm1

Figure 2. A distributed computation using 2-
dependency vectors

For all the couples of events e and e0 that either (i) are
concurrent or (ii) are causally dependent (i.e. e ! e0) but
do not satisfy Property 2, a checker needs to reconstruct, at
least partially, the vector clocks of e and e0 and then com-
pare them.

5.2 How to Select k � 1 Entries of a Dependency
Vectors.

Property 2 defines a set of causality relations between
pairs of events that can be detected by a checker just by
comparing the k-dependency vectors of the events. To de-
tect the other causality relations a checker needs to rebuild,
at least partially, the vector clocks related to the involved
events. This may introduce a detection delay at the checker
as remarked in the previous section.

Here we consider the following problem: “how to select
k � 1 entries of a dependency vectors in order to minimize
the detection delay at the checker?”.

Simple selection heuristics could be: the random and the
static one. The random strategy selects the k�1 entries ran-
domly. In the static strategy each process selects the same
k � 1 entries each time it sends a message. However, de-
spite their simplicity, both these heuristics do not attack the
problem of the minimization of the detection delay. At this
aim we introduce the following two strategies, namely, the
Most Recently Received (MRR) strategy and the Fixed-Set
strategy.

MRR Strategy. From previous Section it can be argued
that the detection delay of a causality relation not on-the-fly
detectable by a checker occurs as a consequence of some
causal ordering violation at the checker. From the point

of view of a process Pi at the time it is sending a message
(event e), the best heuristic to minimize the detection delay
is to make on-the-fly detectable by a checker the causality
relations that involve events that have more probability to
create a causality ordering violation at the checker with e.
If a message m has been received by Pi a lot of time be-
fore e, it will be extremely unlikely that the information
related to the event send(m) will cause a causality viola-
tion at the checker with the information related to e, i.e.
checker(e) !l checker(send(m)) (see Figure 3).
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��
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�
�
�
�

��
��
��
��

�
�
�
�

send(m)

Pi

e

m e0

chk(e0) chk(e) chk(send(m))
checker

Figure 3. Example of a low probability causa-
lity ordering violation

Hence the events more risky of causality ordering viola-
tions at the checker are the ones connected to the last receipt
of process Pi before producing e (such as event e0 in Figure
3). An effective heuristic consists, therefore, in selecting
the k � 1 entries of a dependency vector of a process Pi re-
lated to distinct senders of the k�1Most Recently Received
(MRR strategy) messages by Pi

3.
In this way the effect is twofold. On one side we make

on-the-fly detectable by a checker the causality relations
that involve events that could create with high probability
a causality ordering violation with e (for example e0 ! e

in Figure 3). On the other side, when considering not on-
the-fly detectable causality relations, it will be extremely
likely that all the information related to dependency vectors
necessary as an input to the reconstruction algorithm of the
previous section will be present at the time it runs (i.e. no
delay is introduced to wait for some dependency vector to
arrive).

Fixed-Set Strategy. Let us consider a class of applica-
tions where one is interested in capturing only a subset of
all causality relations. This subset contains all the causality
relations e ! e0 such that e is an event produced by a pro-
cess in the set P`1 ; : : : P`k�1

(k < n). These processes form
the Fixed-Set.

3If such processes are less than k � 1, one option is to fill the missing
pairs with processes having a non-zero entry in k-DV .
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The Fixed-Set strategy works as follows: each process
Pi piggybacks on each message m its entry k-DVi[i] plus
the entries related to processes in the Fixed-Set.

If e ! e0 and e has been produced by a process in the
Fixed-Set, then this relation is on-the-fly detectable by a
checker as the entry of the process producing e, say P`i ,
is piggybacked onto all messages of the computation. As a
consequence, e satisfies Property 2. Hence for this subset of
causality relations, k-dependencies are equivalent to vector
clocks.

Note that, using this heuristic, a process does not need
to piggyback couples (process identifiers, entry of the local
dependency vector) on each message as all processes agree
on the members of the Fixed-Set. Then information on the
process identifier can be omitted.

5.3 Simulation study

The simulation study carries out a performance compa-
rison between k-dependency vectors, using MRR and ran-
dom, and direct dependency vectors (i.e. 1-Dependency
vectors). In particular, given a pair of events e and e0,
we measure the DeTection Delay (DTD) as a function of
the number of processes of the computation. We simu-
lated a point-to-point environment in which each process
can send messages to any other process and the destina-
tion of each message is an uniformly distributed random
variable. Each process generates an internal, send or re-
ceive event with the same probability4. Transmission de-
lays of each directed point-to-point channel are distinct uni-
formly distributed random variables. These distributions are
distinct to maximize the probability of causality ordering vi-
olations (as the one depicted in Figure 3). Each simulation
consists of one million of events and for each value of n in
the set f5; 7; 10; 15; 20; 25; 35; 50; 70; 100g we plot the ra-
tio (R) between the mean DTD of k-DV (adopting MRR
and the random strategies with three distinct value of k) and
the meanDTD of 1-DV.We did ten runs of each simulation
with different seeds and the results were within 6% of each
other. Thus variance is not reported in the plots. Results of
the simulation study are plotted in Figure 4 and Figure 5.

In Figure 4, 2-DV adopting MRR shows a reduction in
DTD of 10 times with respect to 1-DV almost independent
of the number of processes. This saturation behavior can be
justified by pointing out that k-DV using MRR, indepen-
dently of the number of processes, always chooses to tran-
sfer information related to events with the highest probabi-
lity to create a causality ordering violation at the checker,
that is to cause a delay. Moreover, an additional increment
of k over a certain value produces a little reduction of R
as k-DV transmits information related to events that cause
a causality ordering violation with small probability. The

4Receive events are generated in response to generated send events.
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Figure 4. R vs Number of processes n

graphs show that a system of k-dependency vectors using
MRR strategy is very scalable, being k almost uniquely
dependent on the desired DTD improvement over 1-DV.
Moreover, they show that there is no need to give k large
values, since k = 7 already gives a reduction of over 300
times in a system of 100 processes.

In Figure 5, we finally compare 1-DV with k-DV when
adopting two distinct selection policies, namely MRR, and
the random one. The graphs of Figure 5 give an idea on (i)
how a selection strategy impacts the detection delay and (ii)
the real performance distance between MRR and the ran-
dom strategy. It is interesting to remark that, all plots re-
lated to the random strategy are very close each other and
for a number of processes larger than 30, their performance
are similar to the one of 1-DV independently of the value of
k. On the other hand, when adopting MRR as the selection
strategy the value of k influences the performance as shown
in Figures 4 and 5.
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Figure 5. R vs Number of processes n

Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03) 
0-7695-1875-3/03 $17.00 © 2003 IEEE 



6 Conclusions

Up to now the only known ways to get bounded de-
pendency vectors were missing some concurrency between
events (i.e., accepting some concurrent events appear as
causally ordered) or having a local storage overhead. This
paper pointed out another tradeoff: bounded dependency
vectors can be traded for missing some on-the-fly detection
of causality relation at a checker. We then presented a ge-
neral scheme for causality-tracking, namely k-dependency,
which lies on that tradeoff. This scheme has direct depen-
dencies and vector clocks as extreme cases when conside-
ring k equal to one and to n, respectively. This scheme
provides scalability, with respect to control information
piggybacked on application messages, by attaching only
k � n entries of a vector of integers on each message.
These entries are selected from a vector of n entries ac-
cording to some strategy. Simulations showed that when k-
dependency vectors adopt the MRR strategy even for small
(and fixed) value of k, the delay in detecting a causality re-
lation by a checker is kept small. Let us finally remark that
for particular classes of distributed applications where one
is interested in detecting causality relations e ! e

0 such
that e has been produced by a process in a set of k � 1 pro-
cesses, k-dependency vectors adopting the Fixed-Set stra-
tegy makes all such causality relations on-the-fly detectable
by a checker.
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